(11) EP 2 254 139 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: **24.11.2010 Patentblatt 2010/47**

(51) Int Cl.: H01H 71/24 (2006.01)

(21) Anmeldenummer: 10004474.2

(22) Anmeldetag: 28.04.2010

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Benannte Erstreckungsstaaten:

AL BA ME RS

(30) Priorität: 18.05.2009 DE 102009021771

(71) Anmelder: ABB AG 68309 Mannheim (DE)

(72) Erfinder:

 Orban, Alexander 69469 Weinheim (DE)

Ziegler, Gerhard
 74931 Lobbach-2 (DE)

 Weber, Ralf 69123 Heidelberg (DE)

(54) Elektromagnetischer Auslöser und Schaltgerät

(57) Die Erfindung beschreibt einen elektromagnetischen Auslöser (1), mit einem feststehenden Magnetkern und einem beweglichen Magnetanker, die in einem zylindrischen, rohrförmigen Spulenkörper (2) mit einer Mittelachse (3) angeordnet sind, mit einer um den Spulenkörper (2) gewickelten Spule (4), die zwei Endteile (5, 6) aufweist und an jedem Endteil (5, 6) ein An-

schlussstück (7, 8). Die Anschlussstücke (7, 8) sind spiegelsymmetrisch bezogen auf eine gedachte Spiegelebene (9) angeordnet und ausgeführt, wobei die Spiegelebene (9) in der Mitte zwischen den beiden Endteilen (5, 6) senkrecht zur Mittelachse (3) der Spule (4) verläuft, und jedes Anschlussstück (7, 8) entfernt sich in einer zur Mittelachse (3) parallelen Richtung von den Wicklungen der Spule (4) entfernt.

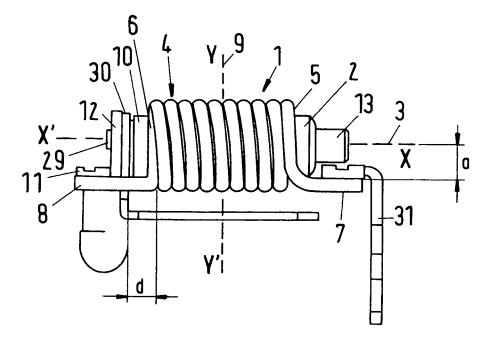


Fig.1

EP 2 254 139 A2

Beschreibung

20

30

35

40

45

50

55

[0001] Die Erfindung betrifft einen elektromagnetischen Auslöser für ein Installationsschaltgerät, insbesondere für einen Leitungsschutzschalter, mit einem feststehenden Magnetkern und einem beweglichen Magnetanker, die in einem zylindrischen, rohrförmigen Spulenkörper mit einer Mittelachse angeordnet sind, mit einer um den Spulenkörper gewikkelten Spule, die zwei Endteile aufweist und an jedem Endteil ein Anschlussstück, gemäß dem Oberbegriff des Anspruchs 1.

[0002] Die Erfindung betrifft außerdem ein Installationsschaltgerät, insbesondere einen Leitungsschutzschalter oder Fehlerstromschutzschalter, mit wenigstens einem elektromagnetischen Auslöser, welcher einen zylindrischen, rohrförmigen Spulenkörper mit einer Mittelachse, eine um den Spulenkörper gewickelte Spule, die zwei Endteile und an jedem Endteil ein Anschlussstück aufweist, umfasst, gemäß dem Oberbegriff des Anspruchs 5.

[0003] Leitungsschutzschalter besitzen einen elektromagnetischen und einen thermischen Auslöser, von denen der thermische Auslöser bei Auftreten eines Überstromes und der elektromagnetische Auslöser bei Auftreten eines Kurzschlussstromes zur Ausschaltung des Schaltgerätes beitragen. Während der thermische Auslöser lediglich auf eine Verklinkungsstelle innerhalb eines Schaltschlosses, das mit einem beweglichen Kontakthebel gekoppelt ist, zu deren Entklinkung einwirkt, öffnet der elektromagnetische Auslöser bei Auftreten eines Kurzschlussstromes den Kontakthebel unmittelbar durch Aufschlagen; gleichzeitig betätigt der elektromagnetische Auslöser auch das Schaltschloss, damit das Schaltgerät bleibend geöffnet ist.

