

(11) EP 2 272 683 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

12.01.2011 Patentblatt 2011/02

(21) Anmeldenummer: 10004504.6

(22) Anmeldetag: 29.04.2010

(51) Int Cl.:

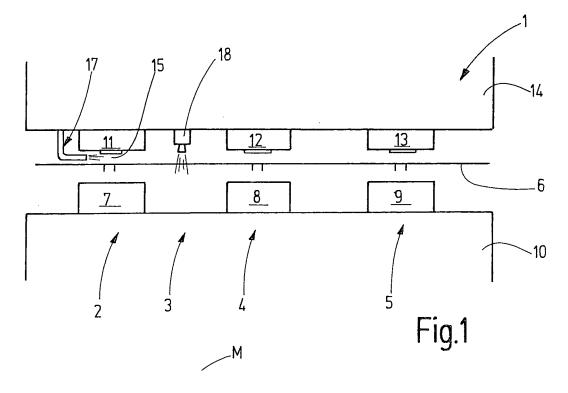
B44B 5/00 (2006.01) B44F 1/10 (2006.01) B44C 1/24^(2006.01) B44B 5/02^(2006.01)

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Benannte Erstreckungsstaaten:

AL BA ME RS


(30) Priorität: 19.05.2009 DE 102009021880

- (71) Anmelder: Schuler Pressen GmbH & Co. KG 73033 Göppingen (DE)
- (72) Erfinder: Fahrenbach, Jürgen 73101 Aichelberg (DE)
- (74) Vertreter: Rüger, Barthelt & Abel Patentanwälte Postfach 10 04 61 73704 Esslingen a.N. (DE)

(54) Prägeverfahren und Prägeeinrichtung zur Erzeugung beugungswirksamer Strukturen

(57) Die Erfindung kombiniert das beugungs- oder interferenzaktive Mikroprägen eines Gegenstands mit dem üblichen makroskopischen Prägen, indem an dem Gegenstand zuerst im Mikroprägeschritt beugungsaktive Strukturen und danach makroskopische Prägestrukturen angebracht werden. Nach dem Mikroprägeschritt

wird auf die beugungsaktive Prägestruktur ein Schutzfluid aufgebracht, das die Mikroprägestruktur beim nachfolgenden Prägevorgang vor Beschädigungen schützt. Das Schutzfluid kann danach auf der Mikroprägestruktur verbleiben oder auch gezielt entfernt werden. Dazu können entsprechende Reinigungsstationen vorgesehen sein.

EP 2 272 683 A2

Beschreibung

[0001] Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Erzeugen von lichtbeugenden Strukturen an Werkstücken durch Prägen.

[0002] Zur Erzielung farbiger optischer Effekte, Hologramme oder dergleichen auf Metalloberflächen, beispielsweise an Münzen, ist es bekannt, die Oberfläche der betreffenden Gegenstände an den gewünschten Stellen mit einer beugungsaktiven Oberflächenstruktur zu versehen. Diese erzeugt Lichtinterferenzen, die den gewünschten optischen Effekt hervorrufen. Beugungsaktive Oberflächen erfüllen dabei nicht nur dekorative Zwecke, sondern können auch dem Schutz vor Fälschung dienen. Die optische Wirkung beruht dabei auf sehr feinen, reliefartig in die jeweilige Oberfläche eingebrachten periodisch aufgebauten Gitterstrukturen. Bekanntestes Beispiel sind metallisierte Kunststofffolien mit Hologrammen, wie sie auf Scheckkarten und Geldscheinen, bei Klebesiegeln usw. zum Einsatz kommen. Während eine glatte Oberfläche einfallendes Licht reflektiert, d.h. unter einem mit dem Einfallswinkel übereinstimmenden Ausfallswinkel wieder abstrahlt, kommt es an Beugungsgittern zu einer Winkeländerung, die z.B. als Farbumschlageffekt an Hologramm-Folien beobachtet werden kann. Die Herstellung beugungsaktiver Folien beruht auf dem Prägen thermoplastischer Kunststoffe mittels galvanisch geformter Nickelstempel und anschließendem Metallisieren der Gitteroberfläche. Daneben existieren jedoch bereits verschiedene Verfahren, mit denen Beugungsgitter unmittelbar in Obeflächen metallischer Körper eingebracht werden.

