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(54) Apparatus and method for selecting quantisation bands in audio encoders

(57) An apparatus for compressing an audio signal
in which a processor implementing the compression al-
gorithm conducts a binary, or bisection, search of a quan-
tiser table in order to determine which quantised output
value is most appropriate for a given input value. The

processor is programmed to perform each iteration of the
bisection search in three processor instructions by per-
forming specific combinations of memory reads and com-
putations during each instruction. The apparatus reduces
power consumption and is particularly suited for use with
Bluetooth transmission.
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Description

Field of the Invention

[0001] The present invention relates to audio encoders, especially audio encoders for use in Bluetooth systems. The
invention relates particularly to selecting quantisation bands by searching quantiser tables in audio encoders.

Background to the Invention

[0002] Bluetooth is a short range wireless communications technology that can create personal area networks (PANs)
between a variety of fixed and mobile devices, such as mobile phones, laptops, digital cameras, games consoles and
media players. It is estimated that Bluetooth currently enjoys an installed base of almost two billion devices worldwide.
Specifications and standards for Bluetooth operation are created and maintained by the Bluetooth Special Interest Group
(SIG).
[0003] Although Bluetooth is a ubiquitous wireless communications technology, there are a number of technical con-
siderations when using it for the wireless transmission of high-quality stereo audio.
[0004] The transmission of uncompressed stereo audio at the same sample rates found on CDs requires a data rate
of approximately 1.4 Mbps. This transmission rate cannot be met by Bluetooth devices that do not support Extended
Data Rate (EDR) transmission rates. Even if a device supports EDR, power consumption and link reliability reasons
argue against such a high transmission rate. Therefore, it is necessary to compress the audio so that it can be successfully
transmitted at a lower rate. The Advanced Audio Distribution Profile (A2DP) defines a low-complexity audio compression
codec called Sub Band Codec (SBC). SBC is fully specified by the Bluetooth standards documents, is free for commercial
use and is the only mandatory audio compression codec for Bluetooth. Any Bluetooth device that needs to communicate
high-quality audio using the A2DP must implement SBC. However, the A2DP allows the use of additional optional audio
compression codecs. Therefore, a suitably equipped pair of Bluetooth devices may choose to communicate audio using
a compression codec other than SBC. The decision as to which compression codec to use is made as part of an initial
exchange of messages when the communicating devices first establish the Bluetooth link. This is a process known as
pairing.
[0005] Accordingly, there is an opportunity to provide alternative audio compression codecs, with alternative audio
compression and/or decompression techniques, that are suitable for use with Bluetooth and which improve upon con-
ventional codecs. When implementing alternative codecs, there are technical issues that can be addressed to improve
the performance of the codec.
[0006] For example, Bluetooth communications capability is typically added to a product, e.g. a mobile device, by
integrating one of many single-chip Bluetooth solutions provided by companies such as Cambridge Silicon Radio, Broad-
com and others. Audio compression and decompression functions are usually implemented in the form of embedded
software executing on a general purpose processor or digital signal processor that is internal to the Bluetooth chip. The
execution of the audio compression codec requires the processor to carry out a certain amount of work. This, in turn,
causes the processor to draw a corresponding level of current from the battery powering the mobile device, which has
a direct effect on how long the device can operate on a single charge of the battery.
[0007] Accordingly, it would be advantageous to code the audio compression software so that its functions can be
executed using the smallest number of processor instructions possible.

Summary of the Invention

[0008] Accordingly, a first aspect of the invention provides an apparatus for compressing an audio signal as claimed
in claim 1.
[0009] A second aspect of the invention provides a method of selecting quantisation bands as claimed in claim 14.
[0010] A third aspect of the invention provides a computer program product as claimed in claim 15.
[0011] Preferred features are recited in the dependent claims.
[0012] The present invention enables quantiser tables to be searched using relatively few processor instructions for
each search iteration. Fewer processor instructions equates to reduced current consumption and better battery life.
[0013] Further advantageous aspects of the invention will become apparent to those ordinarily skilled in the art upon
review of the following description of a preferred embodiment and with reference to the accompanying drawings.

Brief Description of the Drawings

[0014] An embodiment of the invention is now described by way of example and with reference to the accompanying
drawings in which:
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Figure 1 is a block diagram of an audio compression encoder suitable for use with the present invention;

Figure 2 is a block diagram of an audio compression decoder suitable for use with the encoder of Figure 1 to provide
an audio compression codec;

Figure 3 is a graph illustrating exemplary quantization bands that are suitable for use with the present invention;

Figure 4 is a block diagram of a processor architecture suitable for use in the implementation of the audio compression
encoder of Figure 1 or the decoder of Figure 2;

Figure 5 is a first representation of registers and quantiser tables implemented by the architecture of Figure 4,
illustrating an example of a table searching method for use in preferred embodiments of the invention and showing
the state of the registers after initialisation;

Figure 6 is a second representation of the registers and quantiser tables of Figure 5, showing the state of the registers
after a first instruction;

Figure 7 is a third representation of the registers and quantiser tables of Figure 5, showing the state of the registers
after a second instruction;

Figure 8 is a fourth representation of the registers and quantiser tables of Figure 5, showing the state of the registers
after a third instruction for a positive value in the register rMAC; and

Figure 9 is a fifth representation of the registers and quantiser tables of Figure 5, showing the state of the registers
after the third instruction for a negative value in the register rMAC.

