TECHNICAL FIELD
[0001] The present invention relates to a terminal joining structure for high current usage
including a conductor substrate such as a busbar, a circuit board, or a laminated
structure of a circuit board and a substrate parallel body, as well as including a
terminal such as a bush or a fastener and relates to a terminal joining method.
BACKGROUND ART
[0002] In a conventional terminal joining structure for high current usage and a terminal
joining method therefor, a flange portion is formed at one end of a tubular terminal
body and a pair of protrusions are formed at the outer periphery of that end of the
terminal body which is on the opposite side of the flange portion. Besides, a hole
for inserting the tubular terminal body is formed on a conductor substrate and grooves
through which the protrusions can pass on the inner surface of the hole are formed.
Upon inserting the terminal body in the hole, the terminal is rotated for shifting
the positions of the projections and the grooves out of alignment so that the conductor
substrate is sandwiched between the projections and the flange portion. In that condition,
the terminal body is soldered to the conductor substrate. Thus, the terminal body
is fixed to the conductor substrate by performing clamping using the projections and
the flange portion and performing soldering (e.g., see Patent Literature 1).
[0003] Patent Literature 1: Japanese Patent Application Laid-open No.
H7-249882
[0004] US 5,365,654 is considered to be the closest prior art as it discloses a terminal joining structure
as in the preamble of claim 1.
DISCLOSURE OF INVENTION
PROBLEM TO BE SOLVED BY THE INVENTION
[0005] In the conventional terminal joining structure for high current usage and the terminal
joining method therefor as described above, joining with the use of soldering or brazing
leads to an increase in the number of steps during the manufacturing process, which
runs counter to cutting down the manufacturing cost. Moreover, in the conventional
terminal joining structure, the joint region of the terminal and the conductor substrate
is weak in mechanical strength. Hence, if exposed to a high screw tightening torque,
there is a possibility that the joint region rotates.
[0006] The present invention has been made to solve the above problems in the conventional
technology and it is an object of the present invention to provide a terminal joining
structure and a terminal joining method that enable achieving simplification in the
manufacturing process and achieving a strong joining force.
MEANS FOR SOLVING PROBLEM
[0007] To solve the above problems and achieve the object, a terminal joining structure
is given in claim 1; a corresponding method is seen in claim 6.
EFFECT OF THE INVENTION
[0008] According to an aspect of the present invention, it is possible to achieve a pronounced
advantage over the conventional technology since just a simple manufacturing process
of caulking or screw-coupling the ends of a terminal that sandwiches a conductor substrate
enables achieving a joining force. Moreover, a strong joining force may be achieved
by making a taper formed on a barrel portion of the terminal cause plastic deformation
in the rim of a through-hole on the conductor substrate so that the rim is expanded
outward.
BRIEF DESCRIPTION OF DRAWINGS
[0009]
FIG. 1 is an exploded perspective view of a terminal joining structure for explaining
a terminal joining structure and a terminal joining method according to a first embodiment
of the present invention.
FIG. 2 is a transverse sectional view of the terminal joining structure during joining
of a terminal to a conductor substrate according to the first embodiment.
FIG. 3 is a perspective view of the terminal joining structure upon completion of
joining the terminal to the conductor substrate according to the first embodiment.
FIG. 4 is a transverse sectional view of the terminal joining structure upon completion
of joining the terminal to the conductor substrate according to the first embodiment.
FIG. 5 is an enlarged transverse sectional view of portion A illustrated in FIG. 4.
FIG. 6 is a graph representing a relation of fixing strength and adhesiveness between
the terminal and the conductor substrate with the gradient angle of a taper according
to the first embodiment.
FIG. 7 is a transverse sectional view of a condition when the terminal is joined to
the conductor substrate using a caulking pin for fastening.
FIG. 8 is a transverse sectional view of a condition when the terminal is joined to
the conductor substrate using a caulking pin for fastening that has a different shape.
FIG. 9 is a transverse sectional view of another example of the terminal joining structure
according to the first embodiment.
FIG. 10 is a front view of a through-hole formed on a conductor substrate representing
a terminal joining structure according to a second embodiment of the present invention.
FIG. 11 is a table of rotational resistance torque evaluation and adhesiveness evaluation
for a terminal and the conductor substrate according to the second embodiment.
FIG. 12 is a front view of a through-hole formed on a conductor substrate representing
another example of a terminal joining structure according to the second embodiment
of the present invention.
