(19)
(11) EP 2 242 808 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Description

(48) Corrigendum issued on:
28.08.2013 Bulletin 2013/35

(45) Mention of the grant of the patent:
24.04.2013 Bulletin 2013/17

(21) Application number: 09710498.8

(22) Date of filing: 06.02.2009
(51) International Patent Classification (IPC): 
C09D 5/08(2006.01)
B05D 7/14(2006.01)
(86) International application number:
PCT/US2009/000772
(87) International publication number:
WO 2009/102409 (20.08.2009 Gazette 2009/34)

(54)

ALKALINE COATING COMPOSITION FOR AUTODEPOSITION

ALKALISCHE BESCHICHTUNGSZUSAMMENSETZUNG ZUR SELBSTABSCHEIDUNG

COMPOSITION ALCALINE DE REVÊTEMENT POUR L'AUTO-DÉPÔT


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30) Priority: 15.02.2008 US 65854 P

(43) Date of publication of application:
27.10.2010 Bulletin 2010/43

(73) Proprietor: Arkema, Inc.
Philadelphia, Pennsylvania 19103 (US)

(72) Inventors:
  • SHAY, Gregory, D.
    Cary, NC 27511 (US)
  • BRENNAN, David, J.
    Midland, MI 48640 (US)
  • DAVIS, Herb, F.
    Zebulon, NC 27597 (US)

(74) Representative: Killis, Andréas et al
ARKEMA France DRD/DPI 420, rue d'Estienne d'Orves
92700 Colombes
92700 Colombes (FR)


(56) References cited: : 
EP-A- 0 032 297
US-A- 3 411 982
   
  • DATABASE WPI Week 199818 Thomson Scientific, London, GB; AN 1998-205732 XP002526809 & RU 2 089 583 C1 (PIGMENT RES PRODN FIRM) 10 September 1997 (1997-09-10)
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

Technical Field



[0001] Embodiments of the present disclosure relate to coating compositions which are effective in forming a coating on a substrate. More specifically, embodiments of the present disclosure relate to an alkaline coating composition of the type which is effective in forming a coating on metal.

Background



[0002] Autodeposition, also referred to as chemiphoresis, autophoresis, and/or autophoretic deposition, is an aqueous immersion process for coating metal that is driven by reactions between the coating and the metal substrate surface when small amounts of multivalent metal ions are slightly solubilized and released from the metal surface leading to destabilization and deposition of the composition at the surface. The aqueous composition for coating the metal can contain a polymer dispersion. For example, one feature of an autodepositable coating can be that the dispersed material is stabilized by functional groups on the polymer and/or provided by surface active agents which are sensitive to multivalent ions entering the aqueous phase. Deposition can occur by interaction between the multivalent ions and the functional groups, causing the dispersion to precipitate on the surface when sufficient concentration of multivalent ions occurs at the metal surface. The multivalent ions can also crosslink the dispersion particles via reaction with particle surface carboxyl groups and/or with other functional surface groups and with the metal substrate.

[0003] Examples of autodepositing compositions are disclosed, for example, in European Patent Publication 0132828, Bashir M. Ahmed, U.S. Pat. No. 4,647,480, and Wilbur S. Hall, U.S. Pat. No. 5,691,048, and 4,657,788, and patents cited therein. Such compositions can be designed to be particularly effective when a resin material is provided in the form of a dispersed polymer such as a sulfonate-functionalized novolak, or latex made from the emulsion polymerized product of, for example, at least two polymerizable ethylenically unsaturated monomers. EP0032297 discloses an autodepositing coating composition comprising a latex, a persulphate ion, an ammonium fluoride (base) and the pH is 6-8.

Summary



[0004] The present disclosure provides a process for autodepositing a coating on a metal substrate surface, a method of producing a coating on a non-stainless steel metal substrate surface, and an alkaline coating composition. The coating composition includes a latex a polyimine or a polyamine and an amount of base sufficient to raise the pH of the coating composition to an alkaline pH. The process includes immersing at least a portion of the metal substrate surface in the coating composition, where the coating autodeposits on the metal substrate surface, as metal ions from the metal substrate surface react with and destabilize the alkaline coating composition. In some embodiments, the deposition of the latex can continue until the coating has a thickness of at least about 1/4 inches (0.635 centimeters).

[0005] For the various embodiments, the pH can be in a range of about 7.1 to about 12, preferably about 9.5 to about 11.5. In some embodiments, the autodeposition rate can be dependent on the pH of the coating composition. Also, the base used to raise the pH of the coating composition can be selected from a group including ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, cesium hydroxide, calcium hydroxide, lithium hydroxide, tetramethyl ammonium hydroxide, tetraethylammonium hydroxide, an amine, and any mixture thereof.

[0006] In various embodiments, latexes of the present disclosure can include unpigmented latexes, pigmented latex paints, and/or fast-hardening traffic latex paints. In addition, the non-stainless steel metal surface for deposition can be selected from a group consisting of copper, bronze, zinc, iron, aluminum, zinc plated steel, hot dip galvanized steel, and alloys thereof.

[0007] In various embodiments of the present disclosure, the coating composition includes a polyimine or a polyamine.

[0008] In some embodiments, the coating on the metal surface can increase in weight and/or thickness the longer the metal surface is immersed in the coating composition.

[0009] In some embodiments, the latex autodeposited on the substrate surface retains about all the water that is originally in the latex or aqueous composition. In such embodiments, the ions can migrate through the water phase to continue autodeposition of the latex on the substrate.

[0010] In various embodiments, the aqueous coating composition can include a latex having a Tg greater than about 40 degrees Celsius to produce a ceramic-like coating on the non-stainless steel metal substrate surface. In various embodiments, the aqueous coating composition can include a latex having a Tg in a range of about -70 degrees Celsius to about 25 degrees Celsius. The coatings can be used to coat rebar, bolt threads, wires, automotive bodies and automotive body parts, and industrial metal, among others. The coating compositions can be used to coat the wires and/or threads, provide industrial metal finishes, insulate metal, provide a sound dampening coating on metal, and/or provide a thick, intumescent coating on metal, among other uses.

[0011] The above summary of the present disclosure is not intended to describe each disclosed embodiment or every implementation of the present disclosure. The description that follows more particularly exemplifies illustrative embodiments. In several places throughout the application, guidance is provided through lists of examples, which examples can be used in various combinations. In each instance, the recited list serves only as a representative group and should not be interpreted as an exclusive list unless explicitly stated as such.

Definitions



[0012] As used herein, "a," "an," "the," "at least one," and "one or more" are used interchangeably. The terms "comprises," "includes," and variations thereof do not have a limiting meaning where these terms appear in the description and claims. Thus, for example, an alkaline coating composition that includes "a" latex and "a" base can be interpreted to mean that the alkaline coating composition includes "one or more" latexes and/or "one or more" bases.

[0013] As used herein, the term "and/or" means one or all of the listed elements.

[0014] As used herein, the term "dry" means in the substantial absence of water and the term "dry basis" refers to the weight of a dry material.

[0015] As used herein, the term "room temperature" means 20-25°C.

[0016] For the purposes of the present disclosure, the term "copolymer" means a polymer derived from more than one species of monomer.

[0017] As used herein, "Tg" is an abbreviation for glass transition temperature.

[0018] As used herein "ml" is an abbreviation for milliliter(s).

[0019] As used herein "mm" is an abbreviation for millimeter(s).

[0020] As used herein "mil" is an abbreviation for a unit of length equal to 1/1000 of an inch.

[0021] As used herein "°C" is an abbreviation for degrees Celsius.

[0022] As used herein "g" is an abbreviation for gram(s).

[0023] As used herein, the term "metal substrate surface" refers to the surface where a coating is autodeposited. As used herein, the terms "metal surface," "metal substrate," "substrate," and "metal substrate surface," refer to the metal and/or the metal surface where a coating is autodeposited.

[0024] Also herein, the recitations of numerical ranges by endpoints include all numbers subsumed within that range (e.g., 1 to 5 includes 1, 1.5, 2, 2.75, 3, 3.80, 4, 5, etc.).

Brief Description of the Figures



[0025] 

Figure 1 is a graph illustrating the wet plating and dry plating amounts on zinc plated steel for several different coating compositions.