Detailed Description of the Drawings

[0015] Referring now to Figures 1 and 2 of the drawings, there is shown, by way of example, an audio compression
codec comprising an audio encoder 10 and an audio decoder 50. The encoder 10 and decoder 50 are suitable for use
as an audio compression codec in systems that support Bluetooth. The encoder 10 receives an input signal comprising
audio samples, i.e. from an audio signal sampled in the time domain. The encoder 10 processes the input signal to
produce encoded, or compressed, output samples. The processing performed by the encoder 10 compresses the input
signal such that it, or more particularly a compressed representation of it, may be transmitted to the decoder 50 with
lower bandwidth requirements than would be necessary for the uncompressed signal. The decoder 50 receives the
encoded samples and decodes them to produce time domain audio samples representing the input audio signal received
by the encoder. The correspondence between the audio samples produced by the decoder 50 and the audio samples
received by the encoder 10 is dependent on the compression techniques used by the encoder 10. The encoder 10 and
decoder 50 communicate by means of a communications link (not illustrated) which may, for example, comprises a
wireless link such as a Bluetooth link. In such cases, the encoder 10 is co-operable with a transmitter (not shown) for
transmitting the compressed output samples to the decoder 50, and the decoder 50 is co-operable with a receiver (not
shown) for receiving the compressed output samples. The transmitter and receiver each process the samples in ac-
cordance with the communications technology, e.g. Bluetooth, that they are configured to support.
[0016] Referring in particular to Figure 1, in the illustrated embodiment, the encoder 10 processes the input stream
11 of audio samples in groups of multiple, in this case 4, samples per audio channel (i.e. left and right channels). Each
successive group of samples is processed by an analysis filter bank 12 that splits the input audio stream into multiple,
in this case 4, parallel sub-band sample streams 14, where the sample rate of each sub-band stream 14 is a fraction
of, in this case � of, that of the input audio stream 11. The respective data in each sub-band stream 14 represents a
respective subset of audio content from the input stream 11 that falls into a respective frequency range covered by each
sub-band. In the present example, each sub-band is of equal width and covers � of the range of audible frequencies.
For example, if the audio samples are arriving at a rate of 48 kHz, corresponding to a total audio bandwidth of 24 kHz,
then each sub-band covers a 6 kHz range of frequencies. The first sub-band passes the audio content within the 0-6
kHz, the second 6-12 kHz, the third 12-18 kHz and the final sub-band passes 18-24 kHz.
[0017] Since the input audio stream has been transformed into 4 parallel streams, each at a sample rate � that of the
original, the overall data rate has not changed, but a form of time to frequency transformation has been carried out,
since each sub-band stream represents a particularly frequency range. This allows the data in each sub-band to undergo
lossy compression independently and with different levels of loss or distortion in each band. Since the human ear is
more sensitive to audio in some frequency ranges than others, additional levels of compression can be gained by more
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aggressively compressing the frequency bands to which the ear is relatively insensitive.
[0018] In the preferred embodiment, lossy compression of the data in each sub-band is carried out using differential
coding and quantization. For each sub-band stream 14, a respective adaptive predictor filter 16 is provided and acts as
a predictor, providing a predicted value for upcoming samples from the sub-band filter bank 12. A respective error
calculator 18 is provided for each sub-band stream 14 and is arranged to receive, in respect of each sub-band sample
of the respective sub-band stream 14, the actual sub-band value from the sub-band filter bank 12 and the corresponding
predicted sub-band value from the predictive filter 16, and to calculate the difference between the predicted value and
the actual value to produce a prediction error value. As a sub-band sample is created by the sub-band filter bank 12,
the difference between its value and its predicted value is produced by the error calculator 18. If the predictive filter 16
is performing well then the magnitude of this difference, or prediction error value, is small compared to the sub-band
sample. Since the prediction error tends to be small, it can be communicated using fewer bits than the corresponding
sub-band sample and hence transmitting prediction errors offers a form of compression.
[0019] The levels of compression are increased by quantising the prediction error value so that the quantized error
value can be represented using still fewer bits. To this end, the encoder 10 includes a respective quantizer 20 for each
sub-band stream 14 arranged to receive the prediction error values and to produce respective quantized error values.
It is the quantization operation that introduces the lossy aspect of the compression, since the quantization causes
information to be discarded and is a process that can only be approximately inverted. Within the encoder 10, a respective
inverse quantizer 22 is arranged to perform inverse quantization on the error values and the output is provided to the
respective predictive filter 16. Inverse quantization is carried out to provide approximate prediction error samples to
stimulate the predictive filters 16. Hence, the predictor filters 16 produce predictions of future samples emerging from
the sub-band filter bank 12 based on a history of previous prediction error values.
[0020] In the illustrated embodiment, the same differential coding, quantization, inverse quantization and prediction
techniques are applied independently to the respective data in each sub-band stream 14. However, the sophistication
and accuracy of the respective prediction filters 16 and/or the levels of approximation employed by the respective
quantizers 20 may differ from one sub-band to the next, for example based on the relative sensitivity of the human ear
to audio frequencies in the respective sub-band.
[0021] The encoder 10 further includes a data packer 24 for concatenating the respective quantized prediction error
values for each sub-band to provide a concatenated quantized error value in respect of each group of input audio
samples. Each concatenated quantized error value provides a respective compressed output sample of the encoder 10.
The data from the respective audio channels is interleaved and so the encoder 10 processes the respective channels
alternately, e.g. each channel being processed alternately with the other, one groups of input samples at a time.
[0022] By way of example, when utilised in conjunction with Bluetooth transmission, the illustrated encoder 10 con-