FIG. 13 is a perspective view of a terminal joining structure according to a first
example in which a terminal has been joined to a conductor substrate.
FIG. 14 is a transverse sectional view of a terminal joining structure according to
a second example in which a terminal has been joined to a conductor substrate.
EXPLANATIONS OF LETTERS OR NUMERALS
[0010]
10, 10B, 110 Ring
10a Edge face of ring on axis-direction substrate-side
10b Female screw of ring
11A Outside chamfer
11B Substrate-side chamfer
20, 120, 220 Conductor substrate (busbar)
120a, 220a Serrations on through-hole rim
21, 121, 221 Through-hole
30, 30B, 130 Terminal
31, 31B, 131 Tubular barrel portion
31a Plastically-deforming part of barrel-portion opening edge
31b Male screw threaded on tubular barrel portion
32, 132 Flange portion
32a Edge face of flange portion on axis-direction substrate-side
32b Female screw threaded on inner peripheral surface of flange portion
33 Taper
32a Edge face of flange portion on axis-direction conductor-substrate-side
40, 50 Caulking pin for fastening
40a, 50a Pressing surface of caulking pin for fastening
41, 51 Ring holding member
BEST MODE(S) FOR CARRYING OUT THE INVENTION
[0011] Exemplary embodiments of a terminal joining structure and a terminal joining method
according to the present invention are described in detail below with reference to
the accompanying drawings. The present invention is not limited to these exemplary
embodiments.
First embodiment.
[0012] FIG. 1 is an exploded perspective view of a terminal joining structure for explaining
a terminal joining structure and a terminal joining method according to a first embodiment
of the present invention. FIG. 2 is a transverse sectional view of the terminal joining
structure during joining of a terminal to a conductor substrate. FIG. 3 is a perspective
view of the terminal joining structure upon completion of joining the terminal to
the conductor substrate. FIG. 4 is a transverse sectional view of the terminal joining
structure upon completion of joining the terminal to the conductor substrate. FIG.
5 is an enlarged transverse sectional view of portion A illustrated in FIG. 4.
[0013] In the terminal joining structure according to the present embodiment, a terminal
30 is joined to a conductor substrate (busbar) 20. Although the conductor substrate
20 has, in practice, a greater two-dimensional expansion than the dimensions illustrated
in drawings; in FIGS. 1 and 3, a complete diagrammatic representation thereof is not
given and only the portion in the vicinity of the terminal 30 is illustrated in a
cut-out manner in a rectangular shape. The terminal joining structure includes the
terminal 30, the conductor substrate 20, and a ring 10. The conductor substrate 20
is manufactured from, for example, copper as an electrically-conductive material having
plastic deformability and has a through-hole 21 opened thereon for fixing the terminal
30.
[0014] The terminal 30 is manufactured from a metal stock of, for example, copper or the
like and includes a thin tubular barrel portion 31 and a thick tubular flange portion
32 that is integrally formed at the axis-direction end of the barrel portion 31. The
outer diameter of the barrel portion 31 is such that fitting thereof in the through-hole
21 results in a clearance fit. In between the barrel portion 31 and the flange portion
32 is formed a taper 33 that decreases in diameter toward the barrel portion 31 and
increases in diameter toward the flange portion 32. The diameter of the larger-diameter
portion of the taper 33 is larger than the through-hole 21 formed on the conductor
substrate 20.
[0015] The ring 10 is manufactured from a metal stock of, for example, copper or the like
and fits on the barrel portion 31 on the opposite side of the conductor substrate
20. In the center of the ring 10 is formed a through-hole for inserting the barrel
portion 31 of the terminal 30. Moreover, the through-hole has a substrate-side chamfer
11B formed on the end at the side of the conductor substrate 20 and has an outside
chamfer 11A formed on the end on the opposite side of the conductor substrate 20.
[0016] The barrel portion 31 of the terminal 30 may be formed to have a thickness in the
range of about 50% to about 300% with respect to the thickness of the conductor substrate
20. However, a very low thickness of the barrel portion 31 weakens the strength thereof
against the load in the axis direction. On the other hand, a very high thickness of
the barrel portion 31 makes it difficult to fix the ring 10 using caulking (flare
processing). Hence, it is desirable that the barrel portion 31 has a comparable thickness
(in the range of 90% to 110%) to the thickness of the conductor substrate 20.
