Technical Field
[0001] The present invention relates to an optical module mounting unit and an optical module,
and more particularly, to a technique useful in mounting an optical module on an electronic
substrate.
Background Art
[0002] In recent years, a high-end system apparatus such as a supercomputer tends to achieve
development of large-capacity and high-speed information communication by parallel
operation of a plurality of CPUs, and large-capacity, high-speed, and high-density
signal transmission between boards in the system apparatus and between apparatuses
are required.
[0003] Since an electronic transmission system is approaching a limit in view of a transmission
speed, transmission loss, and the like, a signal transmission by an optical interconnection
system using an optical transmission is put into practical use. The optical interconnection
system can perform far wider-band signal transmission compared to the electronic transmission
system, and has an advantage in building up a signal transmission system using a compact
optical module with low power consumption.
[0004] In the optical interconnection system, an optical module equipped with a light emitting
element is mounted on an electronic substrate, and an electrical signal input from
the electronic substrate is converted into an optical signal by the optical module
to be output to an optical waveguide such as an optical fiber, for example.
[0005] A vertical cavity surface emitting laser (VCSEL) and the like are typically used
as the light emitting element for the optical module.
[0006] Such an optical module is generally bonded to the electronic substrate by soldering
or conductive adhesive connection.
[0007] For example, a technique described in Non-Patent Document 1 is proposed as a technique
for mounting the optical module on the electronic substrate. The technique described
in Non-Patent Document 1 provides high-density connectors called a MEG-Array (registered
trademark) in both an optical module and an electronic substrate, and makes the connectors
engage with each other to mount the optical module. In this case, the optical module
and one connector, and the other connector and the electronic substrate are respectively
adhered to each other by soldering.
Prior Art Document
Non-Patent Document
Patent Document
Summary of the Invention
Problems to Be Solved by the Invention
[0010] Since the optical module is conventionally mounted on the electronic substrate by
bonding, as described above, the optical module is not removable from the electronic
substrate. Thus, since the mounting of the optical module is premised on non-interchanging,
the optical module and the electronic substrate on which the optical module is mounted
are required to guarantee long-term reliability.
[0011] However, if very high reliability is required for the optical module, a yield ratio
in manufacturing the optical modules decreases remarkably, and cost reduction becomes
difficult.
[0012] In case of achieving high-speed and high-density signal transmission as optical interconnection,
a plurality of optical modules are mounted with a high density around a CPU on the
same electronic substrate. If bonding defect or failure occurs in the optical module,
the whole electronic substrate on which the optical modules are mounted needs to be
replaced.
[0013] Also in the case where a specification of the electronic substrate is changed or
in the case where an upgrade of the optical module is needed, the whole electronic
substrate on which the optical modules are mounted needs to be replaced.
[0014] Thus, since the conventional technique for mounting the optical module cannot effectively
utilize module properties such as normal optical modules and electronic substrates,
it causes a considerable loss.
[0015] When using the technique described in Non-Patent Document 1, since the optical module
is removable from the electronic substrate, a demand for high reliability is less
stringent than in the prior art. However, since the connector is fixed to the optical
module by soldering, the optical module is possibly affected by heat in soldering
process. For this reason, when trying to guarantee the reliability of the optical
module after soldering process, a yield ratio of production thereof is still low,
and cost reduction becomes difficult.
[0016] Moreover, since the technique described in Non-Patent Document 1 mounts the optical
module on the electronic substrate by making MEG-Array connectors engage with each
other, it is difficult to shorten line lengths in connecting portions (for example,
a length of a pin of a connector is about 3 millimeters, and becomes about 4 millimeters
including a BGA solder ball for mounting), and it might become a factor of degrading
the characteristics such as transmission loss and crosstalk. Furthermore, since the
technique needs the connector portions having predetermined heights, it is disadvantageous
in downscaling the optical module.
[0017] An object of the present invention is to provide a technique useful for mounting
an optical module on an electronic substrate for coping with a defect of the optical
module flexibly, and especially useful in optical interconnection realizing high-speed
and high-density signal transmission.
Means for Solving the Problems
[0018] The present invention is made to achieve the above object, and there is provided
an optical module mounting arrangement as defined in claim 1.
[0019] Preferably, the module housing body is mounted on the electronic substrate in a removable
manner.
[0020] Preferably, the module housing body is formed in a box-shape with a top opening.
The housing section is a space formed by a bottom wall and a side wall. The electrical
connection section electrically connects the electrical connection terminal of the
electronic substrate, which is arranged on a bottom surface of the bottom wall, to
the electrical connection terminal of the optical module, which is arranged on an
upper surface of the bottom wall, through the bottom wall.
[0021] Preferably, the housing section includes a guiding portion for guiding the optical
module to a housing position.
[0022] Preferably, the pressing member is configured to install the optical connector in
the optical module through the pressing member. The optical connector is configured
to convert an optical path perpendicularly. The pressing member is formed in such
a manner that an upper surface of the pressing member and an upper surface of the
optical connector are substantially on the same level when the optical connector is
installed in the optical module.
[0023] Preferably, the pressing member is composed of material having a thermal conductivity
equal to or higher than that of a housing member of the optical module.
[0024] Preferably, the pressing member includes a planar portion on which a heat radiating
member can be placed.
[0025] Preferably, the electrical connection section is composed of a plurality of first
contact sections and a plurality of second contact sections which are electrically
connected to each other. The first contact sections project from the upper surface
of the bottom wall to contact with the electrical connection terminal of the optical
module. The second contact sections are provided corresponding to the first contact
sections and projecting from the bottom surface of the bottom wall to contact with
the electrical connection terminal of the electronic substrate. The electrical connection
section includes an urging member for urging the optical module and the module housing
body in a direction of separating the optical module and the module housing body from
the electronic substrate when the optical module is pressed to the electronic substrate
side by the fixing member. The urging member is respectively provided between the
first contact sections and the second contact sections.
[0026] Preferably, the first contact sections and the second contact sections are arranged
in such a manner that a pressing force is dispersed uniformly when the optical module
is pressed to the electronic substrate side by the pressing member.
[0027] Preferably, a plurality of the optical modules are configured to be installed in
the optical module mounting unit.
