(11) EP 2 256 250 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

01.12.2010 Patentblatt 2010/48

(51) Int Cl.: **E01H** 1/08 (2006.01)

(21) Anmeldenummer: 10005311.5

(22) Anmeldetag: 21.05.2010

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME RS

(30) Priorität: 26.05.2009 DE 202009007484 U

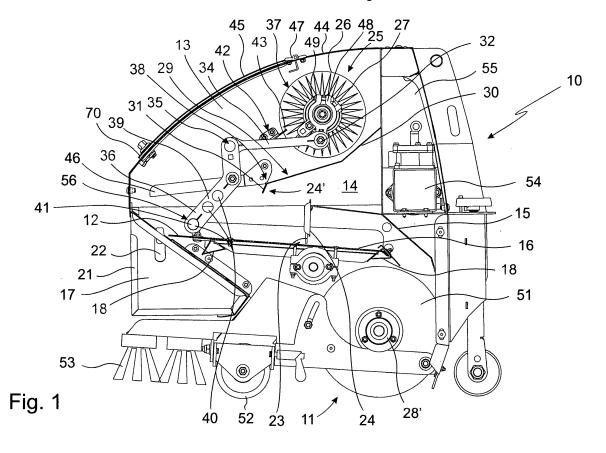
(71) Anmelder: Smg Sportplatzmaschinenbau Gmbh 89269 Vöhringen (DE)

(72) Erfinder: Owegeser, Johann 89189 Illerrieden (DE)

(74) Vertreter: Schulz, Manfred et al

Pfister & Pfister

Patent-& Rechtsanwälte


Hallhof 6-7

87700 Memmingen (DE)

(54) Fahrbare Vorrichtung zum Abtragen von Füllgut von einer Fläche

(57) Die Erfindung betrifft eine fahrbare Vorrichtung zum Abtragen von Füllgut und das Füllgut verunreinigenden Partikeln von einer Fläche, insbesondere einem Sportplatz, bevorzugt von einem Kunstrasenplatz. Die fahrbare Vorrichtung weist eine Abtragvorrichtung auf,

die das Füllgut und die Partikel von der Fläche nimmt und in die fahrbare Vorrichtung einträgt sowie eine Absaugvorrichtung mit einem Filterelement zum Abscheiden von Partikeln aus einem Absaugluftstrom. Die Erfindung zeichnet sich dadurch aus, dass das Filterelement selbstreinigend ist.

35

45

Beschreibung

[0001] Die Erfindung betrifft eine fahrbare Vorrichtung zum Abtragen von Füllgut von einer Fläche, wobei die Vorrichtung eine Abtragvorrichtung und eine Absaugvorrichtung mit einem Filterelement aufweist.

1

[0002] Sportplätze, und hierbei bevorzugt Sportplätze mit einem Kunstrasenbelag, verfügen über ein in den Kunstrasenbelag eingebrachtes Füllgut, das die Eigenschaften des Kunstrasens beeinflusst beziehungsweise bestimmt und an die jeweilige, auf dem Sportplatz auszutragende Sportart anpasst. Im Laufe der Zeit sammeln sich auf der Fläche, und hierbei insbesondere auf dem Kunstrasenplatz, Verunreinigungen und sonstige Partikel, wie beispielsweise Stäube, die sich mit dem Füllgut verbinden und dabei die Eigenschaften des Sportplatzes negativ beeinflussen. Es ist deshalb vorgesehen, das Füllgut in regelmäßigen Abständen von dem Kunstrasenplatz abzutragen, von Partikeln und anhaftenden Verschmutzungen zu befreien und danach wieder in den Sportplatz einzubringen.

[0003] Es ist dabei bekannt, wie eingangs beschrieben, fahrbare Vorrichtungen zu verwenden, die das Füllgut von dem Sportplatz abtragen und dabei auch die das Füllgut verunreinigenden Partikel aufnehmen. Entsprechende Vorrichtungen weisen hierzu eine Abtragvorrichtung auf, die das Füllgut und die Partikel in eine fahrbare Vorrichtung eintragen. In der Vorrichtung erfolgt dann eine Aufbereitung des Füllgutes und der erneute Eintrag des gereinigten Füllgutes in die Sportplatzfläche. Bekannt sind auch Vorrichtungen, die neben der Abtragvorrichtung eine Absaugvorrichtung umfassen, die ein Filterelement aufweisen. Die Absaugvorrichtung dient dazu, Partikel aus dem aufgenommenen Gemisch abzuscheiden und dem Filterelement zuzuführen.

[0004] Nachteilig an den bekannten Absaugvorrichtungen und hierbei besonders an den darin verwendeten Filterelementen ist, dass diese bereits nach kurzzeitigem Einsatz auf mit großen Staubbeziehungsweise Partikelmengen belasteten Plätzen ihre Funktion verlieren. Dies resultiert aus einem Anbacken beziehungsweise Anhaften von Partikeln an der Oberfläche des Filterelementes und der Bildung eines sogenannten Filterkuchens. Dieser setzt sukzessive die Filterleistung des Filterelemente herab.

[0005] Herkömmliche Vorrichtungen müssen daher in regelmäßigen, je nach Staubanfall unter Umständen recht kurzen Intervallen gewartet werden. Bei dieser Wartung erfolgt der Austausch des verstopften Filterelementes gegen ein neues Filterelement. Dies wird als nachteilig angesehen, da mit dem Austausch des Filterelementes hohe Kosten für den Austausch beziehungsweise das neue Filterelement verbunden sind und der oftmalige Austausch einen hohen Aufwand an Arbeitszeit und den damit verbundenen Kosten mit sich bringt. [0006] Aufgabe der vorliegenden Erfindung ist es daher, eine fahrbare Vorrichtung der eingangs genannten Art zur Verfügung zu stellen, die eine hohe Verfügbarkeit,

also geringe Wartungszeiten aufweist.

[0007] Zur Lösung dieser Aufgabe geht die Erfindung aus von einer fahrbaren Vorrichtung, wie eingangs beschrieben, und schlägt vor, dass das Filterelement selbstreinigend ausgebildet ist. Aufgrund der selbstreinigenden Ausführung des Filterelements werden die Wartungs- beziehungsweise Reinigungsintervalle der Vorrichtung verlängert. Daneben müssen Filter seltener ausgetauscht werden. Diese Maßnahmen führen insgesamt zu einer verringerten Standzeit der Vorrichtung und erhöhen deren Einsatzbereitschaft und Verfügbarkeit. Mit der Verkürzung der Standzeit und den durch seltenere Filterwechsel bedingten, gesenkten Wartungsaufwand, wird eine signifikante Effizienzsteigerung der Vorrichtung und eine schnellere Armortisation der Anschaffungskosten gewährleistet. Durch den verringerten Wartungsaufwand entstehen weniger Betriebskosten, was wiederum zu finanziellen Entlastungen des Betreibers der Vorrichtung beiträgt.

[0008] In einer vorteilhaften Weiterbildung der erfindungsgemäßen Vorrichtung ist vorgesehen, dass die Absaugvorrichtung die Partikel direkt von der Fläche, das heißt, beispielsweise von einem Sportplatz oder einem Kunstrasenplatz absaugt, oder aber das in die Vorrichtung eingetragene Gemisch aus Füllgut und Partikeln nach dem Eintragen in die Vorrichtung abgesaugt wird. Hierbei wird aus dem Gemisch der Anteil an Partikeln entnommen, der eine geringere Dichte, ein niedrigeres Gewicht und damit Schwebfähigkeit aufweist. Nur so kann die Absaugung mittels Luftstrom sichergestellt werden. Über die Stärke des Luftstroms kann gleichzeitig der Anteil an Partikeln beziehungsweise Teilchen ausgewählt werden, der durch den in der Absaugvorrichtung vorgesehenen Filter beziehungsweise das Filterelement aus dem Absaugluftstrom abgeschieden werden kann/

[0009] Neben Füllgut und Partikeln werden durch die Abtragvorrichtung auch Verschmutzungen, wie beispielsweise Abfälle, Laub oder sonstige Schmutzteile mit in die Vorrichtung eingetragen. Im Inneren der Vorrichtung ist daher bevorzugt ein Sieb angeordnet, auf das das durch die Abtragvorrichtung in das Innere der fahrbaren Vorrichtung verfrachtete Füllgut, die anhaftenden Partikel und sonstige Verschmutzungen geschleudert werden. Das Sieb bewirkt eine Abtrennung des Füllgutes von den übrigen Bestandteilen des Gemisches. Erfindungsgemäß ist vorgesehen, dass eine bevorzugte Ausführungsform der Vorrichtung ein Sieb aufweist, das in oder gegen die Fahrtrichtung geneigt angeordnet oder horizontal ausgerichtet ist. Darüber hinaus wird es als günstig angesehen, wenn das Sieb lösbar oder fest in der Vorrichtung angeordnet ist. Bei einer lösbaren Anordnung des Siebs in der Vorrichtung kann dieses bei Bedarf gegen ein Sieb mit entsprechend geänderter Lochweite ausgetauscht und die Vorrichtung somit auf eine Verwendung mit unterschiedlichem Füllgut angepasst werden. Darüber hinaus kann das Sieb auch gegen eine Platte ausgetauscht werden und die Vorrichtung

35

40

45

dann zum Abtragen des Füllgutes verwendet werden. Ist das Sieb hingegen fest in der Vorrichtung angeordnet, so erweist es sich als günstig, wenn das Sieb eine variabel einstellbare Lochweite aufweist, um hierüber eine Anpassung an das entsprechend zu sortierende Füllgut zu gewährleisten. Als empfehlenswert erweist es sich, wenn die variabel einstellbare Lochweite manuell einstellbar ist. Dies kann beispielsweise über einen am Gehäuse angeordneten Hebel erfolgen. Darüber hinaus ist in einer weiteren Ausführungsform auch denkbar, dass die Lochweite automatisch einstellbar ist. Hierfür weist die Vorrichtung dann entsprechende Aktuatoren, wie beispielsweise Stellmotoren und/oder eine Steuerung auf. [0010] Das Hauptaugenmerk der erfindungsgemäßen Vorrichtung liegt jedoch auf der Zurverfügungstellung eines selbstreinigend ausgebildeten Filterelementes. Bevorzugt ist das Filterelement zylindrisch, ringförmig oder im Wesentlichen rechteckig ausgebildet. Eine derartige Ausgestaltung des Filterelementes erlaubt eine Vielzahl konstruktiver Möglichkeiten zur Unterbringung des Filterelementes in der fahrbaren Vorrichtung. Ebenfalls denkbar und auch als günstig angesehen ist die Ausbildung des Filterelementes als Kartusche oder als komplett entnehmbare Kapsel. Auch wenn sich das vorgeschlagene Filterelement aufgrund seiner Selbstreinigungsfunktion als wesentlich länger haltbar erweist als herkömmliche Filterelemente, muss doch in entsprechenden Zeitabständen ein Austausch des Filterelements erfolgen. Als günstig erweist es sich in diesem Zusammenhang, wenn das Filterelement zerlegbar ausgebildet ist, so dass nach dem Zerlegen lediglich das Filtermedium aus dem Filterelement entnommen und ausgetauscht werden kann. Dies führt zu einer weiteren Senkung der Wartungskosten sowie der anfallenden Abfälle.