[0017] The taper 33 is formed in such a way that insertion thereof in the through-hole 21
of the conductor substrate 20 causes plastic deformation in the rim of the through-hole
21. FIG. 6 is a graph representing a relation of the gradient angle of the taper 33
with fixing strength and adhesiveness between the terminal 30 and the conductor substrate
20. When the gradient angle of the taper 33 is equal to or smaller than 5° with respect
to the central axis, then the resistance force against the rotating torque is weak
thereby making it difficult to achieve a predetermined fixing strength. In contrast,
when the gradient angle of the taper 33 is equal to or greater than 20° with respect
to the central axis, then the conductor substrate 20 undergoes warpage and the surface
pressure distribution becomes unstable thereby causing deterioration in conductor
substrate adhesiveness. Hence, it is desirable that the taper 33 has a gradient angle
in the range of 5° to 20° and is particularly desirable that the taper 33 has a gradient
angle of 15°±5°. Meanwhile, regarding the gradient height of the taper 33, it is desirable
to have the gradient height in the range of about 100% to about 200% of the thickness
of the conductor substrate 20 in the axis direction from an edge face 32a of the flange
portion 32 and is particularly desirable to have the gradient height of about 150±10%.
If the gradient height is too high, then the conductor substrate 20 undergoes warpage;
while if the gradient height is too low, then sufficient adhesiveness cannot be achieved
between the conductor substrate 20 and the terminal 30.
[0018] The through-hole for inserting the tubular barrel portion 31 of the terminal 30 is
formed on the ring 10. Moreover, the substrate-side chamfer 11B and the outside chamfer
11A as described above are formed on both ends of the through-hole. At the time of
caulking of the barrel portion 31 of the terminal 30, the plastically-deforming part
of the opening edge of the barrel portion 31 gets pressed against the chamfer 11A
of the ring 10. As a result, a resistance force against the rotating torque or a resistance
force against pull-out are generated. Alternatively, a resistance force against the
rotating torque or a resistance force against pull-out may also be generated when
the taper 33 of the terminal 30 causes plastic deformation in the rim of the through-hole
of the conductor substrate 20 so that the rim is expanded outward.
[0019] When the outside chamfer 11A makes an angle equal to or smaller than 20° with respect
to the central axis, then the caulking force is not easily transmitted; while an angle
equal to or greater than 40° causes deterioration in the shape formation using a caulking
pin for fastening. Hence, it is desirable to have an angle in the range of 20° to
40° and is particularly desirable to have an angle of 30°±5°. Moreover, it is desirable
that the chamfer 11A has a depth in the range of 100% to 200% with respect to the
thickness of the barrel portion 31 of the terminal 30 in the axis direction from the
edge face of the ring 20. The angle and depth of the outside chamfer 11A determine
an insertable depth for a caulking pin for fastening.
[0020] Explained below is the terminal joining method according to the present embodiment.
FIG. 7 is a transverse sectional view of a condition when the terminal 30 is joined
to the conductor substrate 20 by caulking the barrel portion 31 with a caulking pin
for fastening 40. At the time of fixing the terminal 30 to the conductor substrate
20, the barrel portion 31 of the terminal 30 is first inserted in the through-hole
21 of the plate-like copper plate and then inserted in the through-hole of the ring
10 so that the conductor substrate 20 is sandwiched between the edge face 32a of the
flange portion 32 and an edge face 10a of the ring 10. At that time, by pressing with
a ring holding member 41, the taper 33 of the terminal 30 expands the rim of the through-hole
21 of the conductor substrate 20 outward so that the conductor substrate 20 moves
inside a gap between the chamfer on the ring 10 and the taper 33 and gets tightly
adhered thereat. In that condition, an open end part 31a of the barrel portion 31
of the terminal 30 is caulked (flare processed) outward by a cone-shaped pressing
surface 40a of the caulking pin for fastening 40 so that the open end part 31a of
the barrel portion 31 adheres tightly to the chamfer 11A of the ring 10. As a result,
a caulking reaction force acting on the chamfers at both ends of the ring 10 causes
a strong frictional force on each contacting surface. That achieves a joining with
a strong resistance force against the screw tightening torque and against pull-out.
