(19)
(11) EP 2 261 462 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
15.12.2010 Bulletin 2010/50

(21) Application number: 09161706.8

(22) Date of filing: 02.06.2009
(51) International Patent Classification (IPC): 
F01D 5/14(2006.01)
F04D 29/68(2006.01)
(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR
Designated Extension States:
AL BA RS

(71) Applicant: Alstom Technology Ltd
5400 Baden (CH)

(72) Inventors:
  • Megerle, Benjamin
    5400 Baden (CH)
  • Mokulys, Thomas
    5303 Würenlingen (CH)
  • Havakechian, Said
    5400 Baden (CH)

   


(54) End wall structure for a turbine stage


(57) The invention relates to a turbine stage comprising a circumferentially distributed row of adjacent airfoils between which there is a flow passage (18). The passage (18) has a surface, which in its unmodified form defines a datum (DR). A channel (30), located in the passage (18), extends in the direction of primary flow lines (PFL) from a point towards a leading edge line (20) to a point towards a trailing edge line (22). The channel (30) consists of two channel walls (32) angled relative to a datum (DR). Relative to the datum (DR), it has a low point (LP), two high points (HP), and a channel height (CH) measured between the low point (LP) and highest of the high points (HP). The channel (30) provides a means to reduce secondary flow losses.




Description

TECHNICAL FIELD



[0001] The disclosure relates generally to axial gas and steam turbines in which there are one or more rows of generally radially extending airfoils of non rotating vanes and rotating blades. More specifically the disclosure relates to configurations of end walls joined to radial ends of airfoils with improved aerodynamic behaviour.

[0002] Within this specification the term "pitchwise" is used to mean a circumferential direction between two adjacent airfoils or vanes or blades. Further, the term "end wall" is broadly defined as any surface at a radial end of an airfoil and from which the airfoil radially extends. End walls thus include but are not limited to airfoil platforms and shrouds.

BACKGROUND INFORMATION



[0003] The ideal flow through a turbine is termed the "primary flow" wherein the difference between the primary flow and the actual flow is termed the "secondary flow". The secondary flow represents, to a large extent, a loss that has a major impact on axial turbine efficiency.

[0004] The development of secondary flow in a turbine cascade starts with the end wall boundary layer interacting with the airfoil's leading edge. As the flow impinges on the leading edge of the airfoil, the radial variation in the stagnation pressure creates flow along the stagnation line of the airfoil towards the end wall. When this flow reaches the end wall, it travels locally upstream along the end wall. Where the incoming boundary layer meets this flow, separation occurs and a so-called horseshoe vortex is formed around the leading edge of the airfoil. The strength of this vortex is dependent on the thickness of the leading edge and the variation of the radial static pressure gradient along the leading edge, which is, among other things linked to the end wall boundary layer thickness and quality.

[0005] The pressure side leg of the vortex is influenced by the airfoil-to-airfoil pressure gradient as it enters the flow passage and travels towards the suction side. The resulting cross-passage flow along the end wall imposes vortex motion in the cascade. These vortices may commonly be referred to as passage vortices that include horseshoe vortices in their core. These vortices can be present in any flow channel with a curved shape and a boundary layer. The strength of this secondary flow in a cascade is dependent on a number of other factors including the amount of turning and the shape of the incoming boundary layer.

[0006] The end wall vortex generation negatively affects turbine efficiency, contributing up to 35% of the total losses for a typical high-pressure turbine. The key cause for the additional loss generation is the passage vortex that grows downstream of the cascade. The kinetic energy stored in this vortex is lost for further use as it is mostly mixed out downstream. The passage vortex can be easily detected as a high loss core existing away from the suction surface close to the centre of the passage vortex.

[0007] Besides loss generation, secondary flow perturbs the exit flow distribution downstream of the cascade. As the low momentum boundary layer fluid is deflected substantially more than the main flow close to the end wall it sees the same blade to blade pressure gradient but has less impulse and so causes overturning of the exit flow close to the end wall. Further away from the end wall, the rotation of the passage vortex comes into play and so less turning occurs, which, due to the passage vortex driving the fluid in an opposite direction, results in so called under turning.