[0028] Preferably, the optical module is installed in the optical module mounting unit.
Advantageous Effects of the Invention
[0029] According to the present invention, because an optical module is mounted on an electronic
substrate in a removable manner, module properties can effectively be utilized. Moreover,
since it becomes unnecessary to guarantee an excessive reliability of the optical
module and a certain reliability of the optical module can be secured without harmful
influences exerted by soldering, a yield ratio is improved, and costs thereof can
be reduced.
Brief Description of Drawings
[0030]
FIG. 1 is a perspective view of a mounted state of an optical module according to
the present embodiment;
FIG. 2 is a cross section taken along a line A-A in FIG. 1;
FIG. 3 is an exploded perspective view of FIG. 1;
FIG. 4 is a perspective view of an electronic substrate 5;
FIG. 5 is an explanatory view of an example of a mounting process of an optical module
3;
FIG. 6 is an explanatory view of the example of the mounting process of the optical
module 3;
FIG. 7 is an explanatory view of the example of the mounting process of the optical
module 3; and
FIG. 8 is an explanatory view of the example of the mounting process of the optical
module 3.
Best Mode for Carrying Out the Invention
[0031] Exemplary embodiments of the present invention are described in detail below with
reference to accompanying drawings.
[0032] The present embodiment explains about the case of mounting an optical module on an
electronic substrate by using an optical module mounting unit according to the present
invention when achieving an optical interconnection between electronic substrates
(boards) of a system apparatus such as a computer. In this case, since it is desirable
that a space in a vertical direction with respect to the electronic substrate is small
for the miniaturization of the system apparatus, an optical waveguide which is optically
interconnected to the optical module is arranged parallel to the electronic substrate.
[0033] FIG. 1 is a perspective view of a mounted state of an optical module according to
the present embodiment, FIG. 2 is a cross section taken along a line A-A in FIG. 1,
and FIG. 3 is an exploded perspective view of FIG. 1. FIG. 4 is a perspective view
of an electronic substrate 5.
[0034] As shown in FIGS. 1 to 3, an optical module mounting unit 100 according to the present
embodiment includes a socket 1 and a pressing member 2, and an optical module 3 is
housed therein (in a housing section 14 of the socket 1).
[0035] By mounting the optical module mounting unit 100 housing the optical module 3 therein
to the electronic substrate 5, the optical module 3 is mounted on the electronic substrate
5. By fixing an optical connector 4 to guide pins 6 provided to stand on the optical
module 3, a light emitting element 32 of the optical module 3 and an optical fiber
ribbon 41 of the optical connector 4 become possible to be optically coupled to each
other.
[0036] Thus, the optical module mounting unit 100 has a function to mount the optical module
3 on the electronic substrate 5 and a function as a receptacle to install the optical
connector 4 in the optical module 3.
[0037] Hereinafter, the case where the optical module 3 emits a light to the optical connector
4 based on an electrical signal input from the electronic substrate 5, namely the
case where the optical module 3 is equipped with a light emitting element is described.
In addition, even if the optical module 3 is equipped with a light receiving element,
a mounted state of the optical module 3 is similar to that of the present embodiment.
[0038] The optical module 3 is configured by surface-mounting the light emitting element
32 and a driver IC 33 driving the light emitting element 32 on a module substrate
34 and by covering them with a case cover 35 for protection. The optical module 3
has a characteristic of performing high speed multichannel signal transmission of
10 Gbps × 12 ch, for example.
[0039] On the back surface of the module substrate 34, an electrical connection terminals
(not shown) are provided so as to be opposed to an electrical connection section 13
(first contact pins 13a), which will be described later, of the socket 1. The electrical
connection terminals are formed as a land grid array (LGA) in which fine lead electrodes
are arranged in a lattice, for example.
[0040] The light emitting element 32 is composed of a plurality of (for example, twelve)
VCSELs arranged in an array, for example, and the respective VCSELs are electrically
connected to the driver IC 33 with a predetermined wiring pattern.
[0041] When electrical signals are input to the driver IC 33 through the electrical connection
terminals, the driver IC 33 outputs a drive signal (electrical signal), the light
emitting element 32 emits a light based on the drive signal. At this time, the emitting
direction of the light is a vertical direction with respect to the electronic substrate
5.
[0042] On the light emitting side (upper side in the drawing) of the light emitting element
32, a ferrule 31 through which an optical waveguide (optical fiber) 36 opposed to
the light emitting element 32 is inserted is provided, and a light emitting facet
of the light emitting element 32 and the optical waveguide 36 are optically coupled
by being butted against each other, namely by butt-jointing.
[0043] An aperture section 35a is formed in a region of the case cover 35 corresponding
to the ferrule 31, and a light output end of the ferrule 31 is exposed to an outside
through the aperture section 35a. In the light output end of the ferrule 31, guide
pin holes 31a, 31a for providing the guide pins 6 to stand are formed.
[0044] The electronic substrate 5 has characteristics of high-speed transmission and good
crosstalk performance, which are necessary for operating the optical module 3. On
the back surface of the electronic substrate 5, a predetermined wiring pattern (not
shown) is formed, and on the top surface of the electronic substrate 5, electrical
connection terminals 51 which are electrically connected to the wiring pattern is
formed (see FIG. 4). The electrical connection terminals 51 is composed as an LGA,
in which fine lead electrodes are arranged in a lattice, for example. FIG. 4 shows
the case where the electrical connection terminals 51 are formed to be a full grid
pattern of 11 × 11 on the electronic substrate 5. In this regard, however, all of
the electrical connection terminals 51 are not connected to the wiring pattern.
[0045] In the vicinity of each of four corners of the electrical connection terminals 51,
through-holes 52 for inserting screws for fixing the socket 1 are formed. In the vicinity
of each of diagonally opposed two corners of the electrical connection terminals 51,
locating pin holes 53 for adjusting a mounting position of the socket 1 are formed.
[0046] In the peripheries of respective through-holes 52, metal land patterns 54 of the
electronic substrate 5 are formed, and surfaces of the metal land patterns 54 are
on the same level of surfaces of land patterns of the electrical connection terminals
51. By this configuration, lengths of the contact pins of the socket 1 to be described
later can be shorten, and thereby inductance can be reduced. This is preferable for
high frequency operation characteristics.