[0021] FIG. 8 is a transverse sectional view of a condition when the terminal 30 is joined
to the conductor substrate 20 using a caulking pin for fastening 50 that has a different
shape. The shape of a caulking pin for fastening is not limited to the cone shape
as illustrated in FIG. 7 but may also be spherical as illustrated in FIG. 8. Moreover,
it is desirable that a pressing surface 50a of the caulking pin that eventually abuts
against the open end part 31a of the barrel portion 31 makes an angle of a comparable
level to the angles of chamfers of the ring 10. For example, when each chamfer of
the ring makes an angel of 30°, then it is desirable that the pressing surface 50a
of the caulking pin that eventually abuts against the open end part 31a of the barrel
portion 31 makes an angle in the range of 20° to 45° and is particularly desirable
that the angle is 30 °±5°.
[0022] Meanwhile, when strength evaluation of a joint region was performed for a prototype
that was manufactured from copper as the material and, for example, manufactured with
the outer diameter of the barrel portion 31 of the terminal 30 equal to 15 mm (maximum
tolerance of 15-0.15 mm and minimum tolerance of 15-0.20 mm), with the gradient of
the taper 33 equal to 10°, with the inner diameter of the ring 10 equal to 15±0.05
mm, and with angles of the chamfers 11A and 11B of the ring 10 equal to 30°; then
it was confirmed that fastening of the caulking pin for fastening 40, with 25 KN of
caulking force applied thereto, to the conductor substrate 20, having thickness of
1.00 mm, has a pull-out strength of at least 3 KN and a rotational resistance torque
of at least 5.5 Nm.
[0023] FIG. 9 is a transverse sectional view of another example of the terminal joining
structure according to the present embodiment. In the terminal joining structure illustrated
in FIG. 9, a female screw 32b is threaded on the inner peripheral surface of the thick
tubular flange portion 32. In the terminal joining structure having such a structure,
for example, another terminal may be screw-coupled to the female screw 32b. Meanwhile,
both the barrel portion 31 and the flange portion 32 in the terminal 30 according
to the present embodiment are assumed to be tubular in shape. However, as long as
at least one end of the barrel portion 31 is formed to be tubular in shape, the open
end thereof may be caulked thereby enabling implementation of the present invention.
Second embodiment.
[0024] FIG. 10 is a front view of a through-hole formed on a conductor substrate representing
a terminal joining structure according to a second embodiment of the present invention.
FIG. 11 is a table that illustrates rotational resistance torque evaluation and adhesiveness
evaluation for a terminal and the conductor substrate according to the present embodiment.
On a conductor substrate 120 according to the present embodiment, a through-hole 121
is formed to have serrations 120a on the rim. Apart from that, the structure is identical
to that according to the first embodiment. Since the through-hole 121 in the conductor
substrate 120 is formed to have the serrations 120a on the rim, adjusting the warpage
of the conductor substrate 120 enables achieving an appropriate joining force. In
the present embodiment, the serrations 120a are formed by first punching, on a circle
equivalent to the diameter of a prepared hole, small-diameter holes at equal intervals
and then punching the prepared hole. If the diameter of the small-diameter holes is
relatively large; then, although the rotational resistance torque decreases, the conductor
substrate 120 undergoes a smaller warpage and the surface pressure becomes stable
thereby improving the adhesiveness. In addition, if the number of small-diameter holes
is relatively large; then, although the rotational resistance torque decreases, the
conductor substrate 20 undergoes a smaller warpage and the surface pressure becomes
stable thereby improving the adhesiveness. Thus, it is desirable that the diameter
of the small-diameter holes is in the range of about 150% to about 250% with respect
to the thickness of the conductor substrate 20. Besides, it is desirable that the
small-diameter holes are arranged in a concentric fashion with respect to the prepared
hole at regular intervals and are arranged with the center-to-center spacing therebetween
in the range of 1.4 times to 1.6 times of the diameter. For example, for a prototype
manufactured with the abovementioned specifications; rotational resistance torque
evaluation and adhesiveness evaluation is illustrated in FIG. 11.
[0025] FIG. 12 is a front view of a through-hole formed on a conductor substrate representing
another example of a terminal joining structure according to the second embodiment
of the present invention. In a conductor substrate 220 illustrated in FIG. 12, a through-hole
221 is formed to have triangular serrations 220a at the rim. Thus, a through-hole
need not have a combination of large and small circles at the rim as illustrated in
FIG. 10, but can also have the triangular serrations 220a at the rim as illustrated
in FIG. 12. However, from the perspective of manufacturing manageability, a combination
of circles is the desirable option.