[0008] The inhomogeneous flow field after the cascade is responsible for additional losses in the following cascade. This is partly due to the overturned flow close to the end wall leading to more secondary flow in the next blade row.

[0009] As the passage vortex lifts off the end wall and grows in size, the flow channel is increasingly influenced by secondary flow. It is known to be beneficial if the passage vortex is closer to the end wall as this increases the region of undisturbed primary flow. One method of inferring this is through the measurement of peak radial helicity.

[0010] Airfoil design has evolved to reduce secondary flow by optimising the three-dimensional shape of airfoils and more recently by contouring of the end walls. This technology, referred to as Tangential End Wall Contouring (TEWC), involves adjusting end wall surfaces to reduce secondary flow, resulting, for example, in a modified airfoil face pressure profile.

[0011] US patent application US 2007/0059177 A1 describes such an end wall nonaxisymmetric profile. This solution comprises forming circumferentially extending sinusoids at a number of axial positions wherein corresponding points on successive sinusoids are joined by spline curves so that the curvature of the end wall is smooth.

[0012] Another alternative solution is to provide the end wall with a fence that lifts the vortex up off the end wall and into the main flow, which has the effect of washing out the vortices. The fence, of which an example is described in ASME Turbo Expo 2000 " Secondary flow measurements in a turbine passage with end wall flow modification " 2000-GT-0212 has a leading edge at the centre of a line connecting the leading edges of the pressure and suction side airfoils. While such walls can reduce aerodynamic losses practical problems can arise due to the need to cool the fence.

[0013] An alternative method of reducing the affects of secondary flow is to use nonaxisymmetric profiling to reduce cross flow instead of adjusting the pressure profile. EP 1 995 410 A1, for example, provides a solution in which an end wall of a turbine stage cascade includes a first projection having a ridge extending downward from the trailing edge of a turbine blade toward the downstream side, gently at the beginning and steeply at the end, and along the suction side of an adjacent turbine blade. Such an arrangement is however limited by the fact that downstream axial space is required and therefore such a solution may not always be applicable.

SUMMARY



[0014] The disclosure is directed towards the problem, in a turbine, of over and under turning capability and/or reduced helicity losses as a result of secondary flows caused by cross flow that flows in the pitchwise direction from a pressure face of an airfoil towards the suction face of an adjacent airfoil across an end wall surface.

[0015] The invention attempts to address this problem by means of the subject matter of the independent claim. Advantageous embodiments are given in the dependent claims.

[0016] An aspect of the invention is based on the principle of one or more adjacent channels formed in end walls in flow passages between adjacent airfoils. Each channel extends in the primary flow direction and may be preferably located adjacent airfoil pressure faces. The channels each have two angled walls, which in conjunction with the configuration and location of the channels, are configured to reduce the potential for secondary flow formation in the channels.

[0017] In an aspect there is provided a turbine stage comprising a circumferentially distributed row of adjacent airfoils each with a pressure face, a suction face and, one end wall, from which the airfoils radially extends or two end walls between which the airfoils extend. The turbine stage further has a flow passage defined by a region between a pressure face of a first airfoil, a suction face of an adjacent second airfoil, a leading edge line, define as a line extending between the lead edges of adjacent airfoils, and a trailing edge line, defined as a line extending between the trailing edges of adjacent airfoils. The flow passage has a surface, which in its unmodified form defines a datum. The turbine stage, in each flow passage has one or, two or more adjacent channels, adjacent a pressure face, that modify the surface and extend in the direction of primary flow lines from a point towards the leading edge line to a point towards the trailing edge line. Each channel consists of two channels walls angled relative to the datum that provide the channels with have a low point, two high points, and a channel height which is the radial distance between the low point and highest of the high points. The location of the channels adjacent the pressure face reduces the extent of influence of cross flow pitchwise across the flow passage so by reducing the influence of secondary flow. The closer the channel is to the pressure face the more pronounced this effect. In this way any negative effect on aerodynamic performance is more than offset by the benefit of reduced secondary cross flow.