[0011] Um die Selbstreinigung des Filterelements zu unterstützen wird es als vorteilhaft angesehen, wenn das Filterelement vibrationsbeaufschlagbar ausgebildet ist. Durch die Vibrationsbeaufschlagung wird an dem Filterelement beziehungsweise der Oberfläche des jeweils verwendeten Filtermediums anhaftender Staub, anhaftende Partikel oder ein sich aufbauender Filterkuchen, von der Oberfläche abgeschüttelt, es erfolgt somit eine mechanische Reinigung des Filters. Als günstig erweist es sich, wenn die Vibrationsbeaufschlagung über einen Hauptantrieb beziehungsweise ein Antriebsaggregat der fahrbaren Vorrichtung vermittelt ist. Daneben ist selbstverständlich auch die Anordnung eines gesonderten Antriebs für die Vibrationsbeaufschlagung in der Vorrichtung möglich. Dieser gesonderte Antrieb kann im Verhältnis zum Hauptantrieb kleiner ausgeführt werden oder aber über ein Getriebe mit dem Hauptantrieb gekoppelt sein. Denkbar ist auch, dass der gesonderte Antrieb über eine eigene Energiequelle gespeist wird. In diesem Zusammenhang kann beispielsweise ein Elektromotor für die Vibrationsbeaufschlagung des Filterelements vorgesehen werden, während der Hauptantrieb der Vorrichtung einen Verbrenngungsmotor aufweist. Ebenfalls

möglich ist, dass zur Vibrationsbeaufschlagung ein exzentrisch am Filterelement angreifender, mit dem Antrieb oder dem Hauptantrieb verbundener Hebel vorgesehen ist. Aufgrund der exzentrischen Anordnung erfolgt die Vibrationsbeaufschlagung des Filterelements ohne eine ungleichmäßige Belastung des Hauptantriebes.

[0012] Um das Partikelgemisch, mit dem der Filter konfrontiert ist, bereits im Vorfeld von einer Vielzahl von Partikeln zu befreien, sieht eine bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung vor, dass vor dem Filterelement ein Fliehkraftabscheider vorgeschaltet ist. Somit wird der Absaugluftstrom bereits im Fliehkraftabscheider teilweise von Partikeln befreit und nur eine erheblich verringerte Partikelbelastung trifft auf das Filterelment auf. Dies trägt dazu bei, dass die Standzeit des Filterelementes wesentlich erhöht wird. Der Fliehkraftabscheider kann über einen separaten Auffangbereich für die abgeschiedenen Partikel verfügen. Daneben ist es auch möglich, dass die abgeschiedenen Partikel aus dem Fliehkraftabscheider direkt in ein Silo, das in der Vorrichtung vorgesehen ist, weitergegeben werden. [0013] Dem Silo zugeordnet ist auch das Ende eines in der Vorrichtung angeordneten Siebes, das eine Förderung von in die Vorrichtung eingetragenen großvolumigen oder großflächigen Verschmutzungen zum Silo hin bewirkt. Als günstig wird es in diesem Zusammenhang angesehen, wenn das Sieb über den Vibrationsantrieb oder aber den Hauptantrieb der Vorrichtung vibrationsbeaufschlagbar ausgebildet ist. Die Vibrationsbeaufschlagung des Siebes kann auch über einen exzentrisch an einem rotierenden Filterelement angelenkten Umlenkhebel erfolgen. Die Vibrationsbaufschlagung des Siebes ist damit unabhängig vom Hauptantrieb der Vorrichtung, was eine signifikant verringerte Belastung des Hauptantriebes und eine erhöhte Laufruhe der Vorrichtung mit sich bringt.

[0014] Als günstig wird angesehen, wenn die Absaugvorrichtung eine Steuerung für den Absaugluftstrom aufweist oder eine entsprechende Steuerung der Absaugvorrichtung zugeordnet ist. Über die Steuerung des Absaugluftstroms kann eine Umkehrung der Strömungsrichtung erreicht werden und der Absaugluftstrom so zum Ausblasen des Filterelements in diesen einleitbar sein. Die Einleitung des Absaugluftstroms in das Filterelement kann periodisch erfolgen und so die Ausblasung von Partikeln aus dem Filter, nach Art eines aus der Fluidfiltertechnik bekannten "Back-Flush-Verfahrens" erfolgen. Es ist dabei vorgesehen, dass der Luftstrom des Weiteren über entsprechende Klappen, die in der Absaugvorrichtung vorgesehen sind, geleitet wird. Über diese Klappen kann auch ein Verschluss der Austrittsöffnung für den Absaugluftstrom im regulären Betrieb der Vorrichtung durchgeführt werden. Es wird so vermieden, dass während des Aus-oder Freiblasens des Filters ein Entweichen von Partikeln in die Umgebungsluft stattfindet. Die aus dem Filterelement ausgeblasenen Partikel fallen in das Innere der Vorrichtung zurück und treffen dort gegebenenfalls auf ein entsprechend angeordnetes Leitblech,

das eine Zuführung der ausgeblasenen Partikel in eine Auffangvorrichtung, beispielsweise in ein Silo, gewährleistet. Soll eine Ausblasung des Filterelements durch Umkehrung oder Einleitung des Absaugluftstroms in das Filterelement erfolgen, so sieht eine als günstig angesehene Weiterbildung der Erfindung vor, dass die Umkehrung oder Einleitung des Absaugluftstroms manuell oder automatisch erfolgt. Unter einer manuellen Einleitung des Luftstroms ist auch der Anschluss einer externen Luftquelle zu verstehen. So ist es beispielsweise möglich zur Reinigung der Vorrichtung eine Druckluftleitung mit der Vorrichtung zu verbinden und darüber das Ausblasen des Filterelementes durchzuführen. Ist eine automatische Umkehrung des Luftstroms vorgesehen, so kann diese auch programmgesteuert, beispielsweise während eines Reinigungs- oder Wartungsprogramms erfolgen. [0015] Als besonders vorteilhaft wird angesehen, wenn das insbesondere zylindrisch oder ringförmig ausgebildete Filterelement auf oder an einer ersten Rotationsachse der Vorrichtung angeordnet ist. Es ist dabei möglich, dass die Rotationsachse als durchgehende Achse in der Vorrichtung angeordnet ist, oder als zweiteilig ausgebildete Stummelachse auf zwei Seiten der Vorrichtung beziehungsweise an zwei Enden des Filterelementes angeordnet ist. Das Filterelement, das, wie bereits vorher gezeigt, auch als Kapsel oder Kartusche ausgebildet sein kann, ist auf die Rotationsachse aufgesteckt oder auf diese aufgeschoben. Beim Ausbau des Filterelements kann, bei der Verwendung einer zweiteiligen Achse, nur ein Teil der Achse, günstigerweise der nicht mit einem Getriebe in Eingriff stehende Achsteil, entfernt und das Filterelement abgenommen werden. Hierzu erweist es sich als günstig, wenn die Vorrichtung eine Deckfläche oder wenigstens eine Seitenfläche aufweist, die ganz oder teilweise von der Vorrichtung abnehmbar ausgebildet ist. Hierdurch wird ein Zugang zum Filterelement gewährleistet und dieses kann besonders schnell und einfach aus der Vorrichtung entnommen werden.

[0016] Als vorteilhaft wird angesehen, wenn sich das Filterelement über die gesamte Breite der Vorrichtung erstreckt. Hierdurch wird erreicht, dass der Absaugluftstrom ebenfalls auf die gesamte Breite der Vorrichtung verteilt auf das Filterelement auftrifft. Es bilden sich somit weniger Partikelkonglommerate an nur einer Seite beziehungsweise in nur einem Bereich des Filterelementes. Daneben ist es selbstverständlich auch möglich, dass das Filterelement sich nur über einen Teil der Breite der Vorrichtung erstreckt und beispielsweise in einem gesondert in dem Gehäuse der Vorrichtung vorgesehenen Kasten angeordnet ist. Ebenfalls als günstig erweist es sich, wenn das Filterelement einen ersten, rotierenden Abschnitt aufweist, der eine Vorfiltration des Absaugluftstroms durchführt und hier grobe Bestandteile aus dem Absaugluftstrom abscheidet. Der entsprechend vorbehandelte Absaugluftstrom trifft dann in einen feststehenden zweiten Bereich des Filterelements und wird dort von den wesentlich kleineren Partikeln befreit, die noch

im vorgefilterten Luftstrom vorhanden sind. Hierbei kann nur der rotierende Bereich selbstreinigend ausgebildet sein, während der feststehende Abschnitt des Filterelementes regelmäßig ausgetauscht wird. Selbstverständlich besteht auch die Möglichkeit, beide Teile des zweiteiligen oder mehrteiligen Filterelementes selbstreinigend auszubilden. Hier wird dann zum Beispiel der rotierende Teil aufgrund der Zentrifugalkraft, die auf die aufgelagerten Partikel wirkt, gereinigt, während der feststehende Teil beispielsweise vibrationsbeaufschlagt ausgebildet ist.

[0017] Eine vorteilhafte Weiterbildung der erfindungsgemäßen Vorrichtung sieht vor, dass ein Leitkanal für den Absaugluftstrom vorgesehen ist. Über einen entsprechenden Leitkanal, der als Schiene oder Rohr ausgebildet sein kann, wird der Absaugluftstrom punktuell an den Filter herangeführt werden. Es besteht hierbei dann die Möglichkeit, kleinere Filter zu verwenden. Auch vorteilhaft erweist sich die Verwendung eines Leitkanals bei der bereits vorgeschlagenen Reinigung des Filters mittels Ausblasen, weil hier zum einen ein gerichtetes Auftreffen des Luftstroms auf dem Filterelement gewährleistet werden kann und zum anderen die austretenden Partikel vom Filter weggeleitet werden.