[0047] The optical connector 4 is configured in such a manner that the optical fiber ribbon
41 is mounted on a ferrule 42 in the state of being housed in an optical waveguide
mounting part 43. The optical waveguide mounting part 43 is fixed to the ferrule 42
with an adhesive, for example.
[0048] As shown in FIG. 2, the present embodiment uses a 90-degrees-bent fiber having a
bending portion 41a, as the optical fiber ribbon 41. It is also possible to adopt
the structure of converting an optical path of a light emitted from the optical module
3 in a vertical direction using a reflection mirror in place of the 90-degrees-bent
fiber to guide the light to the optical fiber ribbon 41 arranged parallel to the electronic
substrate 5.
[0049] The optical fiber ribbon 41 is made by arranging twelve optical waveguides (optical
fibers) parallel to one another and by covering the optical waveguides with a covering
material to form one optical fiber ribbon, for example. On one end side (the side
on which the optical fiber ribbon 41 is installed in the optical module 3) of the
optical fiber ribbon 41, the covering material of tip portion is removed, and the
optical waveguides are exposed.
[0050] Since the optical fiber ribbon 41 is housed in the optical waveguide mounting part
43, the optical fiber ribbon 41 is protected and the bent angle (90 degrees) of the
optical fiber ribbon 41 is maintained.
[0051] Guide pin holes 42a, 42a for inserting the guide pins 6 are formed in the ferrule
42. By respectively inserting the guide pins 6, 6 provided to stand on the ferrule
31 of the optical module 3 into the guide pin holes 42a, 42a of the ferrule 42, the
optical module 3 and the optical connector 4 are fixed to each other in the state
in which their positions are aligned.
[0052] The socket 1 is composed of a bottom wall 11 and a rectangular frame-like side wall
12 which is provided to be placed on a periphery of the bottom wall 11, and an overall
shape of the socket 1 is like a box having an opened upper surface. A space formed
of the bottom wall 11 and the side wall 12 becomes the housing section 14 for housing
the optical module 3.
[0053] The bottom wall 11 has a space for arranging the electrical connection section 13
therein. In the present embodiment, an upper plate 11a and a lower plate 11b are joined
to each other by laminating to constitute the bottom wall 11 so that the electrical
connection section 13 is easily arranged. The space is communicatively connected to
the outside, and one end of the electrical connection section 13 arranged in the space
projects upward from the upper plate 11a, and the other end of the electrical connection
section 13 projects downward from the lower plate 11b.
[0054] The side wall 12 and the upper plate 11a may be formed integrally. In other words,
the socket 1 may have a configuration where the side wall 12 having a box-like shape
is placed on the lower plate 11b.
[0055] The electrical connection section 13 has characteristics of high-speed transmission
and good crosstalk performance, which are necessary for operating the optical module
3, similarly to the electronic substrate 5. The electrical connection section 13 electrically
connects the respective electrical connection terminals 51 of the electronic substrate
5 which are arranged on the bottom surface of the lower plate 11b, and respective
electrical connection terminals (not shown) of the optical module 3 which are arranged
on the upper surface of the upper plate 11a, to each other.
[0056] To put it concretely, the electrical connection section 13 has a configuration where
the first contact pins 13a each projecting from the upper surface of the upper plate
11a and second contact pins (not shown) each projecting from the bottom surface of
the lower plate 11b are respectively connected to each other with urging members (not
shown). For example, each of the first contact pins 13a, and each of the second contact
pins, and each of the urging members may be formed integrally to be used. In the state
shown in FIG. 2, the urging members urge the optical module 3 and the socket 1 in
a direction so that they are separated from the electronic substrate 5.
[0057] Each of the urging members is preferably a spring-shaped elastic body having a stroke
width which can absorb variations in heights of surfaces of the electrical connection
terminals and electronic substrate. A length (a sum of lengths of each of the first
contact pins 13a, each of the second contact pins, and each of the urging members)
of the electrical connection section 13 is preferably made to be as short as possible
in order to improve the transmission characteristic thereof.
[0058] Since the electrical connection section 13 has the above configuration, when the
socket 1 is pressed from above with a certain pressure or more for example, contact
resistances between the electrical connection terminals 51 of the electronic substrate
5 and the second contact pins can be maintained at small values, due to a spring characteristic
of the urging member. Similarly, when the optical module 3 housed in the socket 1
is pressed from above with a certain pressure or more, the contact resistances between
the electrical connection terminals (not shown) of the optical module 3 and the first
contact pins 13a can be maintained at small values.
[0059] It is also possible to shorten the line length (for example, 1.2 millimeters or less)
of the electrical connection section 13 compared to that (for example, about 3 millimeters
to 4 millimeters) of the case of using the MEG-Array connectors.
[0060] Thus, the transmission loss and the crosstalk can be reduced, and the characteristics
can be improved by the electrical connection section 13 of the socket 1.
[0061] In addition, the electrical connection section 13 is preferably placed in an arrangement
state (for example, a bilaterally symmetric arrangement) so that a pressing force
is uniformly applied on the bottom wall 11 of the socket 1 when the pressing member
2 to be described later presses the optical module 3. In this case, the electrical
connection terminals 51 corresponding to the electrical connection section 13 among
the electrical connection terminals 51 formed to be the full grid pattern on the electronic
substrate 5 are connected to the wiring pattern.
[0062] The side wall 12 of the socket 1 includes an aperture section 12a which has substantially
the same size as the size of the module substrate 34 of the optical module 3, and
a step portion (guiding portion) 12b is formed on the inner wall of the side wall
12. The housing section 14 formed of the bottom wall 11 and the side wall 12 preferably
has a shape which agrees with the external shape of the optical module 3. Since the
optical module 3 is guided to a housing position of the housing section 14 by the
step portion 12b formed on the side wall 12, position adjustment of the optical module
3 becomes easy. When the optical module 3 is placed in the socket 1 and is pressed,
the module substrate 34 is pressed against the bottom wall 11, and the case cover
35 is pressed against the step portion 12b.
[0063] Thus, the optical module 3 is fitted into the socket 1 to be placed thereon, and
thereby the stable fixing state of the optical module 3 can easily be held.
