(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

20.10.2010 Bulletin 2010/42

(51) Int Cl.:

B25B 27/16 (2006.01)

(21) Application number: 09163805.6

(22) Date of filing: 25.06.2009

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

Designated Extension States:

AL BA RS

(30) Priority: 17.04.2009 TW 98112763

(71) Applicant: Chen, Yu-Chen Province of China (TW)

(72) Inventor: Chen, Yu-Chen Province of China (TW)

(74) Representative: 2K Patentanwälte Blasberg

Kewitz & Reichel Partnerschaft Corneliusstraße 18

60325 Frankfurt am Main (DE)

(54) Flange-disassembling device

(57) A flange-disassembling device includes a pushing rim of a hydraulic cylinder and another pushing rim on a pushing rod driven by the hydraulic cylinder to disassemble two assembled flanges. In use, axes of the

hydraulic cylinder and the pushing rod are parallel to axes of the flanges so that the flange-disassembling device consumes less operation space as compared with the prior art.

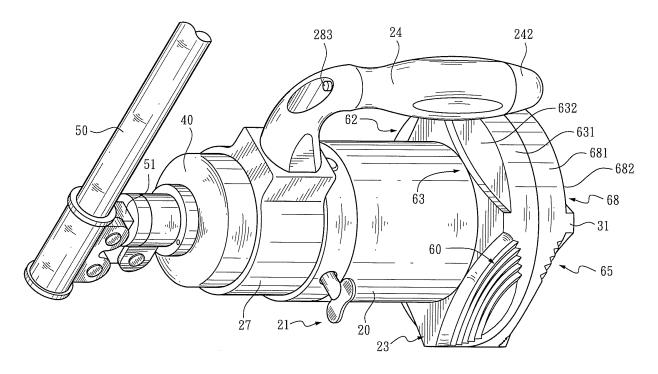


FIG. 4

20

40

BACKGROUND OF THE INVENTION

1. Technical Field

[0001] The present invention relates to a flange-disassembling device according to the preamble of Claim 1. Accordingly, the present invention relates to a flange-disassembling device requiring less operational space as compared with the conventional devices.

1

2. Description of Related Art

[0002] A traditional approach for disassembling bolted flanges substantially involves inserting a pinch bar between the flanges and then hammer the pinch bar to separate the flanges forcedly. However, this approach is not only time-consuming and effort-consuming, but also likely to damage surfaces of the flanges.

[0003] In view of this problem, a China Patent numbered CN2626675Y has taught a flange-disassembling device, shown herein through Figure 1. The patented flange-disassembling device comprises two expanding members 91 each having a triangular shape and a through hole 93 at a coupling end 92 for allowing a respective pin 95 to pass therethrough and thus combine the expanding member 91 with a body 94 of the device. The two expanding members 91 are such connected with the body **94** that the expanding members **91** are movable to spread apart or retract inward with respect to the body 94. A means to move the expanding members 91 includes a tapered element 99 driven by a piston of a hydraulic cylinder 96 that is assembled behind the body 94. In each said expanding member 91, two sliding pins 97 are provided at each side thereof for contacting the ramp 991 of the tapered element 99. Besides, each said expanding member 91 has a stepped spreading portion 98 opposite to the coupling end 92.

[0004] Figure 2 illustrates operation of the prior device. In use, the spreading portions 98 of the expanding members 91 are inserted between two bolted flanges 10, 11 so that when the hand lever 912 connected with the hydraulic cylinder 96 is manually operated, the piston of the hydraulic cylinder 96 drives the tapered element 99 to move forward. As a result, the sliding pins 97 of the expanding members 91 are affected by the ramp of the tapered element 99 and the expanding members 91 are spread apart, thereby separating the flanges 10, 11.

[0005] The problem of the prior device relates to the fact that, referring to Figures 2 and 3, at the time the flanges 10, 11 are separated by the second steps of the spreading portions 98, the tapered element 99 juts out of the spreading portions 98 and is obstructed from projecting any further by the bolt 100, and the expanding members 91 cannot expand anymore until the tapered element 99 is retracted and the expanding members 91 are closed to have their third steps corresponding to the

flanges **10**, **11**. Similarly, when the tapered element **99** touches the bolt **100** again, the aforesaid operation has to be repeated so as to further separate the flanges **10**, **11** with the fourth steps. Consequently, the overall operation for disassembling the flanges by using the prior art device is complicated and inconvenient.

