EP 2 274 673 B9

(19)

(12)

(15)

(48)

(45)

(21)

(22)

Europdisches
Patentamt

European

Patent Office

Office européen
des brevets

EP 2274 673 B9

(1)

CORRECTED EUROPEAN PATENT SPECIFICATION

Correction information:
Corrected version no 1
Corrections, see
Claims EN 7

(W1 B1)

Corrigendum issued on:
08.03.2017 Bulletin 2017/10

Date of publication and mention
of the grant of the patent:
11.01.2017 Bulletin 2017/02
Application number: 09731636.8

Date of filing: 08.04.2009

(51) IntCl.:
GOGF 9/445 (2006.01)

(86) International application number:
PCT/IB2009/051494

(87) International publication number:

WO 2009/127997 (22.10.2009 Gazette 2009/43)

(54)

METHODS AND SYSTEMS FOR EMBEDDING UPGRADE STEPS FOR LAYERED

ARCHITECTURES

VERFAHREN UND SYSTEME ZUM EINBETTEN VON AUFRUSTUNGSSCHRITTEN FUR

GESCHICHTETE ARCHITEKTUREN

PROCEDES ET SYSTEMES D INTEGRATION D ETAPES DE MISE A NIVEAU POUR DES

ARCHITECTURES EN COUCHES.

(84)

(30)

(43)

(73)

Designated Contracting States:

ATBE BG CHCY CZDE DKEE ES FIFR GB GR
HRHUIEISITLILT LU LV MC MK MT NL NO PL
PT RO SE SI SKTR

Priority: 18.04.2008 US 46015 P
10.07.2008 US 171109

Date of publication of application:
19.01.2011 Bulletin 2011/03

Proprietor: Telefonaktiebolaget LM Ericsson

(publ)
164 83 Stockholm (SE)

(72) Inventor: TOEROE, Maria
Montreal
Québec H3G 1A9 (CA)

(74) Representative: Réthinger, Rainer
Wuesthoff & Wuesthoff
Patentanwélte PartG mbB
Schweigerstrasse 2
81541 Miinchen (DE)

(56) References cited:

WO-A-2004/010292 WO-A-2004/010293

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been

paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

1 EP 2 274 673 B9 2

Description
TECHNICAL FIELD

[0001] The present invention generally relates to sys-
tems and methods associated with layered architectures
(hardware and software) and, more particularly, to up-
grading such systems.

BACKGROUND

[0002] High availability systems(also known as HA
systems) are systems that are implemented primarily for
the purpose of improving the availability of services which
the systems provide. Availability can be expressed as a
percentage of time during which a system or service is
‘'up’. For example, a system designed for 99.999% avail-
ability (so called ‘five nines’ availability) refers to a system
or service which has a downtime of only about 0.44 min-
utes/month or 5.26 minutes/year.

[0003] High availability systems provide for a designed
level of availability by employing redundant nodes, which
are used to provide service when system components
fail. For example, if a server running a particular applica-
tion crashes, an HA system will detect the crash and re-
start the application on another, redundant node. Various
redundancy models can be used in HA systems. For ex-
ample, an N+1 redundancy model provides a single extra
node (associated with a number of primary nodes) that
is brought online to take over the role of a node which
has failed. However, in situations where a single HA sys-
tem is managing many services, a single dedicated node
for handling failures may not provide sufficient redundan-
cy. In such situations, an N+M redundancy model, for
example, can be used wherein more than one (M) stand-
by nodes are included and available.

[0004] AsHA systemsbecome more commonplace for
the support of important services such file sharing, inter-
net customer portals, databases and the like, it has be-
come desirable to provide standardized models and
methodologies for the design of such systems. For ex-
ample, the Service Availability Forum (SAF) has stand-
ardized application interface services (AlS) to aid in the
development of portable, highly available applications.
In particular, such services will be deliverable to systems,
entities or nodes which operate having a layered (soft-
ware) architecture. As shown in the conceptual architec-
ture stack of Figure 1, such alayered architecture 10 can,
for example, include an operating system 12, middleware
14 and an application 16, from the lowest layer to the
highest layer. The reader interested in more information
relating to the AIS standard specification is referred to
Application Interface Specification (AIS), Software Man-
agement Framework (SMF), SAI-AIS-SMF-A.01.01,
which is available at www.saforum.org.

[0005] Of particular interest for the present application
is the Availability Management Framework (AMF), which
is a software entity defined within the AlS specification,

10

15

20

25

30

35

40

45

50

55

e.g., as specifications document SAI-AIS-AMF-B.03.01
from the Service Availability Forum™ and is also incor-
porated here by reference. According to the AIS specifi-
cation, the AMF is a standardized mechanism for provid-
ing service availability by coordinating redundant re-
sources within a cluster to deliver a system with no single
point of failure. The AMF provides a set of application
program interfaces (APIs) through which an AMF imple-
mentation compliant to this specification determines,
among other things, the states of components within a
cluster and the health of those components. The com-
ponents are also provided with the capability to query the
AMF for information about their state. An application
which is developed using the AMF APIs and following
the AMF system model leaves the burden of managing
the availability of its services to the AMF. Thus, such an
application does not need to deal with dynamic reconfig-
uration issues related to component failures, mainte-
nance, etc.

[0006] Currently the SMF specification deals with the
availability aspect of upgrades for entities of the AMF by
defining the upgrade steps that are to be used to upgrade
one or more AMF entities in a high availability system.
More specifically, the current SMF specification defines
the following ordered set of standard actions to be per-
formed in order to upgrade an AMF entity:

1. Online installation of new software

2. Lock deactivation unit

3. Terminate deactivation unit

4. Offline uninstallation of old software

5. Modify information model and set maintenance
status

6. Offline installation of new software

7. Instantiate activation unit

8. Unlock activation unit

9. Online uninstallation of old software

[0007] To better understand these upgrade actions,
consider that ‘online’ installation or uninstallation refers
to software which can be installed or uninstalled without
disturbing or impacting the ongoing operation of any of
the AMF entities in the system, including those entities
being upgraded. Hence these online operations can be
performed in advance of initiating the upgrade procedure
in case of the installation, or after the upgrade procedure
in the case of uninstallation. On the other hand, ’'offline’
installation or uninstallation refers to operations which
may impact the behavior of some AMF entities and there-
fore, in order to maintain control of the system from the
perspective of availability management, these impacted
entities need to be taken offline, i.e. out-of-service, prior
to initiating the upgrade procedure. Hence, the collection
of these impacted entities that are taken offline for the
upgrade step referred to in the SMF specification as the
"deactivation unit’.

[0008] To take the relevant entities offline, the deacti-
vation unit is locked and then terminated (i.e., actions #2

3 EP 2 274 673 B9 4

and #3 above) during the upgrade, i.e., during the time
that the uninstallation of the old software (action #4), the
reconfiguration (action #5), and the installation of the new
software (action #6) are being performed. The reconfig-
uration is performed by changing the information model
in action #5 to reflect the new configuration into which
the system is being upgraded. Due to the upgrade, the
set of offline entities may have changed. Therefore, a
second set of offline entities, i.e., the 'activation unit’ is
defined by the SMF specification. Entities associated with
the of the activation unit are put back into service by un-
locking them after instantiation. Once the online uninstal-
lation has been completed, the old software is completely
removed from the subsystem. For situations where no
offline operation is required and the deactivation unit con-
tains the same entities as the activation unit (i.e., a sym-
metric activation unit) that allow for a restart operation,
a reduced set of actions is defined by the SMF specifi-
cation, i.e.,:

1. Online installation of new software

2. Modify information model and set maintenance
status

3. Restart symmetric activation unit

4. Online uninstallation of old software

[0009] According to the SMF specification, the afore-
described upgrade steps are used in sequence inarolling
fashion across redundant entities (or subsystems) to
maintain availability. The rolling upgrade procedure will
execute the upgrade steps one by one on each subsys-
tem until the complete target system has been upgraded.
Each subsystem will have a pair of deactivation-activa-
tion units. The online and offline installation and uninstal-
lation operations are specified for each software bundle,
each of which delivers to the system the software for one
or more entity types. The upgrade itself is interpreted as
migration of an entity from one entity type to another.
Through this relation each entity is associated with a soft-
ware bundle.