[0004] Ein gattungsgemäßer elektromagnetischer Auslöser besitzt üblicherweise einen feststehenden Kern, dem ein beweglicher Anker zugeordnet ist, wobei der Kern und der Anker von einem Spulenrohr umfasst sind, so dass der Anker optimal bezogen auf den Kern geführt ist. Um das Spulenrohr herum ist eine Spule gewickelt, die bei Auftreten eines Kurzschlusses von einem Kurzschlussstrom durchflossen ist. Der Kern ist als eigenständiges Bauteil an einen Joch oder einer Kernplatte angebracht, die dem Kontakthebel zugewandt ist, damit beim Auftreten eines Kurzschlussstromes der Kern mithilft, den Anker ins Innere der Spule hineinzuziehen. Der Anker treibt dabei einen Schlagstift heraus, der dann auf den Kontakthebel öffnend wirken kann.

[0005] Gattungsgemäße elektromagnetische Auslöser sind bekannt, beispielsweise aus der DE 60 2004 001 817 T2. Bei der dort gezeigten Ausführung entfernen sich die Enden der Induktionsspule tangential von den Wicklungen der Spule. Dadurch ist es erforderlich, dass die Spule bei der Montage des elektromagnetischen Auslösers in der richtigen Position dem Spulenrohr zugeführt wird. Ein Verdrehen der Spule führt zu einer Fehlmontage, da dann die Enden der Spule nicht mehr zu ihren Anschweißpunkten im Gerät passen. Solche elektromagnetischen Auslöser lassen sich heute mit hoher Wirtschaftlichkeit nur manuell fertigen. Bei einer automatisierten Montage ist der Aufwand, der betrieben werden müsste, um dem Montageautomaten die Spulen in genau der richtigen Lage zuzuführen, sehr hoch, so dass eine automatisierte Montage des elektromagnetischen Auslösers nicht wirtschaftlich ist..

[0006] Der vorliegenden Erfindung liegt im Lichte des Standes der Technik daher die Aufgabe zugrunde, einen elektromagnetischen Auslöser zu schaffen, der in einem automatisierten Montageprozess einfacher und weniger aufwändig zusammengesetzt werden kann.

[0007] Die der Erfindung zugrundeliegende Aufgabe wird bezüglich des elektromagnetischen Auslösers erfindungsgemäß gelöst durch einen gattungsgemäßen elektromagnetischen Auslöser mit den kennzeichnenden Merkmalen des Anspruchs 1.

[0008] Erfindungsgemäß sind die Anschlussstücke spiegelsymmetrisch bezogen auf eine gedachte Spiegelebene angeordnet und aufgebaut, wobei die Spiegelebene in der Mitte zwischen den beiden Endteilen senkrecht zur Mittelachse der Spule verläuft, und jedes Anschlussstück entfernt sich in einer zur Mittelachse parallelen Richtung von den Wicklungen der Spule. Aus dem spiegelsymmetrischen Aufbau ergibt sich, dass ein Verdrehen der Spule beim Zuführen zu einem Fertigungsautomaten keine negativen Auswirkungen mehr hat. Denn auch wenn bei einem erfindungsgemäßen elektromagnetischen Auslöser die Spule um 180° verdreht ist, so sind die Anschlussstücke der Spule immer noch in der gleichen Lage bezogen auf ihre Anschweißpunkte im Gerät. Die Spule ist somit rechts- oder links herum anschweißbar. Damit wird eine wirtschaftliche automatisierte Montage eines elektromagnetischen Auslösers möglich. [0009] Gemäß einer besonders vorteilhaften Ausführungsform der Erfindung befindet sich an einer Stirnseite des Spulenkörpers eine mit dem Magnetkern verbundene Anschlusslasche, die in einer zur Mittelachse parallelen Richtung von dem Spulenkörper weg verläuft. An dieser Anschlusslasche kann ein Anschlussstück der Spule angeschweißt werden. Die Anschlusslasche kann so lang gemacht werden, dass sie die Länge des Anschlussstückes aufnimmt. Der Abstand der Anschlusslasche von der Mittelachse entspricht dem Abstand der Anschlussstücke der Spule von der Mittelachse wenn die Spule auf dem Spulenkörper aufgeschoben ist, so dass bei einem Aufschieben der Spule auf den Spulenkörper das Anschlussstück an die Anschlusslasche in Anlage kommt und mit dieser verschweißt werden kann. [0010] Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung liegt eine Stirnseite des zylindrischen Spulenkörpers an einer mit dem Magnetkern verbundenen Kernplatte an, an der die Anschlusslasche angeformt ist. [0011] Gemäß einer weiteren vorteilhaften Ausführungsform der Erfindung ist der Abstand zwischen der an der Kern-

platte anliegenden Stirnseite des Spulenkörpers und dem Endteil der Spule, das dieser benachbart ist, größer ist als

der Abstand zwischen der gegenüberliegenden Stirnseite des Spulenkörpers und dem Endteil der Spule, das dieser benachbart ist. Damit kann die Spule optimal auf dem Spulenrohr positioniert werden.