[0006] An additional problem of the aforementioned prior device relates to its spatial consumption in operation. It is known that, during operation, the axis X of the aforementioned flange-disassembling device is perpendicular to the axis Y is the bolted flanges 10, 11. However, the expanding members 91, the body 94, the hydraulic cylinder 96 and the hand lever 912 jointly define the axial length L of the flange-disassembling device. Therefore, application of the prior device is limited because the flange-disassembling device is only applicable when there is operational space around the flanges 10, 11 sufficient for accommodating the axial length L of the flange-disassembling device.

SUMMARY OF THE INVENTION

[0007] On objective of the present invention is to provide a flange-disassembling device for separating two bolted flanges.

[0008] Another objective of the present invention is to provide the foregoing flange-disassembling device that uses a pushing rim of a hydraulic cylinder and another pushing rim on a pushing rod driven by the hydraulic cylinder to disassemble two assembled flanges. The hydraulic cylinder and the pushing rod are coaxially connected. In use, axes of the hydraulic cylinder and the pushing rod are parallel to axes of the flanges so that the flange-disassembling device consumes less operation space as compared with the prior art.

[0009] Another objective of the present invention is to provide the foregoing flange-disassembling device wherein at least one toothed positioning segment and a plurality of stepped positioning segments are provided at the hydraulic cylinder and the pushing rod for fitting an interval between two flanges.

[0010] Another objective of the present invention is to provide the foregoing flange-disassembling device that has its output capacity variable due to the stepped positioning segments with different elevations.

[0011] A flange-disassembling device includes a pushing rim of a hydraulic cylinder and another pushing rim on a pushing rod driven by the hydraulic cylinder to disassemble two assembled flanges. In use, axes of the hydraulic cylinder and the pushing rod are parallel to axes of the flanges so that the flange-disassembling device consumes less operation space as compared with the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012]

Figure 1 is a lateral view of a known flange-disassembling device.

Figures 2 and 3 illustrate operation of the flangedisassembling device of Figure 1.

Figures 4 and **5** are perspective views of a flangedisassembling device of the present invention taken from different visual angles.

Figure 6 is a sectional view of the flange-disassembling device of the present invention.

Figure 7 is a lateral view of the flange-disassembling device of the present invention, showing toothed positioning segments thereof separating two bolted flanges.

Figure 8 is another lateral view of the flange-disassembling device of the present invention, showing stepped positioning segments thereof separating two bolted flanges.

Figure 9 is another lateral view of the flange-disassembling device of the present invention, showing other stepped positioning segments thereof separating two bolted flanges.

Figure 10 is another lateral view of the flange-disassembling device of the present invention, showing other stepped positioning segments thereof separating two bolted flanges.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0013] Referring to Figures 4 to 6, a flange-disassembling device of the present invention includes a hydraulic cylinder 20, a pushing rod 30, a shield housing 40 and a hand lever 50. The pushing rod 30 is assembled in the hydraulic cylinder 20, and the shield housing 40 is assembled at the tip of the hydraulic cylinder 20 with a hydraulic system therein communicated with the hydraulic cylinder 20. The hand lever 50 is assembled at the tip of the shield housing 40 for controlling a driving shaft 51 to move back and forth in the hydraulic system so as to dispatch oil in the hydraulic cylinder 20. Such hydraulic system is well known in the art and will not be discussed in great detail herein. The hydraulic system gives pushing rod 30 a hydraulic pressure to move the pushing rod 30 forward in the hydraulic cylinder 20. Then a pressure relief unit 21 and a reverse spring 22 may be actuated to return the pushing rod 30. The pressure relief unit 21 may be a T-head bolt for manual rotation to make the oil in the hydraulic cylinder 20 flow back to the hydraulic system, so that the reverse spring 22 draws the pushing rod back to its initial position.