[0010] WO 2004/010292 A may be construed to dis-
close an application model automates deployment of an
application. The application model includes a static de-
scription of the application and a run-time description of
the application. Deployment phases, such as installation,
configuration and activation of the application are exe-
cuted according to the application model.

[0011] However, as will be described below, these up-
grade techniques have certain limitations and, accord-
ingly, it would be desirable to provide new methods, de-
vices, systems and software for upgrading systems hav-
ing layered architectures.

SUMMARY

[0012] Provided are a method and a node of the inde-
pendent claims. Developments are seen in the depend-
ent claims.

10

15

20

25

30

35

40

45

50

55

[0013] Preferably, a method for preparing an upgrade
for a software subsystem having a plurality of layers in-
cludes the steps of: ordering upgrade operations for each
of the layers of the software subsystem based upon at
least one of runtime and installation dependencies be-
tween the plurality of layers, and storing the ordered up-
grade operations associated with the layers of the soft-
ware subsystem.

[0014] Preferably, a computer-readable medium con-
tains instructions which, when executed by a computer
or processor, prepare an upgrade of a software subsys-
tem having a plurality of layers by the step of ordering
upgrade operations for each of the layers of the software
subsystem based upon at least one of runtime and in-
stallation dependencies between the plurality of layers.
[0015] Preferably, a node which can prepare an up-
grade of a software subsystem having a plurality of layers
includes a processor for ordering upgrade operations for
each of the layers of the software subsystem based upon
at least one of runtime and installation dependencies be-
tween the plurality of layers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0016] The accompanying drawings, which are incor-
porated in and constitute a part of the specification, illus-
trate one or more embodiments and, together with the
description, explain these embodiments. In the drawings:

Figure 1 illustrates a layered architecture;

Figure 2 illustrates a layered architecture labeled
with upgrade action phases according to an exem-
plary embodiment;

Figure 3 is a table which identifies upgrade actions
per layer for the exemplary layered architecture of
Figure 2 according to an exemplary embodiment;
Figure 4 illustrates a general re-ordering of upgrade
actions by phase according to an exemplary embod-
iment;

Figure 5 shows variations on re-ordering of upgrade
actions based on dependenciesaccording to an ex-
emplary embodiment;

Figure 6 is an exemplary node according to an ex-
emplary embodiment, and

Figure 7 is a flowchart illustrating a method for up-
grading a software subsystem according to an ex-
emplary embodiment.

DETAILED DESCRIPTION

[0017] The following description of the exemplary em-
bodiments of the present invention refers to the accom-
panying drawings. The same reference numbers in dif-
ferent drawings identify the same or similar elements.
The following detailed description does not limit the in-
vention. Instead, the scope of the invention is defined by
the appended claims.

[0018] When a system or subsystem has a layered ar-

5 EP 2 274 673 B9 6

chitecture, typically there will be dependencies between
the layers that should be taken into account at the time
of the upgrade, and which pose additional ordering con-
straints (i.e., besides those necessary to maintain avail-
ability) for the upgrade. Such dependencies may not be
satisfied by the sequential ordering of different steps nec-
essary to upgrade each of the entities, or by accumulating
all of the upgrade operations into a single step. For ex-
ample, considering again the layered architecture shown
in Figure 1, consider a software subsystem 10 that has
an operating system 12 that runs a middleware imple-
mentation 14, which is in turn used by an application 16.
The application 16 is likely to have a dependency on the
version of the middleware implementation 14, which in
turn might have a similar dependency on the version of
the operating system 12. These dependencies can in-
clude runtime dependencies, e.g., dependencies be-
tween layers which are present when both layers are
running, and/or installation dependencies, e.g., depend-
encies between layers which are present at the time of
installation. It will be appreciated by those skilled in the
art that other layers could be added (or layers removed)
from the example shown in Figure 1, e.g., a hardware
layer could be disposed beneath the operating system
layer 12.

[0019] In such a system 10 having a layered architec-
ture, if the operating system 12 needs to be upgraded
such an upgrade should not be performed without con-
sidering all of the dependencies that the other software
layers may have with respect to operating system 12.
Typically, it will therefore be necessary to upgrade all of
the layers 12, 14 and 16. Moreover, in some cases a
higher layer may not be upgradeable at the same time
as the lower layer(s), but instead its upgrade may need
to be sequenced after the lower layer(s) has (have) been
upgraded and, potentially, even after the lower layer(s)
has (have) been re-activated, e.g., an operating system
12 may need to be up and running prior to installing up-
graded AMF entities. These considerations are referred
to herein as categorizing each upgrade operations as
being either an upgrade operation which can be per-
formed with the impacted entity(ies) being 'online’ or an
upgrade operation which needs to be performed with the
impacted entity(ies) being 'offline’.

[0020] Additionally, in such a case, the different pieces
of software associated with the different layers 12, 14
and 16 are likely to come from different software vendors,
each of whom would typically provide an upgrade proc-
ess for their own product. Thus, it is also desirable ac-
cording to these exemplary embodiments to provide an
upgrade method and system which combines the inde-
pendent upgrade processes associated with different
layers into a single upgrade step that can be used by,
e.g., the SMF, to automatically manage the upgrade pro-
cedure in a high-availability system.

[0021] This can be accomplished by exemplary em-
bodiments which order the upgrade operations for each
ofthelayers of a software subsystem based upon runtime

10

15

20

25

30

35

40

45

50

55

and installation dependencies between the layers, and
which then perform the ordered upgrade operations on
layers of software subsystem. For example, to order the
upgrade operations based upon runtime and installation
dependencies, the upgrade steps described above in the
Background section can instead be reorganized into
three phases: a tear-down (TD) phase, a reconfiguration
(RC) phase and a rebuild (RB) phase. The tear-down
phase includes those actions which occur when the cur-
rent entities and their software are removed from the sys-
tem. Using the same action numbering provided in the
Background section, the tear-down phase could thus in-
clude (for the full action set):

2. Lock deactivation unit

3. Terminate deactivation unit

4. Offline uninstallation of old software
9. Online uninstallation of old software

For the reduced action set, i.e., for situations where no
offline operationis required and the deactivation unit con-
tains the same entities as the activation unit, the tear-
down phase according to these exemplary embodiments
can include only action #9.

[0022] The reconfiguration phase according to these
exemplary embodiments includes those actions associ-
ated with the changing of the configuration of the current
system to the new configuration, i.e. those entities that
are removed permanently are also removed from the
configuration model, new entities are added to the con-
figuration and configuration changes are made to those
entities that are upgraded, so these entities can be
brought up (rebooted) according to the new configura-
tion. Thus, the reconfiguration phase according to this
exemplary embodiment includes only action #5 de-
scribed above, i.e.:

5. Modify information model and set maintenance
status
for both the full and reduced sets of actions.

[0023] The rebuild phase according to these exempla-
ry embodiments includes those actions associated with
installing the software for the new configuration and in-
stantiating (or re-instantiating) the appropriate entities
using this software in the system. Thus, the rebuild phase
according to this exemplary embodimentincludes the fol-
lowing actions (for the full set of actions):

1. Online installation of new software
6. Offline installation of new software
7. Instantiate activation unit

8. Unlock activation unit

[0024] The rebuild phase for the reduced set of actions
only includes action #1 and a restart action (replacing
action #7) according to this exemplary embodiment.