First example.
[0026] FIG. 13 is a perspective view of a terminal joining structure according to a first
example in which a terminal has been joined to a conductor substrate. Herein, the
conductor substrate and a ring can have a noncircular cross-section surface perpendicular
to the central axis. The terminal joining structure according to the present example
includes a terminal 130 with a thin tubular barrel portion 131 in a cross-sectional
hexagonal shape and a thick tubular flange portion 132 that is integrally formed at
the axis-direction end of the barrel portion 131, which is formed in a cross-sectional
hexagonal shape, and includes a ring 110 also in a cross-sectional hexagonal shape.
Apart from that, the structure is identical to that described in the first embodiment.
By forming the conductor substrate and the ring to have noncircular cross-section
surfaces, it becomes possible to tie down the rotation of the terminal.
Second example.
[0027] FIG. 14 is a transverse sectional view of a terminal joining structure according
to a second example of the present invention in which a terminal has been joined to
a conductor substrate. In a terminal 30B according to the present example a male screw
31b is threaded on the inner peripheral surface of a tubular barrel portion 31B. Besides,
on the inner peripheral surface of a ring 10B is threaded a female screw 10b. The
ring 10B is fixed to the terminal 30B by fastening the female screw 10b with the male
screw 31b.
[0028] Meanwhile, instead of using the caulking structure at the open end of the barrel
portion described in the first two embodiments, the terminal 30B and the ring 10B
may also be fixed by performing tapping at the outer peripheral surface of the barrel
portion 31B and at the inner peripheral surface of the ring 10BB as described in the
present example. At the time of sandwiching the conductor substrate 20, the taper
33 and the chamfer 11B cause plastic deformation in the rim of the through-hole on
the conductor substrate 20 so that the rim is expanded outward thereby enabling a
strong joining of the conductor substrate 20 and the terminal 30B.
INDUSTRIAL APPLICABILITY
[0029] In this way, the terminal joining structure and the terminal joining method according
to the present invention are suitable for a terminal joining structure used in joining
a terminal to a conductor substrate and particularly suitable for a terminal joining
structure for high current usage.
1. A terminal joining structure comprising:
a terminal (30) including a thinner tubular barrel portion (31) and a thicker tubular
flange portion (32) that is integrally formed at an axis-direction end of the barrel
portion (31);
a conductor substrate (20, 120, 220) on which a through-hole (21, 121, 221) for inserting
the barrel portion (31) is opened; and
a taper that increases in diameter toward the flange portion (32) is formed on the
barrel portion (31), the diameter of a larger-diameter portion of the taper being
larger than an inner diameter of the through-hole (21, 121, 221),
characterized by further comprising:
a ring (10, 10B, 110) that contacts with, and fits on, the barrel portion, wherein
a substrate-side chamfer (11B) is formed at an inner diameter of the ring (10, 10B,
110) on an end portion at the side of the conductor substrate (20, 120, 220), wherein
an outside chamfer is formed at the inner diameter of the ring (10, 10B, 110) on an
end portion at a side opposite to the conductor substrate (20, 120, 220), wherein
a rim of the through-hole (21, 121, 221) of the conductor substrate (20, 120, 220)
is pressed to the substrate-side chamfer (11B) of the ring (10, 10B, 110) by the taper
that is formed on the barrel portion (31), the taper of the terminal (30) expands
the rim of the through-hole of the conductor substrate (20, 120, 220) outward so that
the conductor substrate moves inside a gap between the chamfer on the ring (10, 10B,
110) and the taper and gets tightly adhered thereat; and
the terminal (30) is caulked to cause radially outward expansion of an open end side
of the barrel portion (31) along the outside chamfer (11A) of the ring (10, 10B, 110),
and is fixed to the conductor substrate (20, 120, 220) together with the ring (10,
10B, 110), wherein the barrel portion (31) passes through the ring (10, 10B, 110).
2. The terminal joining structure according to claim 1, wherein the through-hole (21,
121, 221) of the conductor substrate (20, 120, 220) is caulked so as to expand radially
outward along the taper of the barrel portion (31).
3. The terminal joining structure according to claims 1 or 2, wherein the through-hole
(21, 121, 221) is formed to have serrations at rim.
