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(54) Method for modelling and calculation of the uncertainty of a pose of an object in space

(57) The invention relates to a method for modelling
and calculation of the uncertainty of a pose of an object
in space, wherein pose is a combination of translation
and orientation, comprising the following steps:
- describing of a three-dimensional orientation of the ob-
ject by unit quaternions,
- inducing a probability density function on the unit
quaternions by central projection of a Gaussian distribu-
tion on a tangent space to the sphere of the unit
quaternions,
- forming of base elements describing a correlation of

position and orientation by generating a joint probability
on a product space of said tangent space and a space
of translations, and
- combining said base elements to mixture probability
distributions.

The memory space requirements of the inventive
method to model the possible poses are significantly low-
er than those of a sample based description. The inven-
tive method is usable mobile robots, CT imaging, logistics
equipment and mineralogical investigations and explo-
rations.
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Description

[0001] The invention relates to a method for modelling and calculation of the uncertainty of a pose of an object in space.
[0002] Basis for the invention is the problem of modeling the position and orientation (pose) of an object or some other
physical phenomenon in the three-dimensional space. The technical use cases for such modeling methods are manifold:

- environment recognition for technical systems, e.g. intelligent robots,
- navigation of mobile systems, like autonomous robots, in a similar way for terrestrial vehicles, aircrafts, ships or

spacecrafts,
- description of electrical or magnetic fields, e.g. the magnetic field of the earth, and
- description of the structure of (partly) crystalline materials

[0003] A particular use case would be a robot, which tries to determine the pose of an object. It makes several
independent localization attempts (e.g. with different methods or under different conditions) and measures the uncertainty
of each one according to a known measurement model. The resulting pose and uncertainty should reflect all independent
localization attempts.
[0004] A concrete use case would be a robot, which has to grab an object. To decrease execution time, it uses a first
localization and a known uncertainty resulting from its own movement to get an estimate of a new relative uncertainty
resulting from its own movement for a faster second localization attempt (e.g. using region of interest) and as a basis
for data fusion.
[0005] The description of position and orientation is comparatively easy as they are completely known. It becomes
more difficult if position and orientation are only known up to some uncertainty, i.e. if only some probability density
function of position and orientation can be given. The joint information of position and orientation will be named by the
term "pose" in the following.
[0006] This is e.g. the case if by some measurement initially only very insufficient information concerning the pose
can be obtained. For example, if an edge of a cuboid object is located in an image, there are many possible poses of
the object that are compatible with this sensor measurement. In order to register this information in the system and to
be able to process it later on, a suitable description of these possible poses is required.
[0007] Especially, it is necessary to be able to model the correlation between position and orientation in the set of
possible poses.
[0008] As a basic tool in robotic perception, probability density functions of 6-dimensional (6D) poses (combinations
of position and orientation) need to be represented. In order to be able to represent and process weak information from
imperfect sensors, widely spread densities need to be covered by the representation and the inference mechanisms.
The more critical part in the representation of a rigid transform is the rotation. The following requirements concerning
the parameterization of the rotation are contradictory, but a design goal is to satisfy them as well as possible:

- Unique: There should be only one representation for each orientation.
- Minimal: The rotation should be represented with few parameters.
- Composable: There should be an easy way to derive the parameters of the composed rotation from the parameters

of two rotations in the composition.
- Smooth: The rotation should be an at least continuous, or better still a differentiable function of the parameters.
- Distance and area preserving: Properties like areas or distances in the parameter space should be preserved under

rigid transform. This is important when we deal with probability density functions over the rotations or transforms.

[0009] The formalism for a probability density function (pdf) of the 6D poses should satisfy the following properties:

- Coordinate System Independent: A coordinate change should only change the arguments to the pdf, not the structure
or the parameters of the pdf.

- Information Fusion: The formalism supports the fusion of two probability density information (for example maximum
likelihood estimation).

- Information Propagation: The formalism supports the propagation of uncertain information (i.e. a pose estimate)
through an uncertain transform.

- The representation of the pdf uses not too many parameters, much fewer than for example a particle set.