[0018] In a further aspect, the high points of each channel do not extend above the datum, reducing the impact of the channels on primary flow thus reducing scraping losses. In one aspect the low point of each channel is substantially in the midpoint, pitchwise, between high points of each channel while in another aspect, the angle of the walls of each channel closer to the pressure face is less, relative to the datum, than channel walls closer to the suction face.

[0019] Preferably, the channel height, in the primary flow direction, increases to a maximum at a relative channel length, in the direction of primary flow lines, of between 0.35-0.55 at which point the channel height decreases. In the last fifth of the length of the channel this rate of decrease may be less. In this way the channel depth provides a balance between scraping losses, which change with the velocity profile in the flow passage, and cross flow presence.

[0020] In a further aspect the channel height of each successive adjacent channel, adjacent in the pitch wise direction extending from the pressure face to the suction face, remains the same or decreases. Preferably, the channel height of the channel adjacent the pressure face is at least twice that of the channel furthest, in the pitch wise direction, from the pressure face. In this way channels are configured to reduce cross flow where its affect is strongest i.e. adjacent the pressure face.

[0021] In a further aspect, in each flow passage, the point of extension of each adjacent channel is the same or further from the leading edge line the closer the channel is to the suction face thus defining an extended region, adjacent the suction face, which is free of channels. The extended region can be generally defined as a region, that in operation, is configured in a region that is essentially free of secondary flow vortices caused by cross flow originating from the pressure face.

[0022] Other aspects and advantages will become apparent from the following description, taken in connection with the accompanying drawings wherein by way of illustration and example, an embodiment of the invention is disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS



[0023] By way of example, an embodiment of the present disclosure is described more fully hereinafter with reference to the accompanying drawings, in which:

Figure 1 is a top view of two adjacent airfoils of a turbine stage;

Figure 2 is a perspective view of the adjacent airfoils of Fig. 1;

Figure 3 is a perspective view of the two adjacent airfoils of a turbine stage with exemplary channels of the invention in end walls;

Figure 4 is a pitchwise sectional view of a turbine stage showing adjacent airfoils and an end wall of an exemplary embodiment;

Figures 5 and 6 are expanded views of channel wall sections, V and VI of Fig. 4 respectively;

Figure 7 is a pitchwise profile of a channel of Fig. 3 or 4;

Figure 8 is a height profile of a channel of Fig. 3 or 4;

Figure 9 is a perspective view of an exemplary embodiment with an extended region;

Figure 10 is a top view of Fig. 9 showing secondary flow lines; and

Figures 11-14 are exemplary performance graphs of exemplary embodiments.


DETAILED DESCRIPTION



[0024] Preferred embodiments of the present disclosure are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the disclosure. It may be evident, however, that the disclosure may be practiced without these specific details.

[0025] FIGs. 1 and 2 show top and perspective views respectively of two adjacent airfoils 10 of a turbine stage, in which airfoils 10 are adjacently and circumferentially distributed in rows. Each airfoil 10 is integrally joined at one or both radial ends to corresponding end walls 12, partially shown as grid lines. The area between the pressure face 14 and suction face 16 of adjacent airfoils 10 defines a flow passage 18 further bound by a region extending between a leading edge line 20, define as a line extending between the lead edges 21 of adjacent airfoils 10, and a trailing edge line 22, defined as a line extending between the trailing edge 23 of adjacent airfoils 10. The flow passage 18 has a surface common with a surface of the end walls 12. In its unmodified form the surface defines a datum DR, shown in FIG. 4, wherein "unmodified form" means the contour the passage surface would take if the surfaces were not changed, for example, by TEWCs. The grid lines in FIGs. 1 and 2 representing an unmodified surface comprise of, primary flow lines PFL that represent ideal lines of flow unaffected by secondary flow, and, pitch wise sections A-D.