[0064] At the four corners of the bottom wall 11 and the side wall 12, screw holes 17 for
fixing the pressing member 2 with screws are formed. At positions which are in the
vicinities of the screw holes 17 and opposed to the through-holes 52 of the electronic
substrate 5, screw holes 15 for fixing the socket 1 to the electronic substrate 5
with screws are formed. At diagonally opposed two corners on the back surface of the
bottom wall 11 (the lower plate 11b), locating pins (not shown) to engage with the
locating pin holes 53 of the electronic substrate 5 are formed.
[0065] The pressing member 2 is a lid-like member to be mounted on the upper surface of
the socket 1, and an aperture section 21 is formed at a position opposed to the ferrule
31 of the optical module 3. The aperture section 21 functions as a light extraction
portion for guiding a light emitted from the optical module 3 to the outside to extract
the light.
[0066] At least a contact surface of the pressing member 2 contacting with the optical module
3 is composed of material having a thermal conductivity equal to or more than that
of the case cover (housing member) 35 of the optical module 3. For example, Al having
electrical conductivity of 238 W/mK, Cu having electrical conductivity of 393 W/mK,
and Al-SiC having electrical conductivity of 150 W/mK to 200 W/mK can be used. In
addition, Al-SiC has electrical conductivity of 150 W/mK in case of 30Al-70Sic and
200 W/mK in case of 40Al-60SiC. Also a resin material to which thermal conductive
filler is mixed and which has electrical conductivity of 0.4 W/mK or more may be used.
The heat generated in the optical module 3 can hereby be discharged to the outside
efficiently.
[0067] The upper surface of the pressing member 2 is formed as a planar portion 22, on which
a heat radiating member (heat sink) can be placed. The heat generated in the optical
module 3 can hereby be discharged to the outside more efficiently.
[0068] In addition, the pressing member 2 itself may be formed as a heat sink by forming
the upper surface of the pressing member 2 as a heat radiating structure (for example,
a fin structure) in stead of placing the heat sink on the planar portion 22 of the
pressing member 2.
[0069] In the pressing member 2, an optical connector housing section 24 for housing the
ferrule 42 of the optical connector 4 is formed. The optical connector housing section
24 is formed by recessing the upper surface of the pressing member 2 from the aperture
section 21 in the arranged direction of the optical fiber ribbon 41 so that the optical
connector housing section 24 is lowered by one step from the upper surface. The height
(difference in level from the upper surface) of the connector housing section 24 is
designed so that the upper surface of the optical connector 4 (the upper surface of
the ferrule 42) and the upper surface of the pressing member 2 are substantially on
the same level when the optical connector 4 is installed in the optical module 3.
[0070] By this, when the optical connector 4 is installed in the optical module 3, the optical
connector 4 is prevented from projecting in a vertical direction with respect to the
electronic substrate 5, and this is effective for miniaturization of the system apparatus.
[0071] At the four corners of the pressing member 2, through-holes 23 for fixing the pressing
member 2 to the socket 1 with screws are formed. In addition, the pressing member
2 may be provided with a mechanism (for example, a spring) for fixing the optical
connector 4 installed in the optical module 3.
[0072] The abovementioned optical module mounting unit 100 (socket 1 and pressing member
2), the optical module 3, and the optical connector 4 are mounted on the electronic
substrate 5 as described below.
[0073] FIGS. 5 to 8 are explanatory views of an example of mounting process of the optical
module 3. In FIGS. 7 and 8, the pressing member is expressed as a see-through view
so that an inner state thereof is visible.
[0074] Firstly, as shown in FIG. 5, by respectively engaging the locating pins (not shown)
of the socket 1 with the locating pin holes 53 of the electronic substrate 5, the
socket 1 is placed at a predetermined position of the electronic substrate 5. Then,
by respectively inserting screws into the through-holes 52 from the back surface side
of the electronic substrate 5 so that the screws are respectively fastened into the
screw holes 15 of the socket 1, the socket 1 is fixed to the electronic substrate
5. In this way, the socket 1 is mounted on the electronic substrate 5 so that the
electrical connection terminals 51 of the electronic substrate 5 and the electrical
connection section 13 (second contact pins 12) are connected to each other.
[0075] In the state shown in FIG. 5, the second contact pins projecting from the bottom
surface of the bottom wall 11 of the socket 1 respectively contact with the predetermined
electrical connection terminals 51 arranged on the electronic substrate 5, and are
pushed into the socket 1 as the urging member shrinks due to the pressing force by
screwing.
[0076] Next, as shown in FIG. 6, the optical module 3 is placed on the housing section 14
of the socket 1. Since the housing section 14 has the shape which agrees with the
external shape of the optical module 3, the lower part of the optical module 3 is
placed so as to be substantially fitted into the housing section 14. The guide pins
6, 6 are respectively inserted into the guide pin holes 31a, 31a of the ferrule 31
to be provided to stand.
[0077] In the sate shown in FIG. 6, the first contact pins 13a projecting from the upper
surface of the bottom wall 11 of the socket 1 respectively contact with the electrical
connection terminals (not shown) of the optical module 3.
[0078] Next, as shown in FIG. 7, the pressing member 2 is placed on the optical module 3
from the upper side thereof so that the light output end of the ferrule 31 of the
optical module 3 is exposed to the outside via the aperture section 21 of the pressing
member 2. Then, by inserting screws into the through-holes 23 from the upper side
of the pressing member 2 and fastening the screws into the screw holes 17 of the socket
1, the pressing member 2 is fixed to the socket 1.
[0079] In the state shown in FIG. 7, the optical module 3 placed on the socket 1 receives
the pressing force by screwing to be pressed to the socket 1 side. Moreover, the first
contact pins 13a of the socket 1 are pushed thereinto as the urging member shrinks
due to the pressing force by screwing.
[0080] Thus, the pressing member 2 of the present embodiment functions as a fixing member
for holding the state in which the electrical connection terminals (not shown) of
the optical module 3 contact with the electrical connection section 13 in the socket
1.
[0081] Next, as shown in FIG. 8, by inserting the guide pins 6 provided to stand on the
ferrule 31 into the guide pin holes 42a, 42a of the optical connector 4, the optical
connector 4 is installed in the optical module 3.