[0003] Dazu ist beispielsweise aus der WO 2004/045866 A1 die Erzeugung solcher Oberflächenstrukturen in Metalloberflächen mittels eines Prägestempels bekannt. Dieser weist Gitter- und/oder Linienstrukturen auf, die sich beim Prägen des Werkstücks an diesem abformen. Dabei wird der Prägestempel durch einen monokristallinen Diamant gebildet, der mittels Kobalt mit einem Trägerkörper verlötet ist. Die Negativstruktur des an dem Werkstück später zu erzeugenden Beugungsgitters wird in den Prägestempel mittels eines Lasers eingearbeitet. Außerdem kann der Prägestempel mit einem Elektronen- oder einem Röntgenstrahl poliert werden.

[0004] Bei dieser Vorgehensweise ist die Größe der zu erzeugenden interferenzwirksamen Strukturen von vornherein auf die Größe vorhandener Diamanten begrenzt.

[0005] Des Weiteren offenbart die DE 100 02 644 A1 die Herstellung beugungswirksamer Reliefstrukturen auf Münzoberflächen. Dazu wird der betreffende Rohling zunächst in einem Tauchbad mit einer dünnen lichtempfindlichen Kunststoffschicht überzogen. Anschließend wird die Kunststoffschicht belichtet und entwickelt. Dadurch werden mikroskopisch feine Stellen der Münzoberfläche frei gelegt. In einem Ätzbad können dann nachfolgend mikroskopische Reliefstrukturen in die Münzoberfläche eingeätzt werden, wonach der fotoemp-

findliche Kunststoff wieder entfernt wird. Die DE 100 02 644 A1 offenbart darüber hinaus ein Konzept für eine fälschungssichere Münze mit beugungsoptischen, die herkömmlichen Gestaltungselemente einer Münze ergänzenden Merkmalen. Diese sollen visuell erkennbar, aber auch maschinenlesbar sein, wobei die maschinelle Erkennung der beugungsoptischen Signatur auf der Feststellung der räumlichen Lage der Beugungsmaxima beruht. Es wird ein Lesegerät vorgestellt, welches in Münzprüfer und ähnliche Geräte eingebaut ist. Kernstück dieses Lesegeräts ist eine Lichtquelle und eine darauf abgestimmt Sensorik, mit der unter anderem festgestellt wird, ob die Beugungsmaxima des von der Signatur auf der Münze abgestrahlten Lichts an der aufgrund der Wellenlänge des Lichts und der Gitterparameter der Struktur zu erwartenden Stelle auftreten.

[0006] Weiter ist aus der DE 197 22 575 A1 die Herstellung von interferenzfähigen Mikrostrukturen, beispielsweise zur Erzeugung von Hologrammen in Münzen oder dergleichen mittels Prägestempel, bekannt. Bei diesem Verfahren werden auf einem Prägestempel mehrere harte Schichten, beispielsweise aus Kobalt- oder Nickellegierungen abgeschieden, in die Diamantkristalle eingelagert sind. Die Schichten können durch spezielle Legierungsbäder oder Metallspritzverfahren, durch galvanische Abscheidung oder durch plasmatische Ablagerung aufgebracht sein. Die Oberflächenschicht wird durch eine diamantähnliche Schicht gebildet, die die Mikrostruktur enthält. Zur Erzeugung der Mikrostrukturen verweist die genannte Schrift allgemein auf galvanische Verfahren, Elektronen- oder Lasergravur, Feinätztechniken und direkte Gravur mittels Diamantwerkzeug.

[0007] Es ist nach wie vor schwierig, mit Prägewerkzeugen einerseits makroskopische Reliefstrukturen, wie sie bei Münzen üblich sind, und andererseits Beugungsstrukturen zu erzeugen.