[0012] Die der Erfindung zugrundeliegende Aufgabe wird bezüglich des Installationsschaltgerätes erfindungsgemäß gelöst durch ein gattungsgemäßes Installationsschaltgerät mit den kennzeichnenden Merkmalen des Anspruchs 5. Demgemäß ist erfindungsgemäß die Spule mit den Anschlussstücken spiegelsymmetrisch bezogen auf eine gedachte Spiegelebene, die in der Mitte zwischen den beiden Endteilen senkrecht zur Mittelachse der Spule verläuft, und jedes Anschlussstück entfernt sich in einer zur Mittelachse parallelen Richtung von den Wicklungen der Spule.

[0013] Weitere vorteilhafte Ausgestaltungen und Verbesserungen der Erfindung und weitere Vorteile sind den Unteransprüchen zu entnehmen.

Figurenbeschreibung

10

30

35

40

45

50

55

[0014] Figuren und Beschreibung dienen dem besseren Verständnis des Gegenstands. Gegenstände oder Teile von Gegenständen, die im Wesentlichen gleich oder ähnlich sind, können mit denselben Bezugszeichen versehen sein. Die Figuren sind lediglich eine schematische Darstellung einer Ausführungsform der Erfindung.

[0015] Dabei zeigt:

- Fig. 1 eine Ansicht eines erfindungsgemäßen elektromagnetischen Auslösers, und
- Fig. 2 eine schematische Ansicht eines Installationsschaltgerätes mit einem er- findungsgemäßen elektromagnetischen Auslöser.

[0016] In den Figuren sind gleiche oder gleichwirkende Bauteile oder Elemente mit den gleichen Bezugsziffern versehen.

[0017] Ein Leitungsschutzschalter 20 (siehe Fig. 2) besitzt ein schematisch dargestelltes Schaltschloss 21 mit einer Verklinkungsstelle (nicht dargestellt). Das Schaltschloss 21 ist mit einem drehbar gelagerten Kontakthebel 22 gekoppelt. Der Kontakthebel 22 trägt an seinem freien Ende ein bewegliches Kontaktstück 23, welches zusammen mit einem festen Kontaktstück 24 eine Kontaktstelle 25 bildet. Dem feststehenden Kontaktstück 24 ist ein Lichtbogenleitblech 26 zugeordnet, welches einen der Fußpunkte eines Lichtbogens, welches bei Öffnung der Kontaktstelle 25 entsteht, beispielsweise in eine Löschkammer 27 führt. Zwischen einer ersten Anschlussklemme 28 und einer zweiten Anschlussklemme 29 führt ein Strompfad durch den Leitungsschutzschalter, der durch verschwenken des Kontakthebels 22 und damit einhergehendes Öffnen der Kontaktstelle 25 unterbrochen werden kann.

[0018] Dem beweglichen Kontakthebel 22 ist ein elektromagnetischer Auslöser 1 zugeordnet, der einen Anker 13 aufweist, welcher im Inneren eines zylinderrohrförmigen Spulenkörpers 2 in Pfeilrichtung P verschieblich gehalten ist. Bei Anliegen eines Kurzschlussstromes bewegt sich der Anker 13 in Pfeilrichtung P Innere des Spulenkörpers 2 hinein, angezogen von dem Kern 30. Er trifft dort, direkt oder indirekt, auf einen Schlagstift 29, von dem in der nicht ausgelösten Stellung nach Fig. 1 und 2 nur die äußerste Spitze zu sehen ist. Der Anker 13 treibt den Schlagstift in Pfeilrichtung P aus dem Spulenkörper 2 heraus, so dass dieser gegen den Kontakthebel 22 trifft und diesen in Öffnungsrichtung verschwenkt. Gleichzeitig wird über eine gestrichelt dargestellt Wirklinie eine Verklinkungsstelle in dem Schaltschloss 21 entklinkt, so dass die Kontaktstelle 25 auch nach Kontaktöffnung, wenn der Kurzschlussstrom nicht mehr anliegt, geöffnet bleibt. Weitere Einzelheiten zur konkreten Ausgestaltung dieser Kopplung, so wie auch der thermische Auslöser und dessen Kopplung mit dem Schaltschloss und weitere Einzelheiten sind hier nicht dargestellt, da jede bekannte Ausführungsform dazu herangezogen werden kann.