[0025] According to these exemplary embodiments,

7 EP 2 274 673 B9 8

the upgrade actions are thus performed by phase in the
following order: tear-down phase, reconfiguration phase
and rebuild phase, i.e., 2, 3,4, 9,5, 1, 6, 7 and 8 (for a
full action set). Upon comparing the ordering of actions
inthe Background section with the (reorganized) ordering
of actions according to these exemplary embodiments,
it will be noted that in the ordering presented in the Back-
ground section, the actions associated with the tear-
down and the rebuild phases according to these exem-
plary embodiments are interleaved with one another due
to the online installation (uninstallation) operations. In
high-availability system implementations, this interleav-
ing plays a significant role in the amount time for which
entities are taken out of service during the upgrade proc-
ess. The ideal case is when the reduced upgrade step
can be applied, i.e. the software can be installed/ re-
moved without any disturbance and entities can simply
be restarted. In other cases online operations are also
necessary because the operations are executed remote-
ly; therefore there is a need to remotely access the sys-
tem during upgrades. For example, when the operating
system is upgraded remotely if it requires an offline op-
eration the remote control of the node may be completely
lost and the remote upgrade becomes impossible.
[0026] These considerations, as well as some of the
benefits of performing upgrades using these techniques,
will become more apparent with the discussion of the
following example which steps through an exemplary up-
grade process using the re-ordered actions described
above. Initially consider again the subsystem of Figure
1 with each layer 12, 14 and 16 having its own upgrade
process, e.g., provided by a different software vendor.
Those individual upgrade processes can be broken down
into the nine types of actions described above and the
actions organized into the three phases according to
these exemplary embodiments. To more easily follow the
upgrade processing, the following layer notation will be
used in this example. Layers = {L1, L2, L3,..., Ln}, where
L1 is the lowest layer and Ln is the highest layer. Thus,
for a given layer Ln an upgrade process can be defined
as a tuple:UpgradeStep , = <TD, ,, RC|,, RB| ,>, where
TD|, is the tear-down phase of the upgrade step for layer
Ln, RC_, is the reconfiguration phase for the layer Ln,
and RBy, is the rebuild phase for the layer Ln. This no-
tation is generally illustrated in Figure 2 and a table illus-
trating notation for each specific action within the three
layers is provided as Figure 3.

[0027] Upgrade actions according to these exemplary
embodiments can be ordered (and then performed) by
tearing down from highest to lowest layer, reconfiguring
from lowest to highest layer and rebuilding from lowest
to highest layer. This is shown conceptually in Figure 4,
wherein the arrows representthe three phases of ordered
actions according to this exemplary embodiment and the
blocks represent each individual layer’s associated ac-
tions within each phase. To provide a more specific (yet
purely illustrative) example, the specific ordering of ac-
tions for the illustrative layered architecture of Figures 2

10

15

20

25

30

35

40

45

50

and 3 according to this exemplary embodiment would be:

<TD_ 3, TD 5, TD; 4>=<L3.2,1L3.3,L3.4,1L3.9,L2.2,
L2.3,L2.4,1L2.9,11.2,L1.3,L14, L1.9>

<RC,4, RC| 5, RC 3> =<L1.5,12.5,L3.5>

<RB ¢, RB5, RB 3>=<L1.1,L1.6,L1.7,L1.8, L2.1,
L2.6,L2.7,L2.8,L3.1,L3.6,L3.7, L3.8>

or, with the phases combined, the total action list can
be performed in the following order: < {L3.2, L3.3,
L34, L3.9,L2.2,12.3,1L2.4,L29, L1.2,L1.3, L1.4,
L1.9},{L1.5,L2.5,L3.5},{L1.1,L1.6,L1.7,L1.8,L2.1,
L2.6,L2.7,L2.8,L3.1,L3.6, L3.7,L3.8} >

[0028] Thus, such an upgrade process according to
this exemplary embodiment will tear-down the current
subsystem starting with the top layer and finishing with
the lowest layer. During this tear down phase, the up-
grade process will deactivate the entities layer by layer
and completely remove the old software at the same time.
Then the upgrade process will reconfigure the system
starting with the bottom layer moving into the higher lay-
ers. This reconfiguration phase can, for example, be car-
ried out as a single transaction (in which case the ordering
becomes insignificant), since it is likely that the combi-
nations of the old and new system configuration will result
in errors. Since dependencies typically occur from higher
layer toward a lower layer, following the ordering de-
scribed herein will ensure that the layer reporting an error
after a modification is the one reconfigured, and therefore
corrected, in the next action. Finally, the upgrade process
described above will rebuild the new subsystem starting
with the lowest layer. During this rebuilding phase the
new software is installed and the entities using this new
software are instantiated and activated according to the
new configuration.

[0029] It will be appreciated that, by re-ordering the
upgrade actions in the manner described above accord-
ing to these exemplary embodiments, the interleaving of
those actions which is performed using the conventional
ordering described in the Background section is undone.
According to another exemplary embodiment, since an
online operation can typically be turned into an offline
operation and performed together with that offline oper-
ation, a further combination of upgrade actions can be
performed. For example, in the foregoing example, ac-
tions #4 and #9 can be merged into a new modified action,
referred to herein as action ’4*’, that is, action #9 is per-
formed at the time of action #4. Similarly, actions #1 and
#6 can be merged into a new, modified action referred
to herein as action '6, reflecting that action #1 is per-
formed at the time of action #6. Thus, the tear-down
phase and rebuild phase according to this exemplary em-
bodiment can then be ordered as follows:

Modified tear-down phase:

2 Lock deactivation unit
3 Terminate deactivation unit

9 EP 2 274 673 B9 10

4* Offline uninstallation of old software and on-
line uninstallation of old software

Modified rebuild phase:

6* Online installation of new software and offline
installation of new software 7 Instantiate activa-
tion unit

8 Unlock activation unit

If these merged actions were performed for the pre-
vious example, then the complete list of ordered ac-
tions would then be:

<TD. 3, TD|,, TD 4> =<13.2,L3.3,L3.4% L2.2,
L2.3, L2.4% L1.2,L1.3, L1.4*>,

where L3.4* is the sequence of <L3.4, L3.9> ex-
ecuted at the time of L3.4 (thereby avoiding in-
terleaving), and L2.4* and L1.4* are similar mod-
ifications for layers 2 and 1, respectively; and
<RB4,RB| 5, RB 3>=<L1.6*11.7,L1.8,L2.6%,
L2.7,L2.8,L3.6% L3.7,L3.8>, where L1.6*is the
sequence of <L1.1, L1.6> executed at the time
of L1.6 (thereby avoiding interleaving), and
L2.6* and L3.6* are similar modifications for lay-
ers 2 and 3.