sumes 4 input 16-bit audio samples at a time and produces a single 16-bit compressed sample, hence compressing the
input audio by a factor of 4.
[0023] It will be understood that in alternative embodiments, the encoder may be in general arranged to process audio
samples in groups of at least one, but typically a plurality of, samples per audio channel. Further, in alternative embod-
iments, the encoder may be in general arranged to split the audio signal into any practicable number of sub-band sample
streams, or even not to split the audio signal into sub-band streams. The configuration of the encoder, and correspondingly
of the decoder, would be adapted accordingly as would be apparent to a skilled person.
[0024] It will be seen from the foregoing that the preferred encoder 10 of Figure 1 implements a Sub-band Adaptive
Differential Pulse Code Modulation (SB-ADPCM) compression scheme employing lossy compression to reduce the
required network transmission rate for an audio input signal. In the illustrated example, the encoder 10 achieves a fixed
compression ratio of 4:1, thereby requiring only 25% of the network transmission rate associated with the communication
of uncompressed audio.
[0025] Referring now to Figure 2, the corresponding decoder 50 is described. The decoder 50 must initially synchronise
itself to the incoming data stream 51 that it receives from the encoder 10. In this embodiment, it is assumed that the
encoder 10 and decoder 50 communicate via a Bluetooth link. In accordance with Bluetooth, data is transmitted in
groups, or packets, of 8-bit bytes that do not necessarily correspond conveniently with the compressed output samples
from the encoder 10. For example, the compressed samples output from the encoder 10 are 16 bits long in the present
example and, for stereo transmission, are transmitted in channel interleaved fashion and so compressed samples for
the left and right channels are sent alternately. Therefore, the decoder 50 needs to initially deduce from the sequence
of bytes in a received Bluetooth-compatible packet whether a particular byte is the most or least significant byte of a
compressed output sample from the encoder 10, and whether it belongs to the output sample for the left or the right
channel. This creates four possibilities that need to be resolved and the decoder 50 accomplishes this by examining the
incoming data stream 51 for synchronisation data. As is described in more detail hereinafter, the synchronisation data
is preferably added by the quantization process during encoding. Once the synchronisation data has been found with
a high degree of reliability, it uniquely identifies the data from the left and right audio channels and which bytes are the
most and least significant bytes of the compressed output samples.
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[0026] Once synchronisation has been achieved, the compressed samples are unpacked such that the bits of each
compressed sample are split into the respective quantized prediction error value for each sub-band. In the decoder 50
of Figure 2, the synchronisation and unpacking is performed by a synchronisation and unpacking module 52. The module
52 thus produces a respective data stream 53 for each sub-band, each data stream 53 comprising the respective
quantized prediction error values. An adaptive inverse quantizer 54 is provided for each sub-band in order to perform
inverse quantization of the quantized prediction error values. A respective adaptive predictor filter 56 is provided for
each sub-band and is arranged to regenerate the same predicted sample values that were produced by corresponding
predictor filters 16 at the encoder 10. For each sub-band, a respective adder 58 is provided for adding the inverse-
quantized prediction error values produced by the inverse quantizers 54 to the respective predicted sample values
produced by the predictor filters 56. By adding an inverse-quantized prediction error to the corresponding regenerated
prediction sample value, a close approximation to the respective original sub-band sample of the respective sub-band
stream 14 is obtained. In this embodiment, the form of the inverse quantization and prediction performed by the quantizer
54 and predictor filter 56 respectively is identical to that performed for the corresponding sub-band in the encoder 10.
[0027] The respective sub-band samples produced by the respective inverse quantizers 56 are input to a sub-band
synthesis filter bank 60 in order to produce audio samples that are representative of the input audio samples received
by the encoder 10. The sub-band filter bank 60 operates in the opposite sense to the filter bank 24 of the encoder 10.
That is, instead of analysing an input stream and splitting it into multiple, in this case 4, lower-rate streams covering
multiple, in this case 4, frequency ranges, the filter bank 60 takes the lower-rate streams and synthesises the original
full-rate stream from it. Hence the consumption of a single compressed sample by the decoder 50 results in multiple, in
this case 4, output audio samples being produced. The structure and individual filter specification of the synthesis filter
bank 60 is similar in many respects to the analysis filter bank 12 in the encoder 10, but is not identical.
[0028] The codec 10, 50 is adaptive in two major ways. Firstly, the predictor filter in each sub-band adapts its coefficients
based on a history of its input and previous output values. The adjustments are carried out to try to drive the prediction
error towards zero and minimise it. The second area of adaptation is around the quantisation and inverse quantisation
processes. The width or spacing of the quantisation levels is dynamically adjusted to quantise the signal with minimal
distortion. Hence, if the quantiser input (prediction error) is small, the quantiser will tend to reduce the quantisation level
spacing, so that small values can be quantised with little additional error. Similarly, if the quantiser input starts to get
big, then the quantiser will increase the quantisation level spacing. Failure to do so would result in an inaccurate quantised
representations of large input values, even if the outermost quantisation level is chosen.
[0029] During quantization of a prediction error value, each quantizer 20 is capable of selecting from a plurality of
quantization bands, each quantization band covering a respective range of values that the prediction error value could
take and being represented by a respective quantization output value. When the quantizer 20 selects a quantization
band for a prediction error value, the respective quantization output value becomes the quantized prediction error value.
An example is shown in Figure 3 where a continuous waveform 70 is quantized using eight quantization bands 72, the
quantized output value 74 associated with each quantization band being, by way of example only, a 3-bit label. Prediction
error values corresponding to points A and B on the waveform will, in this example, each be assigned to the same