[0082] In the state shown in FIG. 8, the optical module 3 and the optical connector 4 are
fixed to each other in the state in which their positions are aligned, and the light
emitting element 32 of the optical module 3 and the optical fiber ribbon 41 of the
optical connector 4 are in the state of being optically coupled to each other. Thus,
an emitted light from the optical module 3 propagates in the optical fiber ribbon
41 of the optical connector 4.
[0083] As described above, when the optical module 3 is mounted on the electronic substrate
5 by using the optical module mounting unit 100 according to the present embodiment,
since the optical module 3 is merely placed on the socket 1 and pressed by the pressing
member 2, and the optical module 3 is not fixed by bonding, the optical module 3 is
removable from the socket 1 and the electronic substrate 5.
[0084] By this, when the optical module is defected or when the optical module is upgraded,
only the optical module can be exchanged easily. This is especially useful in the
case where a plurality of optical modules is mounted on the same substrate to achieve
high density transmission. For example, if bonding defect or failure occurs in one
optical module in an electronic substrate on which a plurality of optical modules
is mounted with a high density, it is only necessary to remove only defective optical
module to exchange it.
[0085] When the specification of the electronic substrate is changed, the optical module
can be removed and can be reused in another electronic substrate, and thereby the
module properties can effectively be used.
[0086] Since the number of the mounted optical modules can easily be increased or decreased
according to the specification (necessary capacity of transmission) necessary for
a user, parts sharing and cost reduction can be improved.
[0087] According to the optical module mounting unit 100 of the present embodiment, module
properties such as a normal optical module and a normal electronic substrate can effectively
be utilized, and thereby an extensive damage due to exchange of whole electronic substrate
can be prevented from arising, unlike the prior art.
[0088] Since exchanging the optical module is possible, the reliability required for an
optical module is allowed to be lower than the present reliability, and thereby the
yield ratio of manufacture of the optical modules can be improved and their manufacturing
costs can be reduced.
[0089] Moreover, in the present embodiment, since also the optical module mounting unit
100 itself is removable from the electronic substrate 5, the property of such part
can also be effectively utilized.
[0090] The invention made by the present inventors is concretely described based on the
embodiment, but the present invention is not limited to the above embodiment, and
the present invention can be changed without departing from the subject matter of
the invention.
[0091] The optical module 3 is fixed by being pressed against the socket 1 with the pressing
member 2 in the above embodiment, but the optical module 3 can be fixed by the other
fixing member. For example, the optical module 3 may be fixed to the socket 1 with
screws, or a spring or the like may directly be provided to the socket 1.
[0092] In other words, the subject matter of the present invention is to mount the optical
module 3 on the electronic substrate 5 in a removable manner by fixing the optical
module 3 to the socket 1 installed on the electronic substrate 5. The method of fixing
the optical module 3 to the socket 1 is not limited to any particular one.
[0093] In the above embodiment, only one optical module 3 can be placed on the socket 1,
but the socket 1 may have a configuration where a plurality of optical modules 3 can
be installed thereon at the same time.
[0094] Moreover, though after the socket 1 is fixed to the electronic substrate 5, the optical
module 3 is placed in the socket 1 to be fixed thereto with the pressing member 2
in the aforesaid embodiment, the optical module 3 may be installed in the optical
module mounting unit 100 to be integrated therewith to be mounted on the electronic
substrate 5. In other words, as an optical module product to be distributed to markets,
the form where the optical module 3 has been mounted on the optical module mounting
unit 100 can be supposed.
[0095] Furthermore, the pressing member 2 has the form to surround the aperture section
21 so as to press the top surface of the optical module 3 with substantially the whole
surface of the pressing member 2, but the pressing member 2 may be formed into a U-shape
in a plan view by cutting out the optical connector housing section 24. When the pressing
member 2 is formed into such shape, the pressing member 2 can be mounted after mounting
the optical connector 4 to the optical module 3.
[0096] The electrical connection section 13 can be achieved by another method.
[0097] For example, a conductive leaf spring, a member obtained by compressing conductive
fibers, or the like can be used. In addition, for example, a member produced by making
an electronic substrate including metal films formed on both the surfaces thereof
intervene between the upper plate 11a and the lower plate 11b, and by forming a coil
spring in the electronic substrate by a photolithographic technique or the like can
be used.
[0098] In other words, the requirements of the electrical connection section 13 are that
a plurality of first contact sections (for example, the tips of the first contact
pins 13a) projecting from the upper surface of the bottom wall 11 (the upper plate
11a) and contacting with the electrical connection terminals (not shown) of the optical
module 3 are electrically connected to a plurality of second contact sections (for
example, the tips of the second contact pins) provided correspondingly to the first
contact sections, projecting from the bottom surface of the bottom wall 11 (the lower
plate 11b), and contacting with the electrical connection terminals 51 of the electronic
substrate 5, and that urging members for urging the optical module 3 and the socket
1 in a direction of separating them from the electronic substrate 5 when the optical
module 3 is pressed against the electronic substrate 5 side by the pressing member
2 are respectively provided between the first contact sections and the second contact
sections.
[0099] It should be considered that all embodiments disclosed herein are illustrations and
are not limitations. It is intended that the scope of the present invention is determined
by the claims, not the above description, and includes all modifications equivalent
to the claims and within the scope thereof.