[0018] Eine weitere Ausführungsform der erfindungsgemäßen Vorrichtung sieht vor, dass das Filterelement verschwenkbar in der Vorrichtung angeordnet ist. Durch eine Verschwenkung des Filterelementes kann dieses in den Absaugluftstrom eingeschwenkt oder aus diesem ausgeschwenkt werden. Über diese Möglichkeit des Einbeziehungsweise Ausschwenkens wird erreicht, dass das Filterelement nur periodisch mit dem Absaugluftstrom beaufschlagt wird. So eignet sich die fahrbare Vorrichtung beispielsweise zur Verwendung in Räumen, da hier die Staubbelastung der abgesaugten Luft signifikant verringert werden muss, während bei einem Absaugen von Freiluftplätzen die aus der Vorrichtung austretende Absaugluft eine höhere Staubbelastung aufweisen kann. Es ist in diesem Zusammenhang vorgesehen, dass die Verschwenkung des Filterelementes automatisch oder manuell durchgeführt wird. Auch hierzu bietet es sich an, entsprechende Betätigungshebel an der Vorrichtung vorzusehen oder Menuepunkte in einer automatischen Vorrichtungssteuerung einzufügen, die das automatisierte Verschwenken des Filterelementes über entsprechende Aktuatoren steuern.

[0019] Die erfindungsgemäße Vorrichtung verfügt über verschiedene Einsatzbereiche. Damit einhergehend ist auch das in die Vorrichtung eingetragene beziehungsweise abgesaugte Füllgut und die das Füllgut belastenden Partikel unterschiedlich ausgestaltet. Um dem jeweils abgesaugten Partikelgemisch gerecht zu werden, wird eine Vielzahl von austauschbaren Filtermedien verwendet, aus denen das Filterelement gebildet sein kann. In Abhängigkeit von der gewünschten Filterleistung sowie dem abzuscheidenden Partikelspektrum kann beispielsweise als Filtermedium Baumwolle, Polyestervlies, Polypropylen oder Zellulose verwendet wer-

40

45

den. Da es sich hierbei um flexible Materialien handelt, kann auch eine entsprechende Faltung des Filtermediums besonders einfach durchgeführt und so die effektive Filteroberfläche signifikant erhöht werden.

[0020] Neben der Verwendung eines flexiblen Filtermediums besteht auch die Möglichkeit, den Filter aus einem keramischen oder keramikartigen Werkstoff oder aus Metall zu bilden. Daneben können die verschiedenen Filtermedien auch zu Geweben oder Matten verarbeitet werden, wobei die entsprechenden Gewebe oder Matten aus einem oder mehreren der Filtermedien gebildet sind. Neben der Auswahl eines geeigneten Filtermediums besteht auch die Möglichkeit, das Filtermedium beziehungsweise das Filterelement mit einer Oberflächenbeschichtung auszurüsten, die zum einen eine Anpassung an die Reinigungsumgebung darstellt, zum anderen auch die Selbstreinigung des Filterelementes untersützt. Als Beschichtungen kommen hierbei insbesondere eine feuchtigkeitsresistente, eine antistatische oder eine antihaftende Beschichtung in Frage. Hierbei bewirkt insbesondere die antistatische und die antihaftende Beschichtung, dass Partikel, die im Absaugluftstrom an das Filterelement herangeführt werden, nach Ende der Saugbeaufschlagung aus dem Filterelement herausfallen und dieses somit nicht belasten beziehungsweise verschmutzen.

[0021] In einer als vorteilhaft angesehenen Weiterbildung der erfindungsgemäßen fahrbaren Vorrichtung ist vorgesehen, dass das Filterelement zerlegbar ausgebildet ist und ein Austausch des Filtermediums in einem Einbauzustand des Filterelementes erfolgen kann. Es wird in diesem Zusammenhang als günstig angesehen, wenn lediglich ein Teil des Filterelements entnommen wird und damit das Filtermedium freigibt. Es kann dann der Austausch des Filtermediums erfolgen, was zur Folge hat, dass die Wartung und Instandhaltung des Filterelements wesentlich schneller durchgeführt werden kann und die mit der Wartung einhergehenden Kosten gesenkt werden können.

[0022] Bereits vorstehend wurden verschiedene Filtermedien vorgestellt, die teilweise starr, teilweise flexibel ausgebildet sind. Um ein Filterelement zu bilden wird es als günstig angesehen, wenn das Filtermedium zur Bildung von Lamellen, zickzack- oder wellenförmig gefaltet ist. Durch die entsprechende Anordnung des Filtermediums in Form von Wellen oder Lamellen kann die Aktivoberfläche des Filter signifikant erhöht und die Filterleistung verbessert werden. Als günstig wird in diesem Zusammenhang angesehen, wenn die Lamellen oder die Wellen, ring- oder strahlenförmig um die erste Rotationsachse angeordnet sind oder sich radial von dieser weg erstrecken. Neben der Verwendung eines rotierenden Filterelementes besteht selbstverständlich auch die Möglichkeit, ein feststehendes Filterelement mit Lamellen, die ring- oder strahlenförmig oder aber in einer Ebene angeordnet sind, auszubilden.

[0023] Bei der Verwendung eines rotierenden Filterelementes kann zur Unterstützung der Selbstreinigung in einer bevorzugten Weiterbildung der erfindungsgemäßen Vorrichtung ein Abstreifelement vorgesehen werden, das am Filterelement angreift oder in dieses eingreift. Durch den Angriff beziehungsweise Eingriff des Abstreifelementes erfolgt eine Vibrations- oder Druckbeaufschlagung des Filterelementes und Anbackungen beziehungsweise Anhäufungen von Partikeln oder Filterkuchen auf dem Filtermedium werden so gelöst und vom Filterelement entfernt. Die durch das Abstreifelement gelösten Partikel oder der Filterkuchen fallen aus dem Filterelement heraus und in die Vorrichtung. Dort befinden sich geeignete Förder- oder Leiteinrichtungen, die eine Verfrachtung der Partikel in eine Auffangvorrichtung, beispielsweise ein Silo bewerkstelligen. Als günstig wird angesehen, wenn das Abstreifelement als im Wesentlichen quer zur Fahrtrichtung der Vorrichtung oder parallel zur ersten Rotationsachse oder einer Längsachse des Filterelements angeordnete Leiste ausgebildet ist. Daneben besteht auch die Möglichkeit, dass das Abstreifelement einen oder mehr Finger, Bolzen oder Stifte aufweist, die in das Filterelement eingreifen oder an diesem Anliegen und das Filterelement so beaufschlagen. Durch die Ausgestaltung des Abstreifelementes als Leiste kann die höchstmögliche Beaufschlagung des Filterelementes erfolgen, da die Leiste so ausgebildet sein kann, dass diese über die gesamte Länge des Filterelementes an dieser angreift, anliegt oder in diese hineinragt. Das Abstreifelement ist bevorzugt so ausgebildet, dass es kontinuierlich an das Filterelement angreift oder in dieses eingreift. Daneben besteht natürlich auch die Möglichkeit, dass nur periodisch ein Eingriff des Abstreifelementes stattfindet, beispielsweise im Zusammenhang mit Reinigungszyklen oder aber innerhalb von entsprechenden Zeitintervallen während des Einsatzes der Vorrichtung. Es wird somit über das Abstreifelement eine kontinuierliche oder periodische Druck- oder Vibrationsbeaufschlagung des Filterelementes durchgeführt. Um die Beaufschlagung des Filterelementes durch das Abstreifelement durchzuführen, wird es als vorteilhaft angesehen, wenn eine manuelle oder automatsche Steuerung für den Ein- oder Angriff des Abstreifelementes an oder in das Filterelement vorgesehen ist. Über diese Steuerung, die beispielsweise als Schwenkhebel, oder aber als Hydraulik- oder Pneumatikelement ausgebildet sein kann oder entsprechende Stellmotoren aufweist, wird eine bedarfsgerechte Beaufschlagung des Filterelementes möglich. Das Zuschalten beziehungsweise Abschalten des Abstreifelementes senkt auch die Beanspruchung des Filtermediums durch das ein- oder angreifende Abstreifelement und erhöht darüber wiederum die Standzeit des gesamten Filterelementes.

[0024] Weist das Filterelement ein lamellenartig ausgebildetes Filtermedium auf, das beispielsweise ringoder strahlenförmig um eine Rotationsachse angeordnet ist, so sieht eine als vorteilhaft angesehene Weiterbildung der Erfindung vor, dass das Abstreifelement zwischen zwei Lamellen des rotierend ausgebildeten Filterelementes eingreift und die in Rotationsrichtung untere

40

45

Lamelle von der in Rotationsrichtung oberen Lamelle im Zusammenwirken mit der Rotation des Filterelementes abspreizt. Die abgespreizte Lamelle löst sich nach fortgesetzter Rotation des Filterelementes von dem Abstreifelement und schnellt in Rotationsrichtung. Aufgrund dieser Schnellbewegung der Lamelle und gegebenenfalls durch die Kollision mit der nächsten Lamelle erfolgt ein Ablösen von auf der Lamelle aufgelagerten Partikeln oder dem Filterkuchen und eine Reinigung des Filtermediums. Bei fortgesetzter Rotation des Filterelementes erfolgt so die Reinigung sämtlicher Lamellen. Auch hier besteht die Möglichkeit durch periodisches oder kontinuierliches in Eingriff bringen des Abstreifelementes eine Reinigung des Filterelementes durchzuführen.

[0025] Vor dem Einsatz der erfindungsgemäßen Vorrichtung bietet sich eine Überprüfung des Zustandes des Filterelementes beziehungsweise eine Kontrolle des Filtermediums an. Im Zuge dieser Kontrolle kann gleichzeitig die Reinigung des Filterelementes erfolgen. Die Reinigung, die bevorzugt über eine Druck- oder Vibrationsbeaufschlagung des Filterelementes erfolgt, kann somit vor, während oder nach dem Betrieb der Vorrichtung durchgeführt werden. Der Zeitpunkt der Reinigung kann beispielsweise bei der Erstellung von Wartungsplänen berücksichtigt werden.