[0008] Es ist deshalb Aufgabe der Erfindung, ein praktisch Verfahren und eine entsprechende Vorrichtung zur prägetechnischen Erzeugung sowohl von Beugungsstrukturen als auch von Reliefstrukturen auf Metalloberflächen zu schaffen. Insbesondere ist es Aufgabe der Erfindung, eine praktisch einsetzbare, kostengünstige Produktionstechnik für in Metall geprägte Diffraktogramme zum Einsatz in der Massenfertigung von Umlaufmünzen und Token bzw. Wertmarken, aber auch für die Herstellung von Sondermünzen, Medaillen und dergleichen anzugeben.

[0009] Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 wie auch den Merkmalen des Anspruchs 16 gelöst:

[0010] Die erfindungsgemäße Prägeeinrichtung dient der Bearbeitung von Metallgegenständen, wie beispielsweise Münzen. Sie enthält eine Mikroprägestation, die dazu eingerichtet ist, an dem massiven Gegenstand in einem Prägevorgang eine beugungsaktive Struktur zu erzeugen. Diese kann in einem Punkt- oder Linienmuster bestehen, das Erhebungen und Vertiefungen an der Oberfläche des Gegenstands festlegt. Die Größe dieser

20

Strukturen liegt im Bereich der Lichtwellenlänge, so dass Beugungen und Interferenzen entstehen können. Das interferierende Licht erzeugt farbige Oberflächenbereiche. Nach der Mikroprägestation durchläuft der Gegenstand eine Auftrageinrichtung, in der auf die beugungsaktive Struktur eine Schutzschicht aufgebracht wird. Diese Schutzschicht füllt die beugungsaktiven Strukturen aus und bedeckt sie. Als Schutzschicht eignen sich Mineralöle, Silikonöle, Lacke, Farben, Kunststoffe wie Duromere, Elastomere, Lösungen aus anorganischen oder organischen Stoffen, wässrige Lösungen usw. Der mit der Schutzschicht versehene Gegenstand.wird dann einer Prägestation zugeführt, in der an dem Gegenstand ein makroskopisches Bildrelief angebracht wird. Dieses Bildrelief kann sich über den zuvor in der Mikroprägestation geprägten Bereich erstrecken. Die beugungsaktive Struktur kann dabei unverformt bleiben oder auch verformt werden. Beispielsweise kann sie mit einer konkaven oder konvexen Wölbung versehen sein. Außerdem können sich durch die beugungsaktive Struktur hindurch erstreckende makroskopische Linienstrukturen oder sonstige geometrische Elemente erzeugt werden. Die Schutzschicht sorgt dabei dafür, dass die beugungsaktive Struktur erhalten bleibt, d.h. nicht oder nur wenig beschädigt wird. Auf diese Weise gelingt die Herstellung von Metallgegenständen, wie beispielsweise Münzen, die ein makroskopisches Relief aufweisen, wie es bei Münzen üblich ist, wobei in dieses Relief die zuvor erzeugten beugungsaktiven Strukturen integriert sind. Damit gelingt die Herstellung von Metallmünzen mit unterschiedlichen Farbeffekten. Die Farbeffekte entstehen durch Interferenz des reflektierten Lichts an den beugungsaktiven Strukturen.

[0011] Die beugungsaktiven Strukturen können als Echtheitsmerkmal Anwendung finden. Sie können außerdem auf verschiedene andere Weise genutzt werden, wie beispielsweise als Alters- oder Abnutzungsanzeige. Beispielsweise verschwindet die Beugungsaktivität mit allmählichem Verschleiß der beugungsaktiven Struktur, beispielsweise wenn die Münze abgegriffen wird.