Description of Reference Numerals
[0100]
- 1
- socket (module housing body)
- 11
- bottom wall
- 12
- side wall
- 13
- electrical connection section
- 14
- housing section
- 15
- screw hole (for socket fixing)
- 17
- screw hole (for pressing member fixing)
- 2
- pressing member (fixing member)
- 21
- aperture section
- 22
- planar portion
- 23
- through-hole
- 24
- optical connector housing section
- 3
- optical module
- 31
- ferrule (light output end)
- 32
- light emitting element
- 33
- driver IC
- 34
- module substrate
- 35
- case cover
- 36
- optical waveguide
- 4
- optical connector
- 41
- optical waveguide
- 42
- ferrule
- 43
- optical waveguide mounting part
- 5
- electronic substrate
- 51
- electrical connection terminal
- 52
- through-hole
- 53
- locating pin hole
- 6
- guide pin
- 100
- optical module mounting unit
1. An optical module mounting arrangement comprising:
an optical connector (4) having an optical waveguide (41),
an optical module (3) including an optical element (32) to be optically coupled to
the optical waveguide (41),
an electronic substrate (5), and
an optical module mounting unit (100) for mounting the optical module (3) on the electronic
substrate (5), the optical module mounting unit (100) comprising a module housing
body (1) and a fixing member (2), the module housing body (1) includes an electrical
connection section (13) for electrically connecting the electronic substrate (5) and
the optical module (3) to each other and a housing section (14) for housing the optical
module (3), the module housing body (1) being mounted on the electronic substrate
(5) in such a manner that an electrical connection terminal (51) of the electronic
substrate (5) and the electrical connection section (13) are connected to each other;
and
the fixing member (2) is arranged to maintain a state in which an electrical connection
terminal of the optical module (3) is kept in contact with the electrical connection
section (13) in the module housing body (1), wherein
the optical module (3) is housed in the housing section (14) and is fixed in a removable
manner by the fixing member (2), and
the fixing member (2) is a lid-like pressing member (2) that is mounted on an upper
surface of the module housing body (1), to fix the optical module (3) by applying
pressure to the top surface of the optical module (3) towards the electronic substrate
side, wherein further
the optical element (32) is arranged so as to emit light from an opposite side of
the electrical connection section (13) in a vertical direction with respect to the
electronic substrate (100),
the fixing member (2) includes an aperture (21) at such a position that a ferrule
(31) of the optical module (3) is arranged at a position opposed to the aperture (21),
the aperture (21) functioning as a light extraction portion for guiding the light
emitted from the optical module (3) to the outside to extract the light,
the fixing member (2) includes an optical connector housing section (24) that includes
the aperture (21),
the optical connector housing section (24) is configured to house the optical connector
(4) provided with the optical waveguide (41).
2. The optical module mounting arrangement according to claim 1, wherein the module housing
body (1) is mounted on the electronic substrate (5) in a removable manner.
3. The optical module mounting arrangement according to claim 1 or 2, wherein
the module housing body (1) is formed in a box-shape having a top opening,
the housing section (14) is a space formed by a bottom wall (11) and a side wall (12),
and
the electrical connection section (13) electrically connects the electrical connection
terminal (51) of the electronic substrate (5), which is arranged on a bottom surface
of the bottom wall (11), to the electrical connection terminal of the optical module
(3), which is arranged on an upper surface of the bottom wall (11), through the bottom
wall (11).
4. The optical module mounting arrangement according to claim 3, wherein the housing
section (14) includes a guiding portion (12b) for guiding the optical module (3) to
a housing position.
5. The optical module mounting arrangement according to any one of the claims 1 to 4,
wherein
the pressing member (2) is configured to install the optical connector (4) in the
optical module (3) through the pressing member (2),
the optical connector (4) is configured to convert an optical path perpendicularly,
and
the pressing member (2) is formed in such a manner that an upper surface of the pressing
member (2) and an upper surface of the optical connector (4) are substantially on
a same level when the optical connector (4) is installed in the optical module (3).
6. The optical module mounting arrangement according to any one of claims 1 to 5, wherein
the pressing member (2) is composed of material having a thermal conductivity equal
to or higher than that of a housing member of the optical module (3).
7. The optical module mounting arrangement according to any one of claims 1 to 6, wherein
the pressing member (2) includes a planar portion (22) on which a heat radiating member
can be placed.
8. The optical module mounting arrangement according to any one of claims 1 to 7, wherein
the electrical connection section (13) is composed of a plurality of first contact
sections (13a) and a plurality of second contact sections which are electrically connected
to each other, the first contact sections (13a) projecting from the upper surface
of the bottom wall (11) to contact with the electrical connection terminal of the
optical module (3),
the second contact sections are provided correspondingly to the first contact sections
(13a) and projecting from the bottom surface of the bottom wall (11) to contact with
the electrical connection terminal (51) of the electronic substrate (5),
the electrical connection section (13) includes a spring-shaped elastic body for urging
the optical module (3) and the module housing body (1) in a direction of separating
the optical module (3) and the module housing body (1) from the electronic substrate
(5) when the optical module (3) is pressed to the electronic substrate (5) side by
the fixing member (2), and
the spring-shaped elastic body is provided between each of the first contact sections
(13a) and each of the second contact sections.
9. The optical module mounting arrangement according to claim 8, wherein the first contact
sections (13a) and the second contact sections are arranged in such a manner that
a pressing force is dispersed uniformly when the optical module (3) is pressed to
the electronic substrate (5) side by the pressing member (2).
10. The optical module mounting arrangement according to any one of claims 1 to 9, wherein
a plurality of the optical modules (3) are configured to be installed in the optical
module mounting unit (100).