[0026] FIG. 3 shows an exemplary embodiment applied to the turbine stage shown in FIGs. 1 and 2. It comprises channels 30 formed in the passage surfaces of end walls 12, at one or both radial end of adjacent airfoils 10. The channels 30 extend in the direction of primary flow lines PFL and thus are substantially parallel to each other. The extension is from a point towards the leading edge line 20 to a point towards the trailing edge line 22. Each channel 30 consists of two channel walls 32 that angle relative to the datum DR, shown in more details in FIGs 5 and 6, and join to define a low point LP of the channel 30 relative to the datum DR.

[0027] FIG. 4 shows an exemplary cross section through a pitch wise section A-D extending between the pressure face 14 of one airfoil 10 to the suction face 16 of another adjacent airfoil 10. Shown are channels 30 formed in end walls 12 between the adjacent airfoils 10. Each channel 30 has two channel walls 32, one closer to the pressure face 14 and the other closer to the suction face 16. The channel height CH is the radial height, that is the height measured perpendicular to the datum DR, between the channel's low points LP and the highest high point HP. In this specification "low" and " high" are relative to the datum wherein "low" refers to a negative extension from the datum DR into the end wall 12, while "high" refers to a positive extension in the direction away from the end wall 12. The indication is independent of absolute location. That is, even though the high point HP extends in a direction away from the end wall 12, the high point HP, as shown in FIG. 7, may or may not extend above the height of the datum DR

[0028] The "channel wall angle" e, shown in FIGs. 5 and 6, is the angle of a nominal channel wall 33 relative to the datum DR wherein the nominal channel wall 33, without curvature, approximates the actual channel wall 32. For example FIG. 5, showing an expanded view of V of FIG. 4, shows the channel wall angle e of a bowed channel wall 32. The wall angle e is taken to be the angle of the nominal channel wall 33, which is the average angle of the nominal channel wall 32. In another example shown in FIG. 6, which is an expanded view of VI of FIG. 4, a channel wall 32 is shown with a rounded-off end section that is otherwise straight. In this case the nominal channel wall 33 corresponds to the channel wall 32 straight portion, disregarding the rounded end section.

[0029] The purpose of the channels 30 is to reduce cross flow and so reduce secondary flow and resulting losses. The preferred channel height CH and preferred number of channels 30 is dependent on the degree of cross flow, estimatable using known techniques, described, for example in Harvey, N. W. et al, 2000 " Nonaxisymmetric Turbine end Wall Design: Part I "ASME J. Turbomach., 122, pp. 278-285 and, Hartland, J. C. et al, 2000 " Nonaxisymmetric Turbine End wall Design: Part II "ASME 122 J. Turbomach, 122, pp. 286-293. With increasing channel height CH and channel 32 number passage surface area increases, which, in the absences of secondary flow, results in increased scraping losses. Where the effect of scraping losses may be higher than the beneficial effect of channels 32, it may be advantageous to minimise both channel height CH and/or number. An embodiment in its simplest form suitable for turbine stages with minimal cross flow therefore comprises one channel 30 located adjacent the pressure surface 14, which is the region with the most significant cross flow.

[0030] The channel depth CH, shown in detail in FIG 4, is a function of the number of channels 30 and the degree of cross flow. If the channel depth CH is too great further secondary flow can be created resulting in additional losses. If the channel depth CH is too low the ability of the channel to limit cross flow will be limited. A further consideration is channel wall angle Θ. If too steep, additional secondary flow may be created. Channel design is therefore a compromise between at least these factors and so is strongly dependent on airfoil design and operation conditions. In consideration of these factors an optimum design can be derived by simulation using known methods.

[0031] In an exemplary embodiment, the low point LP of each channel 30 is at the pitchwise midpoint between the high points HP of the channel as shown in FIG. 4.