Figure 2 is a graph illustrating the dry plating amount on stainless and non-stainless steel metals for several different coating compositions.

Figure 3 is a graph illustrating the effect of a short duration immersion time on plating on galvanized steel.

Figure 4 is a graph illustrating the effect of immersion time on plating on galvanized steel.

Figure 5 is a graph illustrating the effect of immersion time on plating on brass.

Figure 6 is a graph illustrating the plating of a coating composition on different metals.

Figure 7 is a graph illustrating the plating of a coating composition on zinc plated steel versus stainless steel.

Figures 8-10 are graphs illustrating dry plating as a function of a base and a polyamine or polyimine for several different coating compositions.


Detailed Description



[0026] Embodiments of the present disclosure include coating compositions including a latex a polyimine or a polyamine and an amount of base sufficient to raise the pH of the composition to an alkaline pH. Embodiments of the present disclosure also include processes for applying the coating composition and methods for producing a coating on a metal substrate surface including immersing at least a portion of the metal substrate surface in the coating composition, where the coating autodeposits on the metal substrate surface, as metal ions from the metal substrate surface interact with the alkaline coating composition.

[0027] The process of applying a coating composition to a metal substrate surface provides for thick or thin film deposition of latex paints or coatings and/or fast-hardening traffic latexes, where the thickness of the coating deposited on the substrate is dependent on the time the substrate is immersed in the coating composition. For example, the deposition of the dispersed latex can continue until the coating has a thickness of at least about 1/4 inch (0.635 centimeter). However, very thick coatings of up to 1/2 inch (1.27 centimeters) or more are possible.

[0028] Embodiments of the present disclosure differ from commercial autodeposition of latex binders and paints in that the coating composition of the present disclosure is at an alkaline pH. In commercial autodeposition, latex binders and paints are at low pH often with the addition of hydrofluoric acid (HF) and/or an oxidizing agent, such as hydrogen peroxide (H2O2). During the coating process, metal of the substrate being coated is dissolved by the acidic composition. For example, when coating an iron or steel article with a composition containing HF and H2O2, iron is dissolved from the substrate and then oxidized from ferrous iron to ferric iron. The ferric iron can then interact with functional groups on the polymer in the latex causing the latex to precipitate to form a coating.

[0029] However, commercial autodeposition using acidic polymer latexes can include various limitations. For example, a coating can form on a metallic surface whose thickness is the same regardless of the time the surface is contacted with the composition. In other words, the coating process shuts down, preventing any further film build. In such instances, in order to obtain thicker coatings, the metallic surface can be subjected to multiple stage coating operations, or the solids content of the composition can be increased.

[0030] Embodiments of the present disclosure, on the other hand, include coating compositions and methods of autodepositing coatings on metal surfaces using a coating composition at an alkaline pH without the addition of special additives, such as an oxidizing agent, and/or hazardous materials such as HF. As discussed herein, in such embodiments, the thickness of the coating can be a direct function of the time the metal surface is immersed in the coating composition. In other words, the coating composition of the present disclosure provides a coating process using autodeposition that does not shut down after a certain period of time.

[0031] In embodiments of the present disclosure, the coating composition includes a latex a polyimine or a polyamine and a base. The base can raise the pH of the coating composition to an alkaline pH. Not wishing to be bound by theory, the base included in the coating composition can dissolve metal ions from the metal substrate surface to react with the latex, or portions of the latex, to cause autodeposition of the coating on the metal substrate surface. Since at least a portion of the metal substrate surface is immersed in the coating composition, the liquid level stays the same during the autodeposition, as well as the pH level. The metal ions can continue to diffuse from the metal substrate surface through water in the coating composition, creating an autodeposition process that is time dependent, thus creating thick coatings of up to at least 0,6 cm (1/4 inch) as discussed herein.

[0032] In some embodiments, the coating formed on the metal substrate surface can have a porous, honeycomb-type structure. In such embodiments, the base in the coating composition can continue to reach the metal substrate surface to release metal ions into the coating composition, improving the likelihood that a thick coating is applied on the metal substrate surface.

[0033] In some embodiments, the process of autodepositing the coating composition on a metal substrate surface can include applying an ultrathin film. As used herein, an "ultrathin film" refers to a coating having a molecular thickness. In such embodiments, the metal substrate surface can be immersed in the coating composition for less than about 5 seconds. In various embodiments, a thin coating having a thickness in a range of about 1 micron to about 10 microns can be produced on a metal substrate surface when the metal substrate surface is immersed in the coating composition for about one minute.

[0034] As discussed herein, coating compositions of the present disclosure include a latex and a base. As used herein, "latex" refers to a dispersion of a water-insoluble polymer which may be prepared by conventional polymerization techniques such as, for example, emulsion polymerization. As used herein, "glass transition temperature" or "Tg" refers to the narrow temperature range over which amorphous polymers change from being relatively hard and brittle to relatively soft and viscous (rubbery).

[0035] The latex included in the coating composition of the present disclosure can have a monomodal or polymodal (e.g., bimodal) particle size distribution. In addition, the latex can be an unpigmented latex or a pigmented latex. The latex composition can also have other components present, such as pigment dispersants, surfactants, biocides, and the like. Further, the latex can be a fast-hardening traffic latex paint. Latexes used in fast dry applications are well known to those skilled in the art, and many of such latexes are commercially available. Mixtures and/or blends of latexes can also be employed.

[0036] Embodiments of the present disclosure include latexes including homopolymers and/or copolymers. In addition, the latex may contain a single copolymer or more than one copolymer. Exemplary monomers to form a polymer and/or copolymer can include ethylenically unsaturated monomers including styrene; butadiene; acrylate; alkyl-substituted acrylates such as methyl methacrylate and ethyl methacrylate; vinyl halides such as vinyl chloride; vinylidene halides such as vinylidene chloride and vinylidene dichloride; alkylenes such as ethylene; halide-substituted alkylenes such as tetrafluoroethylene; acrylonitriles such as acrylonitrile, and vinyl ester monomers such as vinyl acetate, vinyl propioriate, and vinyl neodecanoate, combinations thereof, and the like.

[0037] As discussed herein, in some embodiments, the latex can be a fast-hardening traffic latex paint. In some embodiments, the polymer of the fast-hardening traffic latex can be a copolymer. A wide variety of monomers may be used to prepare copolymers of the fast-hardening traffic latex paint. For example, (meth)acrylate copolymers including primarily (meth)acrylate monomers are one type of copolymer.

[0038] As used herein, the term "(meth)" indicates that the methyl substituted compound is included in the class of compounds modified by that term. For example, the term (meth)acrylic acid represents acrylic acid and methacrylic acid.

[0039] Examples of suitable (meth)acrylates include methyl acrylate, ethyl acrylate, butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate; octyl acrylate and isooctyl acrylate, n-decyl acrylate, isodecyl acrylate, tert-butyl acrylate, methyl methacrylate, butyl methacrylate, hexyl methacrylate, isobutyl methacrylate, isopropyl methacrylate as well as 2-hydroxyethyl acrylate and acrylamide. The preferred (meth)acrylates are methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, isooctyl acrylate, methyl methacrylate, and butyl methacrylate.

[0040] Other suitable monomers include lower alkyl acrylates and methacrylates including acrylic and methacrylic ester monomers: methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, isobornyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, cyclohexyl methacrylate, isodecyl methacrylate, isobornyl methacrylate, t-butylaminoethyl methacrylate, stearyl methacrylate, glycidyl methacrylate, dicyclopentenyl methacrylate, and phenyl methacrylate.