[0019] Der Aufbau des elektromagnetischen Auslösers 1 soll nun näher betrachtet werden, siehe Fig. 1. Der Spulenkörper 2 hat die Form eines zylindrischen Rohres mit einer Mittelachse 3 zwischen den Punkten X und X'. In dessen Innerem ist an der in der Fig. 1 linken Seite der Kern befestigt, von dem ein kleines herausragendes Stück mit der Bezugsziffer 30 zu sehen ist. Der Kern ist an einer Kernplatte 12 befestigt, an der sich die linke Stirnseite des Spulenrohres 2 abstützt. Mit der Kernplatte 12 ist ein erstes Blech verbunden, welches als Lichtbogenleitblech 26 nach rechts abgewinkelt ist und parallel zu der Mittelachse 3 unterhalb des Spulenkörpers 2 verläuft. Weiter ist mit der Kernplatte 12 eine Lasche 11 verbunden, die nach links abgewinkelt ist und parallel zur Mittelachse 3 von der linken Stirnseite des Spulenkörpers weg verläuft.

[0020] Auf den Spulenkörper 2 ist eine Spule 4 aufgewickelt. Ihre beiden Anschlussstücke 7, 8 sind spiegelsymmetrisch bezogen auf eine gedachte Spiegelebene 9 angeordnet und ausgeführt, siehe Schnittlinie YY', die in der Mitte zwischen den beiden Endteilen 5, 6 senkrecht zur Mittelachse 3 der Spule 4 verläuft. Jedes Anschlussstück 7, 8 entfernt sich in einer zur Mittelachse 3 parallelen Richtung von den Wicklungen der Spule 4. An dem linken Anschlussstück 8 ist die Spule 4 mit der Lasche 11 verschweißt. An dem rechten Anschlussstück 7 ist die Spule 4 mit einer Leitschiene 31 verschweißt, die die Verbindung zu der Anschlussklemme 29 herstellt.

[0021] Wegen der Spiegelsymmetrie der Anschlussstücke 8, 9 sind diese gleich lang. Der Abstand von jedem Endteil

6, 5 der Spule 4 zu dem Ende des zugehörigen Anschlussstücks 8, 7 ist auf jeder Seite gleich groß. Die Anschlussstücke 8, 7 verlaufen parallel zu der Mittelachse 3 in einem Abstand a von dieser. Der Abstand a ist so gewählt, dass die Anschlussstücke 8, 9 an der Lasche 11 zum Anliegen kommen, wenn die Spule 4 auf den Spulenkörper 2 aufgeschoben ist. Es ist kein Zurechtbiegen des Anschlussstückes 8 erforderlich, um es in die für eine Verschweißung mit der Anschlusslasche 11 richtige Lage zu bringen, das Aufschieben der Spule 4 auf den Spulenkörper 2 genügt. Dies ist wichtig für eine wirtschaftlich durchzuführende automatische Montage. Auch wenn die Spule 4 um 180° bezüglich der Ebene 9 verdreht auf den Spulenkörper 2 aufgeschoben wird, passt das dann links liegende Anschlussstück 7 genau zu der Anschlusslasche 11, denn beide Anschlussstücke sind wegen der Spiegelsymmetrie gleich lang und haben den gleichen Abstand von der Mittelachse 3.

[0022] Das linke Endteil 6 der Spule 4 hat von der Kernplatte 12 eine Abstand d. Dieser Abstand resultiert aus der Länge des Anschlussstückes 8. Er ist einstellbar durch Variation der Länge der Anschlusslasche 11. Je kürzer die Anschlüsslasche 11 gewählt wird, desto länger ist der Abstand d. Über den Abstand d wird die Lage der Spule 4 auf dem Spulenkörper 2 festgelegt und damit die Lage der Spule 4 bezogen auf den Kern und den Anker im Inneren des Spulenkörpers 2. Die Länge der Anschlusslasche 11 kann beispielsweise durch den zur Verfügung stehenden Bauraum im Gehäuse begrenzt sein. Dann kommt die Spule 4 mehr nach rechts auf dem Spulenkörper 2 zu liegen, der Abstand d wird größer. Dann würde auch der Kern im Inneren des Spulenkörpers 2 mehr nach rechts angeordnet, damit die Spule 4 optimal bezogen auf den Kern und den Anker zu liegen kommt.