[0030] One benefit associated with re-ordering the up-
grade actions as described above is that this particular
re-organization of action satisfies all of the possible de-
pendencies among the layers, i.e., since the layers are
torn down and then rebuilt in proper order, the old soft-
ware is completely removed as soon as its entities are
terminated, and the new software is installed only after
the software of the underlying layer has been installed
and activated. This exemplary embodimentalso provides
a complete separation of the tear-down and rebuilding
phases, which may be important for example if the soft-
ware is attached physically to the hardware and the hard-
ware needs to be removed, added or replaced during the
upgrade as these can be considered as installation and
uninstallation operations of the bottom layer. However,
the resulting order of upgrade actions described in the
exemplary embodiment above, i.e., < {L3.2, L3.3, L3.4,
L3.9,L2.2,L2.3,L2.4,L2.9,L1.2,L1.3,L1.4,L1.9},{L1.5,
L2.5,L3.5},{L1.1,L1.6,L1.7,L1.8,L2.1,L2.6,L2.7,L2.8,
L3.1, L3.6, L3.7, L3.8} >, i.e., with no interleaving of ac-
tions between phases, may not be the optimalre-ordering
for all layered architectures and/or upgrades and will, in-
stead, vary according to other exemplary embodiments.
For example, this particular re-ordering would not apply
to an upgrade which uses the reduced set of actions,
since the reduced set of actions does not provide for of-
fline operations at all. In many cases however such a
reduced set of actions can be unfolded into the standard
set of actions by converting the restart operation into a
termination followed by instantiation.

[0031] Moreover, using this re-ordering with no inter-

10

15

20

25

30

35

40

45

50

55

leaving according to the afore-described exemplary em-
bodiment also means that the top layer entities are offline
for the complete uninstallation-installation time of all the
layers, i.e., for the longest possible time during the up-
grade process. This may adversely impact availability.
Additionally, it may not be possible to convert all upgrade
processes into this exemplary re-ordering of actions. For
example, in the case of an upgrade of an operating sys-
tem, the old operating system provides the access re-
quired for the installation of its new version; hence online
installation is unavoidable and cannot be converted into
offline installation. Note however that since the lowest
layer has no further dependencies, if the reduced set of
upgrade actions is defined for this layer, the action can
remain interleaved and the reduced set does not need
to be changed. Another consideration relating to the
afore-described re-ordering is that this re-ordering re-
moves the old software completely as soon as possible
from the system. This means that if the upgrade proce-
dure fails, then the old software needs to be re-installed
completely from scratch, which increases the repair time.
Thus, according to some other exemplary embodiments
which will now be described, it may be desirable to re-
order the upgrade actions described in the Background
section in a manner which will retain some interleaving
of the online operations.

[0032] Thus, to avoid some of the potential disadvan-
tages associated with using uninterleaved actions for
some upgrade processes, the following exemplary em-
bodiment provides for some interleaving. Herein, al-
though the actions are once again discussed with respect
to the three phases used above, it will be appreciated
that these phases will no longer be homogeneous with
respect to the actions, since some of the actions of one
phase are now interleaved with actions from another
phase. In this exemplary embodiment, the re-ordering
may be formulated as:

InterleavedEmbeddedUpgardeStep = < <TD*|, , ...,
TD* ,, TD* 1>, <RC4, RC/,, ..., RC >, <RB*4,
RB* 5 ,..., RB* ,> >, where

TD* , is the sequence of actions of the tear-down
phase interleaved with the online installation action
of the rebuilding phase;

RB* 4 is the sequence of actions of the rebuilding
phase interleaved with the online uninstallation ac-
tion of the tear-down phase; and

RC,, is the sequence of actions of the reconfigura-
tion phase.

[0033] According to this second exemplary embodi-
ment, and using the exemplary layered architecture de-
scribed above with respect to Figures 2-4, the re-ordered
set of upgrade actions for the layered architecture can
be expressed as follows: < {L3.71,L3.2,L3.3,L3.4, L2.1,
L2.2, L2.3, L2.4, L1.1, L1.2, L1.3, L1.4}, {L1.5, L2.5,
L3.5},{L1.6,L1.7,L1.8,L1.9,L2.6,1L2.7,L2.8,L2.9,L3.6,
L3.7,L3.8, L3.9}>. Therein, the different phases are sep-

11 EP 2 274 673 B9 12

arated by curly brackets and the interleaved actions from
different phases are shown in italics. It can be seen in
this set of upgrade actions, however, that if there are any
dependencies between the online installation actions of
the different layers, then this ordered set of actions will
not work properly as it installs the software of a higher
layer before the lower layer installation has been com-
pleted. In addition, since the entities of the higher layer
are already taken offline when the online installation of
a lower layer occurs, from an availability perspective,
there is no gain compared to the re-ordered set of actions
described in the previous exemplary embodiment.
[0034] Regarding the uninstallation actions, their or-
dering may not be as important for some upgrades as
the ordering of the installation actions (from an operation
perspective), since the software is not used in the sub-
system after the entities of the appropriate layer are de-
activated. However, from an availability perspective the
same considerations apply for uninstallations as for the
online installations. Thus, the upgrade actions should be
re-organized so that (a) dependencies between layers
can be satisfied and (b) the time that higher layer entities
are taken out of service is minimized, i.e., all the online
installations should be performed as early as possible in
the upgrade process while all online uninstallation ac-
tions are performed as late as possible.

[0035] With respect to satisfying dependencies be-
tween layers, for the cases where the online installation
of an upper layer requires the online installation of the
lower layer, but does not require that the new lower layer
software be running, exemplary embodiments can re-
order the upgrade actions such that these online instal-
lation actions occur as interleaved actions within the tear-
down phase. If, however, the entities need to be instan-
tiated too, interleaving of these actions will not typically
be possible. Thus, to satisfy the ordering of the installa-
tions in this case, an online installation action associated
with an upper layer can be added to the action of online
installation of the layer below that upper layer. Since this
portion of the discussion focuses on dependent layers
there will always be one such sequence. For example,
upgrade action L3.1 can be added to upgrade actionL2.1,
which in turn can be appended to upgrade action L1.1,
thereby forming the sequence <L1.1, L2.1, L3.1>. Ac-
cording to these exemplary embodiments, the upgrade
actions associated with independent layers can be per-
formed in independent steps. In case the online installa-
tions are independent from the layering, but the offline
installations are not, exemplary embodiments may gen-
erate a number of such ordered sequences as part of the
process of re-ordering or reorganizing the upgrade ac-
tions.

[0036] With respect to minimizing the time that higher
layer entities are taken out of service during an upgrade
process, one way to satisfy this criteria is to move the
online installation operations of the lower layers to the
higher layers and execute them as early as possible. The
extent to which this is possible depends on the scope of

10

15

20

25

30

35

40

45

50

55

impact of these operations. An online operation by defi-
nition should not impact any running entity’s behavior
within the subsystem. However, if the operations were
classified as ‘online’ with respect to their own layer only
and without considering the complete layered architec-
ture, this may not be the case. Therefore, an online op-
eration of a lower layer can be moved to the online op-
eration of the higher layer only if the operation does not
impact additional entities. In other words, if its 'online’
status does not assume the deactivation unit of the upper
layer, i.e. it has no impact on any of the entities of the
deactivation unit of that layer, then that action can be
moved as part of the re-ordering.

[0037] A worstcase scenario for the re-ordering of up-
grade actions occurs when none of online installations
of the lower layers involved in an upgrade are true online
operations and they cannot be moved to the higher lay-
ers. Therefore the higher layer operations need to be
moved to the lowest layer’s online operation to satisfy
the installation ordering, which also turns them effectively
into offline operations with respect to the entities of their
own layer. This, for the exemplary layered architecture
of Figures 2-4, results in the following installation actions
interleaved with the tear-down phase:

{L3.2,L3.3,L3.4,L2.2,1L23,L24,L1.1,L2.1,L3.1,
L1.2,L1.3, L1.4}

Thus, inthis example, first the higher layers of the layered
architecture are torn down until the lowest layer is
reached without performing any installation. At this point,
after the online installation of the lowest layer, the online
installations of the other layers are performed according
to the layering. Finally, the lowest layer is torn down.
[0038] Reordering of upgrade actions according to this
exemplary embodiment performs better when the online
installations of all the layers of a layered architecture are
true online operations and do notimpact any entity in the
subsystem. In this case these actions can be moved to
the online installation of the top layer. This, for the exem-
plary layered architecture of Figures 2-4, results in the
following tear-down phase actions:

{L1.1,L2.1,L3.1,L3.2,L3.3,L3.4,L2.2,L2.3, L2.4,
L1.2,L1.3, L1.4}

Thus the online installation actions are executed first from
the lowest layer to the top layer, followed by the tear-
down actions starting with the top layer. This sequence
takes the impacted entities offline for the shortest time,
and therefore it is the most desirable.