[0041] In some embodiments, the fast-hardening traffic latex paint can include an amine-containing latex. As used herein, "amine-containing" latex refers to a latex having pendant amine functional groups. The amine-containing latexes may be prepared in accordance with any of a number of methods, including, but not limited to: addition polymerization of ethylenically unsaturated monomers containing amine-functionality; polymerization of monomers which readily generate amines by hydrolysis; reactions of aziridines with carboxyl-containing polymers; reactions of polymers containing an enolic carbonyl group (e.g., acetoacetoxyethy methacrylate (AAEM), and diamines); reactions of amines with epoxy-containing polymers; and reactions of amine with polymers of vinyl benzyl chloride. Such polymerization reactions are known in the art, and examples of preparation of these and other suitable amine-containing latexes may be found in the following publications: U.S. Pat. No. 3,847,857 (Chou et al.); U.S. Pat. No. 4,119,600 (Bakule et al.); U.S. Pat. No. 5,364,891 (Pears et al.); U.S. Pat. No. 5,494,961 (Lavoie et al.); and U.S. Pat. No. 4,367,298.

[0042] Exemplary fast-hardening traffic latexes that can be included in the coating compositions of the present disclosure include Dow DT211, Dow DT 250, Dow DT 400, commercially available from The Dow Chemical Company, and Fastrack 2706, commercially available from Rohm and Haas Company.

[0043] The amount of latex in the coating composition can vary depending on the type of latex and other coating ingredients. For example, in some embodiments, the latex concentration in the coating composition can be greater than one weight percent of the total composition. In various embodiments, the latex concentration is greater than ten percent of the total composition. In addition, in unpigmented latex compositions, the latex solids content can be as high as 60 percent or more.

[0044] In some embodiments, the polymer of the latex can be chosen based on the desired characteristics of the coating on the metal surface. For example, to obtain a hard, or ceramic-like coating on the metal substrate surface, the latex polymer can have a Tg of greater than about 40 degrees Celsius. As appreciated by one skilled in the art, "hardness" refers to the resistance of a material to plastic deformation by indentation. The hardness of a surface can be determined by forcing an indenter such as a Vickers or Knoop indenter into a surface of the material under 15 to 1,000 gram force (gf) load. For the Knoop indenter, the hardness value is given by the formula:


where:

L= length of indentation along its long axis

Cp = correction factor related to the shape of the indenter

P= load



[0045] In embodiments of the present disclosure, the term "ceramic-like" refers to coatings that have a HK in a range of 100 to 500. In other words, the term "ceramic-like" refers to a coating that cannot be indented with a fingernail, and also exhibits a "clinking" sound when tapped against a metal surface. One example of a latex with a Tg greater than about 40 degrees Celsius is NeoCAR Acrylate 850, with a Tg of 50 degrees Celsius, available commercially from The Dow Chemical Company. In another embodiment, a hard, or ceramic-like, coating on the metal substrate surface can be obtained using a latex polymer with a Tg greater than about 10 degrees Celsius can be obtained using a latex polymer with a Tg greater than about 10 degrees Celsius and an inorganic pigment volume concentration greater than about 50 percent, as might be typical of a flat paint coating formulation. In some embodiments, the inorganic pigment volume concentration in the latex can be greater than 80 percent.

[0046] On the other hand, to obtain a soft and/or tacky coating on the metal substrate surface, the latex polymer can have a Tg in a range of about -70 degrees Celsius to about 10 degrees Celsius. Exemplary latexes include Dow 300 with a Tg of 5 degrees Celsius and Dow 123 with a Tg of-17 degrees Celsius, among others. The Tg of the polymer included in the latex of the coating composition of this disclosure is determined by differential scanning calorimetry (DSC).

[0047] Suitable latexes can be produced using conventional emulsion polymerization techniques. Thus, for example, the monomers to be employed in the particular latex involved are typically dispersed, with agitation sufficient to emulsify the mixture, in an aqueous medium that may contain known emulsifying agents such as surfactants as well as other ingredients employed in the art as polymerization aids, including chain transfer agents. Such monomers are then subjected to polymerization with the aid of a source for generating free radicals, including free radical polymerization catalysts, activating radiation, or other means.

[0048] Free radical polymerization catalysts suitable for use in the foregoing polymerizations include those already known to promote emulsion polymerization. Among such catalysts are oxidizing agents such as organic peroxides such as t-butyl hydroperoxide and cumene hydroperoxide inorganic oxidizing agents such as hydrogen peroxide, potassium persulfate, sodium persulfate, ammonium persulfate and catalysts that, like redox catalysts, are activated in the water phase, for example, by a water-soluble reducing agent.

[0049] Such catalysts are employed in an amount sufficient to cause polymerization, that is, in a catalytic amount. As a general rule, an amount ranging from about 0.01 to about 5 weight percent based upon the total monomer to be polymerized is sufficient. Alternatively, other free radical producing means, such as exposure to activating radiations, can be employed rather than heat and/or catalytic compounds to activate the polymerization.

[0050] Suitable emulsifying agents that can be employed include the anionic and nonionic emulsifiers customarily used in emulsion polymerization. Usually at least one anionic emulsifier is included and one or more nonionic emulsifiers can also be present. Representative types of anionic emulsifiers are the alkyl aryl sulfonates, alkali, metal alkyl sulfates, the sulfonate alkyl esters, the fatty acid soaps, and the like. Specific examples of those well-known emulsifiers include dodecylbenzene sodium sulfonate, sodium butylnaphthalene sulfonate, sodium lauryl sulfate, disodium dodecyl diphenyl ether disulfonate, N-octadecyl disodium sulfosuccinate, and dioctyl sodium sulfosuccinate, and, preferably, the corresponding ammonium salt forms. Such emulsifying agents can be employed in varying amounts so long as adequate emulsification is achieved to provide dispersed polymer particles having the desired particle size and particle size distribution. However, as a general rule, an amount ranging from about 0.01 to about 5 weight percent, based upon the total monomer to be polymerized is advantageously employed.

[0051] Conventional chain transfer agents can also be employed in the production of latexes and, indeed, in polymerization stages employing an aliphatic conjugated diene, it is preferable to do so. Examples include long chain mercaptans, for example, lauryl mercaptan, dodecyl mercaptan, and other known chain transfer agents.

[0052] Other ingredients known in the art to be useful for various specific purposes in emulsion polymerization can also be employed in the aforementioned latexes, for example, when the polymerizable constituents for a given latex include a monoethylenically unsaturated carboxylic acid monomer, polymerization under acidic conditions, that is the aqueous media having pH value of from about 2 to 7, especially from about 2 to about 5, is preferred. In such instances, the aqueous medium can include acids and/or salts to provide the desired pH value and possibly a buffered system.

[0053] The latexes can be prepared by emulsion polymerization techniques that are well known in the art. For example, in some embodiments, water and a seed latex, and/or a micelle-forming surfactant are introduced into a reactor equipped with pumps to deliver monomer and aqueous feeds. The reactor is purged with nitrogen and heated. Over a period of several hours, the monomer streams are added as well as a stream containing water, aqueous surfactant, and polymerization initiator. Following the addition of the monomer streams and the aqueous streams, the reaction mixture is maintained at the reaction temperature for additional reaction time to ensure extensive reaction before cooling. The latex then may be steam distilled to reduce the concentration of unreacted monomers.

[0054] Numerous other copolymers and copolymer-containing latexes can be utilized in the composition of the instant invention, for example, as disclosed in U.S. Patents 6,075,079; 5,201,948; 5,213,901; 5,198,492; 5,185,396; 5,182,327; 5,173,534; 5,212,251; 5,059,456; 4,293,476; 4,666,777; 4,658,003; 4,742,108; 4,644,032; 4,623,678; 4,087,572; 4,012,355; 5,236,991; 5,157,084; 5,045,576; 4,973,670; 4,972,018; 4,968,740; 4,962,154; 4,863,979; 4,857,631; 4,806,207; 4,508,869; 4,733,005; and 4,707,221.

[0055] As discussed herein, coating compositions of the present disclosure include a latex and a base to raise the pH of the composition to an alkaline pH, producing an alkaline coating composition. In some embodiments, the base can be selected from a group including ammonia, sodium hydroxide, potassium hydroxide, barium hydroxide, cesium hydroxide, calcium hydroxide, lithium hydroxide, tetramethyl ammonium hydroxide, tetraethylammonium hydroxide, an amine, and any mixture thereof. In addition, in some embodiments, the amine containing base can be selected from a group consisting of dimethylamine, diethylamine, aminopropanol, 2-amino-2-methyl-1-propanol, methylamine, propylamine, 2-propyl amine, and any mixture thereof.