quantization band (with label 011) even though they have different absolute values. It is noted that, typically, the quan-
tization bands are not equally sized. It is noted that the quantization output values may comprise fewer or more than 3
bits. Moreover, the number of bits making up the quantization output value may differ between sub-bands. For example,
the quantizer may use a higher number of bits for the quantization output value (i.e. a higher resolution) for sub-bands
in respect of which the human ear is more sensitive than for sub-bands in respect of which the human ear is relatively
insensitive.
[0030] Data defining the quantization bands is stored in memory, typically in a quantiser table (illustrated in Figures
5 to 9). During use, the quantizer 20 performs a search of the quantiser table in order to determine the most appropriate
quantisation band for the respective prediction error value. This is described in further detail below.
[0031] In order to formulate optimized algorithm coding techniques that result in a reduced number of processor
instructions, it is necessary to take into account the detail of the underlying hardware architecture of the processor begin
utilised to implemented the audio compression or decompression. In particular, it is advantageous to exploit opportunities
for parallelism, whereby several parallel operations can be triggered by a single processor instruction. Whilst there can
be considerable variation in hardware architecture across different processors, Figure 4 shows the pertinent features of
a typical hardware structure for a digital signal processor as found on a Bluetooth chip.
[0032] Referring now to Figure 4, there is shown, generally indicated as 80, a processor architecture that is suitable
for use in implementing the encoder 10. The architecture 80 includes a processor 82 in the preferred form of a digital
signal processor, although other data processors, or microprocessors, may alternatively be used. The processor 82
includes a plurality of data registers, shown in Figure 4 as register bank 84. These registers may comprise general
purpose registers for containing data such as input operands and computed results of various arithmetic and logical
operations. Optionally, one or more dedicated registers or register banks may be provided for address generation. These
are represented in Figure 4 by an address generator unit 86. The processor 82 further includes an arithmetic logic unit
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(ALU) 88 for performing logical and/or arithmetic computations on operands. A data memory interface unit 90 is also
provided to allow the processor 82 to communicate with local memory device(s) 92, and in particular with data memory
as is described in more detail hereinafter.
[0033] Signal processors typically have a set of peripherals, consisting of functions like timers, UARTs and special
interfaces to get data on and off the processor in various formats. This is represented in Figure 4 by peripheral unit 85.
[0034] The architecture 80 typically includes a memory management unit (MMU) 93 with which the processor 82 is
in communication for handling accesses to memory 92. The MMU 93 can take any suitable conventional form.
[0035] The memory device 92 includes a plurality of data memories 94, in this example two data memories labelled
as Data Memory 1 and Data Memory 2 in Figure 4. The data memory interface unit 90 supports a respective data memory
interface 91 between the processor 82 and each of the data memories 94. In addition, at least one program memory 96
is provided. The processor 82 is in communication with the program memory 96 by means of any suitable conventional
program memory interface. The memory device 92 typically comprises one or more random access memory (RAM).
[0036] In use, the program memory 96 stores processor executable instructions that the processor 82 is required to
implement. In this example, the instructions take the form of embedded executable computer software for performing
one or more of the functions required to implement audio compression or decompression. In the preferred embodiment,
one of the data memories 94, e.g. Data Memory 1, stores (when audio compression is being implemented) the prediction
error values that are required to be quantized, while a separate data memory, e.g. Data Memory 2, stores data defining
the quantisation bands, typically in the form of one or more quantiser tables.
[0037] The respective parallel data memory interfaces 91 allow a data value to be read from, or written to, each data
memory Data Memory 1, Data Memory 2 concurrently. In conjunction with the ALU 88, this allows an arithmetic or logical
computation to be performed in parallel with up to two memory accesses. Arranging the algorithmic computations to
maximally exploit this parallelism facilitates keeping the processor instruction count low.
[0038] Typically, the address generator unit 86 has, in respect of each data memory 94, a plurality of address generators
that can address the respective data memory. Each address generator comprises 3 hardware registers, namely an index
(I) register, which holds the actual memory address to index the corresponding data memory 94; a modify (M) register,
which contains a value by which the contents of the corresponding I register are automatically incremented by the
processor architecture 80 after a memory access; and a length (L) register, which allows the set-up of modulo addressing,
so that a range of addresses that are traversed by the processor hardware 80 in a circular or wrap-around fashion can
be defmed. These complex addressing schemes can be set up once in software and then operate under hardware
control without further software programming. Therefore, mapping the memory accesses required to implement parts
of the audio compression scheme to the addressing modes that can be implemented by these address generation
registers greatly reduces the number of processor instructions required for general memory addressing.
[0039] Another important practical area of implementing the audio compression algorithm as software for Bluetooth
systems is the numerical accuracy or precision with which the various signal processing functions in the algorithm are
carried out. Typically, processors within Bluetooth chips are fixed-point processors, meaning that computation results
need to be continually limited, scaled or rounded to remain compliant with a fixed numerical format adopted by the
processor. This allows simpler and lower-powered processors to be created, but means that signal processing algorithms
cannot be implemented in a mathematically-exact fashion. Fixed-point processors often possess a small number of
extended-precision registers, which allow relatively short sequences of arithmetic and logical instructions to take place
at higher levels of precision, with limits and rounding only being applied when results are moved from an extended-
precision register. This can be advantageous for signal processing algorithms such as filters, where intermediate results