[0010] Since each position and orientation with regard to a given coordinate system is the result of a translation and
a rotation. Position and Translation can be and will be used synonymously in the following, as well as orientation and
rotation. Also, pose and (rigid) transform are used synonymously.
[0011] There are various approaches to the parametrization of rigid transforms and corresponding probability density
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functions. None of them fulfils all requirements listed above.
[0012] The representation of rigid transforms, and especially of orientation, in 3D is a central issue in a variety disciplines
of arts, science and engineering, and contributions from various disciplines are available. The most popular represen-
tations of a 3D rotation are rotation matrix, Euler angles, Rodrigues vector and unit quaternions. For rotation matrices,
renormalization is difficult, Euler angles are not invariant under transforms and have singularities, and Rodrigues vectors
do not allow for an easy composition algorithm.
[0013] Stuelpnagel, J.: "On the Parametrization of the Three-Dimensional Rotation Group", SIAM Review, Vol. 6, No.
4, pp. 422-430, 1964, points out that unit quaternions are a suitable representation of rotations in 3D with few parameters,
but does not provide probability distributions.
[0014] Choe, S.B.: "Statistical Analysis of Orientation Trajectories via Quaternions with Applications to Human Motion",
PhD Dissertation, University of Michigan, 2006, represents the probability distribution of rotations via a projected Gaussian
on a tangent space. However, he only deals with concentrated distributions, and he does not take translations into account.
[0015] Goddard, J.S.: "Pose and Motion Estimation from Vision using Dual Quaternion-based Extended Kalman
Filtering", PhD Dissertation, University of Tennessee, Knoxville 1997, and Abidi, M.A., Goddard J.S.: "Pose and Motion
Estimation from Vision using Dual Quaternion-based Extended Kalman Filtering", Proc. of SPIE Conf. on Three-Dimen-
sional Image Capture and Applications, Vol. 3313, pp. 189-200, San Jose, CA, January 1998, use dual quaternions for
motion tracking. They also capture the correlation between rotation and translation. The probability distribution over the
parameters of the state model is a uni-modal normal distribution. This is an appropriate model if the initial estimate is
sufficiently certain, and if the information that is to be fused to the estimate is sufficiently well focused. Dual quaternions
provide a closed form for the composition of rigid transforms, similar to the transform matrix in homogeneous coordinates
(see also Kavan, L. et al.: "Dual Quaternions for Rigid Transformation Blending", Technical Report, 2006).
[0016] Antone, M.E.: "Robust Camera Pose Recovery Using Stochastic Geometry", PhD Dissertation, Massachusetts
Institute of Technology, 2001, suggests to use the Bingham distribution in order to represent weak information. However,
he does not give a practical algorithm for fusion of information or propagation of uncertain information.
[0017] Also, Love, J.J.: "Bingham statistics", Encyclopedia of Geomagnetism and Paleomagnetism, 45-47, Springer,
Dordrecht, The Netherlands, pp. 45-47, 2007, states that the renormalization of the Bingham distribution is computa-
tionally expensive. Furthermore, it is not disclosed how the Bingham distribution for rotations could be extended to rigid
transforms.
[0018] Mardia, K.V. et al.: "Protein Bioinformatics and Mixtures of Bivariate von Mises Distributions for Angular Data",
Biometrics, Volume 63, Number 2, pp. 505-512, 2007, use a mixture of bivariate von Mises distributions. They fit the
mixture model to a data set using the expectation-maximization (EM) algorithm. This allows for modeling widely spread
distributions. However, they do not treat translations.
[0019] In general, the Jacobian is used to propagate the covariance matrix of a random variable through a non-linear
function. Kraft, E.: "A Quaternion-based Unscented Kalman Filter for Orientation Tracking", Proceedings of the Sixth
International Conference of Information Fusion, Vol. 1, pp. 47-54, 2003, use an unscented Kalman Filter.
[0020] It is an object of the present invention to specify a method for modelling and calculation of an uncertainty of
position and orientation (pose) of an object in space with reduced memory space requirements.
[0021] This object is achieved by a method in accordance with the claims.
[0022] Accordingly, the inventive method for modelling and calculation of the uncertainty of a pose of an object in
space, wherein pose is a combination of translation and orientation comprises the following steps:

- describing of a three-dimensional orientation of the object by unit quaternions,
- inducing a probability density function on the unit quaternions by central projection of a Gaussian distribution on a

tangent space to the sphere of the unit quaternions,
- forming of base elements describing a correlation of position and orientation by generating a joint probability on a

product space of said tangent space and a space of translations, and
- combining said base elements to mixture probability distributions.