[0056] In some embodiments, the base can be added to the coating composition to raise the pH of the composition to a pH in a range of about 7.1 to about 12. More preferably, the base can be added to the coating composition to raise the pH of the composition to a pH in a range of about 9.5 to about 11.5. In some embodiments, raising the pH of the coating composition increases the autodeposition rate of the coating composition on the metal substrate surface. In other words, a thicker coating can be applied in a shorter period of time when the coating composition has a higher pH, for example, when the coating composition has a pH in the range of about 9.5 to about 11.5.

[0057] The coating composition includes a polyimine or polyamine. Polyamines are polymers produced by the polymerization of amine monomers or by hydrolysis of polymers to amine functionality. Similarly, polyimines are polymers produced by the polymerization of imine monomers that do not contain carbon-carbon ethylenic unsaturation, but, rather, contain either carbon-nitrogen unsaturation or exist as heterocyclic ring compounds. As a result, polyimines have nitrogen atoms in the polymer backbone. The polyimines may be linear or branched and may contain primary, secondary, and/or tertiary amines and and/or along the polymer backbone. Depending upon the pH of the system, these nitrogen atoms may be protonated.

[0058] The polyamine or polyamine is employed in an amount sufficient to result in a fast-hardening traffic latex, as discussed herein. As will be appreciated, fast-hardening traffic latexes and the traffic paints made from them are commonly referred to as "fast-dry latexes" and "fast-dry paints," respectively. Although the fast-hardening traffic latexes appear to dry very rapidly after a coating is applied, the film actually continues to contain significant water content even though the surface feels dry to the touch. In one embodiment, the amount of polyimine or polyamine employed is from about 0.2 to about 5 weight parts, based on 100 weight parts of latex solids, preferably is from about 0.3 to 3 parts, and more preferably is from about 0.5 to about 2 parts, based on 100 weight parts of latex solids.

[0059] Suitable polyimines or polyamines for use in the coating composition of the present disclosure include, for example, polyethylenimines and polypropylenimines, desirably with a molecular weight of at least about 250 grams per mole (g/mol), preferably with a molecular weight of at least about 400 g/mol, more preferably with a molecular weight of at least about 700 g/mol. Preferred polyimines or polyamines for use in the coating composition of the present disclosure include polyethylenimine (PEI) that has an average molecular weight of about 2,000 g/mol. The material is available from BASF as LUPASOL G-35, CAS No. 9002-98-6. Other commercially available PEI's include LUPASOL FG with an average molecular weight of about 800 g/mol, and LUPASOL G-20 with a molecular weight of about 1,300 g/mol. Low molecular weight PEI is also available from Nippon Shokubai as CAS No. 106899-94-9 including EPOMIN SP-300 with an average molecular weight of about 300 g/mol, EPOMIN SP-012 with an average molecular weight of about 1,200 g/mol, and EPOMIN SP-018 with an average molecular weight of about 1,800 g/mol. In addition, high molecular weight PEI is available from Nippon Shokubai as CAS No. 9002-98-6 including EPOMIN SP-200 with an average molecular weight of about 10,000 g/mol and EPOMIN P-1000 with an average molecular weight of about 70,000 g/mol. The molecular weights of the PEI's are been determined by light scattering techniques.

[0060] If desired, one or more additives may be incorporated into the coating compositions of the present disclosure in order to modify the properties thereof. Examples of these additives include conventional thickeners, dispersants, pigments, dyes and/or colorants, biocides, anti-foaming agents, optical brighteners, wet strength agents, lubricants, water retention agents, flame retardants, antioxidants, UV stabilizers, crosslinking agents, surfactants, buffering agents, and the like.

[0061] As discussed herein, the process of autodepositing the coating on the metal substrate surface includes immersing at least a portion of the metal substrate surface in the coating composition, where the coating autodeposits on the metal substrate surface, as metal ions from the metal substrate surface react with the alkaline coating composition. In some embodiments, the metal substrate surface is a non-stainless steel metal. In various embodiments, the non-stainless steel metal can be selected from a group consisting of: copper, bronze, iron, zinc, aluminum, zinc plated steel, hot dip galvanized steel, and alloys thereof.

[0062] Steels are designated by grade, type, and class. Grade is used to denote chemical composition; type is used to indicate deoxidation practice; and class is used to describe some other attribute such as strength level or surface smoothness. ASTM or ASM E are the most widely used specifications for steel products in the United States; however, the grade, type, and class terms are used somewhat interchangeably. Stainless steel is known for its outstanding corrosion resistance and is primarily an alloy of iron, chrome, and nickel with very low carbon content. 18-8 is a generic designation that is used to indicate stainless steels such as 302, 303, 304, 305, 384 having compositions containing approximately 18 percent chrome and 8 percent nickel. 316 stainless steel is often the metal of choice for aqueous contact and is composed of 67.9 percent iron (Fe), 17 percent cromium (Cr), 12 percent nickel (Ni), 3.0 percent molybdenum (Mo), and 0.10 percent carbon (C) by weight. Carbon steels have lower corrosion resistance than stainless with carbon contents in the range of about 0.3-1.1 percent. They also contain less than 1.65 percent manganese (Mn), 0.60 percent silicon (Si), and 0.60 percent copper (Cu) while alloy steels have greater levels of those three elements. Contrasted to these are wrought iron that contains 98.5 percent Fe with 1.5 percent C, and cast iron is with 97 percent Fe with 3 percent carbon. Almost all carbon steel that is exposed to the external environment is either zinc plated or hot dip galvanized (also a zinc coating). Common grades of carbon steel that are zinc plated are Steel Grade 2 (low carbon steel), Steel Grade 5 (medium carbon steel) and Steel Grade 8 (medium carbon alloy steel). Because galvanized steel has a much thicker coating than zinc plated steel, galvanized steel is also more corrosion resistant.

[0063] Brass and bronze are alloys of copper, but they also contain some zinc. A typical yellow brass composition is 67 percent Cu and 33 percent zinc (Zn), while naval brass is 60 percent Cu, 39 percent Zn and 1 % tin (Sn). Bronze is often used in marine applications and has greater strength and more corrosion resistance than brass. A typical salt water bronze composition is 45 percent Cu, 33 percent Ni, 16 percent Sn, and 5.5 percent Zn.

[0064] In some embodiments, the coating compositions of the present disclosure can apply a coating on metal and/or non-stainless steel metal articles including reinforcing bar, bolt threads, wires, automotive bodies and automotive body parts, and industrial metal, among others. The coating applied using the coating composition of the present disclosure can be used to, for example, coat the wires, provide industrial metal finishes, insulate metal, create a sound dampening coating on metal, and/or create a thick, intumescent coating on metal. Other uses for the coating are also possible.

[0065] As discussed herein, in some embodiments, the coating composition can form a coating on a metal surface with a honeycomb-like structure. In some industrial applications, the honeycomb-like structure of the coating can allow other materials into the coating to strengthen the bond between the coating and the material. For example, the coating composition can be used to coat reinforcing bar which can then be used with concrete, where the concrete can enter the honeycomb-like structure of the coating on the reinforcing bar before the concrete sets into a solid phase, creating a stronger bond between the concrete and the coating on the reinforcing bar as compared to uncoated reinforcing bar.

[0066] The actual scope of the disclosure is intended to be defined by the following claims.

[0067] The following examples are provided for illustrative purposes and are not intended to limit the scope of the disclosure since the scope of the present disclosure is limited only by the appended claims. All parts and percentages are by weight unless otherwise indicated.

Specific Embodiments



[0068] The following examples are given to illustrate embodiments of the present disclosure and should not be construed as limiting in scope. All parts and percentages are by weight unless otherwise indicated.

TEST METHODS


pH



[0069] pH is measured on latexes and paints at room temperature using a Cole Parmer pH 100 Series pH meter with autotemperature compensation.