1. Befestigungseinrichtung für ein optisches Modul, welche aufweist:
einen optischen Verbinder (4), der einen optischen Wellenleiter (41) aufweist,
ein optisches Modul (3), das ein optisches Element (32) umfasst, das mit dem optischen
Wellenleiter (41) optisch koppelbar ist,
ein elektronisches Substrat (5), und
eine Montiereinheit (100) für das optische Modul zum Montieren des optischen Moduls
(3) auf dem elektronischen Substrat (5), wobei die Montiereinheit (100) für das optische
Modul ein Modulgehäuse (1) und ein Fixierelement (2) aufweist, wobei das Modulgehäuse
(1) einen elektrischen Verbindungsabschnitt (13) zum elektrischen Verbinden des elektronischen
Substrats (5) und des optischen Moduls (3) miteinander und einen Gehäuseabschnitt
(14) zum Aufnehmen des optischen Moduls (3) umfasst, wobei das Modulgehäuse (1) auf
dem elektronischen Substrat (5) in solch einer Art montiert ist, dass ein elektrischer
Verbindungsanschluss (51) des elektronischen Substrats (5) und der elektrische Verbindungsabschnitt
(13) miteinander verbunden sind; und
wobei das Fixierelement (2) eingerichtet ist, um einen Zustand aufrechtzuhalten, in
welchem ein elektrischer Verbindungsanschluss des optischen Moduls (3) in Kontakt
mit dem elektrischen Verbindungsabschnitt (13) in dem Modulgehäuse (1) gehalten wird,
wobei das optische Modul (3) in dem Gehäuseabschnitt (14) untergebracht ist und in
einer entfernbaren Art durch das Fixierelement (2) fixiert ist, und
wobei das Fixierelement (2) ein deckelähnliches Druckelement (2) ist, das auf einer
oberen Oberfläche des Modulgehäuses (1) montiert ist, um das optische Modul (3) durch
Anlegen von Druck auf die obere Oberfläche des optischen Moduls (3) in Richtung der
Seite des elektronischen Substrats zu fixieren,
wobei ferner das optische Element (32) angeordnet ist, um Licht von einer gegenüberliegenden
Seite des elektrischen Verbindungsabschnitts (13) in einer vertikalen Richtung mit
Bezug auf das elektronische Substrat (5) zu emittieren,
wobei das Fixierelement (2) eine Apertur (21) an solch einer Position umfasst, dass
eine Hülse (31) des optischen Moduls (3) an einer Position angeordnet ist, die der
Apertur (21) gegenüberliegt,
wobei die Apertur (21) als ein Lichtextraktionsabschnitt zum Führen des Lichts, das
aus dem optischen Modul (3) emittiert wird, auf die Außenseite fungiert, um das Licht
zu extrahieren,
wobei das Fixierelement (2) einen Gehäuseabschnitt (24) für den optischen Verbinder
umfasst, der die Apertur (21) umfasst,
wobei der Gehäuseabschnitt (24) für den optischen Verbinder eingerichtet ist, den
optischen Verbinder (4) aufzunehmen, der mit dem optischen Wellenleiter (41) versehen
ist.
2. Befestigungseinrichtung für ein optisches Modul gemäß Anspruch 1, wobei das Modulgehäuse
(1) auf dem elektronischen Substrat (5) in einer entfernbaren Art montiert ist.
3. Befestigungseinrichtung für ein optisches Modul gemäß der Ansprüche 1 oder 2, wobei
das Modulgehäuse (1) eine kistenartige Form aufweist, welche eine obere Öffnung hat,
der Gehäuseabschnitt (14) ein Raum ist, der durch eine untere Wand (11) und eine Seitenwand
(12) gebildet ist, und
der elektrische Verbindungsabschnitt (13) den elektrischen Verbindungsanschluss (51)
des elektronischen Substrats (5), welches auf einer unteren Oberfläche der unteren
Wand (11) angeordnet ist, mit dem elektrischen Verbindungsanschluss des optischen
Moduls (3), welches an einer oberen Oberfläche der unteren Wand (11) angeordnet ist,
durch die untere Wand (11) hindurch elektrisch verbindet.
4. Befestigungseinrichtung für ein optisches Modul gemäß Anspruch 3, wobei der Gehäuseabschnitt
(14) einen Führungsabschnitt (12b) zum Führen des optischen Moduls (3) zu einer Aufnahmeposition
umfasst.
5. Befestigungseinrichtung für ein optisches Modul gemäß einem der Ansprüche 1 bis 4,
wobei
das Druckelement (2) eingerichtet ist, den optischen Verbinder (4) in dem optischen
Modul (3) durch das Druckelement (2) zu installieren,
der optische Verbinder (4) eingerichtet ist, einen optischen Pfad senkrecht zu konvertieren,
und
das Druckelement (2) in solch einer Art gebildet ist, dass eine obere Oberfläche des
Druckelements (2) und eine obere Oberfläche des optischen Verbinders (4) im Wesentlichen
auf demselben Niveau sind, wenn der optische Verbinder (4) in dem optischen Modul
(3) installiert ist.
6. Befestigungseinrichtung für ein optisches Modul gemäß einem der Ansprüche 1 bis 5,
wobei das Druckelement (2) aus einem Material zusammengesetzt ist, das eine thermische
Leitfähigkeit gleich oder größer als jene eines Gehäuseelements des optischen Moduls
(3) aufweist.
7. Befestigungseinrichtung für ein optisches Modul gemäß einem der Ansprüche 1 bis 6,
wobei das Druckelement (2) einen ebenen Abschnitt (22) umfasst, auf welchem ein Wärmeabstrahlelement
platzierbar ist.
8. Befestigungseinrichtung für ein optisches Modul gemäß einem der Ansprüche 1 bis 7,
wobei
der elektrische Verbindungsabschnitt (13) aus mehreren ersten Kontaktabschnitten (13a)
und mehreren zweiten Kontaktabschnitten zusammengesetzt ist, welche elektrisch miteinander
verbunden sind, wobei die ersten Kontaktabschnitte (13a) von einer oberen Oberfläche
der unteren Wand (11) hervorspringen, um den elektrischen Verbindungsanschluss des
optischen Moduls (3) zu kontaktieren,
die zweiten Kontaktabschnitte entsprechend zu den ersten Kontaktabschnitten (13a)
vorgesehen sind und von der unteren Oberfläche der unteren Wand (11) hervorspringen,
um den elektrischen Verbindungsanschluss (51) des elektrischen Substrats (5) zu kontaktieren,
der elektrische Verbindungsabschnitt (13) einen federartigen elastischen Hauptteil
zum unter Druck setzen des optischen Moduls (3) und des Modulgehäusekörpers (1) in
eine Richtung aufweist, in die das optische Modul (3) und das Modulgehäusekörpers
(1) sich von dem elektronischen Substrat (5) trennen, wenn das optische Modul (3)
auf die Seite des elektronischen Substrats (2) durch die Fixierelemente (2) gedrückt
wird, und
der federartige elastische Hauptteil zwischen jedem der ersten Kontaktabschnitte (13a)
und jedem der zweiten Kontaktabschnitte vorgesehen ist.
9. Befestigungseinrichtung für ein optisches Modul gemäß Anspruch 8, wobei die ersten
Kontaktabschnitte (13a) und die zweiten Kontaktabschnitte in solch einer Art angeordnet
sind, dass eine Druckkraft gleichmäßig verteilt wird, wenn das optische Modul (3)
auf die Seite des elektronischen Substrats (5) durch das Druckelement (2) gedrückt
wird.