[0014] The reverse spring 22 has a tapered end 221 mounted around a screw 222 whose head fittingly matches the tapered end 221 while a bottom of the screw 222 juts out of the tapered end 221 to be coupled with a threaded hole of the pushing rod 30. An opposite end of the reverse spring 22 is fittingly mounted around a combining block 223 whose central threaded hole 224 is coupled with a positioning bolt 225 passing through the hy-

draulic cylinder **20**. Thereby, the reverse spring **22** has its one end fixed to the hydraulic cylinder **20** and the other end fixed to the pushing rod **30**. Consequently, moving forward of the pushing rod **30** stretches the reverse spring **22** and when the hydraulic pressure driving the pushing rod **30** forward reduces to a predetermined extent, resilience of the reverse spring **22** surpasses the hydraulic pressure and brings the pushing rod 30 to its initial position.

[0015] A circular pushing rim 23 is extended outward from a bottom of the hydraulic cylinder 20 while a circular pushing rim 31 is extended outward from a bottom of the pushing rod 30. A bottom surface of the pushing rim 23 on the hydraulic cylinder 20 and a top surface of the pushing rim 31 on the pushing rod 30 contacting mutually are defined as contacting surfaces 231, 311. When the pushing rod 30 is drawn back by the reverse spring 22 to a limit, the two contacting surfaces 231, 311 contact each other.

20 [0016] At least one toothed positioning segment 60 and a plurality of stepped positioning segments 61, 62, 63 are provided at a top periphery of the pushing rim 23 on the hydraulic cylinder 20. The stepped positioning segments 61, 62, 63 each have a step portion 611, 621 or 631 that includes a pushing plane 612, 622 or 632, wherein the pushing planes 612, 622 and 632 have different elevations.

[0017] The toothed positioning segment **60** is substantially an inclined, toothed surface.

[0018] Another toothed positioning segment 65 is formed at a bottom periphery of the pushing rim 31 on the pushing rod 30 as a mirror reflection of the toothed positioning segment 60 at the pushing rim 23 on the hydraulic cylinder 20. Stepped positioning segments 66, 67, 68 are provided at the bottom periphery of the pushing rim 31 on the pushing rod 30 as mirror reflections of the stepped positioning segments 61, 62, 63. The stepped positioning segments 66, 67, 68 also have step portions 661, 671 and 681 that include pushing planes 662, 672 and 682, wherein the pushing planes 661, 671 and 681 have different elevations.

[0019] Figures 7 through 10 are herein provided for illustrating operation of the flange-disassembling device of the present invention. The hydraulic cylinder 20 and the pushing rod 30 are such positioned that the common axis thereof is parallel to the common axis of bolted flanges 53, 54 that are to be separated. As compared with the conventional device as described in Figures 1 through 3, it is clear that the device of the present invention requires relatively less operational space.

[0020] A suitable pair of the toothed positioning segments 60, 65 and the step portions 611, 661 or 621, 671 or 631, 681 maybe placed into the interval between the two flanges 53, 54. As shown in Figure 7, the toothed positioning segments 60, 65 use their toothed surfaces that provide high friction to stably contact edges of the flanges 53, 54. Alternatively, as shown in Figures 8, 9 and 10, the pushing planes 612, 662 or 622, 672 or 632,

40

45

50

10

15

20

25

35

40

45

682 of the step portions **611**, **661** or **621**, **671** or **631**, **681** also serve to stably contact the edges of the flanges **53**, **54**. Such stable contact between the flange-disassembling device and the flanges facilitate the disassembling operation.

[0021] Seeing Figures 7 through 10 again, when the hand lever 50 is repeatedly rotated, the pushing rod 30 moves forward to enable the toothed positioning segments 60, 65 or the pushing planes 612, 662 or 622, 672 or 632, 682 to separate the bolted flanges 53, 54.

[0022] Since the step portions 611, 661 or 621, 671 or 631, 681 have different elevations, output capacity of each forward travel of the pushing rod 30 is variable. For example, assuming that a single forward travel of the pushing rod 30 is D (cm), and the step portions 611, 661 have an equal elevation of L1 (cm), the output capacity of each forward travel of the pushing rod 30 is D+2L1 (cm). Similarly, assuming that the step portions 622, 672 have an equal elevation of L2 (cm), the output capacity of each forward travel of the pushing rod 30 is D+2L2 (cm). When the step portions 632, 682 have an equal elevation of L3 (cm), the output capacity of each forward travel of the pushing rod 30 is D+2L3 (cm).