[0039] Between these best and worst case scenarios,
reordering of the upgrade actions according to this ex-
emplary embodiment may also be implemented for lay-
ered architectures wherein the lower layer installations
are online installation with respect to the lower layers,
but not with respect to all layers. In this case there is an
intermediate solution which occurs by moving their online

13 EP 2 274 673 B9 14

installation up as much possible and turning the higher
layer online installations into offline installations. This ex-
emplary embodiment will also shorten the time for which
lower layer entities are taken offline, e.g., relative to un-
interleaved upgrade actions, although if these entities
are not significant from the perspective of availability this
gain may not be significant. For example, with respect to
the exemplary layered architecture of Figures 2-4, this
could result in the following ordered actions:

{L3.2,L3.3,L3.4,L1.1,L2.1,L3.1,L2.2,L2.3, L2.4,
L1.2, L1.3, L1.4}.

[0040] Having now discussed online installations with
respect to the teardown phase, the discussion now con-
tinues to online uninstallations with respect to the rebuild-
ing phase. The ordering of these upgrade actions accord-
ing to the layering of the architecture being upgraded
does not need to be taken into account since the offline
uninstallations have already taken place and the software
cannot be used any more. The issue that needs to be
considered however, is whether the uninstallations for a
particular upgrade can be postponed until the upgrade
procedure has been completed thereby reducing the time
entities need to be taken offline and also reducing any
recovery time in case of a failure during the upgrade.
Note that in case of a failure, which results in a rollback
of the upgrade process, the recovery is performed by
undoing the upgrade actions which have been performed
to that pointin the upgrade process one by one in reverse
order. This means the execution of an online re-installa-
tion to reverse the online uninstallation action. Thus, the
software dependency will pose a similar ordering con-
straint as discussed above for the online installation, and
thus this dependency should be considered for the online
uninstallation as well. As a result the considerations for
the online uninstallation can be considered to be exactly
the same as those taken into account for the online in-
stallation according to this exemplary embodiment,
which results in the combination of all online uninstalla-
tion into single actions that execute the uninstallations in
reverse order to the layering. The combined online un-
installation(s) should also be moved up to the next level
of upgrade actions associated with the layered architec-
ture, if possible, e.g., if it does not impact any of the en-
tities of the activation unit of that level, i.e. it does not
assume those entities to be offline.

[0041] The worst case scenario associated with reor-
dering upgrade actions in this manner will occur when
none of the online uninstallations of the lower layers of
a given layered architecture being upgraded are true on-
line operations and they, therefore, cannot be moved to
the higher layers. Thus the higher layer operations need
to be moved to the lowest layer, which also turns them
effectively into offline operations with respect to the en-
tities of their own layer. Using again, the illustrative lay-
ered architecture of Figures 2-4, this would result in the
following uninstallation actions being interleaved with the

10

15

20

25

30

35

40

45

50

55

rebuild phase and reordered as follows:

{L1.6,L1.7,L1.8,L3.9,L2.9,L1.9,L2.6,L2.7,1.2.8,
L3.6,L3.7,L3.8}

Thus, in this case during the upgrade according to this
exemplary embodiment, first the lowest layer is rebuilt,
followed by the online uninstallations starting at the high-
est layer, then followed by the lower layers according to
the layering. Then all of the remaining layers are execut-
ed from the bottom layer up to the top according to the
layering.

[0042] Reordering of upgrade actions according to this
exemplary embodiment performs better when the online
uninstallations of all the layers are true online operations
and do not impact any entity in the subsystem. In this
case these upgrade actions may then all be moved to
the online uninstallation of the top layer. For the exem-
plary layered architecture of Figures 2-4 result in the fol-
lowing rebuild phase actions:

{L1.6,L1.7,L1.8,L2.6,L2.7,L2.8,L3.6,L3.7, L3.8,
L3.9,L29,L1.9}

Thus, rebuild actions are executed first for all the layers
one by one until the top layer. Then the online uninstal-
lation actions are executed starting with the highest layer
and ending with the bottom layer.

[0043] Between the best and worst case scenarios for
reordering according to this exemplary embodiment lie
intermediate solutions which occur when the lower layer
uninstallations associated with a particular layered archi-
tecture are online uninstallations with respect to the lower
layers, but not with respect to all of the layers of that
architecture. In such a case, this exemplary embodiment
reorders the upgrade actions by moving the online unin-
stallations up as much possible based upon the deter-
mined dependencies and turning the higher layer online
uninstallations into offline uninstallations. Again, using
the exemplary layered architecture of Figures 2-4, the
re-ordering according to this exemplary embodiment
could result in the following reordered set of upgrade ac-
tions:

{L1.6,L1.7,L1.8,L2.6,L2.7,L2.8,L3.9,L2.9, L1.9,
L3.6,L3.7,L3.8}

[0044] To summarize some of the aspects of the reor-
dering of upgrade actions according to the foregoing ex-
emplary embodiments, each online operation associated
with an upgrade process can be interleaved with actions
of the opposite phase according to these exemplary em-
bodiments if there is no requirement that the lower layer
software be running during that operation. Otherwise that
online operation is turned into an offline operation and
moved into its appropriate (non-interleaved) phase.
Since the bottom layer in a layered architecture does not
have further layering dependency, its online operations

15 EP 2 274 673 B9 16

can always be left interleaved at that layer. To satisfy the
layering dependency atinstallation, the online installation
operations should be executed according to the layering.
For installation this means that the bottom layer’s online
installation needs to be executed first continuing with
each successive layer above the bottom layer.

[0045] In case of rollback, the uninstallation operations
are reversed into installations, thus they have to satisfy
the same criteria as the installation operations. There-
fore, for the uninstallation this means performing upgrade
actions in the opposite order as described above with
respect to installation operations, i.e., starting with the
operation for the top layer and completing with the one
at the bottom, as this would provide the bottom to top
ordering at rollback. Thus, for all of the cases described
above, one can define a single combined online action,
which is the ordered set of actions for each of the layers
which covers all the layers of the subsystem and satisfies
all of the dependencies.

Onlinelnstallation = < L1.1, L2.1, ..., Ln.1 >
OnlineUninstallation = < Ln.9, ..., L2.9, L1.9 >

The Onlinelnstallation sequence is executed at the latest
at the online installation action of the bottom layer, i.e.,
atthe time ofthe L1.1 action. However, ideally itis pushed
up to one of the higher layers where these actions will
not impact any running entity and even more ideally it is
pushed all the way to the top, i.e. to the original position
of the online installation operation of the top layer Ln.1.
[0046] Similarly, the OnlineUninstallation sequence is
executed at the earliest time during the online uninstal-
lation of the bottom layer, i.e. atthe time of the L1.9 action.
However, it is also desirable to push the OnlineUninstal-
lation sequence up toward the top layer to the extent
possible such that these actions will not impact any run-
ning entity and, ideally, all the way to the top layer, i.e.
to the original position of the online installation operation
of the top layer Ln.9, in which case the time for which
entities are taken offline is the minimal. This set of con-
cepts is illustrated as Figure 5.