[0012] Es ist vorgesehen, die Schutzschicht nach Ausbildung des makroskopischen Reliefs zu entfernen, so dass die beugungsaktive Struktur freigelegt wird. In diesem Fall kann die Schutzschicht durch ein undurchsichtiges Material gebildet werden. Es ist aber auch möglich, eine Schutzschicht aus transparentem Material vorzusehen, das nach Fertigstellung der Münze oder des sonstigen Metallgegenstandes nicht entfernt wird. Hat das Material der Schutzschicht einen anderen Brechungsindex als Luft, kann die beugungsaktive Struktur, solange die Schutzschicht vorhanden ist, andere Farben erzeugen, als nach Entfernen der Schutzschicht. Auf diese Weise kann an entsprechenden Gegenständen gewissermaßen eine eingebaute Uhr bzw. ein Verfallsdatum angebracht werden. Löst sich die Schutzschicht bei Gebrauch des Gegenstands allmählich ab, kommt es, sobald die Schutzschicht verloren ist, zu einem Farbumschlag an der beugungsaktiven Struktur, die dann das

Erreichen des Verfalldatums anzeigt.

[0013] Der Mikroprägestempel besteht vorzugsweise aus einem hochfesten harten Trägermaterial, wie beispielsweise Hartmetall. Auf dem Mikroprägestempel kann eine Hartstoffschicht aufgebracht sein, die ein Mikroprägerelief zur Erzeugung der beugungsaktiven Strukturen in Form beugungsaktiver Prägestellen an dem vorzugsweise aus Metall bestehenden Gegenstand aufweist. Die Hartstoffschicht ist vorzugsweise eine DLC-Schicht (DLC steht für Diamond Like Carbon, d.h. diamantähnlichem Kohlenstoff).

[0014] Die Größe des Mikroprägestempels kann von der Größe des der Makroprägestation zugeordneten Prägestempels abweichen. Auf diese Weise können in einem Prägebild kleinere mikrogeprägte beugungsaktive Strukturen erzeugt werden. Es ist möglich, die Mikroprägestellen und die Makroprägestellen so anzuordnen, dass sie sich vollkommen überlappen. Es ist auch möglich, eine lediglich teilweise Überlappung vorzusehen oder eine Überlappung ganz zu vermeiden.

[0015] Der Mikroprägestation ist vorzugsweise eine Reinigungseinrichtung zugeordnet, die den Mikroprägestempel sauber hält. Dies kann durch direkte gelegentliche Reinigung des Mikroprägestempels und/oder durch Reinigung des der Mikroprägestation zugeführten Gegenstands erfolgen. Als Reinigungseinrichtung ist vorzugsweise eine Partikelstrahlreinigungseinrichtung vorgesehen. Diese kann Blasdüsen aufweisen, mittels derer ein Partikelstrahl auf das Prägerelief des Mikroprägestempels und/oder den Metallgegenstand gerichtet werden kann. Als Partikelstrahl eignet sich insbesondere ein Trockeneisstrahl. Alternativ können Bürsten oder sonstige mechanische Reinigungseinrichtungen vorgesehen sein, die mit dem Mikroprägestempel zusammenwirken. [0016] Die erfindungsgemäße Einrichtung weist eine Auftransigisichtung für das Schutzmittel auf Vorzugsweise

Auftrageinrichtung für das Schutzmittel auf. Vorzugsweise ist die Auftrageinrichtung als Sprühvorrichtung ausgebildet. Diese ist vorzugsweise zwischen der Mikroprägestation und der Reliefprägestation angeordnet. Der Gegenstand kann an seiner beugungsaktiv geprägten Stelle mit dem Schutzmittel besprüht werden, wenn er von einer Transfereinrichtung durch die Auftrageinrichtung geführt wird.

[0017] Die Auftrageinrichtung trägt vorzugsweise ein flüssiges Schutzmittel auf, das je nach Anforderungen flüssig bleiben oder auch Aushärten kann. Es schützt die erzeugte beugungsaktive Struktur vor Zerstörung während des Reliefprägens.

[0018] Weitere Einzelheiten vorteilhafter Ausführungsformen der Erfindung ergeben sich aus der Zeichnung, der Beschreibung oder Ansprüchen. Die Zeichnung und die Beschreibung beschränken sich auf eine schematische Wiedergabe wesentlicher Aspekte der Erfindung und sonstiger Gegebenheiten. Die Zeichnung ist stark schematisiert. Der Fachmann kann sie zur Ergänzung der Beschreibung heranziehen.