[0023] The present invention implements the forward movement of the pushing rod **30** to make the pushing rims **23, 31** to separate and thus disassemble the flanges. The present invention completely remedies the problem of the prior art by eliminating the use of the tapered element and setting the device and the flanges axially parallel. Besides, the present invention allows a user with option in selecting the step portions with proper elevation, thus being more convenient to use as compared with the prior art device.

[0024] Referring to Figure 6, in the present invention, a wear-resisting ring **25** made of a wearproof material (such as copper) is settled between the hydraulic cylinder **20** and the pushing rod **30** for preventing friction therebetween.

[0025] In the present embodiment, a lengthwise recess 32 is axially extended on the pushing rod 30 and a screw 26 is radially assembled to the hydraulic cylinder 20, wherein a distal end of the screw 26 is received in the lengthwise recess 32 so that the pushing rod 30 is retained in the hydraulic cylinder 20 from rotation.

[0026] The flange-disassembling device further includes a handle 24 as shown in Figure 6. The handle 24 is coupled with a sleeve 27 arranged outside the shield housing 40 through a bolt 241. A plurality of lockwashers 271 is provided for ensuring close contact between the sleeve 27 and shield housing 40. The bolt 241 has its distal end abutting against the shield housing 40 to firmly position the sleeve 27 on the shield housing 40.

[0027] A lighting device 28 is assembled in the handle 24 so that an LED bulb 281 of the lighting device 28 is exposed at a distal end of the handle 24 while a switch 283 of the lighting device 28 is provided on the handle 24 for easy switching. A cap 242 is detachably assembled to the distal end of the handle 24 for allowing a battery

282 powering the lighting device **28** to be installed when removed. The lighting device **28** serves to provide illumination in operation of the flange-disassembling device. **[0028]** The flange-disassembling device of the present invention may also be used to disassemble other pressingly assembled members in addition to flanges.

Claims

 A flange-disassembling device for disassembling bolted flanges, the flange-disassembling device is characterized in:

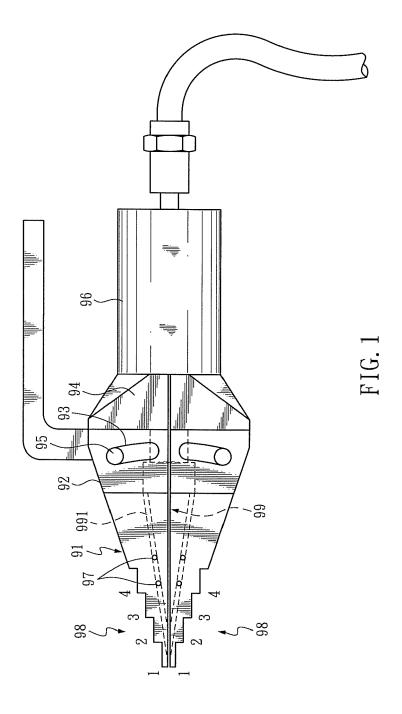
a hydraulic cylinder (20) assembled therein a pushing rod (30) that moves

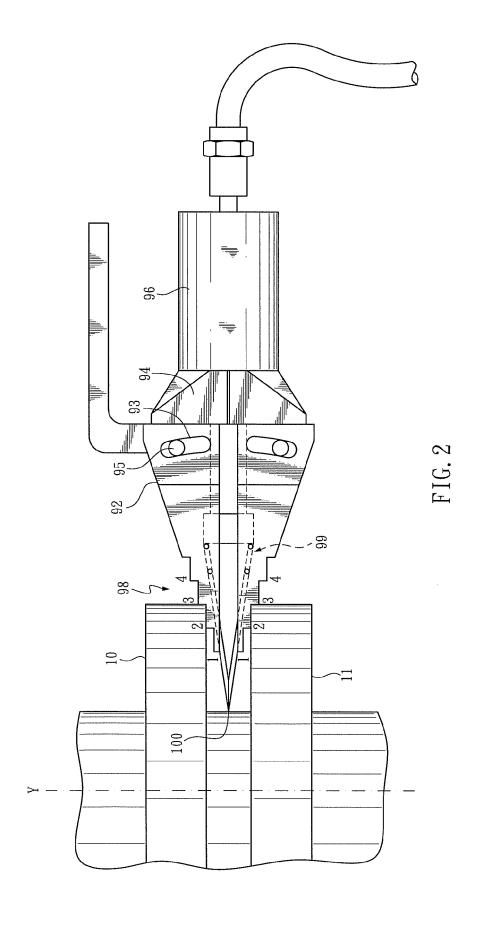
back and forth;