4. The terminal joining structure according to any one of claims 1 to 3,
wherein the taper has a gradient angle of 15°±5° with respect to a central axis and
has an axis-direction height from a flange portion (32) edge face equal to 1.4 times
to 1.6 times of thickness of the conductor substrate (20, 120, 220).
5. The terminal joining structure according to claim 1, wherein the outside chamfer makes
an angle 30°±5° with respect to a central axis.
6. A terminal joining method comprising:
opening a through-hole (21, 121, 221) on a conductor substrate (20, 120, 220) for
fixing a terminal (30);
forming, on a barrel portion (31) of the terminal (30) that includes the barrel portion
(31) in tubular shape and a flange portion (32) that is integrally formed at an axis-direction
end of the barrel portion (31), a taper that increases in diameter toward the flange
portion (32), diameter of a larger-diameter portion of the taper being larger than
inner diameter of the through-hole (21, 121, 221);
characterized by:
fitting, upon inserting the barrel portion (31) in the through-hole (21, 121, 221),
a ring (10, 10B, 110) on to the barrel portion (31) at a side of the conductor substrate
(20, 120, 220) which is opposite the flange portion (31); and
fixing that includes caulking the terminal (30) to cause radially outward expansion
of the end on a side opposite to the conductor substrate (20, 120, 220), of the barrel
portion (31) that passes through the ring (10, 10B, 110) and fixing the terminal (30)
to the conductor substrate (20, 120, 220) together with the ring (10, 10B, 110).
7. The terminal joining method according to claim 6, wherein, before step of fitting
the ring (10, 10B, 110) on the barrel portion (31), a chamfer is formed, in advance,
at inner diameter of the ring (10, 10B, 110) corresponding to a position at which
the barrel portion (31) is caulked.
8. The terminal joining method according to claims 6 or 7, wherein, at time of opening
a through-hole (21, 121, 221) on the conductor substrate (20, 120, 220), the through-hole
(21, 121, 221) is formed to have tooth-shaped rim.
1. Anschlussverbindungsstruktur, Folgendes aufweisend:
einen Anschluss (30), der einen dünneren rohrförmigen Trommelabschnitt (31) und einen
dickeren rohrförmigen Flanschabschnitt (32) umfasst, der an einem Achsenrichtungsende
des Trommelabschnitts (31) einstückig angeformt ist;
eine Leiterbasisplatte (20, 120, 220), auf der eine Durchgangsöffnung (21, 121, 221)
zum Einführen des Trommelabschnitts (31) geöffnet ist; und
eine am Trommelabschnitt (31) ausgebildete Verjüngung, die zum Flanschabschnitt (32)
hin im Durchmesser zunimmt, wobei der Durchmesser eines Abschnitts größeren Durchmessers
der Verjüngung größer ist als ein Innendurchmesser der Durchgangsöffnung (21, 121,
221),
dadurch gekennzeichnet, dass sie darüber hinaus aufweist:
einen Ring (10, 10B, 110), der mit dem Trommelabschnitt in Kontakt kommt und auf diesen
passt, wobei eine basisplattenseitige Schräge (11B) an einem Innendurchmesser des
Rings (10, 10B, 110) an einem Endabschnitt auf der Seite der Leiterbasisplatte (20,
120, 220) ausgebildet ist, wobei eine außenliegende Schräge am Innendurchmesser des
Rings (10, 10B, 110) an einem Endabschnitt auf einer der Leiterbasisplatte (20, 120,
220) entgegengesetzten Seite ausgebildet ist, wobei
ein Rand der Durchgangsöffnung (21, 121, 221) der Leiterbasisplatte (20, 120, 220)
durch die Verjüngung, die am Trommelabschnitt (31) ausgebildet ist, zur basisplattenseitigen
Schräge (11B) des Rings (10, 10B, 110) gepresst ist, wobei die Verjüngung des Anschlusses
(30) den Rand der Durchgangsöffnung der Leiterbasisplatte (20, 120, 220) nach außen
erweitert, so dass sich die Leiterbasisplatte in einem Spalt zwischen der Schräge
am Ring (10, 10B, 110) und der Schräge bewegt und fest an diese angelegt wird; und
der Anschluss (30) verstemmt ist, um eine radial nach außen gerichtete Erweiterung
einer Seite mit offenem Ende des Trommelabschnitts (31) entlang der außenliegenden
Schräge (11A) des Rings (10, 10B, 110) zu bewirken, und zusammen mit dem Ring (10,
10B, 110) an der Leiterbasisplatte (20, 120, 220) fixiert ist, wobei der Trommelabschnitt
(31) durch den Ring (10, 10B, 110) hindurchtritt.