[0019] In der Zeichnung ist ein Ausführungsbeispiel der Erfindung veranschaulicht. Es zeigen:

Fig. 1 eine Prägeeinrichtung in Form eines Presswerkzeugs bzw. einer Presse in äußerst schematischer Darstellung.

Fig. 2 einen Gegenstand vor Durchlaufen der Prägestationen als Rohling in schematischer Seitenansicht.

Fig. 3 den Rohling nach Fig. 2 nach Durchlaufen der Mikroprägestation in schematischer Seitenansicht.

Fig. 4 die an den Metallgegenstand erzeugte beugungsaktive Struktur in vergrößerter Darstellung.

Fig. 5 die an dem Gegenstand nach Fig. 3 erzeugte beugungsaktive Struktur nach Aufbringen einer Schutzschicht und

Fig. 6 den Metallgegenstand nach Durchlaufen der Reliefprägestation in schematisierter Seitenansicht.

[0020] In Fig. 1 ist eine Prägeeinrichtung 1 veranschaulicht, die zur Herstellung von kombiniert geprägten Metall- oder sonstigen Gegenständen dienen kann. Unter kombinierter Prägung wird dabei verstanden, dass das Prägebild beugungsaktive Mikrostrukturen enthält, die im Auflicht Farbeffekte durch Lichtinterferenz erzeugen und dass außerdem makroskopische Strukturelemente vorhanden sind, wie sie bei geprägten Gegenständen, wie Münzen oder dergleichen allgemein vorhanden sind. Die Prägeeinrichtung enthält mehrere Stationen, nämlich eine Mikroprägestation 2, eine Auftrageinrichtung 3 und eine Relief-Prägestation 4. Desweiteren kann eine Stanzstation 5 vorgesehen sein. Die Mikroprägestation 2 dient dazu, an einem beispielsweise aus Metall bestehenden Gegenstand, wie dem Rohling 6 nach Fig. 2 eine beugungsaktive Struktur auszubilden. Die Auftrageinrichtung 3 dient dazu, die soeben erzeugte beugungsaktive Struktur mit einem Schutzmittel, wie beispielsweise einem Schutzfluid zu versehen. Die Reliefprägestation 4 dient dazu, an dem Metallgegenstand ein makroskopisches Prägemuster anzubringen. Die Stanzstation 5 dient beispielsweise zum Prägen oder Stanzen des Rands des Metallgegenstands, der beispielsweise eine Münze sein kann. Der Metallgegenstand durchläuft die Stationen 2 bis 5 seriell. Um den Werkstücktransport zu bewerkstelligen, ist eine Transfereinrichtung 6 beispielsweise in Form eines oder mehrerer Greifer vorgesehen. Die Transfereinrichtung 6 ist in Fig. 1 äußerst schematisch veranschaulicht.

[0021] Die Mikroprägestation 2 und die Reliefprägestation 4 sowie die optionale Stanzstation 5 können Stufen eines Presswerkzeugs oder gesonderte Presswerkzeuge sein. Die Presswerkzeuge können in unterschiedlichen Pressen oder wie es bevorzugt wird, in ein und derselben Presse angeordnet sein. Sie weisen beispielsweise jeweils einen unteren Werkzeugteil 7, 8, 9 auf. Diese ruhen z.B. auf einem gemeinsamen unteren Werk-

zeugträger 10. Dieser kann auf einem nicht weiter veranschaulichten Pressentisch angeordnet sein.

[0022] Den unteren Werkzeugteilen 7, 8, 9 sind obere Werkzeugteile 11, 12, 13 zugeordnet. Diese ruhen an einem gemeinsamen Werkzeugträger 14, der beispielsweise an dem Pressenstößel befestigt ist.