[0026] Eine als günstig erachtete Weiterbildung der erfindungsgemäßen fahrbaren Vorrichtung sieht vor, dass im Gehäuseinneren eine guer zur Fahrtrichtung der Vorrichtung ausgerichtete, im Absaugluftstrom angeordnete oder in den Absaugluftstrom ragende Platte oder Schiene mit einer Prallfläche für wenigstens einen Teil der abgesaugten Partikel vorgesehen ist. Die Platte oder Schiene weist dabei bevorzugt auf einer ersten Seite die Prallfläche auf, während auf der der Prallfläche gegenüberliegenden Seite der Platte oder Schiene eine Leitfläche vorgesehen ist. Diese leitet aus dem Filterelement fallende oder geschleuderte Partikel zu einem Silo oder einer sonstigen Auffangvorrichtung. Die Schiene oder Platte hat somit eine Doppelfunktion. Sie dient nicht nur zur Leitung des Absaugluftstroms, sondern trennt gleichzeitig den Teil der fahrbaren Vorrichtung, in dem die Hauptbestandteile der Absaugvorrichtung angeordnet sind, von dem übrigen Teil der Vorrichtung, der hauptsächlich durch die Abtragvorrichtung eingenommen ist. Die Prallfläche dient dabei nicht nur zur Leitung des Absaugluftstroms, sondern bewirkt auch, dass die durch die Abtragvorrichtung in die Vorrichtung eingebrachten Füllgutbestandteile, Verschmutzungen und Partikel auf ein unterhalb der Prallfläche angeordnetes Sieb geleitet werden. In diesem Zusammenhang ist es selbstverständlich auch möglich und in einer bevorzugten Weiterbildung der Erfindung vorgesehen, dass neben der genannten Platte oder Leiste ein weiteres, unterhalb des Filterelements angeordnetes und sich im Wesentlichen quer zur Fahrtrichtung der Vorrichtung in deren Inneren erstreckendes Leitblech angeordnet ist. Dieses ist flächig ausgebildet und weist mindestens die Breite des Filterelements auf. Günstiger überragt es das Filterelement in der Breite, um

so zu verhindern, dass seitlich aus dem Filterelement herausfallende Partikel oder Teile des Filterkuchens in den unter dem Leitblech befindlichen Teil der Vorrichtung gelangen. Das Leitblech weist bevorzugt erhöhte oder nach oben gebogene Seitenflächen auf. Daneben ist das Leitblech auf ein Silo oder eine sonstige Aufnahmevorrichtung für aus dem Füllgut abgeschiedene Verschmutzungen und Partikel hin ausgerichtet. Die auf das Leitblech fallenden, geschleuderten oder aus dem Filterelement gelösten Partikel oder sonstigen Bestandteile werden so durch das Leitblech in das Silo beziehungsweise die Aufnahmevorrichtung gefördert. Um die gezielte Förderung des auf dem Leitblech auftreffenden Partikelgemisches in das Silo zu gewährleisten, ist in einer Weiterbildung der Erfindung vorgesehen, dass die Seitenflächen aufeinander zu verlaufend ausgerichtet sind. Diese Ausrichtung der Seitenflächen bewirkt eine Verjüngung der Fläche des Leitbleches auf das Silo oder die Auffangvorrichtung hin. Es wird somit die Weitergabe der Partikel beziehungsweise des Partikelgemisches in der Vorrichtung verbessert.

[0027] Als empfehlenswert wird angesehen, wenn die Abtragvorrichtung eine zweite Rotationsachse aufweist, die zur Aufnahme einer Walze, und hierbei insbesondere einer Bürstenwalze herangezogen werden kann. Die zweite Rotationsachse kann dabei einen eigenen Antrieb aufweisen oder aber über ein entsprechendes Getriebe mit einem Zentralantrieb der Vorrichtung verbunden sein. Sofern die Vorrichtung nicht selbstfahrend sondern als Anhängevorrichtung ausgebildet ist, kann die Verbindung mit einem Antrieb des Zugfahrzeugs erfolgen. Die Rotationsachse beziehungsweise die Rotationsachsen der Vorrichtung können zur Vibrationsbeaufschlagung des Filterelements beziehungsweise eines in der Vorrichtung angeordneten Siebes herangezogen werden. Hierzu ist ein Umlenkhebel vorgesehen, der mit seinem ersten Ende exzentrisch mit der ersten oder zweiten Rotationsachse verbunden ist. Das zweite Ende des Umlenkhebels ist an dem in der Vorrichtung angeordneten Sieb oder dem Filterelement angebracht. Ebenfalls bewirkt werden kann über den Umlenkhebel eine Vibrationsbeaufschlagung des Leitbleches, sodass hier eine wesentlich verbesserte Förderung der Schmutpartikel beziehungsweise Partikelgemische auf das Silo oder die Auffangvorrichtung hin erfolgt. Der Umlenkhebel ist im Wesentlichen L-förmig ausgebildet und in oder gegen die Rotationsrichtung verschwenkbar in der Vorrichtung gelagert. Hierzu kann ein separates Lager verwendet werden, es besteht jedoch auch die Möglichkeit, dass der Umlenkhebel an einer Seitenfläche des Leitbleches drehbar gelagert ist. Je nach Anordnungspunkt des Umlenkhebels erfolgt entweder die Vibrationsbeaufschlagung des Leitbleches, des Siebes oder des Filterelements. Wird über den Umlenkhebel die Vibrationsbeaufschlagung des Siebes sichergestellt, so besteht zusätzlich die Möglichkeit, dass das Sieb an unterschiedlichen Positionen eines Schenkels des Umlenkhebels befestigt wird und somit dessen Neigung einstellbar wird. Je nach Abstand des Befestigungspunktes vom Knickpunkt des Umlenkhebels verändert sich auch die Amplitude der über den Umlenkhebel vermittelten Vibration und damit die Siebleistung beziehungsweise die Förderleistung des vibrationsbeaufschlagten Bauteils der Vorrichtung. Als günstig und unter konstruktiven Gesichtspunkten vorteilhaft wird angesehen, wenn wenigstens ein Ende des Umlenkhebels über eine Kupplungsstange mit der ersten oder zweiten Rotationsachse verbunden ist. Hieraus ergibt sich die Möglichkeit, dass der Umlenkhebel nicht unmittelbar der entsprechenden Rotationsachse zugeordnet sein muss, sondern auch an einem mehr oder weniger frei wählbaren Punkt der Vorrichtung befestigt werden kann.

[0028] Neben der Anbindung der Vibrationsbeaufschlagung des Siebes, des Filterelements oder des Leitbleches in oder an die Rotationsachsen der Vorrichtung besteht in einer günstigen Weiterbildung der erfindungsgemäßen Vorrichtung auch die Möglichkeit, dass ein separater Schwingantrieb für die genannten Elemente vorgesehen ist. Wird ein derartiger Schwingantrieb, der beispielsweise als Unwuchtmotor ausgebildet sein kann, in der Vorrichtung angeordnet, so ergibt sich daraus der Vorteil, dass der sonstige Antrieb beziehungsweise die sonstigen Antriebe der Vorrichtung durch die Vibration nicht beeinträchtigt werden. Neben der Verwendung eines separaten Schwingantriebes besteht selbstverständlich auch die Möglichkeit, eine gemeinsame Antriebseinheit für die erste und/oder die zweite Rotationsachse und den Schwingungsantrieb vorzusehen. Eine entsprechende Verbindung der Antriebseinheit mit den entsprechenden Achsen erfolgt dann über ein geeignet ausgebildetes Getriebe, beispielsweise einen Riementrieb und geeignete Umlenk- beziehungsweise Übersetzungsscheiben oder -räder. Das Getriebe kann dabei günstigerweise als Zahnrad-, Ketten- oder Riemengetriebe ausgebildet sein. Als vorteilhaft wird angesehen, wenn das Getriebe in einem Seitenbereich der Vorrichtung angeordnet ist und baulich vom übrigen, unter Umständen mit Verschmutzungen beaufschlagten Bereich des Gehäuses getrennt ist. Hierdurch wird erreicht, dass das Getriebe durch die Verschmutzung nicht beeinträchtigt wird und sich dadurch die Lebensdauer des Getriebes erhöht.

[0029] Als günstig wird angesehen, wenn die Vorrichtung selbstfahrend oder als Anhängevorrichtung an eine Zugmaschine ausgebildet ist. Bei der Ausgestaltung der Vorrichtung als selbstfahrendes Gerät, empfiehlt es sich, dass als Hauptantrieb ein Elektro-oder Verbrennungsmotor vorgesehen ist. Dieser als Hauptantrieb der Vorrichtung ausgebildete Motor kann anschließend auch dazu verwendet werden, mit der Antriebseinheit der Vorrichtung gekoppelt zu werden. Die entsprechende Vibrations- oder Rotationsbewegung der Vorrichtungsteile, wie vorstehend bereits beschrieben, wird dann über diesen Hauptantrieb durchgeführt.

[0030] Die erfindungsgemäße Vorrichtung weist neben der Absaugvorrichtung bevorzugt auch eine Abtrag-

vorrichtung auf, die die auf der zu reinigenden Fläche auflagernden Verschmutzungen beziehungsweise das Füllgut aufnimmt und in die Vorrichtung verfrachtet. In diesem Zusammenhang wird es als günstig angesehen, wenn eine Walze in der Abtragvorrichtung vorgesehen ist, die auch als Bürstenwalze ausgebildet sein kann. Als günstig wird in diesem Zusammenhang angesehen, wenn diese Walze höhenverstellbar angeordnet ist. Aufgrund der Höhenverstellbarkeit kann die Abtragvorrichtung an die verschiedenen zu reinigenden Substrate angepasst werden. Zusätzlich zu der höhenverstellbaren Walze oder alternativ hierzu ist vorgesehen, dass eine vorteilhafte Weiterbildung der erfindungsgemäßen Vorrichtung wenigstens ein Abstützrad aufweist, dass eine Entlastung der Walze darstellt und, sofern das Abstützrad schwenkbar ausgebildet ist, auch die Lenkbarkeit der Vorrichtung verbessert.

[0031] Als günstig wird angesehen, wenn die erfindungsgemäße Vorrichtung wenigstens einen feststehenden oder beweglichen Besen aufweist. Dieser Besen arbeitet durch das Sieb fallendes Füllgut in die gereinigte beziehungsweise abgetragene Fläche ein. Es ist in diesem Zusammenhang vorgesehen, dass der Besen der Walze in Fahrtrichtung nachgeordnet an der Vorrichtung angeordnet ist.