a pushing rim (23) extended outward from a bottom of the hydraulic

cylinder (20), and

a pushing rim (31) extended outward from an end of the pushing rod 30


jutting out of the hydraulic cylinder (20); and at least one toothed positioning segment (60)(65) and at least one stepped positioning segments (61)(66) provided at a top periphery of the pushing rim (23) on the hydraulic cylinder (20) and at a bottom periphery of the pushing rim 31 on the pushing rod (30), respectively.


- The flange-disassembling device of Claim 1, wherein plural said stepped positioning segments (61)(62) (63) are provided at the top periphery of the pushing rim (23) on the hydraulic cylinder (20), and have different elevations.
- The flange-disassembling device of Claim 2, wherein plural said stepped positioning segments (66) (67) (68) are provided at the bottom periphery of the pushing rim (31) on the pushing rod (30), and have different elevations.
- 4. The flange-disassembling device of Claim 3, wherein the stepped positioning segment (66) of the pushing rim (31) on the pushing rod (30) is a mirror refection of the stepped positioning segment (61) of the pushing rim (23) on the hydraulic cylinder (20).
- 5. The flange-disassembling device of Claim 1, wherein the toothed positioning segment 65 of the pushing
 rim 23 on the hydraulic cylinder 20 is a mirror refection of the toothed positioning segment 60 of the
 pushing rim 31 1 on the pushing rod 30.
- 55 6. The flange-disassembling device of Claim 1, wherein the stepped positioning segments 61, 66 each have a pushing plane (612)(622).

- 7. The flange-disassembling device of Claim 1, wherein a wear-resisting ring (25) is settled between the hydraulic cylinder (20) and the pushing rod (30).
- 8. The flange-disassembling device of Claim 1, wherein a lengthwise recess (32) is axially extended on the pushing rod (30) and a screw (26) is radially assembled to the hydraulic cylinder (20), wherein a distal end of the screw (26) is received in the lengthwise recess (32) so that the pushing rod (30) is retained in the hydraulic cylinder (20) from rotation.

The flange-disassembling device of Claim 1, further including a handle (24) that is coupled with a sleeve (27) arranged outside the shield housing (40) through a bolt (241).

10. The flange-disassembling device of Claim 9, wherein a lighting device (28) is assembled in the handle (24) so that an LED bulb (281) of the lighting device (28) is exposed at a distal end of the handle (24) while a switch (283) of the lighting device (28) is provided on the handle (24) for easy switching.