[0023] Die Werkzeugteile 7, 11, bilden die Mikroprägestation 2. Einer der beiden Werkzeugteile 7, 11, oder auch beide, sind mit einem Mikroprägestempel 15 versehen. Dieser besteht beispielsweise aus Hartmetall mit einer Hartstoffauflage, beispielsweise einer DLC-Auflage. In die DLC-Auflage ist eine Mikrogravur beispielsweise durch Laserablation eingebracht. Diese erzeugt beim Abdruck auf dem Metallgegenstand M eine beugungsaktive Struktur 16, wie sie beispielsweise aus Fig. 4 ersichtlich ist. Die Struktur 16 besteht aus mikrofeinen Vorsprüngen und Ausnehmungen, deren Dimension in der Größenordnung der Lichtwellenlänge liegt, so dass reflektiertes Licht Interferenz und Beugungserscheinungen zeigt. Der Mikroprägestation 2 ist vorzugsweise eine Reinigungsstation 17 zugeordnet. Diese enthält z.B. eine Düse, die dazu eingerichtet ist, einen Partikelstrahl, beispielsweise einen Trockeneisstrahl auf die strukturierte Stirnfläche des Mikroprägestempels 15 zu richten, um diesen sauber zu halten. Dies kann nach jedem Presshub oder auch von Zeit zu Zeit oder bedarfsorientiert erfolgen.

[0024] Die zwischen der Reliefprägestation 4 und der Mikroprägestation 2 angeordnete Auftrageinrichtung 3 enthält beispielsweise eine Sprühdüse 18, die an eine nicht weiter veranschaulichte Versorgungseinheit angeschlossen ist und gezielt ein Schutzfluid aussprühen kann. Sie ist so orientiert, dass sie dabei ein z.B. von der Transfereinrichtung 6 gehaltenes Werkstück trifft.

[0025] Die Reliefprägestation 12 ist wie bei einer herkömmlichen Prägepresse ausgebildet. Die Werkzeugteile 12, 8 enthalten eine Gravur, in die der Gegenstand M eingelegt wird, um geprägt zu werden. Die Werkzeugteile 9, 13 sind herkömmliche Teile einer Stanzstation.

[0026] Die insoweit beschriebene Prägeeinrichtung 1 arbeitet wie folgt:

[0027] Die Transfereinrichtung 6 legt den Rohling M nach Fig. 2 zunächst in die Prägestation 2 ein, wenn die Werkzeugteile 7, 11 offen sind, d.h. voneinander wegbewegt sind. Wenn die Transfereinrichtung 6 aus dem Werkzeug ausgefahren ist, folgt der Mikroprägeschritt, in dem der Mikroprägestempel 15 an dem Gegenstand M eine Mikroprägestruktur 19 erzeugt, wie sie in Fig. 3 angedeutet ist. Fig. 4 veranschaulicht die Mikroprägestruktur 19 in idealisierter Form. Sie enthält die beugungsaktive Struktur 16 in Form kleinerer Erhebungen 20 und Ausnehmungen 21, z.B. in Form von Stegen, die einen halben bis wenige Mikrometer breit und einen halben bis wenige Mikrometer hoch sind. Die beugungsaktive Struktur 16 erzeugt bei Lichteinfall farbige Muster mit konstanten oder auch wechselnden Farben je nach Lichteinfallsrichtung.

[0028] Ist die Mikroprägestruktur 19 ausgebildet, öff-

15

20

25

30

net das aus den Werkzeugteilen 7, 11 bestehende Werkzeug wieder und die Transfereinrichtung 6 führt den Gegenstand M aus dem Werkzeug heraus. Der Gegenstand M wird dann durch die Auftrageinrichtung 3, d.h. unter der Sprühdüse 18 hindurchgeführt, die im richtigen Moment einen Sprühstoß abgibt. Dadurch wird die Mikroprägestruktur 19, wie Fig. 5 zeigt, mit einem Schutzfluid 22 gefüllt. Das Schutzfluid kann ein Silikonöl, ein Mineralöl, ein Schutzlack oder dergleichen sein. Danach wird der Gegenstand M zumindest einem weiteren Prägeschritt zugeführt, wie sie auch sonst bei einer makroskopischen Prägung von Gegenständen angewandt werden. Das Schutzfluid 22 füllt dabei die Mikroprägestruktur 19 aus und verhindert deren Beschädigung oder Zerstörung.