10. Befestigungseinrichtung für ein optisches Modul gemäß einem der Ansprüche 1 bis 9,
wobei mehrere optische Module (3) konfiguriert sind, in der Montiereinheit (100) für
das optische Modul installiert zu werden.
1. Agencement de montage de module optique comprenant :
un connecteur optique (4) présentant un guide d'onde optique (41),
un module optique (3) comportant un élément optique (32) à coupler de manière optique
au guide d'onde optique (41),
un substrat électronique (5), et
une unité de montage de module optique (100) pour monter le module optique (3) sur
le substrat électronique (5), l'unité de montage de module optique (100) comprenant
un corps de logement de module (1) et un élément de fixation (2), le corps de logement
de module (1) comporte une section de connexion électrique (13) pour connecter électriquement
le substrat électronique (5) et le module optique (3) l'un à l'autre et une section
de logement (14) pour loger le module optique (3), le corps de logement de module
(1) étant monté sur le substrat électronique (5) de telle sorte qu'une borne de connexion
électrique (51) du substrat électronique (5) et la section de connexion électrique
(13) sont connectées l'une à l'autre ; et
l'élément de fixation (2) est agencé pour maintenir un état dans lequel une borne
de connexion électrique du module optique (3) est maintenue en contact avec la section
de connexion électrique (13) dans le corps de logement de module (1),
dans lequel
le module optique (3) est logé dans la section de logement (14) et est fixé de manière
amovible par l'élément de fixation (2), et
l'élément de fixation (2) est un élément de pression de type couvercle (2) qui est
monté sur une surface supérieure du corps de logement de module (1), afin de fixer
le module optique (3) en appliquant une pression sur la surface du dessus du module
optique (3) vers le côté du substrat électronique,
dans lequel en outre
l'élément optique (32) est agencé de manière à émettre la lumière depuis un côté opposé
de la section de connexion électrique (13) dans une direction verticale par rapport
au substrat électronique (100),
l'élément de fixation (2) comporte une ouverture (21) au niveau d'une position telle
qu'une férule (31) du module (3) est agencé au niveau d'une position opposée à l'ouverture
(21), l'ouverture (21) fonctionnant comme une partie d'extraction de lumière pour
guider la lumière émise à partir du module optique (3) jusque vers l'extérieur afin
d'extraire la lumière,
l'élément de fixation (2) comporte une section de logement de connecteur optique (24)
qui comporte l'ouverture (21),
la section de logement de connecteur optique (24) est configurée pour loger le connecteur
optique (4) fourni avec le guide d'onde optique (41).
2. Agencement de montage de module optique selon la revendication 1, dans lequel le corps
de logement de module (1) est monté sur le substrat électronique (5) de manière amovible.
3. Agencement de montage de module optique selon la revendication 1 ou 2, dans lequel
le corps de logement de module (1) est formé comme une boîte présentant une ouverture
sur le dessus,
la section de logement (14) est un espace formé par une paroi inférieure (11) et une
paroi latérale (12), et
la section de connexion électrique (13) connecte électriquement la borne de connexion
électrique (51) du substrat électronique (5), qui est agencé sur une surface inférieure
de la paroi inférieure (11), à la borne de connexion électrique du module optique
(3), qui est agencé sur une surface supérieure de la paroi inférieure (11), à travers
la paroi inférieure (11).
4. Agencement de montage de module optique selon la revendication 3, dans lequel la section
de logement (14) comporte une partie de guidage (12b) pour guider le module optique
(3) vers une position de logement.
5. Agencement de montage de module optique selon une quelconque des revendications 1
à 4, dans lequel
l'élément de pression (2) est configuré pour installer le connecteur optique (4) dans
le module optique (3) à travers l'élément de pression (2),
le connecteur optique (4) est configuré pour convertir un chemin optique perpendiculairement,
et
l'élément de pression (2) est formé de telle sorte qu'une surface supérieure de l'élément
de pression (2) et une surface supérieure du connecteur optique (4) sont sensiblement
au même niveau lorsque le connecteur optique (4) est installé dans le module optique
(3).
6. Agencement de montage de module optique selon une quelconque des revendications 1
à 5, dans lequel l'élément de pression (2) est composé de matériau présentant une
conductivité thermique supérieure ou égale à celle d'un élément de logement du module
optique (3).
7. Agencement de montage de module optique selon une quelconque des revendications 1
à 6, dans lequel l'élément de pression (2) comporte une partie plane (22) sur laquelle
un élément de rayonnement thermique peut être placé.
8. Agencement de montage de module optique selon une quelconque des revendications 1
à 7, dans lequel
la section de connexion électrique (13) est composée d'une pluralité de premières
sections de contact (13a) et d'une pluralité de secondes sections de contact qui sont
connectées électriquement les unes aux autres, les premières sections de contact (13a)
se projetant depuis la surface supérieure de la paroi inférieure (11) afin d'être
en contact avec la borne de connexion électrique du module optique (3),
les secondes sections de contact sont prévues en correspondance par rapport aux premières
sections de contact (13a) et s se projetant depuis la surface inférieure de la paroi
inférieure (11) afin d'être en contact avec la borne de connexion électrique (51)
du substrat électronique (5),
la section de connexion électrique (13) comporte un corps élastique en forme de ressort
pour solliciter le module optique (3) et le corps de logement de module (1) dans une
direction de séparation du module optique (3) et du corps de logement de module (1)
par rapport au substrat électronique (5) lorsque le module optique (3) est pressé
sur le côté du substrat électronique (5) par l'élément de fixation (2), et
le corps élastique en forme de ressort est prévu entre chacune des premières sections
de contact (13a) et chacune des secondes sections de contact.
9. Agencement de montage de module optique selon la revendication 8, dans lequel les
premières sections de contact (13a) et les secondes sections de contact sont agencées
de telle sorte qu'une force de pression est dispersée de manière uniforme lorsque
le module optique (3) est pressé sur le côté du substrat électronique (5) par l'élément
de pression (2).
10. Agencement de montage de module optique selon une quelconque des revendications 1
à 9, dans lequel une pluralité de modules optiques (3) sont configurés pour être installés
dans l'unité de montage de module optique (100).