[0032] Der Absaugluftstrom wird günstigerweise aus der Vorrichtung ausgeleitet. Es empfiehlt sich hierbei, dass an einer Deckfläche oder wenigstens an einer Seitenfläche der Vorrichtung eine Öffnung zum Ausleiten des Absaugluftstroms vorgesehen ist. Da der Absaugluftstrom in der Regel vor dem Ausleiten aus der Vorrichtung bereits durch das Filterelement geleitet wurde, weist dieser keine oder eine nur sehr niedrige Belastung mit Partikeln auf. Eine Kontamination der Umgebung beziehungsweise eine Beeinträchtigung beispielsweise des Bedienpersonals der Vorrichtung wird somit verhindert oder gesenkt. Es wird in diesem Zusammenhang als günstig angesehen, wenn der Absaugluftstrom über das Innere der Rotationsachse oder des Filterelementes oder des an der Rotationsachse angeordneten Filterelements geführt wird.

[0033] Die Erfindung ist schematisch in den nachfolgenden Zeichnungen gezeigt. Es zeigen:

- Fig. 1 eine bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung in der Seitenansicht,
- Fig. 2 eine weitere Seitenansicht der Vorrichtung von der der Fig. 1 ge- genüberliegenden Seite aus gesehen und
 - Fig. 3 eine Frontansicht der Vorrichtung, wobei diese entlang der Linie A-A' in Fig. 1 geschnitten wurde.

[0034] Fig. 1 zeigt eine bevorzugte Ausführungsform einer fahrbaren Vorrichtung 10, wobei diese eine Abtrag-

40

50

40

vorrichtung 11 umfasst. Mit der fahrbaren Vorrichtung 10 können Füllgut, Verschmutzungen und sonstige Partikel von einer Fläche abgetragen werden.

[0035] Generell eignet sich die fahrbare Vorrichtung 10 zum Reinigen von Flächen jeder Art, auch mit festem Untergrund. Als besonders günstig wird es jedoch angesehen, wenn die fahrbare Vorrichtung 10 auf einem Sportplatz und hierbei bevorzugt auf einem Kunstrasenplatz verwendet wird. Hierbei wird, neben dem Aufnehmen des Füllguts des Kunstrasenplatzes und dem erneuten Eintrag in den Platz, eine Reinigung der die Eigenschaften des Kunstrasenplatzes beeinflussenden Füllschicht durchgeführt. In ihrem Inneren 14 weist die fahrbare Vorrichtung 10 ein Leitblech 15 auf. Dieses Leitblech 15 dient dazu, durch die Abtragvorrichtung 11 in die fahrbare Vorrichtung 10 eingetragenes Füllgut, gemischt mit Verschmutzungen und Partikeln, auf ein zentral in der fahrbaren Vorrichtung 10 angeordnetes Sieb 16 zu leiten. Das Sieb 16 erstreckt sich über die gesamte Breite der fahrbaren Vorrichtung 10 und nahezu über deren gesamte Länge. Das Sieb 16 ist in der fahrbaren Vorrichtung 10 geneigt angeordnet und weist eine entgegen der Fahrtrichtung, die durch den Pfeil A angezeigt wird, ausgerichtete Steigung auf. Am in Fahrtrichtung hinteren Ende 12 des Siebes 16 mündet dieses in ein Silo 17, das die nicht durch das Sieb 16 hindurchfallenden Verschmutzungen und sonstigen Partikel aufnimmt. Das Sieb 16 ist lösbar in der fahrbaren Vorrichtung 10 angeordnet und auf entsprechenden Vorsprüngen 18 aufgelagert. Die Vorsprünge 18 sind dabei derart ausgeführt, dass diese eine Schwingung des Siebes 16 zulassen, jedoch ein Verrutschen des Siebes 16 verhindern. Um das Sieb 16 in Schwingung zu versetzen, ist dieses über einen Umlenkhebel 36 mit einer Rotationsachse 28 verbunden. Die Vibration verbessert zum einen die Siebleistung, zum anderen bewirken die Schwingungen des Siebes 16 eine Förderung des auf das Sieb 16 geschleuderten Füllgutes in Richtung des Silos 17. Das Silo 17 weist einen Behälter 21 auf, der aus der fahrbaren Vorrichtung 10 zum Entleeren entnehmbar ist. Zum Entnehmen des Behälters 21 wird eine Verriegelungslasche 22 gelöst und der Behälter 21 aus der fahrbaren Vorrichtung 10 herausgezogen.

[0036] Das Leitblech 15 weist ungefähr im Bereich über der Siebmitte eine Abkantung 23 auf, und bildet so eine Prallfläche 24, die in die fahrbare Vorrichtung 10 eingetragenes Füllgut, Verschmutzungen oder Partikel auf das Sieb 16 umleitet.

[0037] Die in der Fig. 1 dargestellte erfindungsgemäße fahrbare Vorrichtung 10 verfügt zusätzlich über eine Absaugvorrichtung 25. Diese ist im Ausführungsbeispiel der Fig. 1 im oberen Abschnitt 13 der fahrbaren Vorrichtung 10 angeordnet und umfasst neben einem Sauggebläse (nicht dargestellt) ein Filterelement 26, das im Ausführungsbeispiel einen zylindrischen Lamellenfilter 27 umfasst. Dessen Lamellen 27 erstrecken sich radial von einer das Filterelement 26 durchdringenden ersten Rotationsachse 28 der fahrbaren Vorrichtung 10 weg. Die La-

mellen 27 sind durch Einfalten eines Filtermediums gebildet und erhöhen die zur Filtrierung der Abluft zur Verfügung stehende Fläche. Als Filtermedium kommen im Ausführungsbeispiel der Fig. 1 flexible Materialien in Frage, die beispielsweise auf Textilbasis oder in Form von Metall- oder Kunststoffgeflechten vorliegen. Entscheidend ist hierbei, dass das Filtermedium eine auf die zu erwartende Partikelgröße abgestimmte Porengröße zur Verfügung stellt.

[0038] Dem Filterelement 26 beziehungsweise der Absaugvorrichtung 25 zugeordnet weist die fahrbare Vorrichtung 10 in ihrem Inneren 14 ein eine Leitfläche 29 aufweisendes Blech 30 auf, das zum einen dazu dient, den Absaugluftstrom durch das Innere 14 der fahrbaren Vorrichtung 10 zu führen und zum anderen aus dem Filterelement 26 herausfallende oder herausgeschlagene beziehungsweise geschleuderte Partikel zum Silo 17 hin fördert. Das Blech 30 weist zur Verbesserung der Strömungseigenschaften des Absaugluftstroms an seinem, dem Silo 17 zugewandten Ende 38 eine Abschrägung 31 auf. Diese dient nicht nur dazu, den Absaugluftstrom zu leiten, sondern bildet gleichzeitig eine weitere Prallfläche 24' aus, an der Partikel aus dem Absaugluftstrom in Richtung des Siebes 16 beziehungsweise des Silos 17 umgeleitet werden. Die weitere Prallfläche 24' hat somit eine zusätzliche Schutzfunktion für das Filterelement 26, da hier größere und schwerere Teilchen aus dem Absaugluftstrom abgeschieden werden können und somit nicht bis zum Filterelement 26 weitertransportiert werden. Es wird dadurch eine frühzeitige Verstopfung des Filterelementes 26 mit zu großen Partikeln vermieden. [0039] Die erste Rotationsachse 28 verfügt über eine exzentrisch angeordnete Aufnahme 32, an der der erste Kopplungspunkt 33 einer Kupplungsstange 34 angelenkt ist. Der zweite Kopplungspunkt 35 der Kupplungsstange 34 ist mit einem Umlenkhebel 36 verbunden, der wiederum an der Verlängerung 46 des im Inneren 14 der fahrbaren Vorrichtung 10 angeordneten Bleches 30 befestigt ist. Eine Endfläche des Umlenkhebels 36 ist mit dem Sieb 16 verbunden. Durch die Rotationsbewegung der ersten Rotationsachse 28 und vermittelt über die exzentrische Aufnahme 32 beziehungsweise die Kupplungsstange 34 wird das Sieb 16 aufgrund des Verschwenkens des Umlenkhebels 36 vibrationsbeaufschlagt. Durch diese Vibration des Siebes 16 wird zum einen das in die fahrbare Vorrichtung 10 eingetragene Füllgut in Richtung des Silos 17 gefördert, zum anderen die Siebwirkung weiter verbessert und ein großer Teil des Füllgutes nach dem Abtrennen von weiteren, Schmutzpartikeln oder Schmutzgegenständen wieder in die abgetragene Fläche zurückverfrachtet. Aufgrund der Vibrationsbeaufschlagung erfolgt die Trennung und das Rückführen wesentlich schneller. Der Umlenkhebel 36 weist in seinem auf das Silo 17 hin ausgerichteten, unteren Schenkel 39 zusätzliche Bohrungen 40 auf, in die ein am Sieb 16 angreifender beziehungsweise angesetzter Bolzen 41 eingeführt werden kann. Durch das Einführen des Bolzens 41 wird die Neigung des Siebes 16 verändert und somit

20

40

die Trennschärfe und die Trenngeschwindigkeit angepasst. Gleichzeitig kann über eine Verstellung der Siebneigung die Amplitude der Schwingung beziehungsweise Vibrationsbeaufschlagung des Siebes 16 verändert, und damit ebenfalls die Siebleistung eingestellt werden. [0040] Das Filterelement 26 ist im Ausführungsbeispiel der Fig. 1 selbstreinigend ausgebildet. So weist zunächst das Filtermedium eine Antihaftbeschichtung auf, sodass das Anbacken beziehungsweise Anhaften von aus dem Absaugluftstrom abgeschiedenen Partikeln vermieden beziehungsweise verringert wird. Die angesaugten Partikel, die sich am Filterelement 26 beziehungsweise an der Oberfläche des Filtermediums sammeln, fallen vom Filterelement 26 ab, sobald die Absaugbeaufschlagung unterbrochen wird. Die aus dem Filterelement 26 fallenden Partikel landen auf dem Blech 30 beziehungsweise der Leitfläche 29 und werden von dort in das Silo 17 gefördert. Neben der Antihaftbeschichtung des Filtermediums ist gleichzeitig ein Abstreifelement 42 vorgesehen, das eine sich über die gesamte Breite der fahrbaren Vorrichtung 10 erstreckende Leiste 43 aufweist, die so in der fahrbaren Vorrichtung 10 angeordnet ist, dass sie in das Filterelement 26 wenigstens teilweise hineinragt und zwischen die Lamellen 27 eingreift. Bei der Rotation des Filterelements 26 legt sich eine Lamelle 27 an der Leiste 43 des Abstreifelementes 42 an und wird kurzzeitig zurückgehalten. Dabei wird die Lamelle 27 von der in Rotationsrichtung vorgelagerten Lamelle 27 abgespreizt und löst sich nach weitergehender Rotation des Filterelements 26 von der Leiste 43. Nach diesem Lösen schnellt die Lamelle 27 in Rotationsrichtung weiter und es kommt aufgrund der Schnellbewegung der Lamelle 27 zum Ablösen von aufgelagerten Partikeln sowie dem unter Umständen am Filtermedium aufgebauten Filterkuchen. Das Abstreifelement 42 beziehungsweise nur die Leiste 43 sind beweglich in der fahrbaren Vorrichtung 10 angeordnet, sodass keine permanente Beaufschlagung der Lamellen 27 durch die Leiste 43 erfolgt. Diese Dauerbeaufschlagung würde zu einem vorzeitigen Verschleiß des Filtermediums oder zur Beschädigung des Filterelements 26 führen und dessen Standzeit verringern. Durch die Beweglichkeit der Leiste 43 beziehungsweise des Abstreifelements kann eine periodische Beaufschlagung des Filterelements 26 erfolgen. Diese kann beispielsweise im Zuge von Reinigungszyklen automatisch oder aber während dem Einsatz der fahrbaren Vorrichtung 10 manuell erfolgen.