2. Anschlussverbindungsstruktur nach Anspruch 1, wobei die Durchgangsöffnung (21, 121,
221) der Leiterbasisplatte (20, 120, 220) verstemmt ist, um sich entlang der Verjüngung
des Trommelabschnitts (31) radial nach außen zu erweitern.
3. Anschlussverbindungsstruktur nach Anspruch 1 oder 2, wobei die Durchgangsöffnung (21,
121, 221) mit Kerbverzahnungen am Rand ausgebildet ist.
4. Anschlussverbindungsstruktur nach einem der Ansprüche 1 bis 3, wobei die Verjüngung
einen Steigungswinkel von 15° ±5° im Hinblick auf eine Mittelachse hat, und eine Achsenrichtungshöhe
ausgehend von einer Randfläche des Flanschabschnitts (32) hat, die gleich dem 1,4-Fachen
bis 1,6-Fachen der Dicke der Leiterbasisplatte (20, 120, 220) ist.
5. Anschlussverbindungsstruktur nach Anspruch 1, wobei die außenliegende Schräge einen
Winkel von 30° ±5° im Hinblick auf eine Mittelachse bildet.
6. Anschlussverbindungsverfahren, Folgendes umfassend:
Öffnen einer Durchgangsöffnung (21, 121, 221) an einer Leiterbasisplatte (20, 120,
220) zum Fixieren eines Anschlusses (30);
Ausbilden, und zwar an einem Trommelabschnitt (31) des Anschlusses (30), der den Trommelabschnitt
(31) in einer rohrförmigen Form und einen Flanschabschnitt (32) umfasst, der an einem
Achsenrichtungsende des Trommelabschnitts (31) einstückig angeformt ist, einer Verjüngung,
die zum Flanschabschnitt (32) hin im Durchmesser zunimmt, wobei der Durchmesser eines
Abschnitts größeren Durchmessers der Verjüngung größer ist als ein Innendurchmesser
der Durchgangsöffnung (21, 121, 221);
gekennzeichnet durch
Aufsetzen, und zwar nach dem Einsetzen des Trommelabschnitts (31) in die Durchgangsöffnung
(21, 121, 221), eines Rings (10, 10B, 110) auf den Trommelabschnitt (31) auf einer
Seite der Leiterbasisplatte (20, 120, 220), die dem Flanschabschnitt (31) entgegengesetzt
ist; und
Fixieren, das ein Verstemmen des Anschlusses (30) beinhaltet, um eine radial nach
außen gerichtete Erweiterung eines Endes auf einer der Leiterbasisplatte (20, 120,
220) entgegengesetzten Seite zu bewirken, des Trommelabschnitts (31), der
durch den Ring (10, 10B, 110) hindurchtritt, und Fixieren des Anschlusses (30) an der Leiterbasisplatte
(20, 120, 220) zusammen mit dem Ring (10, 10B, 110).
7. Anschlussverbindungsverfahren nach Anspruch 6, wobei vor dem Schritt des Aufsetzens
des Rings (10, 10B, 110) auf den Trommelabschnitt (31) vorab eine Schräge an einem
Innendruchmesser des Rings (10, 10B, 110) ausgebildet wird, die einer Position entspricht,
an welcher der Trommelabschnitt (31) verstemmt wird.
8. Anschlussverbindungsverfahren den Ansprüchen 6 oder 7, wobei beim Öffnen der Durchgangsöffnung
(21, 121, 221) an der Leiterbasisplatte (20, 120, 220) die Durchgangsöffnung (21,
121, 221) mit einem zahnförmigen Rand ausgebildet wird.