[0023] The basic idea is to use unit quaternions to represent rotations in 3D. The base element of a probability
distribution over the rigid transforms is a Gaussian in the 6D tangent space, characterized by the tangent point to the
unit quaternions and the mean and the covariance of the distribution. Such a base element is called a Projected Gaussian.
Mixtures of Projected Gaussians are used to reach the necessary expressive power of the framework.
[0024] As a parameterization of the orientation part of a pose unit quaternions are used. They have some especially
advantageous probabilities:

- Every rotation is described by exactly two quaternions, which only differ by their sign (i.e. by a factor of -1) - which
is almost as good as unique.

- Only four scalar parameters are used, which is close to minimal. Locally, only the minimal number of three parameters
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is used.
- Concatenation of rotations (which is equivalent to describing one orientation with regard to another orientation) is

expressed by a multiplication of the corresponding quaternions.
- The representation is free of singularities.
- Distances and areas in the parameter space are maintained under rotation and translation.
- The unit sphere of quaternions lends itself easily to the definition of probability density functions.

[0025] As the base element of the set of possible probability density functions on the space of rotations a projected
Gaussian distribution is selected. This means a tangent point on the unit sphere of Quaternions is selected, then a
Gaussian distribution on the corresponding three-dimensional tangent space is chosen, and finally the value that is
taken from the tangent space to the sphere by means of a central projection is derived as the raw value of the probability
distribution function on the sphere. These raw values can be normalized so that their integral over the sphere gives 1.
[0026] The correlation between the orientation and the position in a pose is then modeled by using a Gaussian
distribution over the six-dimensional product space of the tangent space and three dimensional space describing the
position. The values in the covariance matrix off the 3x3 diagonal submatrices capture the correlation. By projecting the
orientation part of this six dimensional Gaussian to the unit quaternions, the base element for the mixture distributions
is obtained.
[0027] A single one of these base elements is well suited to describe the pose if its probability mass is more or less
concentrated at one point or, in other words, is already pretty well known. If a larger uncertainty needs to be represented,
the corresponding probability density function can be described by using a special linear combination of such base
elements, i.e. one where the coefficients all assume values between 0 and 1 (included) and add up to 1.
[0028] The memory space requirements of the inventive method to model the possible poses are significantly lower
than those of a sample based description. Information derived from various sources can be fused, i.e. from two mutually
independent, but imprecise pieces of information a more precise information can be derived. Furthermore, the uncer-
tainties can be propagated. For example, if uncertain information about the position and orientation of an object with
respect to a camera is described as well as uncertain information about the position and orientation of the camera with
respect to the world, the resulting uncertain information about the position and orientation of the object with respect to
the world can be derived in a fast and precise manner.
[0029] In a preferred embodiment a translation of an object is described by a three-dimensional vector. Alternatively
a translation can be described by a purely imaginary quaternion and the poses of an object are then represented as
dual quaternions. Dual quaternions are well qualified to obtain a concise algebraic description of rigid transforms and
their composition.
[0030] A preferred embodiment of the invention will now be described with reference to figure 1, which shows a
projection of a Gaussian distribution defined on a tangent space onto the sphere of unit quaternions for the example of
a 1-dimensional unit sphere in R2.
[0031] The quaternion as such is sufficiently well known to a person skilled in the art. In order to clarify the notation,
at first some basics are restated.
[0032] Let H be the quaternions, i.e. H = {q|q = a + ib + jc + kd}, where a is the real part of the quaternion, and the
vector v = (b,c,d) is the imaginary part. The imaginary units {i,j,k} have the properties i2 = j2 = k2 = ijk = -1, ij = k, jk = i,
ki = j. The quaternions can be identified with R4 via the coefficients, q = a + ib + jc + kd ∼ (a,b,c,d). The norm of a
quaternion is defined as iqi2 = a2+b2+c2+d2, the conjugate of a quaternion as q* = a - ib - jc - kd. With the above properties
of quaternions we have iqi2 = q*q*.
[0033] Analogously to the way that unit complex numbers z = cos(φ) + isin(φ) = eiφ represent rotations in 2D via the

formula prot = zp for any point p ∈ , unit quaternions represent rotations in 3D. A point (p1, p2, p3) in 3D is represented

as the purely imaginary quaternion p = ip1 + jp2 + kp3; a rotation around the unit 3D axis v by the rotation angle θ is

given by the quaternion q = cos(θ/2)+sin(θ/2)(iv1 + jv2 + kv3).