[0029] Fig. 6 veranschaulicht den Gegenstand M nachdem er die Prägestation 4 durchlaufen hat. Der Mikroprägestruktur 19 ist ein makroskopisches Prägemuster 23 überlagert, in das die durch das Schutzfluid 22 geschützte Mikroprägestruktur 19 eingebettet ist. Die Mikroprägestruktur 19 kann dabei etwas verformt werden, ohne zerstört zu werden.

[0030] Die Erfindung kombiniert das beugungs- oder interferenzaktive Mikroprägen eines Gegenstands mit dem üblichen makroskopischen Prägen, indem an dem Gegenstand zuerst im Mikroprägeschritt beugungsaktive Strukturen und danach makroskopische Prägestrukturen angebracht werden. Nach dem Mikroprägeschritt wird auf die beugungsaktive Prägestruktur ein Schutzfluid aufgebracht, das die Mikroprägestruktur beim nachfolgenden Prägevorgang vor Beschädigungen schützt. Das Schutzfluid kann danach auf der Mikroprägestruktur verbleiben oder auch gezielt entfernt werden. Dazu können entsprechende Reinigungsstationen vorgesehen sein.

Bezugszeichenliste

[0031]

- 1 Prägeeinrichtung
- 2 Mikroprägestation
- 3 Auftrageinrichtung
- 4 Reliefprägestation
- 5 Stanzstation
- 6 Transfereinrichtung
- 7 Werkzeugteil
- 8 Werkzeugteil
- 9 Werkzeugteil
- 10 Werkzeugträger
- 11 Werkzeugteil
- 12 Werkzeugteil
- 13 Werkzeugteil
- 14 Werkzeugträger
- 15 Mikroprägestempel
- 16 Struktur
- 17 Reinigungsstation
- 18 Sprühdüse

- 19 Mikroprägestruktur
- 20 Erhebung
- 21 Ausnehmung
- 22 Schutzfluid
- 23 Prägemuster

Patentansprüche

- Prägeeinrichtung (1) zur Bearbeitung Metallgegenständen (M), insbesondere Münzen,
 - mit einer Mikroprägestation (2), die wenigstens einen Mikroprägestempel (15) zur prägetechnischen Erzeugung einer beugungsaktiven Struktur (16) an einem massiven Gegenstand (M) aufweist, mit einer Auftrageinrichtung (3) zum Aufbringen einer
- ner Schutzschicht (22) auf den in der Mikroprägestation (2) geprägten Gegenstand (M),
 - mit einer Prägestation (3), die wenigstens einen Prägestempel (12) mit einem makroskopischen Bildrelief aufweist.
- Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Mikroprägestempel (15) aus einem hochfesten harten Trägermaterial, vorzugsweise Hartmetall besteht.
- Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass auf den Mikroprägestempel (15) eine Hartstoffschicht aufgebracht ist, die ein Mikroprägerelief (19) zur Erzeugung der beugungsaktiv Strukturen (16) an dem Gegenstand (M) aufweist enthält.
- 35 4. Prägeeinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Hartstoffschicht (8) eine DLC-Schicht ist.
- Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Mikroprägestation (2) eine Reinigungseinrichtung (17) zugeordnet ist.
- 6. Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Reinigungseinrichtung (17) eine Partikelstrahlreinigungseinrichtung mit Blasdüsen ist, mittels derer ein Partikelstrahl auf das Prägerelief des Mikroprägestempels (15) und/oder den Metallgegenstand (M) gerichtet werden kann.
- 7. Prägeeinrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Reinigungseinrichtung Blasdüsen aufweist, mittels derer ein Partikelstrahl vor dem Prägevorgang auf Werkstück gerichtet werden kann.
 - 8. Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Reinigungseinrichtung eine Bürste aufweist, die bei offenem Werkzeug über

55

30

35

45

das Prägerelief streicht.