		Bezugszeic	henliste	
20	1	elektromagnetischer Auslöser	21	Schaltschloss
	2	Spulenkörper	22	Kontakthebel
	3	Mittelachse	23	bewegliches Kontaktstück
25	4	Spule	24	festes Kontaktstück
	5	Endteil	25	Kontaktstelle
	6	Endteil	26	Lichtbogenleitblech
	7	Anschlussstück	27	Lichtbogenlöschkammer
	8	Anschlussstück	28	Anschlussklemme
	9	Spiegelebene	29	Anschlussklemme
30	10	Stirnseite	30	Kern
	11	Anschlusslasche	31	Leitschiene
	12	Kernplatte		
	13	Anker		
35	20	Leitungsschutzschalter		

Patentansprüche

45

50

55

- 1. Elektromagnetischer Auslöser (1), mit einem feststehenden Magnetkern und einem beweglichen Magnetanker, die in einem zylindrischen, rohrförmigen Spulenkörper (2) mit einer Mittelachse (3) angeordnet sind, mit einer um den Spulenkörper (2) gewickelten Spule (4), die zwei Endteile (5, 6) aufweist und an jedem Endteil (5, 6) ein Anschlussstück (7, 8),
 - dadurch gekennzeichnet, dass die Anschlussstücke (7, 8) spiegelsymmetrisch bezogen auf eine gedachte Spiegelebene (9) angeordnet und ausgeführt sind, wobei die Spiegelebene (9) in der Mitte zwischen den beiden Endteilen (5, 6) senkrecht zur Mittelachse (3) der Spule (4) verläuft, und dass jedes Anschlussstück (7, 8) sich in einer zur Mittelachse (3) parallelen Richtung von den Wicklungen der Spule (4) entfernt.
 - 2. Elektromagnetischer Auslöser (1) nach Anspruch 1, **dadurch gekennzeichnet**, **dass** sich an einer Stirnseite (10) des Spulenkörpers (2) eine mit dem Magnetkern verbundene Anschlusslasche (11) befindet, die in einer zur Mittelachse (3) parallelen Richtung von dem Spulenkörper (2) weg verläuft.
 - 3. Elektromagnetischer Auslöser (1) nach Anspruch 2, dadurch gekennzeichnet, dass eine Stirnseite (10) des Spulenkörpers (2) an einer mit dem Magnetkern verbundenen Kernplatte (12) anliegt, an der die Anschlusslasche (11) angeformt ist.
 - **4.** Elektromagnetischer Auslöser (1) nach Anspruch 3, **dadurch gekennzeichnet**, **dass** der Abstand zwischen der an der Kernplatte (12) anliegenden Stirnseite (10) des Spulenkörpers (2) und dem Endteil (6) der Spule (4), das

dieser benachbart ist, größer ist als der Abstand zwischen der gegenüberliegenden Stirnseite des Spulenkörpers (2) und dem Endteil (6) der Spule (4), das dieser benachbart ist.

5. Installationsschaltgerät (10), insbesondere Leitungsschutzschalter oder Fehlerstromschutzschalter, mit wenigstens einem elektromagnetischen Auslöser (1), welcher einen zylindrischen, rohrförmigen Spulenkörper (2) mit einer Mittelachse (3), eine um den Spulenkörper (2) gewickelte Spule (4), die zwei Endteile (und an jedem Endteil ein Anschlussstück aufweist, umfasst,

5

10

15

20

dadurch gekennzeichnet, dass die Spule (4) mit den Anschlussstücken (7, 8) spiegelsymmetrisch bezogen auf eine gedachte Spiegelebene (9) angeordnet und ausgeführt ist, die in der Mitte zwischen den beiden Endteilen (5, 6) senkrecht zur Mittelachse (3) der Spule (4) verläuft, und dass jedes Anschlussstück (7, 8) sich in einer zur Mittelachse (3) parallelen Richtung von den Wicklungen der Spule (4) entfernt.

25
30
35
40
45
50

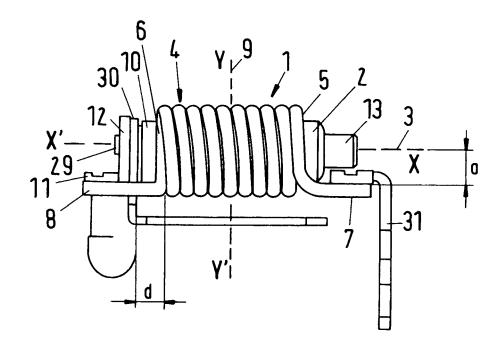


Fig.1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 602004001817 T2 [0005]