1. Structure d'assemblage de borne comprenant :
une borne (30) incluant une partie barillet tubulaire plus mince (31) et une partie
bride tubulaire plus épaisse (32) qui est solidaire d'une extrémité en sens axial
de la partie barillet (31) ;
un substrat conducteur (20, 120, 220) sur lequel un trou traversant (21, 121, 221)
permettant d'insérer la partie barillet (31) est ouvert ; et
un cône qui augmente en diamètre vers la partie bride (32) est formé sur la partie
barillet (31), le diamètre d'une partie de grand diamètre du cône étant plus grand
qu'un diamètre intérieur du trou traversant (21, 121, 221),
caractérisé en ce qu'elle comprend en outre :
une bague (10, 10B, 110) qui entre contact avec, et s'ajuste sur, la partie barillet,
où un chanfrein côté substrat (11B) est formé sur un diamètre intérieur de la bague
(10, 10B, 110) sur une partie terminale du côté du substrat conducteur (20, 120, 220),
où un chanfrein extérieur est formé sur le diamètre intérieur de la bague (10, 10B,
110) sur une partie terminale du côté opposé au substrat conducteur (20, 120, 220),
où
un bord du trou traversant (21, 121, 221) du substrat conducteur (20, 120, 220) est
appuyé sur le chanfrein côté substrat (11B) de la bague (10, 10B, 110) par le cône
qui est formé sur la partie barillet (31), le cône de la borne (30) étend le bord
du trou traversant du substrat conducteur (20, 120, 220) vers l'extérieur de sorte
que le substrat conducteur se déplace à l'intérieur d'un interstice entre le chanfrein
sur la bague (10, 10B, 110) et le cône et adhère fermement à celui-ci ; et
la borne (30) est matée pour provoquer une expansion radiale vers l'extérieur d'un
côté terminal ouvert de la partie barillet (31) le long du chanfrein extérieur (11A)
de la bague (10, 10B, 110), et est fixée au substrat conducteur (20, 120, 220) conjointement
avec la bague (10, 10B, 110), où la partie barillet (31) passe à travers la bague
(10, 10B, 110).
2. La structure d'assemblage de borne selon la revendication 1, où le trou traversant
(21, 121, 221) du substrat conducteur (20, 120, 220) est maté de sorte à s'étendre
radialement vers l'extérieur le long du cône de la partie barillet (31).
3. La structure d'assemblage de borne selon les revendications 1 ou 2, où le trou traversant
(21, 121, 221) est formé pour présenter des cannelures sur le bord.
4. La structure d'assemblage de borne selon l'une quelconque des revendications 1 à 3,
où le cône a un angle de gradient de 15°±5° par rapport à un axe central et a une
hauteur en sens axial, depuis une face latérale de la partie bride (32), égale à 1,4
fois à 1,6 fois l'épaisseur du substrat conducteur (20, 120, 220).
5. La structure d'assemblage de borne selon la revendication 1, où le chanfrein extérieur
décrit un angle de 30°±5° par rapport à un axe central.
6. Procédé d'assemblage de borne comprenant :
l'ouverture d'un trou traversant (21, 121, 221) sur un substrat conducteur (20, 120,
220) pour fixer une borne (30) ;
la formation, sur une partie barillet (31) de la borne (30) qui inclut la partie barillet
(31) de forme tubulaire et une partie bride (32) qui est solidaire d'une extrémité
en sens axial de la partie barillet (31), un cône qui augmente en diamètre vers la
partie bride (32), le diamètre d'une partie de grand diamètre du cône étant plus grand
que le diamètre intérieur du trou traversant (21, 121, 221) ;
caractérisé par
l'ajustage, lors de l'insertion de la partie barillet (31) dans le trou traversant
(21, 121, 221), d'une bague (10, 10B, 110) sur la partie barillet (31) d'un côté du
substrat conducteur (20, 120, 220) qui est opposé à la partie bride (31) ; et
la fixation qui inclut le matage de la borne (30) pour provoquer une expansion radiale
vers l'extérieur de l'extrémité d'un côté opposé au substrat de conducteur (20, 120,
220), de la partie barillet (31) qui traverse la bague (10, 10B, 110) et la fixation
de la borne (30) sur le substrat conducteur (20, 120, 220) conjointement avec la bague
(10, 10B, 110).
7. Le procédé d'assemblage de borne selon la revendication 6, où, avant l'étape d'ajustage
de la bague (10, 10B, 110) sur la partie barillet (31), un chanfrein est formé, au
préalable, sur un diamètre intérieur de la bague (10, 10B, 110) correspondant à une
position à laquelle la partie barillet (31) est matée.
8. Le procédé d'assemblage de borne selon les revendications 6 ou 7, où, au moment de
l'ouverture d'un trou traversant (21, 121, 221) sur le substrat conducteur (20, 120,
220), le trou traversant (21, 121, 221) est formé pour avoir un bord en forme de dents.