[0034] The rotated point is obtained as prot = q*p*q*. Clearly, q and -q represent the same rotation, so the set U of
unit quaternions is a double coverage of the special orthogonal group SO(3) of rotations in 3D.
[0035] The set U of unit quaternions is identified with the 3-dimensional unit sphere S3 in R4, and probability density
functions on U are defined by probability density functions on S3.
[0036] For a sufficiently expressive set of probability density functions on the rotations a mixture of base elements is
chosen. Each base element is obtained by projecting a Gaussian distribution defined on a tangent space onto the sphere
of unit quaternions. This technique is illustrated in Figure 1 for the example of a 1-dimensional unit sphere in R2. Note
that the peaks are lower due to renormalization.
[0037] Definition 1: Let S3 be the 3-dimensional unit sphere in R4 and r0 be an arbitrary point on S3. Further, let T(r0)

∼R3 be the 3-dimensional tangent space to the sphere S3 at the point r0, with a local coordinate system that has the
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point q0 as origin. Further, let (m,Σ) be a Gaussian distribution on TR(r0) and the corresponding probability density

function be pT. With the 2-valued central projection Πr0 : TR(r0) → S3 (Figure 1 illustrates how a probability density

function is induced on the unit sphere S1 ⊂ R2). A density function is given on S3 by

with C = ∫SpT(Πr0
-1(r))dr. The set of these pdfs ps is called set of Rotational

Projected Gaussians or RPG. The subset of pdfs for which m = 0 in the corresponding Gaussian on the tangent space
TR is denoted as RPG0. Note that this definition is not valid for points r⊥ ∈ S3 that are orthogonal to r0 . ps(r⊥) := 0 is the

continuous completion.
[0038] In practice, the RPG is represented by its tangent point and the basis of the tangent space, and by the parameters

of the corresponding Gaussian distribution: pS ∼ (TR(r0),m,Σ). Note that the same distribution can be represented

by RPGs with antipodal tangent points.
[0039] The pose uncertainty is modeled along the lines of the rotation uncertainty by including the translation.
[0040] Definition 2: Let SE(3) be the group of rigid transforms in C, the rotation represented by a unit quaternion or
equivalently a point on S3 and the translation by a vector in R3, SE(3) ∼ S3 3 R3. Let x = (r0,t) be a transform (or pose),

with rotation r0 and translation t. The tangent space to x is given by T(r0)=:=TR(r0)3R3∼R6, where TR(r0)∼R3 is the

tangent space to the rotation part. Let  (m,Σ) be a Gaussian distribution on TR(r0). With the 2-valued mapping

a density function is given on S33 R3 by

with C = ∫S33R
3 p(Π(r0,t)

-1(r,t))drdt. The set of these pdfs p is called set of Projected Gaussians or PG. The subset of

pdfs for which m1 = m2 = m3 = 0 in the corresponding Gaussian on the tangent space is referenced as PG0.

[0041] Note that S33 R3 is a double coverage of SE(3) in the same way that S3 is a double coverage of SO(3). Note

also that the origin is not shifted with respect to the position part of the pose. Again, in practice the PG is represented

by the tangent space as p ∼  (T(r0),m,Σ).

[0042] In analogy to the fusion of Gaussian pdfs pertaining to the same phenomenon, now the fusion of two PGs will
be described. The approach is to find a common tangent space that can represent both of the original PGs reasonably
well. A detailed analysis based on the approximation theory of the MPG (Mixtures of Projected Gaussians) framework
would exceed the scope of this paper - a valid heuristic for PG0 type distributions is to fuse PGs if the angle between
the tangent points is less than 15 ˚, or, equivalently, larger than 165˚. Below the fusion process for PG in general is
described, in particular PG0 can be used.