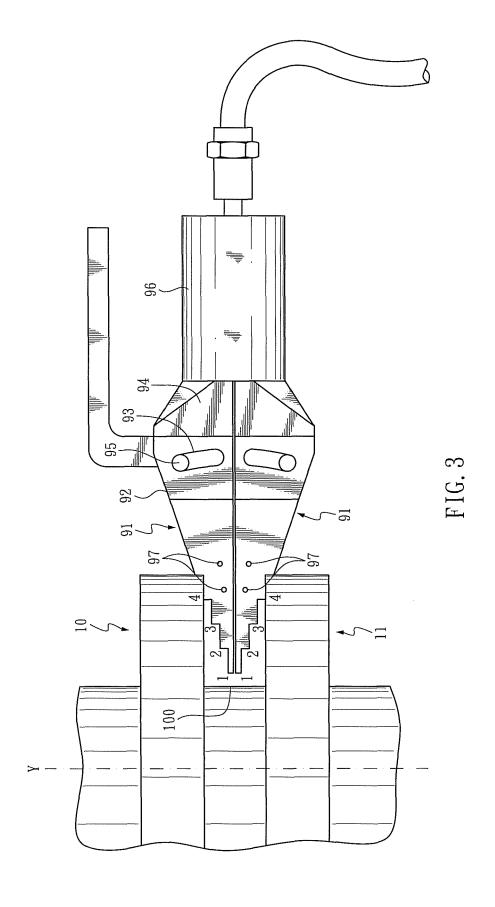
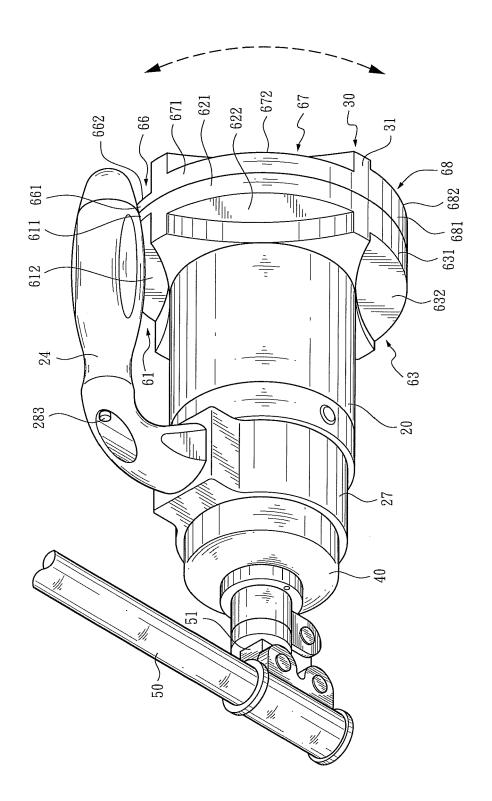
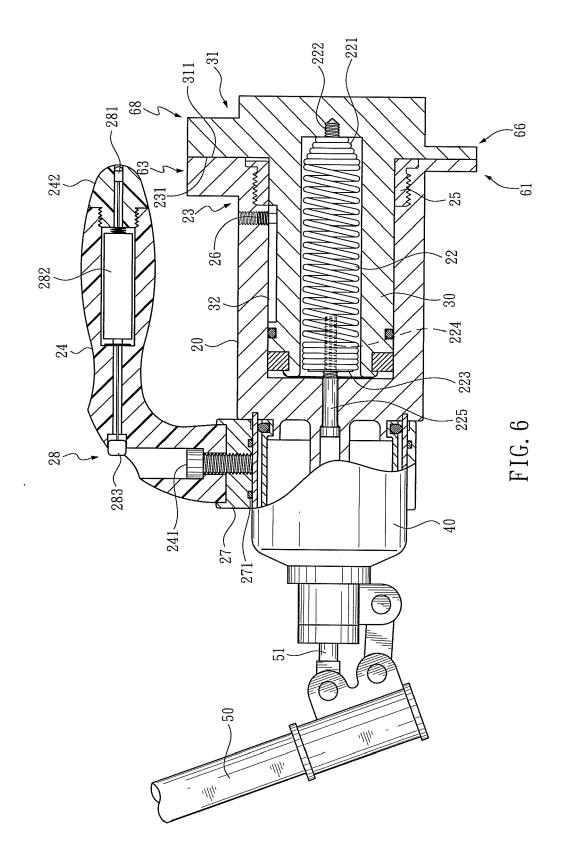
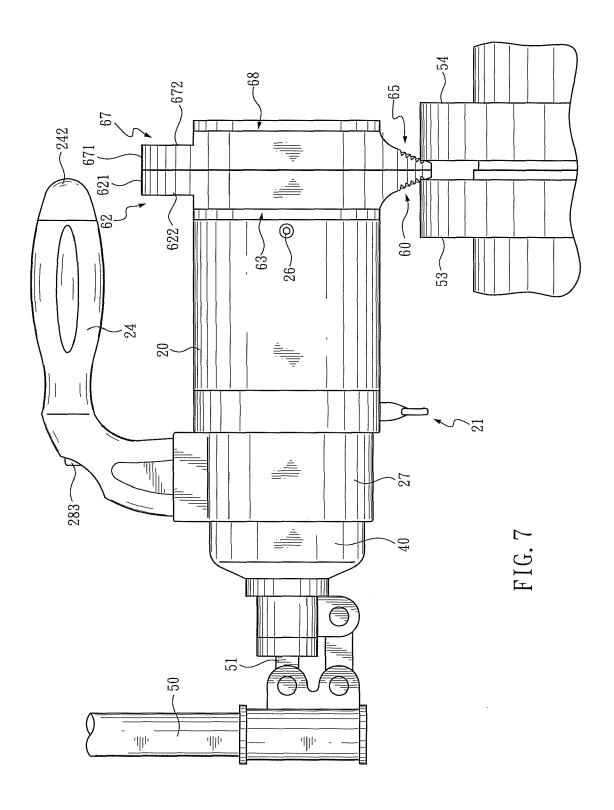