are accumulated within an extended-precision register and precision loss is only incurred when the final filter output
value is removed from that register. One of the primary attributes of preferred audio compression techniques is the
maintenance of very high levels of audio quality, despite the effects of lossy compression. Hence, when adapting such
algorithms for use with Bluetooth it is desirable to minimise the loss of mathematical precision caused by the fixed-point
nature of the typical Bluetooth processor, so that such precision losses do not substantially affect the preservation of
audio quality.
[0040] During the process that quantises prediction error values to produce compressed sub-band values the quantised
value that most closely represents the higher-precision input value, i.e. the prediction error value being quantized, is
determined. Successive bands or ranges of input values map to successive quantised values. An example of this mapping
is shown in Figure 3, where 8 bands of input values map to 8 different quantised values.
[0041] In the encoder 10, for most sensible audio signals, the predictor 16 operation creates a situation whereby small
errors are statistically more likely to be fed into the quantisation process than larger errors. Therefore, in order to reduce
the average distortion and loss introduced by the quantisation process, it is advantageous to quantise small input values
relatively finely and large input values relatively coarsely, i.e. the quantised output values represent small inputs relatively
precisely and large inputs relatively inaccurately. The inaccurate representation of large inputs is acceptable because
they occur relatively infrequently in a statistical sense. Hence, for a particular sub-band, if the quantised output values
are limited to N bits, the corresponding 2N input bands are not of equal size or range. Input bands that cover small input
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values are of relatively small size. As the input value increase, bands become wider. This non-linear distribution of
quantisation bands creates the situation where small-valued inputs are quantised more accurately than larger inputs.
Figure 3 shows a widening of quantisation bands with increasing input size. The non-linear distribution of quantisation
bands means that it is non-trivial to determine which band a particular high-precision input value falls into. There is an
additional complication caused by the fact that the audio compression algorithm may adapt (i.e. change) the width of
the quantisation bands dynamically, by linearly scaling the default (non-linearly distributed) input values that mark quan-
tisation band boundaries. The value used for the scaling, called δ, may be based on an estimate of the short-term
standard deviation of the input signal to the quantisation, and adapts the width of quantisation bands to best cover the
current degree of variation seen in the input signal.
[0042] There is now described a preferred method of determining to which quantization band a high precision input
value (in this example a prediction error value) should be assigned. It is noted that the following description only considers
the case where the quantisation input value is positive. This is valid because, for an N-bit quantised output, the preferred
quantisation process utilises 1 output bit to convey sign information about the value (i.e. whether it is positive or negative)
and the remaining N-1 bits to convey magnitude information.
[0043] The quantisation of the magnitude is of primary interest, which is performed on the absolute value of the high-
precision input value and results in an N-1 bit output. The default (non-linearly distributed) positive input values that
mark quantisation band boundaries are stored in a look-up table (illustrated in Figures 5 to 9), or other suitable memory
structure, which resides in processor memory (in this example Data Memory 2). The quantisation band boundaries
values are sorted according to value within the table (e.g. increasing values in the table are stored at locations with
increasing table indices (addresses)). In alternative embodiments, it is possible to use an arrangement whereby increasing
table values are stored in decreasing memory addresses. This would still allow the three-instruction cycle for each
bisection search iteration that is described hereinafter. To accommodate this and in contrast to the method described
hereinafter, quantisation table address offsets would be subtracted, rather than added, to the base address of the
quantiser table. The principal criterion for the search to work is that the quantisation table values are sorted (either
ascending or descending).
[0044] This table is searched until the smallest table index, Imin, is found for which the contents of the table at that
index, when multiplied by the scaling value δ (if applicable), exceeds the high-precision input value. An alternative
implementation would be to find the largest table index that gives a result less than or equal to the high-precision input
value, assuming ascending quantisation table values are stored in ascending memory addresses.
[0045] The N-1 output bits for the quantised magnitude are then set to Imin, i.e. the table indices serve in this example
as the label, or quantized value, for the respective quantization band. With regard to the use of the notation Imin to
represent a table index, in this example it is assumed that the first (smallest) quantisation table value as index 0, the
second value as index 1 and so on, up to the final value which will have index (2N-1)-1. The base of the table may be
located at any convenient memory address. Using Figs 5-9 as an example, the table memory addresses run from
1000-1015 but the table indices run from 0 to 15. It is the table indices, not the physical memory addresses, that give
the N-1 bits that form the absolute quantised value. This is concatenated with the single sign bit to give the (signed) N-
bit quantised value.
[0046] The table searching process could be completed in a naïve fashion by starting at the base of the table and
incrementing the index by one until the table value multiplied by δ just exceeds the high-precision input value. However,
this is inefficient, since many table entries may have to be tested incrementally before the correct one is found. Preferably,
therefore, the search of the table is performed using a binary, or bisection, search technique, where the search procedure
iteratively removes approximately half of the table indices that remain eligible as solutions. Therefore, the solution for a
table containing 2N-1 values is obtained in N-1 iterations. Binary searching is not necessarily the fastest searching
procedure but it is simple, easy to implement and is guaranteed to converge to the correct solution in all cases.
[0047] There is now described a preferred method of implementing binary searching in software that executes on
processor architectures the same or similar to that of Figure 4. For the purposes of bisection searching, the key capabilities
exhibited by the processor 82 are:

• The ability to carry out an unconditional arithmetic operation and two, or at least two, independent data memory
accesses as a single processor instruction

• The ability to carry out a conditional arithmetic operation and one, or at least one, data memory access as a single
processor instruction

• The ability to conditionally increment the value contained in an index register used to address data memories as a
zero-overhead side effect of performing a memory access using that index register. As this feature is conditional, it
is also possible to instruct the processor not to perform this automatic increment of the index register value as part
of a memory access using any particular index register.
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[0048] In the exemplary architecture of Figure 4, the MMU 93 and memory interface 90 are co-operable with one
another to allow the two concurrent accesses to Data Memory 1 and Data Memory 2.
[0049] In order to implement binary searching efficiently on such processors, it is necessary to efficiently implement
the basic iteration of the search procedure, as this iteration is carried out N-1 times to complete the search. Ideally, the
basic search iteration should represent as few processor instructions and clock cycles as possible. The following de-
scription demonstrates how an iteration of bisection searching can be performed using just three consecutive processor
instructions, representing a high degree of efficiency. Table 1 below introduces a nomenclature that describes the various
processor memories and registers that hold key values for the bisection search iteration process.

[0050] With reference to Figure 4, the IbisOff register may be implemented in the address generator 86, while the
remaining registers identified above may be implemented in the register bank 84.
[0051] The bisection offset table comprises data held in processor memory 92 (for example in Data Memory 1 of
Figure 4) and is indexed, or addressed, using the dedicated index register IbisOff. The contents of the bisection offset
table are descending powers of 2, with the first element containing the value 2N-3, where N is the number of bits in the
quantised output, including the sign bit. The final element of the table is a trailing value of zero, although. it could be any
dummy value (it is read during the final search iteration but never used). It is desirable to keep all the search iterations
the same so that the three search instructions can be repeated for the required number of iterations, without having to
do a special instruction sequence for the final iteration.
[0052] Hence, using the example N=7, the bisection offset table contains the following contents, listed from the first
to last element: 16, 8, 4, 2, 1, 0
[0053] The purpose of the bisection offset table is to generate successively lower powers of 2 by using incrementing
memory accesses to a table. This could alternatively be performed by the ALU 88 of the processor 82 by taking the
previous power of 2 and generating the new power of 2 by a 1-bit right shift of a binary value. A problem with this approach
is that the right shift is an arithmetic/logical operation and only one of these operations can be carried out by a single
processor instruction. However, up to two memory accesses can be carried out by a single processor instruction, so
implementing the descending power of 2 generation using a table lookup allows the bisection search iteration to complete
using fewer consecutive instructions.
[0054] There is a small amount of initialisation code that is executed before the first iteration of the bisection search.
The initialisation code causes the memory address (an address in Data Memory 1 in the example of Figure 4) of the
absolute value of the high-precision input value to the quantisation process is calculated and stored by the processor 82.
[0055] In typical embodiments, this address value is stored in an index register in the address generator unit 86,
because the processor does not support the particular double memory access format of instruction 1 in the 3-cycle
bisection search iteration unless the high-precision input is read from memory via an index (I) register. However, in

TABLE 1

Label Description

RThreshBase A general-purpose processor register that holds the memory address of the base (bottom 
element) of the table of default quantisation band boundaries.

RThreshOffset A general-purpose processor register that holds an address offset such that a particular 
element of the table of default quantisation band boundaries can be accessed by accessing 
the memory address given by rThreshBase + rThreshOffset.

rOldThreshOffset A general-purpose processor register that holds the value of rThreshOffset from the previous 
iteration of the bisection search.

rThreshTableValue A general-purpose processor register that holds a particular value read from the table of default 
quantisation band boundaries residing in processor memory (Data Memory 2 in the present 
example).

rDelta A general-purpose processor register that holds the current value for the scaling factor δ.

rMAC An extended-precision processor register that holds the output of multiply and multiply/
accumulate operations without precision loss.

IbisOff A dedicated index (I) processor register that holds the memory address of an element of a 
"bisection offset" table. An important capability for the purposes of bisection searching is the 
ability for the memory address held in the index register to be automatically incremented by 
1 after a memory access using that index register. A description of the "bisection offset" table 
is given below.
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alternative embodiments it may be stored in any convenient location, e.g. the register bank 84.
[0056] This allows the absolute input value to be re-read from memory into a processor register at any time during
the iterative bisection search. The index register IbisOff is loaded with the address of the first element in the bisection
offset table. Also, before the first search iteration starts, rThreshBase is loaded with the address of the first element in
the table of default quantisation band boundaries, and both rThreshOffset and rOldThreshOffset are loaded with the
value 2N-2, where N is the number of bits in the quantised output, including the sign bit. With this initialisation complete,
subsequent bisection search iterations are then executed using 3 processor instructions each. The parallel operations
carried out during each instruction are outlined below in Table 2.

[0057] Accordingly, in preferred embodiments, the input value to the quantiser and the quantisation tables are stored
in different data memories so that the first instruction in the bisection search iteration completes in a single clock cycle.
[0058] It is noted that the bisection offset table is successively read from simple incrementing addresses. In contrast,
for the quantisation band boundary table, the bisection search process causes the table base and table offset register
values to "jump" by relatively large values from one search iteration to the next.
[0059] A pictorial example of how search iterations unfold over the 3 processor instructions is now presented with
reference to Figures 5 to 9. In this example, it is assumed by way of example only that N=5, where N is the number of
bits in the quantised output, including the sign bit. Hence, the number of default quantisation boundary values in the
table to be searched is 2N-1 = 16 elements. The example shows how the very first bisection search iteration unfolds.
[0060] In Figures 5 to 9, the individual processor registers identified above are shown on the left and the regions of
processor memory, with their addresses (which are exemplary only), on the right.
[0061] In preferred embodiments, the high-precision input value and the quantisation band boundary table are stored
in respective data memories (Data Memory 1 and Data Memory 2 respectively in the illustrated example). The bisection
offset table can be in either data memory, but is assumed to be in Data Memory 1 in the present example and the
example shown in Figs 5-9.
[0062] Typically, the memory addressing of the processor 82 is based on a flat memory model and so, from a software
programming point of view Data Memory 1 and Data Memory 2 are addressed as 2 different regions in one larger address

TABLE2

Instruction Number Operations Executed

1 Read the absolute value of the high-precision input from memory and load the value into the 
extended-precision register rMAC. This operation counts as one memory access. Read the 
value of the element of the table of default quantisation band boundaries addressed by 
rThreshBase + rThreshOffset and load this value into the register rThreshTableValue. This 
operation counts as one memory access.