[0043] Let p1∼ (T(r0,1),m1,Σ1) and p1∼ (T(r0,2),m2,Σ2) be two pose pdfs with cos(r0,1·r0,2)≥0.966 (if cos(r0,1·r0,2)

≤-0.966, use -r0,2 instead of r0,2, the rest is unchanged).

1. Select
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as the first tangent point for a common tangent space T(r0,3). The basis of the space can be selected arbitrarily, in
particular a random basis can be used.

2. Restate p1 in T(r0,3): We define the transfer function f1,3 : T(r0,1)→T(r0,3) by f1,3(y):= Π(r0,3,t)-1(Π(r0,1,t)(y)) and the
Jacobian of this transfer function at the mean value m1 of the original distribution

The statistical moments of the distribution p1 represented in T(r0,3) are then estimated as m3,1 = f1,3(m1) and Σ3,1 =

J1,3 · Σ1 · J1,3
T, so p3,1∼  (T(r0,3),m3,1,Σ3,1).

3. Restate p1 in T(r0,3) as p3,2∼ (T(r0,3),m3,2,Σ3,2). Note that while this is technically well defined even for large

angle difference and wide spread distributions, it only makes sense for rather small angle differences and concen-
trated distributions. If wide distributions are needed, mixtures can be used, as described later.

4. Fuse p3,1 and p3,2. These pdfs are now stated in the same R6, so the fused pdf is p3∼ (T(r0.3),m3,,Σ3,), with

the parameters Σ3 = (Σ3,1
-1 + Σ3,2

-1)-1 and m3 = (Σ3,1 + Σ3,2)-1 · (Σ3,2 · m3,1 + Σ3,1 · m3,2). The resulting probability

density function on S3 3 R3 needs to be normalized according to definition 2.

5. Generally, m3 ≠ 0. Since it is advantageous to refrain to base elements of type PG0, p3 is restated according to
step 2, with the new tangent point r0,4 = Π(r0,3,t)(m3). Finally, the resulting base element is renormalized.

[0044] It is required to model uncertain transforms of uncertain poses, for example if a sensor is mounted on a mobile
robot and the pose estimate is needed in world coordinates. In the framework according the invention, transforms and
poses are represented as dual quaternions in order to calculate the probability distribution function of the composition
(see Goddard, J.S.: "Pose and Motion Estimation from Vision using Dual Quaternion-based Extended Kalman Filtering",
PhD Dissertation, University of Tennessee, Knoxville 1997, for more detail.
[0045] A dual quaternion q1 = q1,1 + eq1,2 is composed of two quaternions q1 and q2 and the dual number e, with
e·e=0. Summation of dual quaternions is per component,

The product of dual quaternions is

The conjugate of a dual quaternion is q* = q1
*+eq1

*.
Let qr be the rotation unit quaternion, and qt = [0,t1,t2,t3] be the quaternion derived from the translation components,
then the dual quaternion q = qr + e0.5qt*qr represents the transform. A point (p1,p2,p3) is embedded into the dual
quaternions as p = [1,0,0,0] + e[0,p1,p2,p3], and with this convention the rotation and translation is q * p * q*. The
composition of two transforms, or of a transform and a pose, is represented by the product of the dual quaternions,

The composition function g will be used to derive the covariance:
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where the yi are the 6-dimensional vectors on the corresponding tangent spaces, and g and gf are related via the central
projections Π(r0,1,t) and Π(r0,2,t).
[0046] This algebraic formulation justifies to set the tangent point of the composed base element to r0,3 = r0,2 * r0,1,
which for PG0 is also the mean value. For base elements in PG\PG0, the mean values in the describing pdfs need to
be projected to S3 3 R3, then propagated and projected back to the tangent space.
[0047] The Jacobian of gT is used to derive the covariance matrix of the base element describing the composition. With

[0048] As stated above, a precondition for the fusion PG base elements is that their tangent points are sufficiently
close to each other and that they are sufficiently well concentrated. For this reason, widely spread probability density
functions should not be modeled in a single base element.
[0049] Instead, a mixture of PG or PG0 base elements can be used. Thus let pi ∈ PG or pi ∈ PG0 be base elements,
then the set of Mixtures of Projected Gaussians MPG or Mixtures of Projected Gaussians with zero mean MPG0 is
defined as

The techniques of fusion and composition carry over to mixtures in a similar way they work for mixtures of Gaussians
(see Eidenberger,R. et al.: "Fast Parametric Viewpoint Estimation for Active Object Detection", Proceeding of the IEEE
International Conference on Multisensor of Fusion and Integration for Intelligent Systems (MF|2008), Seoul, Korea, 2008).
[0050] Let

The base elements of the fused mixture are obtained from fusing the base elements of the original mixtures:

with a normalizing constant The weights π1,i and π2,j are those of the prior mixture.