[0047] According to other exemplary embodiments, it
may be possible in some cases to further reduce the total
number of actions performed in an upgrade of a layered
architecture subsystem by merging the upgrade action(s)
of one layer with the upgrade action(s) of another layer.
Consider that a primary reason for having the deactiva-
tion unit described above is to isolate impacted entities
from the rest of the system in order to support availability
management during an upgrade. The upgrade impact
which necessitates this isolation can result from either
(or both of) an offline installation operation or an offline
uninstallation operation. Since these operations may be
present for each layer for both the tear-down and rebuild-
ing phases, in order to reduce the number of layers it can
be investigated whether it is possible to include the indi-
vidualupgrade actions of one layer in the upgrade actions
of another layer.

[0048] In the layered architectures considered herein,
it is likely that the deactivation unit of a lower layer in-

10

15

20

25

30

35

40

45

50

55

cludes all the entities of the deactivation unit of the higher
layer. This means that most of the operations that require
the deactivation of the entities at the higher layer can
also be carried out if the entities of the deactivation unit
of the lower layer are deactivated. An exception to this
conclusion occurs when an operation at the higher layer
requires the presence of any of entities deactivated at
the lower layer. For similar reasons, it is likely that offline
installation operations will also have such a dependency.
Thus, with respect to the ongoing example described
above with respect to Figures 2-4, exemplary embodi-
ments can determine whether some of the offline oper-
ations, marked in bold below, can be merged together
(italics refer to online operations which are not consid-
ered for this merger of actions discussion).
<{L3.1,L3.2,L3.3,L3.4, L2.1,L2.2, L2.3, L2.4, L1.1,
L1.2, L1.3, L1.4}, {L1.5, L2.5, L3.5}, {L1.6, L1.7, L1.8,
L1.9,L2.6,L2.7,L2.8,L2.9,L3.6,L3.7, L3.8, L3.9} >
[0049] Under certain circumstances exemplary em-
bodiments can, for example, turn the above sequence of
actions into the following sequence, thus, eliminating the
lock and terminate actions of layer 3:

<{<L3.1,L2.1>,12.2,12.3,<L3.4,L.2.4>,[1.1,L1.2,
L1.3,L1.4},{L1.5,L2.5,L3.5},{L1.6,L1.7,L1.8,L1.9,
<L2.6,L3.6>,12.7,L2.8,<L2.9, [3.9> } >

[0050] Since the lock in the removed upgrade L3.2 ac-
tion would protect the system from the impacts of upgrade
actions L3.4 and L3.6 all the way until the L3.8 action,
this merge can only be performed if the same protection
is provided by the lock in upgrade action L2.2, which will
be provided until upgrade action L2.8. This means that
(a) the deactivation unit of upgrade action L2.2 should
take offline all the entities that are taken offline by up-
grade action L3.2, and that (b) upgrade action L3.6 does
not depend on any entity put back into service by L2.8.
To satisfy the rollback scenario another set of prerequi-
sites for this exemplary merger of actions can also be
that: (a) the activation unit of upgrade action L2.8 should
take online all of the entities that are taken online by up-
grade L3.2, and that (b) the undoing of upgrade action
L3.4 does not depend on any entity taken offline by up-
grade action L2.2. Note that during rollback the deacti-
vation unit and the activation unit swap roles and the last
condition mentioned above refers to the offline re-instal-
lation of the old software to which the rollback is reverting
the subsystem.

[0051] Accordingly, in general, an upgrade of an upper
layer can be merged with the upgrade of the layer below
it according to this exemplary embodiment if all of the
following are satisfied: (a) the deactivation unit of the low-
er layer includes all the entities of the deactivation unit
of the upper layer, (b) the activation unit of the lower layer
includes all the entities of the activation unit of the upper
layer, (c) the offline installation action (of the new soft-
ware) of the upper layer does not depend on any entity
in the activation unit of the lower layer, and (d) the offline

17 EP 2 274 673 B9 18

installation action of the old software of the upper layer
does not depend on any entity in the deactivation unit of
the lower layer. When merging offline installation and of-
fline uninstallation operations, respectively, the same or-
dering should be observed as for the online operations,
i.e. installations start with the lower layer and moves up-
ward with uninstallations following the reverse order of
the layering. As each of the above merging rules apply
within their own phase, the upgrade step according to
these exemplary embodiments does not need to be sym-
metric and even the reduction may be asymmetric. Note
that while the reduction of layers described here can sim-
plify upgrade processes according to exemplary embod-
iments and may reduce their processing time, applying
this technique is optional.

[0052] As will be appreciated by the foregoing discus-
sion, exemplary embodiments provide for independently
defined upgrade steps for software used in a layered ar-
chitecture to be merged together into an embedded up-
grade step. The dependencies (runtime and/or installa-
tion dependencies) associated with the layered architec-
ture to be upgraded can be analyzed. Based on the de-
termined dependencies, exemplary embodiments can
then determine whether and how the online operations
associated with the differentlayers can be performed dur-
ing the embedded upgrade step. As discussed above,
the outcome of this latter determining step can include
the determination that (a) no online operation may be
interleaved, (b) online operations can be interleaved at
the bottom layer, (c) online operations can be interleaved
at the top layer, or (d) online operations can be inter-
leaved at anintermediate layer. Using this determination,
the combined installation/uninstallation upgrade steps
can be re-ordered such that (a) for installation following
the layering starting from the lowest layer and up and (b)
for uninstallation following the layering in reverse starting
from the top layer and toward the bottom. Once a reor-
dering of the upgrade steps has been determined, an
optional step may be performed to reduce the number of
actions by applying the layer reduction technique de-
scribed above.

[0053] The foregoing exemplary embodiments de-
scribe methods, systems, devices and software for em-
bedding upgrade steps associated with layered architec-
tures. An exemplary node 600 on which such a layered
architecture can operate is illustrated as Figure 6. There-
in, node 600 contains a processor 602 (or multiple proc-
essor cores), memory 604, one or more secondary stor-
age devices 606 and an interface unit 608 to facilitate
communications between node 600 and the rest of the
network, e.g., an availability management node which is
controlling the upgrade of node 600 or other nodes having
layered architectures which are being managed for high
availability. Alternatively, node 600 can representa node
on which the availability manager resides, e.g., which
coordinates the upgrading of layered architectures on
the same or other nodes as described above.

[0054] It will be appreciated by those skilled in the art

10

15

20

25

30

35

40

45

50

55

10

that the foregoing exemplary embodiments describe var-
ious techniques for re-ordering or reorganizing upgrade
actions which are subsequently performed to upgrade a
layered architecture of software, e.g., from an older ver-
sion of that software to a more recent version. This re-
ordering can, for example, be performed by an SMF im-
plementation operating on a node 600. Such an SMF
implementation may, or may not, also be responsible for
actually performing the upgrade using the re-ordered up-
grade actions, i.e., the evaluation and specification of the
upgrade steps (or upgrade campaign) can be performed
separately (in terms of the physical entities involved
and/or the time of performance) from the upgrade itself.
The re-ordered upgrade steps may, for example, be de-
termined by the SMF implementation, stored and/or
transmitted to another entity or node 600 which is respon-
sible for actually performing the upgrade. If stored, the
upgrade steps may comprise an ordered list, e.g., ranked
in order of performance as described above.