2 Multiply rThreshTableValue by rDelta, subtract this product from the value already held in 
rMAC and store the final result back into rMAC again. The multiplication result is stored 
without loss of precision since rMAC is an extended-precision register. This operation counts 
as one unconditional logical/arithmetic operation. Read the value of the bisection offset table 
indexed by IbisOff and load the result into rThreshOffset. Do not select the automatic 
increment of IbisOff to point to the next element in the bisection offset table. This operation 
counts as one memory access. Note that this sets rThreshOffset to the correct value for the 
next bisection search iteration.

3 Only if the value currently held in rMAC is positive, add the values of rThreshBase and 
rOldThreshOffset and store the result back into rThreshBase. This operation counts as one 
conditional logical/arithmetic operation. Unconditionally read the value of the bisection offset 
table indexed by IbisOff and load the result into rOldThreshOffset. Select the automatic 
increment of IbisOff to point to the next element in the bisection offset table. This operation 
counts as one memory access. Note that rOldThreshOffset does not receive its updated 
value until after the potential addition with rThreshBase in the parallel logical/arithmetic 
operation above has been computed. Therefore, if the parallel logical/arithmetic operation is 
executed, the addition uses the value of rOldThreshOffset before update. This is essential 
for correct operation.
Note that the updates to the rOldThreshOffset register and the (conditional) updates to the 
rThreshBase register ensure that both registers have the correct values for the next bisection 
search iteration, which can now begin directly from the next instruction.
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space. In other words, there is "continuity of addressing" of the 2 different memories. The data memories 94 may be
separate from one another, e.g. physically and electrically independent from one another, as shown in Figure 4. Alter-
natively, they may be implemented as respective independently, or concurrently, accessible portions of the same memory
(e.g. in a dual-port memory). Either arrangement allows two memory accesses to occur in the same processor clock cycle.
[0063] With reference to Figs 5-9, addresses below 1000 are in Data Memory 1 and addresses from 1000 up are in
Data Memory 2. It is noted that the specific memory addresses shown in Figures 5-9 are given by way of illustration only
and are not intended to correspond with actual memory addresses.
[0064] The values contained within registers or memory locations are contained within the respective boxes in the
diagrams.
[0065] For the example under consideration, Figure 5 shows the state of the processor 82 after the initialisation steps
described above.
[0066] The first processor instruction of the first bisection search iteration is now carried out, updating the state of the
processor as shown in Figure 6. It is noted that the values of rMAC and rThreshTableValue have been updated as a
direct consequence of this instruction. The first row of Table 2 explains how the relevant operations have been performed.
[0067] The second processor instruction of the first bisection search iteration is now carried out, updating the state of
the processor as shown in Figure 7. It is noted that the values of rMAC and rThreshOffset have been updated as a direct
consequence of this instruction. The second row of Table 2 explains how the relevant operations have been performed.
[0068] The third processor instruction of the first bisection search iteration is now carried out. Since this instruction
behaves differently depending on whether the value in the register rMAC after the second instruction completes is positive
or not, both cases are illustrated below. First, it is assumed that the value in rMAC is positive. This means that the desired
value in the default quantisation band boundary table is in the upper half of the table and it is this table region that should
be promoted to the second search iteration. Assuming this condition, the updated processor state after the third instruction
is shown in Figure 8. The values of rThreshBase, IbisOff and rOldThreshOffset have been updated as a direct conse-
quence of this instruction. The third row of Table 2 explains how the relevant operations have been performed. Note
also that the updated value in rThreshBase means that the second bisection search iteration will search only the table
elements from address 1008 and above, i.e. the upper section of the table.
[0069] Now it is assumed that the value in rMAC after the second instruction 2 is not positive. This means that the
desired value in the default quantisation band boundary table is in the lower half of the table and it is this table region
that should be promoted to the second search iteration. Assuming this condition, the updated processor state after the
third instruction is shown in Figure 9. The values of IbisOff and rOldThreshOffset have been updated as a direct con-
sequence of this instruction. The third row of Table explains how the relevant operations have been performed. Note
also that the value in rThreshBase is unchanged. This ensures that the second bisection search iteration will search
only the lower half of the table, from address 1000.
[0070] In the manner described above, subsequent bisection search iterations are carried out such that, with each
iteration, an upper or lower section of the band boundary table is discarded until the boundary band that is most suited
to the high precision input value is located.
[0071] The invention is not limited to the embodiments described herein, which may be modified or varied without
departing from the scope of the invention.