Autodeposition



[0070] Commercial bolts or lag screws are used for the test metal substrates. They are a preferred test metal substrate because they have a large surface area per unit volume, are uniform in size and geometry, are easy to obtain, are low cost, require no preparation, have a threaded geometry, have geometry and size that allow small volumes of sample liquid for the test, and are available in a variety of metal types in a given geometry. Common threaded bolts and lag screws of 5 cm (2 inches (2" )) length and 0,6 cm (¼") diameter are the standard test geometry. Full thread hex head tap bolts of zinc plated steel, hot dip galvanized steel, and solid bronze construction are used for most metal stability testing. As brass is not commonly available in a hex head configuration, full thread solid brass machine screws with slotted pan or flat heads are employed. The shaft of the brass machine screw is identical to the hex head bolts of the same diameter. The 5 cm (2") tap bolts and machine screws have standard threads of 20 threads/in for 0,6 cm (¼") diameter. The common designation for this geometry is 1/4 20 x 2. Hex head lag bolts (often referred to as lag screws) of zinc steel and galvanized steel construction are also used for metal testing, and these are a preferred geometry for these metals. The 2" hex head lag screws of ¼" in diameter have threads that are wider (10 threads/in) and deeper than tap bolts. Unlike bolts, which have a relatively flat end, lag screws have a pointed end and are designed for anchoring into wood substrates.

[0071] The test cells for containing the test metals are glass 20 milliliter (ml) disposable scintillation vials with plastic caps. These cells are employed because they are large enough to contain the 5 cm (2") test metals when capped, easy to seal, transparent, low in cost, inert, and readily available. The dimensions of these scintillation vials are 60 millimeters (mm) in height and 24 mm internal diameter (ID) with a neck opening of 16 mm. Although these vials hold 20 ml when full, only 15 ml of liquid sample is used for each test for partial immersion of the bolts to a depth of 32 mm. With 15 ml of liquid sample in the scintillation vial, the immersion depth of a ¼" (∼6 mm) diameter bolt or screw is 32 mm. The bolt extends about 28 mm above the surface of the liquid with the head of the bolt or screw at the top residing just inside the vial neck for positioning and ease of removal.

[0072] The following is a detailed procedure for this method. All weighings are with an analytical balance to four decimal places.
  1. 1. Number and weigh (WM1) a series of bolts or lag screws. The test metals are all from the same supplier and same lot for a given test series.
  2. 2. Inject 15.0 ml of latex or paint into each vial by syringe, and then cap the vial.
  3. 3. Weigh (WVL1) each capped vial containing the 15 ml of latex or latex paint.
  4. 4. Place a matching numbered bolt or lag screw into each vial containing the latex or paint with the head up and the threaded end down. Recap the vial.
  5. 5. Allow the samples to sit undisturbed for the specified immersion time. The standard period is 24 hours (hr).
  6. 6. At the end of the immersion period, carefully remove each bolt or lag screw with tweezers avoiding contact with the neck or sides of the vial. Let any free latex drip back into the vial (usually only 1-3 drops), and then place the head of each bolt into a notched metal rack for drying. Recap the vial.
  7. 7. Weigh (WVL2) each capped vial containing the remaining uncoated latex or paint to determine the "Wet Coating" (CW), where (CW) = WVL1- WVL2.
  8. 8. After air drying the coated bolts for 1 hr, place the metal rack containing the bolts into an air circulating oven at 120°C for 2 hr. Remove the metal rack from the oven, and allow the samples to cool to room temperature (∼15 min).
  9. 9. Weigh (WM2) each coated bolt and then calculate "Dry Plating" (CD), where CD = WM2- WM1.


[0073] Dividing the Dry Coating (CD) by the Wet Coating (CW) gives the average "Coating solids" (CS), where CS = (CD / CW)× 100.

[0074] For coated paint samples, the bolts or screws are gently rinsed with deionized water immediately after removal from the vials. In this procedure, the bolt is removed from the cell with tweezers and then immersed in a container of deionized water. The bolt is gently swirled in the container three times and then removed and placed in a drying rack. This procedure removes any free paint that is not really coated. Latex or paint that is truly coated on metal becomes water insoluble and remains on the threads during rinsing.

[0075] As used herein, the coating on the metal substrate surfaces is referred to as "plating." For example, the amount of latex coated onto a metal substrate surface will have a "wet plating" amount and a "dry plating amount" which refers to the weight of the coating on the metal substrate surface when the coating is wet and when the coating is dry, respectively.

MATERIALS



[0076] The following materials are used in the examples.

Latexes: UCAR™ Latexes DT211, DT250, DT400, DM 171, 6109; DL 215, 627, 6045, DW 110, 367, 379G, 301, 163S, 2300, 357, 629, 460, 443, 481, 441, 455, 626, 471, DT100, 300, 123, 9165, 3427, 657, 435, DM166, and 379G; NEOCAR™ Acrylic Latexes 820 and 850; NEOCAR™ Latexes 2535, 2302A, and 2300; Dow Latexes 31215 and 41191; and EVOCAR Latexes DA280 (available from The Dow Chemical Company, Midland MI, USA)

Cells: 20 ml scintillation vials with caps

Latex or Latex Paint: 15.0 ml in each vial

Metal Substrates: 5 cm (2 inch) bolts or screws of 0,6cm (1/4 inch) diameter

Paint Formula: Methanol-Free White Traffic Paint, Formulation Suggestion V-2212, UCAR latex DT250 product bulletin, Form No. 309-00368-0903NA


Comparative Example 1



[0077] A 5 cm (2 inch) zinc plated steel lag screw is placed in a vial containing 15 ml of UCAR latex DT250. After 24 hours the bolt is removed and two to three drops of unplated wet latex is allowed to drip back into the vial before placing the bolt in a drying rack. The wet plating on the bolt is 2.5 grams (g). The dry plating after drying 2 hours at 120 °C is 1.5 g.

Comparative Example 2



[0078] A 5 cm (2 inch) brass tap bolt is placed in a vial containing 15 ml of UCAR latex DT250. After 24 hours the bolt is removed as provided in Example 1. The wet plating on the bolt is 1.8 g. The dry plating after drying 2 hours at 120 °C is 1.1 g.

Comparative example 3



[0079] A 5 cm (2 inch) zinc plated steel lag screw is placed in a vial containing 28 g of white traffic paint prepared from using the Methanol-Free White Traffic Paint Formulation V-2212. After 24 hours the bolt is removed and rinsed. The wet plating on the bolt is 8.2 g. The dry plating after drying 2 hours at 120 °C is 6.4 g.

Comparative Example 4



[0080] Into separate vials are placed 15 ml each of thirty different commercial latexes. A 5 cm (2 inch) zinc plated steel lag screws is then placed into each vial. The variety of commercial latexes include: UCAR™ Latexes DM 171, 6109, DL 215, 627, 6045, DW 110, 367, 379G, 301, 163S, 2300, 357, 629, 460, 443, 481, 441, 455, 626, 471, DT100, DT211, DT250, DT400; NEOCAR Acrylic Latexes 820 and 850; NEOCAR Latexes 2535 and 2302A; and Dow Latexes 31215 and 41191, available commercially from The Dow Chemical Company. The pH range for the latexes ranges from below 6 to above 10. After 24 hours the bolt is removed as provided in Example 1. The wet plating and dry plating after drying 2 hours at 120 °C is shown in Figure 1.

[0081] As shown in Figure 1, the latexes DT-211, DT250, and DT400 have the highest amount of plating.

Comparative Example 5



[0082] Into separate vials are placed 15 ml each of a variety of commercial latexes. A metal substrate is then placed into each vial. The metal substrates include: zinc plated steel screws (Hillman, Zinc Plated Steel Hex Head Lag Screws, 0,6 cm (1/4 inch) × 5 cm (2 inch), Lot No. 167421, item no. 230015), galvanized steel lag screws (Crown bolt, Hot Dip Galvanized Steel Hex Head Lag Screws, Lot No. = Box 3), brass machine screws (Bolt Depot, Brass Flat Head Slotted Machine Screws, 0,6 cm (1/4 inch) × 5 cm (2 inch), Lot = sack with 400 pieces, item no. 104712), bronze tap bolts, stainless steel lag screws, and stainless steel tap bolts. The variety of commercial latexes include: UCAR™ Latexes DT211, DT250, and DT400, commercially available from The Dow Chemical Company. After 24 hours the bolts are removed as provided in Example 1. The dry plating after drying 2 hours at 120 °C is shown in Figure 2.