[0055] A method for preparing an upgrade of a soft-
ware subsystem having a plurality of layers is illustrated
in the flowchart of Figure 7. Therein, upgrade operations
for each of the layers of the software subsystem are or-
dered based upon at least one of runtime and installation
dependencies between the plurality of layers at step 702.
Then, optionally, the ordered upgrade operations asso-
ciated with the layers are stored, e.g., in the order deter-
mined based upon the dependencies, at step 704. Alter-
natively, after preparing the upgrade by ordering the up-
grade steps, the upgrade process can be performed in
the determined order. As will be appreciated by those
skilledin the art, methods such as thatillustrated in Figure
7 can be implemented in software.Thus, systems and
methods for processing data according to exemplary em-
bodiments of the present invention can be performed by
one or more processors executing sequences of instruc-
tions contained in a memory device. Such instructions
may be read into the memory device 604 from other com-
puter-readable mediums such as secondary data stor-
age device(s) 606, which may be fixed, removable or
remote (network storage) media. Execution of the se-
quences of instructions contained in the memory device
causes the processor to operate, for example, as de-
scribed above. In alternative embodiments, hard-wire cir-
cuitry may be used in place of or in combination with
software instructions to implement the present invention.
[0056] The foregoing description of exemplary embod-
iments of the present invention provides illustration and
description, but it is not intended to be exhaustive or to
limit the invention to the precise form disclosed. Modifi-
cations and variations are possible in light of the above
teachings or may be acquired from practice of the inven-
tion. The following claims define the scope of the inven-
tion.

19 EP 2 274 673 B9 20

Claims

A method for preparing an upgrade for a software
subsystem having a plurality of layers (12,14,16; 22,
24, 26) comprising:

- ordering (702) upgrade operations for each of
said layers of said software subsystem based
upon installation dependencies between said
plurality of layers and runtime,

comprising:

-- grouping at least some of said upgrade
operations into a teardown phase, a recon-
figuration phase and a rebuilding phase,
wherein i) the teardown phase includes
those operations which occur when current
entities and their software are removed from
the software subsystem, ii) the reconfigura-
tion phase includes those operations asso-
ciated with changing of the configuration of
the current software subsystem to a new
configuration and iii) the rebuilding phase
includes those operations associated with
installing software for the changed configu-
ration and instantiating or re-instantiating
the appropriate entities using the changed
software in the software subsystem;

-- interleaving, for each of said layers, an
online upgrade operation associated with a
respective one of said teardown and re-
building phases with operations associated
with the other of said teardown and rebuild-
ing phases if lower layers need not be run-
ning during said online upgrade operation,
wherein the ordering step with no interleav-
ing means that top layer entities are offline
for the complete uninstallation/ installation
time of all of the plurality of layers; and
--otherwise, turning said online upgrade op-
eration into an offline upgrade operation
and performing said offline upgrade opera-
tion with other operations groupedinasame
phase;

and

- storing (704) said ordered upgrade operations
associated with said layers of said software sub-
system, wherein

the online upgrade operation refers to software
which is installable or uninstallable without
disturbing or impacting the ongoing operation of
one or more entities in the subsystem,

and

the offline upgrade operation refers to opera-
tions which impact the behavior of the one or
more entities.

10

15

20

25

30

35

40

45

50

55

1"

2.

The method of claim 1, wherein said plurality of lay-
ers include an application layer (16;26), a middle-
ware layer (14;24) and an operating system layer
(12;22).

The method of claim 1, wherein said upgrade oper-
ations include a plurality of:

online installation of new software, locking of a
deactivation unit, terminating said deactivation
unit, offline uninstallation of old software, mod-
ifying an information model and setting a main-
tenance status, offline installation of new soft-
ware, instantiating an activation unit, unlocking
said activation unit and online uninstallation of
said old software.

The method of claim 1, wherein said step of ordering
further comprises determining that either: (a) no on-
line operation may be interleaved, (b) online opera-
tions can be interleaved at a bottom one of said plu-
rality of layers, (c) online operations can be inter-
leaved at a top one of said plurality of layers, or (d)
online operations can be interleaved at an interme-
diate one of said plurality of layers.

The method of claim 1 further comprising the step of:

- performing said upgrade operationsin an order
determined by said ordering step.

A computer-readable medium comprising code por-
tions which, when executed on a processor, config-
ure the processor to perform all steps of a method
according to any one of the preceding method
claims.

A node (600) which can prepare an upgrade to a
software subsystem having a plurality of layers (12,
14, 16; 22, 24, 26), said node comprising:

a processor (602) configured to:

- order upgrade operations for each of said
layers of said software subsystem based
upon installation dependencies between
said plurality of layers and runtime, compris-

ing:

-- grouping at least some of said up-
grade operations into a teardown
phase, a reconfiguration phase and a
rebuilding phase, wherein i) the tear-
down phase includes those operations
which occur when current entities and
their software are removed from the
software subsystem, ii) the reconfigu-
ration phase includes those operations

21 EP 2 274 673 B9 22

associated with changing of the config-
uration of the current software subsys-
tem to a new configuration and iii) the
rebuilding phase includes those oper-
ations associated with installing soft-
ware for the changed configuration and
instantiating or re-instantiating the ap-
propriate entities using the changed
software in the software subsystem;

-- interleaving, for each of said layers,
an online upgrade operation associat-
ed with a respective one of said tear-
down and rebuilding phases with oper-
ations associated with the other of said
teardown and rebuilding phases if low-
er layers need not be running during
said online upgrade operation, wherein
the ordering with nointerleaving means
that top layer entities are offline for the
complete uninstallation/installation
time of all of the plurality of layers; and
-- otherwise, turning said online up-
grade operation into an offline upgrade
operation and performing said offline
upgrade operation with other opera-
tions grouped in a same phase; and

- store said ordered upgrade operations as-
sociated with said layers of said software
subsystem in a memory device (604),
wherein:

the online upgrade operation refers to software
which can be installed or uninstalled without dis-
turbing or impacting the ongoing operation of
one or more entities in the subsystem, and

the offline upgrade operation refers to opera-
tions which can impact the behavior ot he one
or more entities.

The node of claim 7, wherein said plurality of layers
include an application layer (16; 26), a middleware
layer (14; 24) and an operating system layer (12; 22).

The node of claim 7, wherein said upgrade opera-
tions include a plurality of:

online installation of new software, locking of a
deactivation unit, terminating said deactivation
unit, offline uninstallation of old software, mod-
ifying an information model and setting a main-
tenance status, offline installation of new soft-
ware, instantiating an activation unit, unlocking
said activation unit and online uninstallation of
said old software.

10. The node of claim 7, wherein processor is configured

to order said upgrade operations by determining that

10

20

25

30

35

40

45

50

55

12

1.

either: (a) no online operation may be interleaved,
(b) online operations can be interleaved at a bottom
one of said plurality of layers, (c) online operations
can be interleaved top one of said plurality of layers,
or (d) online operations can be interleaved at an in-
termediate one of said plurality of layers.

The node of claim 7, wherein said processor is also
configured to perform said upgrade operations in an
order determined by said ordering operation.

Patentanspriiche

1.