Claims

1. An apparatus for compressing an audio signal, the apparatus comprising a processor and data memory, the processor
including an arithmetic logic unit and a plurality of data registers and being programmable to implement a plurality
of processor instructions, and wherein the processor is capable of performing, in respect of a single processor
instruction, an unconditional arithmetic operation and two independent data memory accesses, or a conditional
arithmetic operation and one data memory access, the processor further being capable of causing a value contained
in at least one of said data registers that is used to address said data memory to be incremented, and wherein said
apparatus further includes
a first set of data values stored in said data memory, said first set comprising data values each representing a
respective quantisation band boundary and being sorted in said data memory according to their respective values, and
a second set of data values stored in said data memory, said second set comprising at least one data value that is
a power of 2 , the data values of said second set being sorted in said data memory in order of descending value,
and wherein
a first of said data registers (rThreshBase) holds, in use, a memory address for a first data value of said first set, a
second of said data registers (rThreshOffset) holds, in use, a current address offset value, a third of said data
registers (rOldThreshOffset) holds, in use, a previous address offset value, a fourth of said data registers (rThresh-
TableValue) holds, in use, a data value obtained by said processor from said first data set, a fifth of said data registers
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(rMAC) holds, in use, a data value being the result of one or more computations performed by said processor in
respect of the data value held in said fourth register, and a sixth of said data registers (IbisOff) holds a memory
address of a data value in said second set of data values,
and wherein, in respect of each of a plurality of search input values derived from said audio signal and stored in
said data memory, said apparatus is arranged to perform a bisection search of said first set of data values to
determine which of the data values in said first set is the best approximation of the respective input value, said
bisection search being performed in one or more iterations wherein, in respect of each search iteration said processor
is arranged to,
in execution of a first processor instruction, read the respective input value from data memory and cause the input
value to be stored in said fifth data register, and read the data value of said first set whose address in said data
memory corresponds to the address held in said first data register offset by the current address offset value held in
said second data register, and cause said data value to be stored in said fourth data register, and
in execution of a second processor instruction, calculate the difference between the input value stored in said fifth
data register and said data value of said first set that is stored in said fourth data register, or a derivative thereof,
and cause the resultant value to be stored in said fifth data register, and read the data value of said second set
whose address in said data memory corresponds to the address held in said sixth data register and cause the result
to be stored in said second data register, and
in execution of a third processor instruction, adjust, only if said difference held in said fifth data register indicates
that the next iteration of the bisection search should take place in an upper section of said first set of data values,
the memory address in said first data register by the offset stored in said third data register and cause the resulting
adjusted memory address to be stored in said first data register (rThreshBase), read the data value of said second
set whose address in said data memory corresponds to the address held in said sixth data register and cause the
result to be stored in said third data register, and cause the memory address held in data register and cause the
result to be stored in said third data register, and cause the memory address held in said sixth data register to be
incremented to point to the next data value in said second set.

2. An apparatus as claimed in claim 1, wherein a seventh of said data registers (rDelta) holds, in use, a current value
of a quantisation band scaling factor, and wherein in execution of said second processor instruction said processor
is arranged to calculate the difference between the input value stored in said fifth data register and said data value
of said first set that is stored in said fourth data register multiplied by said scaling factor, and to cause the resultant
value to be stored in said fifth data register.

3. An apparatus as claimed in claim 1 or 2, wherein, in execution of said second processor instruction, said processor
is arranged to calculate said difference by subtracting said data value of said first set that is stored in said fourth
data register, or a derivative thereof, from the input value stored in said fifth data register, and wherein, in execution
of said third processor instruction, the processor is arranged to adjust the memory address in said first data register
only if said difference is positive.

4. An apparatus as claimed in any preceding claim, wherein said fifth data register is an extended-precision processor
register that holds the output of multiply and multiply/accumulate operations without precision loss.

5. An apparatus as claimed in any preceding claim, wherein said first set of data values are sorted in said data memory
such that successive data values are associated with successive addresses in said data memory.

6. An apparatus as claimed in any preceding claim, wherein said data values in said first set are sorted and stored in
said data memory such that increasing data values are stored at memory locations with increasing addresses.

7. An apparatus as claimed in any preceding claim, arranged to produce, in respect of each of said search input values,
a quantised output value comprising N bits where N-1 bits represent the quantised value and the remaining bit
indicates whether the N-1 bit quantised value is positive or negative.

8. An apparatus as claimed in claim 7, wherein said second data set comprises at least N-2 data values, the first data
value in said second set taking the value 2N-3, the following N-3 data values being successive decreasing powers of 2.

9. An apparatus as claimed in claim 8, wherein said second data set comprises N-1 data values including a final dummy
data value, for example set to zero.

10. An apparatus as claimed in any one of claims 7 to 9, wherein said second and third data registers are initialised
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with the value 2N-2.

11. An apparatus as claimed in any preceding claim, wherein said search input values are held in a separate data
memory, or at least in a separately accessible part of a common data memory, to said first data set.

12. An apparatus as claimed in any one of claims 5 to 11, wherein each data value of said first set is associated with
an index value and wherein multiple iterations of said bisection search are performed until the smallest index value
(Imin) is found for which the respective data value, when multiplied by said scaling value, if applicable, exceeds the
search input value, or alternatively until the largest index is found for which the respective data value is less than
or equal to the search input value.

13. An apparatus as claimed in any preceding claim, wherein, before a first iteration of said bisection search, the memory
address of the first data value in said second data set is stored in said sixth data register.

14. A method of selecting quantisation bands in an apparatus as claimed in claim 1, the method comprising, in respect
of each of a plurality of search input values derived from said audio signal and stored in said data memory, performing
a bisection search of said first set of data values to determine which of the data values in said first set is the best
approximation of the respective input value, said bisection search being performed in one or more iterations wherein,
in respect of each search iteration said method includes,
reading, in execution of a first processor instruction, the respective input value from data memory and cause the
input value to be stored in said fifth data register, reading the data value of said first set whose address in said data
memory corresponds to the address held in said first data register offset by the current address offset value held in
said second data register, and causing said data value to be stored in said fourth data register, and
calculating, in execution of a second processor instruction, the difference between the input value stored in said
fifth data register and said data value of said first set that is stored in said fourth data register, or a derivative thereof,
causing the resultant value to be stored in said fifth data register, and reading the data value of said second set
whose address in said data memory corresponds to the address held in said sixth data register and cause the result
to be stored in said second data register, and
in execution of a third processor instruction, adjusting, only if said difference held in said fifth data register indicates
that the next iteration of the bisection search should take place in an upper section of said first set of data values,
the memory address in said first data register by the offset stored in said third data register and causing the resulting
adjusted memory address to be stored in said first data register (rThreshBase), reading the data value of said second
set whose address in said data memory corresponds to the address held in said sixth data register and causing the
result to be stored in said third data register, and causing the memory address held in said sixth data register to be
incremented to point to the next data value in said second set.

15. A computer program product comprising computer program code stored on a computer usable medium and arranged
to cause the processor of the apparatus of claim 1 to perform the method of claim 14.
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