[0083] As shown in Figure 2, all the latexes show some plating on the zinc plated steel substrates. The small amount of latex shown on stainless steel is latex that is retained between the screw threads when the bolt is removed from the test cell. This latex does not appear to be plated, as it can easily be washed off with a water rinse before drying. Plating on the other metal substrates, however, is substantially retained during rinsing.

Comparative Example 6



[0084] A hot dip galvanized steel lag screw is placed in a vial containing 15 ml of UCAR Latex DT250. The amount of plating and plating solids is monitored over a period of time and is shown in Figure 3.

[0085] As shown in Figure 3, plating appears to begin upon immersion. Figure 4 is an extension of Figure 3 in a longer time frame.

[0086] As shown in Figure 4, the latex coating continues to grow over time for as long as about 60 hours.

Comparative Example 7



[0087] A flat head solid brass machine screw is placed in a vial containing 15 ml of UCART™ Latex DT250. The amount of plating and plating solids is monitored over a period of time, as shown in Figure 5.

[0088] As shown in Figure 5, plating appears to begin upon immersion and continues to grow over time for as long as about 45 hours. After 45 hours, the latex coating continues to grow, however at a decreased rate as compared to the rate from hours 0 through 45.

Comparative Example 8



[0089] A variety of 0,6 cm (1/4 inch) diameter metal substrates including (2 inch) zinc plated steel lag screws, 5 cm (2 inch) hot dip galvanized steel lag screws, 5 cm (2 inch) brass machine screws, 5 cm (2 inch) aluminum screws, 5 cm (2 inch) welding steel, and a cut 5 cm (2 inch) section of black pipe (Southland Products, 1 cm 3/8 inch) diameter black pipe steel nipple, threaded 2 cm (3/4 inch) on one end as supplied, GS quartered with hacksaw, washed with mineral spirits and acetone) are placed in vials containing 15 ml (28.0 g) of traffic paint containing UCAR™ Latex DT250. After 24 hours the bolt is removed and rinsed. The dry plating after drying 2 hours at 120 °C is shown in Figure 6.

[0090] As shown in Figure 6, plating occurs on all the metals, however, the most plating occurs on zinc plated steel and hot dip galvanized steel.

Comparative Example 9



[0091] A 5 cm (2 inch) zinc plated steel lag screw and a 5 cm (2 inch) stainless steel screw are placed in separate vials containing 15 ml (28.0) of traffic paint containing UCAR™ Latex DT250. After 24 hours the bolt is removed and rinsed. The dry plating after drying 2 hours at 120°C is shown in Figure 7.

[0092] As shown in Figure 7, there is a large difference in paint deposition on the zinc plated steel as compared to the stainless steel.

Comparative Example 10



[0093] Samples of Dow Latex 41191 are treated with various amounts of ammonia and PEI in a four by three (4 × 3) level experimental design. The ammonia is varied from 1.0 to 2.0 parts active NH3 on latex solids, and the PEI is varied from 0.5 to 2.0 parts active PEI on latex solids. 15 ml of each latex composition and a 5 cm (2 inch) zinc plated lag screw are placed into each vial. The lag screws are removed after 24 hours and the amount of latex plating on each screw is determined.

[0094] As shown in Figure 8, plating on the metal substrate increases as the amount of PEI increases and as the pH of the coating composition increases. However, as shown in Figure 8, the amount of plating has a greater dependence on the amount of PEI in the coating composition.

Comparative Example 11



[0095] Samples of Dow Latex 31215 are treated with various amounts of ammonia and PEI in a three level experimental design. The ammonia is varied from 0.7 to 1.3 parts active NH3 on latex solids, and the PEI is varied from 0.7 to 1.3 parts active PEI on latex solids. 15 ml of each latex composition and a 5 cm (2 inch) zinc plated lag screw are placed into each vial. The lag screws are removed after 24 hr and the amount of latex plating on each screw is determined.

[0096] As shown in Figure 8, plating on the metal substrate surface increases as the pH of the coating composition is increased. In this example, adding PEI to the coating composition does not appear to increase the amount of latex deposited on the metal substrate surface.

Comparative Example 12



[0097] Samples of paints made with Dow Latex 41191 are treated with various amounts of ammonia and PEI in a three level experimental design. The ammonia is varied from 0.80 to 1.6 parts active NH3 on latex solids, and the PEI is varied from 1.0 to 1.5 parts active PEI on latex solids. Fifteen ml of each paint composition and a 2 inch zinc plated lag screw are placed into each vial. The lag screws are removed and rinsed after 24 hr and the amount of paint plating on each screw is determined.

[0098] As shown in Figure 10, plating on the metal substrate surface increases as the PEI and the pH concentrations are increased.

Example 13



[0099] Samples of Dow latexes 31215 and 41191 are treated with three levels of 28% aqueous ammonia up to 1.5% absolute on latex solids (%ABOLS) to give a range of pH from about 8.9 to about 10.3. In some samples, one percent PEI is added to samples of Dow Latexes 31215 and 41191 that had been neutralized to pH 10.0 with ammonia. The resulting pH after the PEI addition is about 10.2. All of the latexes are adjusted with deionized water to obtain a constant solids of 50.5 percent. Two inch zinc plated steel screws were placed in vials containing 15 ml of each coating composition including a latex and varying amounts of ammonia. After 24 hours the bolts are removed as provided in Example 1. Table 1 presents the ammonia and PEI added to Dow latexes 31215 and 41191 and the average latex deposition for each composition.
Table 1
        Latex Deposition on ZPS
Latex Ammonia Added PEI Added pH Ave Wet Dep Ave Dry Dep
  (% ABOLS) (% ABOLS)   (g) (g)
31215 0 0 8.86 0.33 0.17
31215 0.50 0 9.82 1.46 0.86
31215 1.00 0 10.11 1.43 0.85
31215 1.50 0 10.30 1.31 0.75
31215 1.00 1.00 10.18 2.22 1.24
41191 0 0 8.96 0.65 0.32
41191 0.50 0 9.86 1.60 0.95
41191 1.00 0 10.07 1.96 0.98
41191 1.50 0 10.27 1.88 1.14
41191 1.00 1.00 10.18 2.18 1.22


[0100] As shown in Table 1, the addition of a base can produce latex deposition on the zinc plated steel screws. In addition, the addition of a polyimine or polyamine, for example, polyethyleneimine increases the amount of deposition.

Example 14



[0101] A variety of commercial Dow latexes are selected that vary in polymer type, particle size, pH, solids content, surfactant stabilization type, and Tg. The pH for these latexes ranges from 4 to 9. Included are UCAR Latexes 300, 357, 627, 123, and 9165, NEOCAR Latexes 2300 and 2535, NEOCAR Acrylic Latexes 820 and 850. Three samples of each latex are used. The first set of latex samples are controls, and left untreated. The second set of samples are neutralized to pH 10 with 28% aqueous ammonia. The third set of samples were also neutralized to pH 10 with 28% aqueous ammonia, but 1.0% PEI is also added. Table 2 presents the latexes and the properties of each latex including solids content, particle size, Tg, surfactant stabilization type, and pH. In addition, Table 2 presents the pH of the latexes of the first, second, and third samples. Table 3 presents the wet and dry plating of the first, second, and third samples of each latex.
Table 2
Latex Type Solids PS Tg Surf Typical pH Original pH pH 10 pH 10 + PEI
300 V/A 55.0 0.3 5 A/N 4 4.23 9.86 9.92
357 V/A 56.6 0.3 23 A 5 4.58 9.87 9.93
627 Acrylic 43.5 0.1 15 A 9 9.31 10.03 10.04
850 NeoA 45.0 0.08 50 A/N 8.5 8.24 10.11 10.18
2300 Neo 55.0 0.3 20 A/N 5 3.81 9.91 9.94
820 NeoA 45.0 0.07 20 A/N 8.5 8.34 10.11 10.2
123 S/A 60.0 0.5 -17 None 8.5 8.71 10.13 10.24
2535 Neo 53.5 0.3 10 A/N 7.5 5.34 9.98 10.06
9165 Acrylic 52.0 0.3 -34 A 9 8.31 10.18 10.25
Ave   51.7 0.3 10.2   7.2 6.8 10.0 10.1
Table 3
  Wet Plating Dry Plating
Latex Original pH NH3 to pH 10 NH3 to pH 10 + PEI Standard pH NH3 to pH 10 NH3 to pH 10 + PEI
300 0.225 0.233 0.244 0.050 0.063 0.065
357 0.448 0.707 1.910 0.223 0.370 1.206
627 0.280 0.640 1.433 0.048 0.320 0.725
850 0.362 1.861 3.364 0.059 0.513 1.582
2300 0.344 0.285 0.305 0.097 0.055 0.082
820 0.300 0.649 3.357 0.040 0.272 1.818
123 0.316 0.534 2.824 0.144 0.252 1.785
2535 0.203 0.244 3.095 0.080 0.079 1.582
9165 0.432 1.458 1.233 0.200 0.682 0.661
Ave 0.323 0.735 1.974 0.105 0.290 1.056