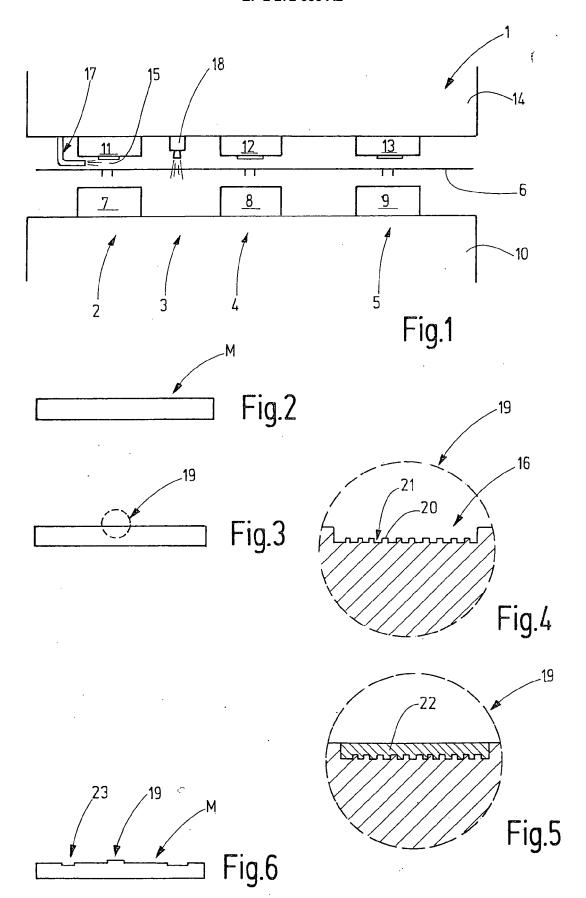
- Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass ein optischer Sensor vorgesehen ist, mittels dessen eine Steuereinrichtung die Produktionsqualität überwacht.
- 10. Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Auftrageinrichtung (3) eine Sprüheinrichtung (18) mit wenigstens einer Sprühdüse ist, um wenigstens auf die im Prägevorgang erzeugte beugungsaktive Struktur (16) ein Schutzmittel (22) aufzusprühen.
- 11. Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Auftrageinrichtung (3) eine Schutzflüssigkeit (22) aufbringt, die die Vertiefungen der beugungsaktiven Struktur (16) ausfüllt.
- 12. Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Auftrageinrichtung (3) auf den Metallgegenstand (M) Silikonöl, einen Schutzlack oder ein sonstiges fluides Schutzmittel aufbringt.
- 13. Prägeeinrichtung nach Anspruch 12, dadurch gekennzeichnet, dass das fluide Schutzmittel (22) so beschaffen ist, dass es nach dem Auftragen aushärtet.
- 14. Prägeeinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das fluide Schutzmittel (22) so beschaffen ist, dass es nach dem Auftragen nicht aushärtet.
- **15.** Prägeeinrichtung nach Anspruch 1, **dadurch ge- kennzeichnet**, **dass** das fluide Schutzmittel (22) optisch durchsichtig ist.
- **16.** Verfahren zur Bearbeitung eines Metallgegenstandes mit folgenden Schritten:

Bereitstellen eines Metallgegenstandes (M) und Einführen desselben in eine Mikroprägestation (2)

Durchführen eines Mikroprägeschritts zur Ausbildung einer Beugungsstruktur an dem Metallgegenstand (M),

Aufbringen einer Schutzmittelschicht (22) zumindest auf die im Mikroprägevorgang erzeugte Beugungsstruktur (16),

Überführen des Metallgegenstandes (M) in eine Reliefprägestation (4).


Durchführen eines Reliefprägeschritts zur Erzeugung eines makroskopischen Prägereliefs 55 (23), das die Beugungsstruktur (16) enthält.

17. Verfahren nach Anspruch 16, dadurch gekenn-

zeichnet, dass die Schutzmittelschicht (22) nach Durchführung des Reliefprägeschritts von dem Metallgegenstand (M) entfernt wird.

18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Schutzmittelschicht (22) vor oder nach Durchführung des Reliefprägeschritts ausgehärtet wird.

6

EP 2 272 683 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- WO 2004045866 A1 [0003]
- DE 10002644 A1 [0005]

• DE 19722575 A1 [0006]