[0032] In an exemplary embodiment, the channel height CH of each successive adjacent channel 30 in the pitchwise direction from the pressure face 14 to the suction face 16 remains the same or decreases. In a further exemplary embodiment the channel height CH of the channel 30 adjacent the pressure face 14 is at least twice that of the channel 30 furthest from the pressure face 14, as can be seen in FIG. 4. As cross flow is typically greatest towards the pressure face 14 the benefit of channels 30 decreases towards the suction face 16.

[0033] In another exemplary embodiment, the low point is closer to the suction face 16, represented as the pitchwise position "1" in FIG. 7 than the pressure face 14, which is represented as "0". This typically results in the channel wall angle e of the channel wall 32 closer the suction face 16 being greater than the channel wall angle e of the channel wall 32 closer the pressure face 14. In this way a smooth transition into the channel 30 is provided for cross flow originating from the pressure face 14, which minimises the formation of additional losses, while cross flow suppression can be promoted by the steeper channel wall angle e of the channel wall 32 located closer to the suction face 16. The channel wall angle e of the channel wall 32 located closer to the suction face 16 is typically less than less than 90 degrees as an angle approaching 90 degrees or greater may create additional vortices resulting in additional losses.

[0034] In an exemplary embodiment, the channel walls 32 are configured such that the channels 20 do not extend above the datum DR, as shown in FIG. 7 wherein "0" is the channel height CH at the datum DR. By this means, it was found that scraping losses of the primary flow can be further reduced while still maintaining good cross flow suppression performance.

[0035] Through a turbine cascade the flow is accelerated significantly. Scraping losses, which have a squared relationship with velocity, are of greatest significance in the region of highest velocity. The highest velocity may correspond to a region where the separation distance measured in the pitchwise direction, between adjacent airfoils 10, is smallest. In such a region, overall efficiency may be optimised if the channel height CH is limited so as to be lower than would optimally be designed in view only of predicted cross flow. Therefore, in an exemplary embodiment, in the direction of primary flow lines PFL extending from towards the leading edge line 20 to the trailing edge line 20, the channel height initially increases to a maximum at a relative channel length of between 0.35-0.55 after which is decreases. In a further exemplary embodiment, the decrease is not as pronounced in the last fifth of the relative channel length. The relative channel length is the length point along a channel 30 measured relative to the total length of the channel 30. FIG. 8 shows an example of one configuration of these embodiments in which it was found that for one set of operating conditions not only can scraping losses be reduced but also over and under turning performance can be slightly improved without detrimentally affecting helicity.

[0036] FIG. 9 shows an exemplary embodiment where the channels 30 towards the suction face 16 starts further from the leading edge line 20 than channels 30 closer to the pressure face 14. That is, their point of extension from the leading edge line 20 is further. This results in the formation of an extended region ER adjacent the suction face 16, towards the leading edge line 20, which is free of channels 30. The extended region ER may be bounded by a midpoint on the leading edge line 20, a point along the suction face 16 and a point on the suction face 16 at which the suction face 16 and leading edge line 20 join, as shown in both FIGs. 9 and 10. Such an arrangement is beneficial when the flow across the extended region ER is essential free of secondary flow, as shown in FIG. 10, and as such the loss in this region primarily comprises scraping losses. In a further exemplary embodiment, the extended region ER is the region adjacent the suction face 16 towards the leading edge line 20 that is essential free of secondary flow as shown by the flow lines FL in FIG. 10. As the size and shape of the extended region ER is dependent not only on turbine stage configuration but also operating conditions the optimum location of the extended region ER is unique for each turbine configuration. Preferably therefore the extended region ER is defined by a region derived and determined by known flow simulation methods.

[0037] FIGs. 11-14 shows the performance that can be achieved with a combination of the various exemplary embodiments. Improvements include over and under turning, shown in FIGs. 11 and 12 for both a stator and a rotor, and helicity, shown in FIGs. 13 and 14 also for a stator and rotor.

[0038] Although the disclosure has been herein shown and described in what is conceived to be the most practical exemplary embodiment, it will be appreciated by those skilled in the art that the present invention can be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restricted. The scope of the invention is indicated by the appended claims rather that the foregoing description and all changes that come within the meaning and range and equivalences thereof are intended to be embraced therein.