[0102] As shown in Table 3, elevated pH with ammonia is effective for latex deposition with a variety of latex types. In addition, for the samples with PEI at pH 10, there is an increase in latex deposition on metal. Therefore, the presence of polyamine or polyimine at elevated pH is effective for latex deposition with a variety of latex types. Also, two of the latexes tested are low Tg, for example, latex 123 has a Tg of -17 °C and latex 9165 has a Tg of -34 °C. Both of these latexes have significant latex deposition on metal. The deposited latex from these latexes is tacky when dry. On the other hand, latex 850 has a Tg of 50 °C and gave similar plating results but with hard, or ceramic-like, plating.

Example 15



[0103] A variety of commercial Dow latexes are selected that vary in polymer type, particle size, pH, solids content, surfactant stabilization type, and Tg. The original pH for these latexes ranges from 4.7 to 8.8. Included are UCAR Latexes 629, 657, 435, DM 166, DL215, DM 171, 379G, EVOCAR Latex DA280, and Dow Latex 41191. Two samples of each latex are used for testing. The first set of latex samples are controls at the original pH. The second set of samples are neutralized to pH 10 with 28% aqueous ammonia. The third set of samples are also neutralized to pH 10 with 28% aqueous ammonia, but 1.0% PEI active on latex solids is also added. Table 4 presents the latexes, their properties, including solids content, particle size, Tg, and the original measured pH. Table 5 presents the average wet plating, dry plating, and plating solids of the first, second, and third samples of each latex. The overall average data for all latexes is shown.
Table 4
Latex Typical Latex Properties Measured Original pH
Code Polymer Type Solids
(%)
pH PS
(microns)
Tg
(°C)
629 Acrylic 55 7.5 0.2 5 7.45
657 Acrylic 58 N/A 0.3 14 8.77
435 Acrylic 45 8.5 0.25 19 8.25
DA280 Vinyl Acetate Ethylene 55 5 0.35 11 5.10
DM166 Styrene Acrylic 41 7.5 0.1 36 7.57
DL215 Styrene Butadiene 49 7.8 0.1 39 7.40
DM171 Styrene Butadiene 49.7 8.3 N/A <32 7.82
379G Vinyl Acrylic 55 5 0.3 19 4.74
41191 Styrene Acrylic 50.5 9 0.2 18 8.70
Averages for all latexes 50.9 - - - 7.31
Table 5
  Wet Plating * Dry Plating * Plating Solids *
Code Latex at Original pH Latex at pH 10 with Ammonia Latex pH10+ PEI ** Latex at Original pH Latex at pH 10 with Ammonia Latex pH10+ PEI ** Latex at Original pH Latex at pH 10 with Ammonia Latex pH10 + PEI **
  (g) (g) (g) (g) (g) (g) (g) (g) (g)
629 0.342 1.054 1.246 0.175 0.621 0.785 51.2 58.6 63.0
657 0.322 1.474 1.873 0.182 0.925 1.092 56.6 62.4 58.3
435 0.266 0.253 0.283 0.114 0.098 0.091 42.8 38.7 32.2
DA280 0.265 0.244 0.250 0.135 0.121 0.123 50.8 49.7 49.4
DM166 0.258 0.229 0.259 0.073 0.081 0.103 28.4 35.2 40.0
DL215 0.256 0.375 0.769 0.107 0.183 0.336 41.8 48.4 43.6
DM171 0.326 0.426 0.643 0.160 0.231 0.321 49.0 54.2 49.4
379G 0.315 0.295 0.259 0.155 0.163 0.141 49.4 55.3 54.4
41191 0.555 0.865 1.330 0.270 0.493 0.777 49.1 57.1 58.8
Average for all latexes 0.323 0.579 0.768 0.152 0.324 0.419 46.6 51.1 49.9
* Data are average of two tests per sample
** PEI concentration is 1.0% active on latex solids


[0104] As shown in Table 5, for some latexes, elevated pH with ammonia is effective for latex deposition. In addition, for some latexes with PEI at pH 10, there is a further increase in latex deposition on metal. Therefore, the presence of polyamine or polyimine at elevated pH is effective for latex deposition with a variety of latex types.

Example 16



[0105] 5 cm (Two inch) zinc plated steel screws and 5 cm (2 inch) brass tap bolts were immersed in vials including 20 ml of Dow latex 41191 with varying amounts of sodium hydroxide. Each latex sample is adjusted with deionized water to the same latex solids (50.5%) before metal immersion. After 24 hours the metal is removed. Table 6 presents the wet and dry plating on the zinc plated steel at various pHs while Table 7 presents the wet and dry plating on the brass at various pHs.
Table 6
41191 Latex pH Adjusted with 20% NaOH Autodep on ZPS
  NaOH
(%ABOLS)
PEI
(%ABOLS)
Latex Solids
(%)
pH Wet Plating
(g)
Dry Plating
(g)
L1 None None 50.5 9.37 0.428 0.223
L2 0.1 None 50.5 9.63 0.635 0.355
L3 0.2 None 50.5 9.78 0.842 0.477
L4 0.3 None 50.5 9.93 0.819 0.478
L5 0.4 None 50.5 10.14 0.856 0.509
L6 0.5 None 50.5 10.32 0.808 0.439
L7 0.6 None 50.5 10.54 0.570 0.305
L8 0.7 None 50.5 10.63 0.415 0.208
L9 0.5 1.0 50.5 10.67 0.731 0.433
Table 7
41191 Latex pH Adjusted with 20% NaOH Autodep on Brass
  NaOH
(%ABOLS)
PEI
(%ABOLS)
Latex Solids
(%)
pH Wet Plating
(g)
Dry Plating
(g)
L1 None None 50.5 9.37 0.268 0.133
L2 0.1 None 50.5 9.63 0.278 0.118
L3 0.2 None 50.5 9.78 0.298 0.135
L4 0.3 None 50.5 9.93 0.305 0.148
L5 0.4 None 50.5 10.14 0.337 0.165
L6 0.5 None 50.5 10.32 0.385 0.174
L7 0.6 None 50.5 10.54 0.561 0.234
L8 0.7 None 50.5 10.63 0.477 0.237
L9 0.5 1.0 50.5 10.67 0.849 0.400


[0106] As shown in Tables 6 and 7, raising the pH of the coating composition with sodium hydroxide (NaOH) increases autodeposition, reaching a maximum at pH 9.8-10.3 on the zinc plated steel and a maximum at pH 10.5 on brass. In addition, although the autodeposition with NaOH appears to be less effective than with ammonia, as shown in Table 1, the use of NaOH does increase the autodeposition of the latex. As with previous examples, the addition of PEI gives a boost in deposition at the pH chosen for examination.


Claims

1. An alkaline coating composition, able to autodeposit on a metal substrate surface, comprising a latex, a base and a polyimine or a polyamine.
 
2. The alkaline coating composition of claim 1 characterized in that the pH of the said composition is in a range of 7.1 to 12.
 
3. The alkaline coating composition of any one of the preceding claims where the latex is selected from a group consisting of an unpigmented latex, a pigmented latex paint, and a fast-hardening traffic latex paint.
 
4. The alkaline coating composition of any one of the preceding claims where the latex concentration is greater than one weight percent of the total composition.
 