[0041] Die fahrbare Vorrichtung 10 weist in ihrer Deckfläche 44 eine Klappe 45 auf, die mit einem Verschlußmechanismus 70 verschlossen und über ein Scharnier 47 verschwenkbar an der fahrbaren Vorrichtung 10 angeordnet ist. Nach Öffnen der Klappe 45 ist das Filterelement 26 von vorne her frei zugänglich und kann aus der fahrbaren Vorrichtung 10 entnommen werden. Gleichzeitig kann beispielsweise zu Wartungszwekken ein Zugriff auf die sonstigen Elemente der Absaugvorrichtung 25, wie beispielsweise das Abstreifelement 42, die Kupplungsstange 34 oder das Blech 30 erfolgen.

Um das Filterelement 26 aus der Absaugvorrichtung 25 zu lösen, ist an der ersten Rotationsachse 28 eine Schelle 48 vorgesehen, die nach Öffnen einer die Schelle 48 beaufschlagenden Schraube 49 von der ersten Rotationsachse 28 abgezogen werden kann, und damit das Filterelement 26 freigibt. Das Filterelement 26, das im Ausführungsbeispiel, wie bereits gezeigt, als Lamellenring ausgebildet ist, ist auf die erste Rotationsachse 28 aufgesteckt. Die erste Rotationsachse 28 ist dabei als Stummelachse ausgebildet (vgl. Fig. 3) und greift somit nur an den beiden Enden des Filterelements 26 in dessen Inneres ein. Im Übrigen ist das Filterelement 26 hohl und lässt somit eine Durchströmung des Absaugluftstroms zu.

[0042] Die Abtragvorrichtung 11 weist im Ausführungsbeispiel eine zweite Rotationsachse 28' der fahrbaren Vorrichtung 10 auf, an der eine als Bürste ausgebildete Walze 51 angeordnet ist. Zusätzlich zur rotierenden Walze 51, die das Abtragen des Füllgutes und der Partikel von der Fläche bewirkt und gleichzeitig dessen Eintrag in die fahrbare Vorrichtung 10 gewährleistet, weist die Abtragvorrichtung 11 ein Abstützrad 52 sowie in Fahrtrichtung nach der Walze 51 nachgeordnete Besen 53 auf. Das Abstützrad 52 dient gleichzeitig zur Höhenverstellung der Abtragvorrichtung 11 und der damit durchführbaren Anpassung an unterschiedliche Flächenbelege. Die in Fahrtrichtung nachgeordneten Besen 53 kehren das gesiebte und aus der Abtragvorrichtung 11 herausfallende, gereinigte Füllgut in die Fläche, beispielsweise einen Kunstrasenplatz ein. Die Besen 53 sind nicht fest mit der Abtragvorrichtung 11 verbunden, sondern können bedarfsweise ausgetauscht oder angebaut beziehungsweise abgebaut werden. Auch bleibt die fahrbare Vorrichtung 10 nicht auf die Verwendung mit zwei Besen 53 beschränkt, es ist vielmehr die Anordnung von nur einem oder von mehreren Besen 53 möglich und denkbar. Die Walze 51 sowie die Absaugvorrichtung 25, beziehungsweise die zugehörigen Rotationsachsen 28, 28' verfügen über ein gemeinsames Antriebsaggregat 54. Dieser ist in einem gesonderten Abteil 55 angeordnet ist. Durch die getrennte Anordnung wird eine Verschmutzung des Antriebsaggregats 54 durch in die fahrbare Vorrichtung 10 eingetrages Füllgut beziehungsweise damit behaftete Partikel unterbunden.

[0043] Fig. 2 zeigt eine weitere Seitenansicht der fahrbaren Vorrichtung 10. Die fahrbare Vorrichtung 10 verfügt über eine abnehmbare Seitenverkleidung, die beispielsweise zu Wartungszwecken entfernt werden kann. Im Ausführungsbeispiel der Fig. 2 ist die fahrbare Vorrichtung 10 ohne Seitenverkleidung dargestellt, so dass hier sehr gut das Getriebe 58 der fahrbaren Vorrichtung 10 erkennbar ist. Wie bereits im Zusammenhang mit der Beschreibung zu der fahrbaren Vorrichtung 10 in Fig. 1 erläutert, weist diese ein zentrales Antriebsaggregat 54 auf. Dieses treibt die erste und die zweite Rotationsachse 28 und 28' an. Dem Antriebsaggregat 54 zugeordnet ist das Getriebe 58, das über einen Riementrieb 59 mit dem Antriebsaggregat 54 verbunden ist. Über den Riemen-

40

trieb 54 erfolgt ein direkter Antrieb der zweiten Rotationsachse 28' und der daran anliegenden Walze 51. Hierzu ist an der zweiten Rotationsachse 28' ein Ritzel 60 angeordnet, das mit dem Riementrieb 59 in Eingriff steht. Ebenfalls dem Getriebe 58 zugehörig ist ein Umlenkrad 61, das von außen am Riementrieb 59 angreift. Dieses Umlenkrad 61 lenkt den Riementrieb 59 in Richtung eines Übersetzungsrades 62 um, das wiederum über einen Antriebsriemen 63, im Ausführungsbeispiel einen Keilriemen, mit der ersten Rotationsachse 28 verbunden ist, und hier eine Übersetzung gewährleistet. Aufgrund der unterschiedlichen Durchmesser des Übersetzungsrades 62 und des an der ersten Rotationsachse 28 angeordneten Getrieberades 64 erfolgt eine Erhöhung der Drehzahl der ersten Rotationsachse 28. Die erhöhte Drehzahl bewirkt, dass die Selbstreinigungsfunktion des Filterelementes 26 weiter verbessert wird, da die an dem Filtermedium anhaftenden Partikel aufgrund der hohen Zentrifugalbeschleunigung aus dem Filterelement 26 geschleudert werden. Unterhalb des Getrieberades 64 ist eine Umlenkrolle 65 vorgesehen, die eine Zugentlastung des Antriebsriemens 63 bewirkt. Die Umlenkrolle 65 ist an einer Halterung 66 angeordnet, die auch das Abstreifelement 42 tragen kann. Dadurch, dass die Halterung 66 auf einer Achse der Umlenkrolle 65 angeordnet ist, kann diese in ihrer Position verändert werden. Über diese Veränderung der Position der Halterung 66 kann eine Veränderung des Angriffs des Abstreifelementes 42 am Filterelement 26 durchgeführt werden. Gleichzeitig kann über eine Beaufschlagung durch den Antriebsriemen 63 eine automatische Verschwenkung der Halterung 66 und damit des Abstreifelementes 42 erfolgen. Es läßt sich so ein periodisches beziehungsweise gesteuertes Eingreifen des Abstreifelementes 42 in oder an das Filterelement 26 durchführen. Die in der Fig. 2 dargestellte Ausführungsform der fahrbaren Vorrichtung 10 verfügt über ein eigenes Antriebsaggregat 54 für das Getriebe 58. Möglich ist es jedoch auch, dass die Vorrichtung 10 mit dem Antrieb einer Zugmaschine (nicht dargestellt) gekoppelt ist. Daneben kann die fahrbare Vorrichtung 10 auch selbstfahrend ausgebildet sein. Das in Fahrtrichtung vordere Rad 67 der fahrbaren Vorrichtung 10 ist dann lenkbar ausgebildet. Der im Inneren 14 der fahrbaren Vorrichtung 10 geleitete Absaugluftstrom wird an der Deckfläche 44 der fahrbaren Vorrichtung 10 aus dieser herausgeleitet, nachdem er das Filterelement 26 durchströmt hat und dadurch von Partikeln befreit wurde.

[0044] Fig. 3 zeigt eine Vorderansicht der erfindungsgemäßen fahrbaren Vorrichtung 10, die entlang der Linie A-A, die in Fig. 2 eingezeichnet ist, geschnitten wurde. Deutlich erkennbar ist hier das im oberen Teil der fahrbaren Vorrichtung 10 angeordnete Filterelement 26, das einen ringförmigen Lamellenfilter 37 umfasst. Das Filterelement 26 ist im Ausführungsbeispiel der Fig. 3 als Kartusche 68 ausgebildet und kann so zu Wartungszwecken oder zum Austausch bei Verschleiß besonders schnell und einfach aus der fahrbaren Vorrichtung 10 entnommen werden. Das Filterelement 26 weist in seinem Inne-