[0051] The plausibility is composed of two factors, λi,j = αi,j · δi,j. The factor says whether

the mixture elements can share a tangent space and thus probably pertain to the same cases in the mixture. The angle
distance is controlled by the factor a. Plausible results were obtained with a=5.
[0052] The factor δi,j = (m3,1,i - m3,2,j)·(Σ3,1,i + Σ3,2,j)-1·(m3,1,i - m3,2,j)T is the Mahalanobis distance of the mean values
and covariances transported to the common tangent space. It expresses that even if the mixture elements could share
a tangent space, they could still not be compatible.
[0053] The composition carries over in a similar manner.
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with In this case, there is no question of whether two base elements could apply at the

same time, since the two probability distributions are assumed to be independent, so the factor λi,j is omitted.

Note that in both cases the individually fused or combined resulting base elements are assumed to be renormalized.
[0054] The prsent invention presents a framework of Mixtures of Projected Gaussians that allows for modeling a large
variety of possible probability distribution functions of 6D poses. In contrast to a particle filter approach, much fewer
parameters are needed to describe the distribution. Like particle filter approaches, it allows for classical probabilistic
inference rules like the Bayes update.
[0055] The MPG representation of probability density functions can be part of an overall architecture for robotic
perception. In this larger framework particle filter representations can also be used. The probability density models can
be transformed between the different representation forms. In particular, rejection sampling can be used in order to
sample from MPG distributions to obtain particle sets, and a variant of the EM algorithm can be used in order to estimate
MPG parameters from sample sets.
[0056] The operations of fusion, propagation or multiplication of MPG distributions generally result in a large number
of mixture elements. However, many of them have practically zero weight, while others are approximately identical. The
approach for identifying doublettes described in Eidenberger,R. et al.: "Fast Parametric Viewpoint Estimation for Active
ObjectDetection", Proceedingof the IEEE International Conferenceon Multisensor of Fusion and Integration for Intelligent
Systems (MF|2008), Seoul, Korea, 2008, will be earned over to the MPG. Similar components are merged, negligible
ones are omitted and the weights are renormalized.
[0057] The covariance matrices are can be estimated using the Jacobian of the nonlinear transforms. These estimates
could be improved by using the unscented estimation technique (see Julier, S.J., Uhlmann, J.K.:"Unscented Filtering
and Nonlinear Estimation", In Proceeding of the IEEE, Vol. 92, No. 3, pp. 401-422, March 2004).
[0058] The description of the invention was focussed on the perception of static objects. The MPG framework can be
extended to the dynamic case as well.
[0059] The inventive method is usable for a number of products:

- mobile robots, e.g. fork lift trucks for industrial use
- estimation of position, orientation and (with some extensions) shape of inner organs from CT images (health)
- logistics equipment like cranes, cradle carriers, luggage handling robots etc.
- service robots for everyday environments
- mineralogical investigations and explorations for oil or gas (energy)

Claims

1. A method for modelling and calculation of the uncertainty of a pose of an object in space, wherein pose is a
combination of translation and orientation, comprising the following steps:

- describing of a three-dimensional orientation of the object by unit quaternions,
- inducing a probability density function on the unit quaternions by central projection of a Gaussian distribution
on a tangent space to the sphere of the unit quaternions,
- forming of base elements describing a correlation of position and orientation by generating a joint probability
on a product space of said tangent space and a space of translations, and
- combining said base elements to mixture probability distributions.

2. A method according to claim 1,
wherein a translation is described by a three-dimensional vector.

3. A method according to claim 1,
wherein a translation is described by a purely imaginary quaternion and the poses of an object are represented as
dual quaternions.
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