5. A process for autodepositing a coating on a metal substrate surface, comprising:

immersing at least a portion of the metal substrate surface in a coating composition that includes a latex, an amount of base sufficient to raise the pH of the composition to an alkaline pH, and a polyimine or a polyamine, where the coating autodeposits on the metal substrate surface, as meal ions from the metal substrate surface interact with the alkaline coating composition.


 
6. The process of claim 5 where the coating has a thickness of at least 1/4 inch (0.635 centimeter).
 
7. The process of any one of the claims 5 or 6, where the latex is selected from a group consisting of an unpigmented latex, a pigmented latex paint, and a fast-hardening traffic latex paint.
 
8. The process of any one of the claims 5 to 7, where the metal substrate surface is a non-stainless steel metal, selected from a group consisting of copper, bronze, iron, zinc, aluminum, zinc plated steel, hot dip galvanized steel, and alloys thereof.
 
9. The process of any one of the claims 5 to 8, where the coating composition autodeposits a film on at least a portion of the metal substrate surface in less than 5 seconds.
 
10. The process of any one of the claims 5 to 9, where the latex concentration is greater than one weight percent of the total composition.
 
11. The process of any one of the claims 5 to 10, where the coating composition pH is raised to a pH in a range of 7.1 to 12.
 
12. The process of any one of the claims 5 to 11, where the coating composition includes:

a latex having a Tg of greater than 40 degrees Celsius to produce a hard, ceramic-like coating on the metal substrate surface; or

a latex having a Tg in a range of -70 degrees Celsius, to 25 degrees Celsius to produce a soft, tacky coating on the metal substrate surface.


 


Ansprüche

1. Alkalische Beschichtungszusammensetzung, die zur Selbstabscheidung auf einer Metallsubstratoberfläche befähigt ist, umfassend einen Latex, eine Base und ein Polyimin oder ein Polyamin.
 
2. Alkalische Beschichtungszusammensetzung nach Anspruch 1, dadurch gekennzeichnet, dass der pH-Wert der Zusammensetzung in einem Bereich von 7,1 bis 12 liegt.
 
3. Alkalische Beschichtungszusammensetzung nach einem der vorhergehenden Ansprüche, wobei der Latex aus der Gruppe bestehend aus einem unpigmentierten Latex, einer pigmentierten Latexfarbe und einer schnellhärtenden Straßenmarkierungsfarbe ausgewählt ist.
 
4. Alkalische Beschichtungszusammensetzung nach einem der vorhergehenden Ansprüche, wobei die Latexkonzentration größer als 1 Gewichtsprozent, bezogen auf die gesamte Zusammensetzung, ist.
 
5. Verfahren zum Selbstabscheiden einer Beschichtung auf einer Metallsubstratoberfläche, bei dem man:

mindestens einen Teil der Metallsubstratoberfläche in eine Beschichtungszusammensetzung, die einen Latex, eine zur Anhebung des pH-Werts der Zusammensetzung auf einen alkalischen pH-Wert ausreichende Basenmenge und ein Polyimin oder ein Polyamin enthält, eintaucht, wobei die Selbstabscheidung der Beschichtung auf der Metallsubstratoberfläche durch Wechselwirkung von Metallionen der Metallsubstratoberfläche mit der alkalischen Beschichtungszusammensetzung erfolgt.


 
6. Verfahren nach Anspruch 5, bei dem die Beschichtung eine Dicke von mindestens 1/4 Zoll (0,635 Zentimeter) aufweist.
 
7. Verfahren nach einem der Ansprüche 5 oder 6, bei dem man den Latex aus der Gruppe bestehend aus einem unpigmentierten Latex, einer pigmentierten Latexfarbe und einer schnellhärtenden Straßenmarkierungsfarbe auswählt.
 
8. Verfahren nach einem der Ansprüche 5 bis 7, bei dem es sich bei der Metallsubstratoberfläche um ein rostfreies Stahlmetall aus der Gruppe bestehend aus Kupfer, Bronze, Eisen, Zink, Aluminium, verzinktem Stahl, galvanisiertem Stahl und Legierungen davon handelt.
 
9. Verfahren nach einem der Ansprüche 5 bis 8, bei dem die Selbstabscheidung der Beschichtungszusammensetzung in weniger als 5 Sekunden zu einem Film auf mindestens einem Teil der Metallsubstratoberfläche führt.
 
10. Verfahren nach einem der Ansprüche 5 bis 9, bei dem die Latexkonzentration größer als 1 Gewichtsprozent, bezogen auf die gesamte Zusammensetzung, ist.
 
11. Verfahren nach einem der Ansprüche 5 bis 10, bei dem man den pH-Wert der Beschichtungszusammensetzung auf einen pH-Wert in einem Bereich von 7, 1 bis 12 anhebt.
 
12. Verfahren nach einem der Ansprüche 5 bis 11, bei dem die Beschichtungszusammensetzung
einen Latex mit einer Tg von mehr als 40 Grad Celsius zur Bildung einer harten, keramikartigen Beschichtung auf der Metallsubstratoberfläche oder einen Latex mit einer Tg im Bereich von -70 Grad Celsius bis 25 Grad Celsius zur Bildung einer weichen, klebrigen Beschichtung auf der Metallsubstratoberfläche enthält.
 


Revendications

1. Composition alcaline de revêtement, capable d'un autodépôt sur une surface de substrat métallique, comprenant un latex, une base, et une polyimine ou une polyamine.
 
2. Composition alcaline de revêtement selon la revendication 1 caractérisée en ce que le pH de ladite composition se situe dans une gamme de 7,1 à 12.
 
3. Composition alcaline de revêtement selon l'une quelconque des revendications précédentes dans laquelle le latex est choisi dans un groupe constitué par un latex non pigmenté, une peinture au latex pigmentée, et une peinture routière au latex à séchage rapide.
 
4. Composition alcaline de revêtement selon l'une quelconque des revendications précédentes dans laquelle la concentration de latex est supérieure à un pour cent en poids de la composition totale.
 
5. Procédé pour autodéposer un revêtement sur une surface de substrat métallique, comprenant :

l'immersion d'au moins une partie de la surface de substrat métallique dans une composition de revêtement qui comprend un latex, une quantité de base suffisante pour élever le pH de la composition jusqu'à un pH alcalin, et une polyimine ou une polyamine, le revêtement s'autodéposant sur la surface de substrat métallique lorsque des ions métalliques provenant de la surface de substrat métallique interagissent avec la composition alcaline de revêtement.


 
6. Procédé selon la revendication 5 dans lequel le revêtement a une épaisseur d'au moins 1/4 pouce (0,635 centimètre).
 
7. Procédé selon l'une quelconque des revendications 5 et 6 dans lequel le latex est choisi dans un groupe constitué par un latex non pigmenté, une peinture au latex pigmentée, et une peinture routière au latex à séchage rapide.
 
8. Procédé selon l'une quelconque des revendications 5 à 7 dans lequel la surface de substrat métallique est un métal différent de l'acier inoxydable choisi dans un groupe constitué par le cuivre, le bronze, le fer, le zinc, l'aluminium, l'acier zingué, l'acier galvanisé à chaud, et les alliages de ceux-ci.
 
9. Procédé selon l'une quelconque des revendications 5 à 8 dans lequel la composition de revêtement autodépose un film sur au moins une partie de la surface de substrat métallique en moins de 5 secondes.
 
10. Procédé selon l'une quelconque des revendications 5 à 9 dans lequel la concentration de latex est supérieure à un pour cent en poids de la composition totale.
 
11. Procédé selon l'une quelconque des revendications 5 à 10 dans lequel le pH de la composition de revêtement est élevé jusqu'à un pH dans une gamme de 7,1 à 12.
 
12. Procédé selon l'une quelconque des revendications 5 à 11 dans lequel la composition de revêtement comprend :

un latex ayant une Tg supérieure à 40 degrés Celsius pour produire un revêtement dur de type céramique sur la surface de substrat métallique ; ou

un latex ayant une Tg dans la gamme de -70 degrés Celsius à 25 degrés Celsius pour produire un revêtement mou, collant sur la surface de substrat métallique.


 




Drawing



































Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description