REFERENCE NUMBERS



[0039] 
10
Airfoil
12
End wall
14
Pressure face
16
Suction face
18
Flow passage
20
Leading edge line
21
Leading edge
22
Trailing edge line
23
Trailing edge
30
Channel
32
Channel wall
33
Nominal channel wall
A-D
Pitchwise sections
CH
Channel height
DR
Datum
ER
Extended region
FL
Flow lines
PFL
Primary flow lines
LP
Low point (of a channel)
HP
High point (of a channel)
RD
Radial direction
e
Channel wall angle



Claims

1. A turbine stage comprising:

a circumferentially distributed row of adjacent airfoils (10) each with:

a pressure face (14);

a suction face 16); and either

one end wall, from which the airfoils radially extend or two end walls

between which the airfoils (10) extends,

the turbine stage further comprising:

a flow passage (18) defined by a region between:

a pressure face (14) of a first airfoil (10);

a suction face (16) of an adjacent second airfoil (10);

a leading edge line (20), defined as a line extending between the lead edges (21) of adjacent airfoils (10), and

a trailing edge line (22), defined as a line extending between the trailing

edge (23) of adjacent airfoils (10),

wherein the flow passage (18) has a surface, which in its unmodified form defines a datum (DR), the turbine stage characterised by:

a channel (30), in the flow passage (18), adjacent the pressure face (14) and extending in the direction of primary flow lines (PFL from a point towards the leading edge line (20) to a point towards the trailing edge line (22) that modifies the surface, wherein the channel (30) modifies the surface, the channel (30) also consists of two channels walls (32) angled relative to the datum (DR) to define, as referenced to the datum (DR), a low point (LP), two high points (HP), and a channel height (CH) which is the radial distance between the low point (LP) and highest of the high points (HP).


 
2. The turbine stage of claim 1 wherein each flow passage (18) includes at least two adjacent channels (30)
 
3. The turbine stage of claim 1 or 2 wherein the high points (HP) of the or each channel (30) does not extend above the datum (DR).
 
4. The turbine stage of any one of claims 1 to 3 wherein the low point (LP) of the or each channel (30) in each flow passage (18) is substantially in the midpoint, in the pitchwise direction, between the high points (HP) of each channel (30).
 
5. The turbine stage of any one of claims 1 to 4, wherein in each flow passage (18), the angle (Θ) of channel wall (32) of the or each channel (30) closer to the pressure face (14) is less, relative to the datum (DR) than the angle (Θ) of the or each channel wall (32) closer to the suction face (16).
 
6. The turbine stage of any one of claims 1 to 5 wherein in each flow passage (18), channel height (CH) in the primary flow direction increases to a maximum at a relative channel length measured in the direction of primary flow lines (PFL) of between 0.35-0.55 at which point the channel height (CH) decreases.
 
7. The turbine stage of claim 2 or any one of claims 3 to 6 as they relate to claim 2 wherein in the pitchwise direction from the pressure face (14) to the suction face (16) the channel height (CH) of each successive adjacent channel (30), remains the same or decreases.
 
8. The turbine stage of claim 7 wherein, in each flow passage (18), the channel height (CH) of the channel (30) adjacent the pressure face (14) is at least twice that of the channel (30) furthest, in the pitchwise direction, from the pressure face (14).
 
9. The turbine stage of claim 2 or any one of claims 3 to 8 as they relate to claim 2 wherein, in each flow passage (18), in the pitchwise direction from the pressure face (14) to the suction face (16) each successive adjacent channel (30) extends from a point that is the same or further from the leading edge line (20) so by forming an extended region (ER) adjacent the suction face (16) that is free of channels (30).
 
10. The turbine stage of claim 9 wherein the extended region (ER) is a region that in operation encompasses a region essentially free of secondary flow vortices caused by cross flow originating from the pressure face (14).
 




Drawing






















Search report










Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description




Non-patent literature cited in the description