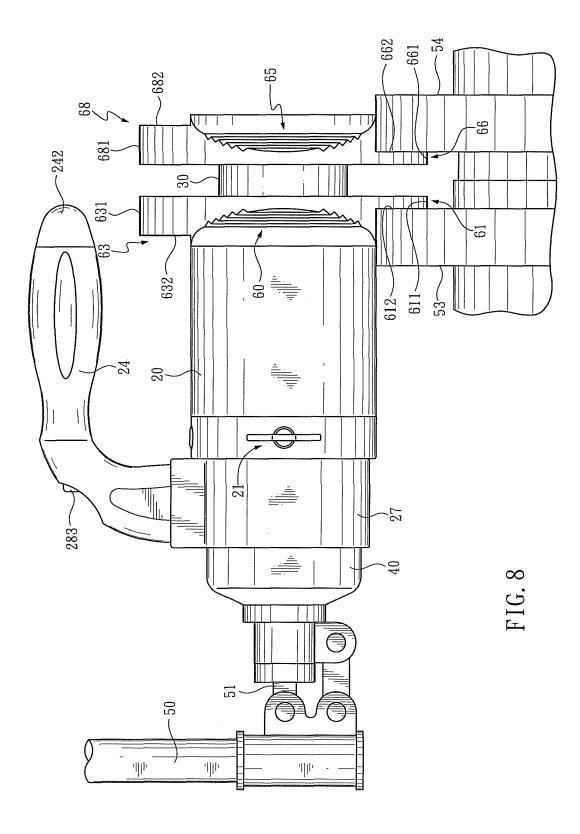
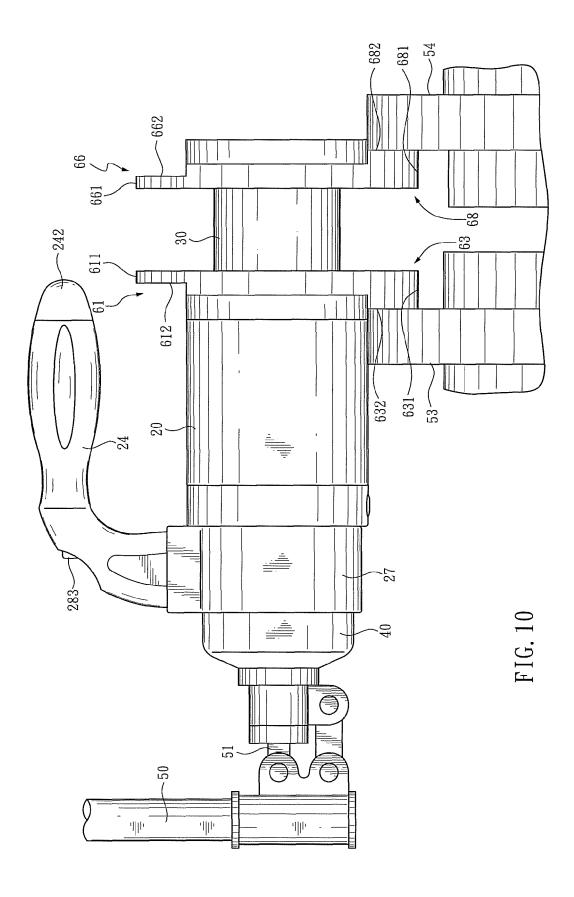


FIG. 4


FIG. 5

EP 2 241 407 A2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• CN 2626675 Y [0003]