ren einen Hohlraum 57 auf, der zur Leitung des Absaugluftstroms dient. Das Innere des Filterelementes 26 mündet auf der in Fig. 3 linken Seite der Kartusche 68 in einen Leitkanal 69, der die von Partikeln befreite Absaugluft aus der fahrbaren Vorrichtung 10 herausleitet. Der Leitkanal 69 umschließt eine erste Rotationsachse 28 der fahrbaren Vorrichtung 10. Diese ist im Ausführungsbeispiel als Stummelachse ausgebildet, das heißt, die Rotationsachse 28 durchläuft nicht das gesamte Filterelement 26, sondern greift lediglich an dessen Enden an. Am gegenüberliegenden Ende ist eine zweite stummelartig ausgebildete Rotationsachse 28" vorgesehen, die drehbar gelagert ist, jedoch nicht angetrieben wird. Die Rotationsachse 28 auf der linken Seite der fahrbaren Vorrichtung 10 steht mit dem Getriebe 58 in Verbindung, das bereits im Zusammenhang mit der Fig. 2 ausführlich erläutert wurde. In Fig. 3 nicht erkennbar ist das Abstreifelement 42, das in die Lamellen 27 des Filterelements 26 eingreift und hier eine Beaufschlagung der Lamellen 27 zum Abschlagen von Partikeln oder einen Filterkuchen, der sich auf den Lamellen 27 gebildet hat, dient. Im unteren Bereich der Vorrichtung 10 befindet sich die zweite Rotationsachse 28', auf der eine Walze 51 aufgesetzt ist. Die zweite Rotationsachse 28' ist, aufgrund der größeren hier wirkenden Kräfte, als durchgehende Achse ausgebildet. Die zweite Rotationsachse 28' steht in direkter Verbindung mit dem Antriebsaggregat 54 der fahrbaren Vorrichtung 10. Die Kraftübertragung wird hierbei durch einen Riementrieb 59 gewährleistet. Zusätzlich zum Riementrieb 59 ist im linken Bereich der in Fig. 3 dargestellten Vorrichtung 10 ein Umlenkrad 61 zu erkennen, das eine Übersetzung zur ersten Rotationsachse 28 hin bewirkt, so dass dieses eine im Vergleich zur zweiten Rotationsachse 28' erhöhte Drehzahl aufweist. Im mittleren Bereich der fahrbaren Vorrichtung 10 ist in Fig. 3 ein Blech 30 erkennbar, auf das die aus dem Filterelement 26 fallenden Partikel auftrifft und durch das Blech 30 zu einem in Fig. 3 nicht erkennbaren, da im hinteren Bereich der fahrbaren Vorrichtung 10 angeordneten, Silo 17 gefördert wird. Das Blech 30 weist an seinen Seitenkanten 71 nach oben gebogene Bleche auf, die verhindern, dass die Partikel vom Blech 30 auf die darunterliegende Walze 51 fallen.

[0045] Die jetzt mit der Anmeldung und später eingereichten Ansprüche sind Versuche zur Formulierung ohne Präjudiz für die Erzielung weitergehenden Schutzes.

[0046] Sollte sich hier bei näherer Prüfung, insbesondere auch des einschlägigen Standes der Technik, ergeben, daß das eine oder andere Merkmal für das Ziel der Erfindung zwar günstig, nicht aber entscheidend wichtig ist, so wird selbstverständlich schon jetzt eine Formulierung angestrebt, die ein solches Merkmal, insbesondere im Hauptanspruch, nicht mehr aufweist.

[0047] Die in den abhängigen Ansprüchen angeführten Rückbeziehungen weisen auf die weitere Ausbildung des Gegenstandes des Hauptanspruches durch die Merkmale des jeweiligen Unteranspruches hin. Jedoch

10

15

20

25

30

35

40

45

sind diese nicht als ein Verzicht auf die Erzielung eines selbständigen, gegenständlichen Schutzes für die Merkmale der rückbezogenen Unteransprüche zu verstehen. [0048] Merkmale, die bislang nur in der Beschreibung offenbart wurden, können im Laufe des Verfahrens als von erfindungswesentlicher Bedeutung, zum Beispiel zur Abgrenzung vom Stand der Technik beansprucht werden

[0049] Merkmale, die nur in der Beschreibung offenbart wurden, oder auch Einzelmerkmale aus Ansprüchen, die eine Mehrzahl von Merkmalen umfassen, können jederzeit zur Abgrenzung vom Stande der Technik in den ersten Anspruch übernommen werden, und zwar auch dann, wenn solche Merkmale im Zusammenhang mit anderen Merkmalen erwähnt wurden beziehungsweise im Zusammenhang mit anderen Merkmalen besonders günstige Ergebnisse erreichen.

Patentansprüche

- 1. Fahrbare Vorrichtung zum Abtragen von Füllgut und das Füllgut verunreinigenden Partikeln von einer Fläche, insbesondere einem Sportplatz, bevorzugt von einem Kunstrasenplatz, wobei die fahrbare Vorrichtung eine Abtragvorrichtung, die das Füllgut und die Partikel von der Fläche aufnimmt und in die fahrbare Vorrichtung einträgt und eine Absaugvorrichtung mit einem Filterelement zum Abscheiden von Partikeln aus einem Absaugluftstrom aufweist, dadurch gekennzeichnet, dass das Filterelement (26) selbstreinigend ausgebildet ist.
- 2. Fahrbare Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Absaugvorrichtung die Partikel direkt von der Fläche und/oder aus dem in die fahrbare Vorrichtung (10) eingetragenen Füllgut-/Partikelgemisch absaugt und/oder das Filterelement (26) zylindrisch, ringförmig, oder im wesentlichen rechteckig ausgebildet ist und/oder das Filterelement (26) vibrationsbeaufschlagbar ausgebildet ist.
- 3. Fahrbare Vorrichtung nach einem oder beiden der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vibrationsbeaufschlagung über ein Antriebsaggregat (54) der fahrbaren Vorrichtung (10) vermittelt ist oder ein gesondertes Antriebsaggregat (54) für die Vibrationsbeaufschlagung vorgesehen ist und/oder zur Vibrationsbeaufschlagung ein exzentrisch am Filterelement (26) angreifender, mit dem Antriebsaggregat (54) oder einem Fahrantrieb verbundener Hebel, insbesondere Umlenkhebel (36) vorgesehen ist und/oder ein dem Filterelement (26) vorgeschalteter Fliehkraftabscheider vorgesehen ist und/oder eine Steuerung für den Absaugluftstrom vorgesehen ist, wobei die Strömungsrichtung des Absaugluftstroms umkehrbar oder der

Absaugluftstrom zum Ausblasen in das Filterelement (26) einleitbar ist und/oder die Umkehrung oder Einleitung des Absaugluftstroms und/oder das Ausblasen des Filterelements (26) manuell oder automatisch erfolgt.

- Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Filterelement (26) auf oder an einer ersten Rotationsachse (28, 28', 28") der fahrbaren Vorrichtung (10) angeordnet, insbesondere aufgesteckt oder aufgeschoben ist und/oder das Filterelement (26) als Filtermedium Baumwolle, Polyestervlies, Polypropylen, Cellulose, einem keramischen oder keramikartigen Werkstoff oder Metall und/oder Gewebe oder Matten aus einem oder mehreren der Filtermedien aufweist und/oder das Filterelement (26) bzw. das Filtermedium eine feuchtigkeitsresistente, antistatische und/oder antihaftende Beschichtung aufweist, wobei das Filterelement (26) bevorzugt zerlegbar ausgebildet ist und/oder in einem Einbauzustand des Filterelements (26) der Austausch des Filtermediums ohne einen Ausbau des Filterelementes (26) durchführbar ist.
- Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Filtermedium zur Bildung von Lamellen (27) zickzack- oder wellenförmig gefaltet ist und die Lamellen (27) sich radial von der ersten Rotationsachse (28) und/oder einer Längsachse des Filterelementes (26) weg erstreckend am Umfang entlang ausgebildet sind und/oder die Lamellen (27) ring- oder strahlenförmig um die erste Rotationsachse (28) angeordnet sind und/oder eine Ableitung oder Einleitung des Absaugluftstroms über das Innere der ersten Rotationsachse (28) und/oder des Filterelements (26) vorgesehen ist und/oder ein an dem Filterelement (26) angreifendes und/oder in das Filterelement (26) eingreifendes Abstreifelement (42) zur Vibrations- und/ oder Druckbeaufschlagung des Filterelements (26) vorgesehen ist, wobei bevorzugt das Abstreifelement (42) als im wesentlichen quer zur Fahrtrichtung der Vorrichtung (10) und/oder parallel zur ersten Rotationsachse (28) und/oder der Längsachse des Filterelementes (26) angeordnete Leiste (43) oder als Finger, Bolzen, oder Stift ausgebildet ist.
- 50 6. Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Abstreifelement (42) kontinuierlich oder periodisch an das Filterelement (26) angreift, in das Filterelement (26) eingreift und/oder das Filterelement (26) druck-und/oder vibrationsbeaufschlagt und/oder eine manuelle oder automatische Steuerung für den Ein- oder Angriff des Abstreifelements (42) an oder in das Filterelement (26) vorge-

20

25

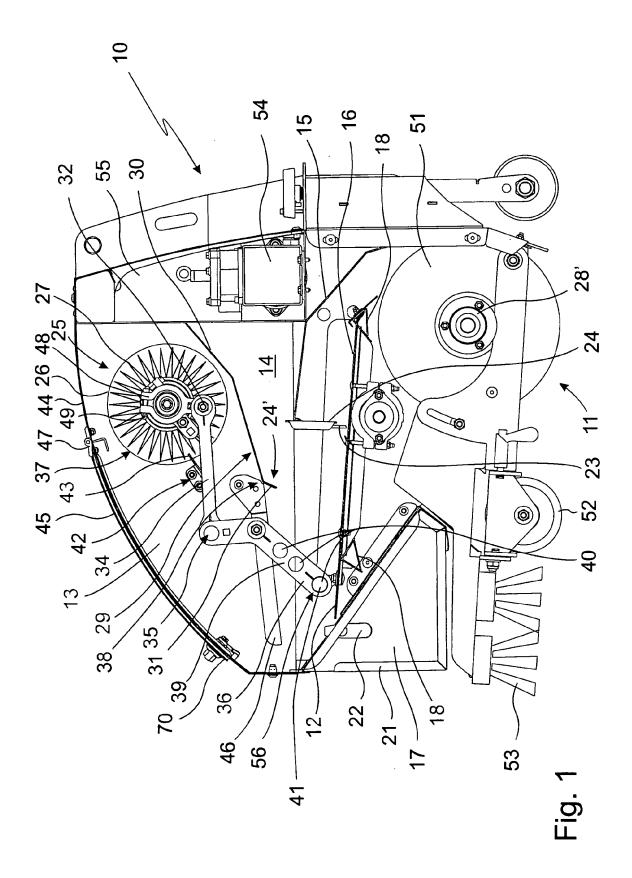
30

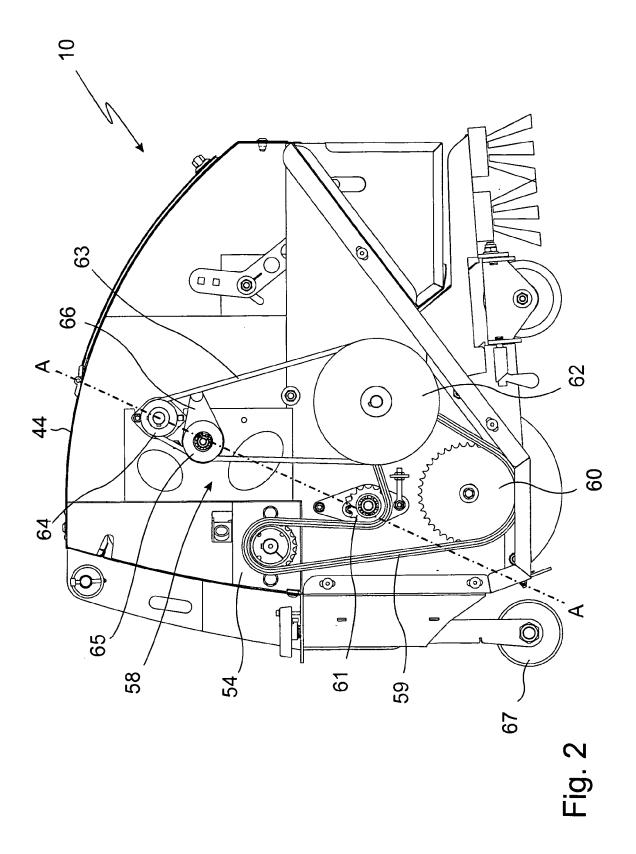
35

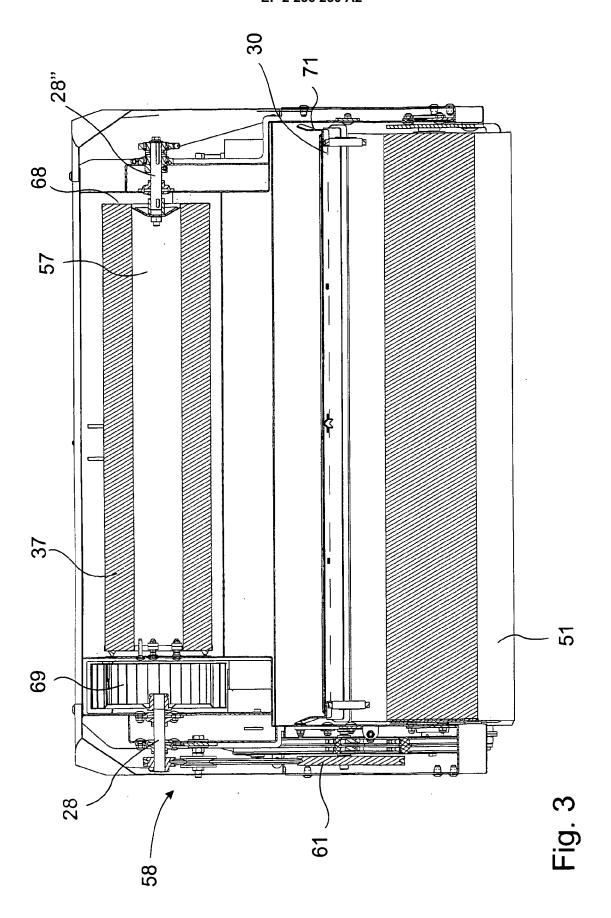
40

45

50


sehen ist und/oder das Abstreifelement (42) zwischen zwei Lamellen (27) des rotierend ausgebildeten Filterelements (26) eingreift, die in Rotationsrichtung untere Lamelle (27) von der in Rotationsrichtung oberen Lamelle (27) im Zusammenwirken mit der Rotation des Filterelements (26) abspreizt und sich die abgespreizte Lamelle (27) nach weitergehender Rotation des Filterelements (26) von dem Abstreifelement (42) löst und in Rotationsrichtung schnellt, wobei durch eine Schnellbewegung der Lamelle (27) ein Ablösen von auf der Lamelle (27) gelagerten Partikeln oder dem Filterkuchen erfolgt.


- 7. Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Druck- und/oder Vibrationsbeaufschlagung des Filterelements (26) vor, während oder nach dem Betrieb der fahrbaren Vorrichtung (10) erfolgt und/oder im Innern (14) eine quer zur Fahrtrichtung der fahrbaren Vorrichtung (10) ausgerichtete, im Absaugluftstrom angeordnete oder in den Absaugluftstrom ragende Platte, insbesondere ein Leitblech (15) oder Schiene mit einer Prallfläche (24) für wenigstens einen Teil der abgesaugten Partikel und/oder einer von der Prallfläche (24) abgewandten Leitfläche (29) für aus dem Filterelement (26) fallende und/oder geschleuderte Partikel oder des Filterkuchens vorgesehen ist.
- 8. Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein in oder an der fahrbaren Vorrichtung (10) angeordnetes Silo (17) zur Aufnahme des Füllgutes, der Verschmutzungen und/oder der Partikel vorgesehen ist und/oder ein unterhalb des Filterelements (26) angeordnetes, sich im Wesentlichen quer zur Fahrtrichtung der fahrbaren Vorrichtung (10) im Innern (14) der fahrbaren Vorrichtung (10) erstreckendes flächig ausgebildetes Blech (30) für sich vom Filterelement (26) lösende, aus dem Filterelement (26) oder dem Filtermedium ausgeblasene und/oder durch das Abstreifelement (42) vom Filterelement (26) gelöste oder abgeschlagene Partikel und/oder den Filterkuchen bzw. Teile davon vorgesehen ist und/oder das Blech (30) erhöhte oder nach oben gebogene Seitenkanten und/ oder eine auf das Silo (17) hin ausgerichtete Neigung aufweist und die auf das Blech (30) fallenden oder geschleuderten Partikel in das Silo (17) fördert und/oder die Seitenkanten (71) des Bleches (30) aufeinander zu verlaufend ausgerichtet sind, wobei sich die Fläche des Bleches (30) verjüngt.
- Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abtragvorrichtung (11) eine zweite Rotationsachse (28') zur Aufnahme einer Walze (51), insbesondere einer Bürstenwalze auf-


weist und/oder ein mit einem Kopplungspunkt (33, 35) exzentrisch mit der ersten oder zweiten Rotationsachse (28, 28', 28") verbundener und mit einem weiteren Kopplungspunkt (33, 35) an einem im Innern (14) der fahrbaren Vorrichtung (10) vorgesehenen Sieb, (16) an dem Filterelement (26) und/oder an dem Blech (30) angeordneter im wesentlichen Lförmiger Umlenkhebel (36) vorgesehen ist, der in oder gegen die Rotationsrichtung verschwenkbar in der fahrbaren Vorrichtung (10) gelagert ist, wobei der Umlenkhebel (36) eine Vibrationsbeaufschlagung des Siebes (16), des Bleches (30) und/oder des Filterelements (26) vermittelt.

- 10. Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Kopplungspunkt (33, 35) über eine Kupplungsstange (34) mit der ersten oder zweiten Rotationsachse (28, 28', 28") verbunden ist und/oder der Umlenkhebel (36) an einer Seitenkante (71) des Bleches (30) drehbar oder schwenkbar gelagert ist und/oder ein Schwingantrieb, insbesondere ein Unwuchtmotor für das Sieb (16), das Filterelement (26) und/oder das Blech (30) vorgesehen ist und/oder ein Antriebsaggregat (54) für die erste und/oder zweite Rotationsachse (28, 28', 28") und/oder den Schwingantrieb, die Abtragvorrichtung und/oder die Absaugvorrichtung vorgesehen ist.
- 11. Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zum Übertragen von Antriebsenergie auf die erste und/oder zweite Rotationsachse (28, 28', 28"), die Abtragvorrichtung, die Absaugvorrichtung und/oder den Schwingantrieb ein Getriebe (58) vorgesehen ist und/oder das Getriebe (58) als Zahnrad-, Ketten- oder Riemengetriebe ausgebildet ist und/oder das Getriebe (58) in Fahrtrichtung seitlich an oder in der fahrbaren Vorrichtung (10) angeordnet ist und/oder das Antriebsaggregat (54) als Elektro- oder Verbrennungsmotor ausgebildet ist und/oder an eine Fahrbewegung der fahrbaren Vorrichtung (10) gekoppelt ist.
- 12. Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Antriebseinheit mit einem Fahrantrieb der fahrbaren Vorrichtung (10) gekoppelt ist und/oder die fahrbare Vorrichtung (10) selbstfahrend oder als Anhängevorrichtung ausgebildet ist und/oder das Sieb (16) in oder gegen die Fahrrichtung geneigt oder horizontal ausgerichtet angeordnet ist und/oder das Sieb (16) lösbar oder fest in der fahrbaren Vorrichtung (10) angeordnet ist und/oder eine variabel einstellbare Lochweite aufweist, wobei die Lochweite manuell oder automatisch einstellbar ist.

- 13. Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abtragvorrichtung (11) und/oder die Walze (51) höhenverstellbar angeordnet ist und/ oder die fahrbare Vorrichtung (10) wenigstens ein insbesondere schwenkbares Abstützrad (52) aufweist und/oder wenigstens ein feststehender oder beweglicher Besen (53) zum Einkehren von durch das Sieb (16) fallendem Füllgut vorgesehen ist, wobei der Besen (53) der Walze (51) in Fahrtrichtung nachgeordnet an der fahrbaren Vorrichtung (10) oder der Abtragsvorrichtung (11) angeordnet ist.
- 14. Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an einer Deckfläche (44) und/oder an wenigstens einer Seitenfläche der fahrbaren Vorrichtung (10) eine Öffnung zum Ausleiten des Absaugluftstroms vorgesehen ist und/oder die Deckfläche (44) und/oder wenigstens eine Seitenfläche wenigstens im Bereich des Filterelementes (26) ganz oder teilweise von der fahrbaren Vorrichtung (10) abnehmbar ausgebildet ist und/oder sich das Filterelement (26) über die gesamte Breite der fahrbaren Vorrichtung (10) oder über einen Teil davon erstreckt.
- 15. Fahrbare Vorrichtung nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Filterelement (26) einen rotierenden und einen feststehenden Abschnitt aufweist und/oder ein Leitkanal (69) für den Absaugluftstrom vorgesehen ist und/oder das Filterelement (26) als insbesondere zerlegbare oder als Ganzes entnehmbare Kapsel oder Kartusche (68) ausgebildet ist und/oder das Filterelement (26) automatisch oder manuell im Absaugluftstrom verschwenkbar oder in den Absaugluftstrom ein-schwenkbar ausgebildet ist.