Verfahren zum Vorbereiten einer Aktualisierung flr
ein Softwareuntersystem mit einer Vielzahl von
Schichten (12, 14, 16; 22, 24, 26), umfassend:

- Ordnen (702) von Aktualisierungsvorgangen
furjede der Schichten in dem Softwareuntersys-
tem auf der Grundlage von Installationsabhan-
gigkeiten zwischen der Vielzahl von Schichten
und der Laufzeit, umfassend:

-- Gruppieren von zumindest einigen der
Aktualisierungsvorgange in eine Tear-
down-Phase, eine Rekonfigurationsphase
und eine Neuaufbauphase, wobei i) die Te-
ardown-Phase jene Vorgange umfasst, die
auftreten, wenn gegenwartige Funktions-
einheiten und deren Software aus dem Soft-
wareuntersystem entfernt werden, ii) die
Rekonfigurationsphase jene Vorgange um-
fasst, die mit einer Anderung der Konfigu-
ration des momentanen Softwareuntersys-
tems hin zu einer neuen Konfiguration as-
soziiert sind, und iii) die Neuaufbauphase
jene Vorgange umfasst, die mit einem In-
stallieren von Software fir die gednderte
Konfiguration und einem Instanziieren oder
Neuinstanziieren der geeigneten Funkti-
onseinheiten unter Verwendung der gean-
derten Software in dem Softwareuntersys-
tem assoziiert sind;

-- Verschachteln, fiir jede der Schichten, ei-
nes Onlineaktualisierungsvorgangs, der mit
einerjeweiligen der Teardown- und Neuauf-
bauphase assoziiert ist, mit Vorgangen, die
mit der anderen der Teardown- und Neu-
aufbauphase assoziiert sind, falls niedrige-
re Schichten wahrend des Onlineaktualisie-
rungsvorgangs nicht laufen miissen, wobei
der Ordnungsschritt ohne Verschachtelung
bedeutet, dass Funktionseinheiten der
obersten Schicht fiir die komplette Deinstal-
lations-/Installationszeit fir alle der Vielzahl
von Schichten offline sind; und

-- andernfalls, Umwandeln des Online-Ak-

23 EP 2 274 673 B9 24

tualisierungsvorgangs in einen Offline-Ak-
tualisierungsvorgang und Durchfiihren des
Offline-Aktualisierungsvorgangs mit ande-
ren Vorgangen, die in einer selben Phase
gruppiert sind; und

- Speichern (704) der geordneten Aktualisie-
rungsvorgange, die mit den Schichten des Soft-
wareuntersystems assoziiert sind, wobei

der Online-Aktualisierungsvorgang sich auf
Software bezieht, die ohne eine Stérung oder
Beeinflussung des gerade stattfindenden Vor-
gangs von einer oder mehreren Funktionsein-
heiten in dem Untersystem installierbar oder
deinstallierbar ist, und

der Offline-Aktualisierungsvorgang sich auf
Vorgénge bezieht, die das Verhalten der einen
oder mehreren Funktionseinheiten beeinflus-
sen.

Verfahren gemal Anspruch 1, wobei die Vielzahl
von Schichten eine Anwendungsschicht (16; 26), ei-
ne Middleware-Schicht (14, 24) und eine Betriebs-
systemschicht (12; 22) umfasst.

Verfahren gemaf Anspruch 1, wobei die Aktualisie-
rungsvorgange eine Vielzahl umfassen aus: Online-
Installation neuer Software, Sperren einer Deaktivie-
rungseinheit, Terminieren der Deaktivierungsein-
heit, Offline-Deinstallation alter Software, Modifizie-
ren eines Informationsmodells und Setzen eines
Wartungsstatus, Offline-Installation neuer Software,
Instanziieren einer Aktivierungseinheit, Entsperren
der Aktivierungseinheit und Online-Deinstallation
der alten Software.

Verfahren gemaf Anspruch 1, wobei der Schritt des
Ordnens weiterhin ein Bestimmen umfasst, dass
entweder: (a) kein Onlinevorgang verschachtelt wer-
den darf, (b) Onlinevorgange bei einer untersten der
Vielzahl von Schichten verschachtelt werden diirfen,
(c) Onlinevorgange bei einer obersten der Vielzahl
von Schichten verschachtelt werden dirfen, oder (d)
Onlinevorgange bei einer zwischenliegenden der
Vielzahl von Schichten verschachtelt werden diirfen.

Verfahren gemaf Anspruch 1, weiterhin umfassend
den Schritt des:

- Durchfiihrens der Aktualisierungsvorgéange in
einer Reihenfolge, die durch den Ordnungs-
schritt bestimmt ist.

Computerlesbares Medium, das Codeabschnitte
umfasst, die bei Ausfiihrung auf einem Prozessor
den Prozessor konfigurieren, um alle Schritte eines
Verfahrens gemal zumindest einem der vorange-
gangenen Verfahrensanspriiche durchzufiihren.

10

15

20

25

30

35

40

45

50

55

13

7.

Knoten (600), der eine Aktualisierung eines Soft-
wareuntersystems mit einer Vielzahl von Schichten
(12, 14, 16; 22, 24, 26) vorbereiten kann, wobei der
Knoten umfasst:

einen Prozessor (602), der konfiguriert ist, um:

- Aktualisierungsvorgange fir jede der
Schichten des Softwareuntersystems auf
der Grundlage von Installationsabhangig-
keiten zwischen der Vielzahl von Schichten
und der Laufzeit zu ordnen, umfassend:

-- Gruppieren von zumindest einigen
der Aktualisierungsvorgange in eine
Teardown-Phase, eine Rekonfigurati-
onsphase und einer Neuaufbauphase,
wobei i) die Teardown-Phase jene Vor-
gange umfasst, die auftreten, wenn ge-
genwartige Funktionseinheiten und de-
ren Software aus dem Softwareunter-
system entfernt werden, ii) die Rekon-
figurationsphase jene Vorgdnge um-
fasst, die mit einer Anderung der Kon-
figuration des momentanen Software-
untersystems hin zu einer neuen Kon-
figuration assoziiert sind, und iii) die
Neuaufbauphase jene Vorgédnge um-
fasst, die mit einer Installierung von
Software fiir die gednderte Konfigura-
tion und einem Instanziieren oder Neu-
instanziieren der geeigneten Funkti-
onseinheiten unter Verwendung der
geanderten Software in dem Software-
untersystem assoziiert sind;

-- Verschachteln, fiir jede der Schich-
ten, eines Online-Aktualisierungsvor-
gangs, der mit einer jeweiligen der Te-
ardown- und Neuaufbauphasen asso-
zZiiertist, mit Vorgangen, die mit der an-
deren der Teardown- und Neuaufbau-
phase assoziiert sind, falls niedrigere
Schichten wahrend des Online-Aktua-
lisierungsvorgangs nicht laufen mis-
sen, wobei das Ordnen ohne Schach-
telung bedeutet, dass Funktionseinhei-
ten der obersten Schicht fur die kom-
plette Deinstallations-/Installationszeit
fur alle der Vielzahl von Schichten off-
line sind; und

-- andernfalls, Umwandeln des Online-
Aktualisierungsvorgangs in einen Off-
line-Aktualisierungsvorgang und
Durchfiihren des Offline-Aktualisie-
rungsvorgangs mit anderen Operatio-
nen, die in einer selben Phase gruppiert
sind; und

10.

1.

25 EP 2 274 673 B9 26

- die geordneten Aktualisierungsvorgange,
die mit den Schichten des Softwareunter-
systems assoziiert sind, in einer Speicher-
vorrichtung (604) zu speichern, wobei:

der Online-Aktualisierungsvorgang
sich auf Software bezieht, die ohne ei-
ne Stérung oder Beeinflussung des ge-
rade stattfindenden Vorgangs von ei-
ner oder mehreren Funktionseinheiten
in dem Untersystem installiert oder
deinstalliert werden kann, und

der Offline-Aktualisierungsvorgang
sich auf Vorgange bezieht, die das Ver-
halten der einen oder mehreren Funk-
tionseinheiten beeinflussen kénnen.

Knoten gemaR Anspruch 7, wobei die Vielzahl von
Schichten eine Anwendungsschicht (16; 26), eine
Middleware-Schicht (14; 24) und eine Betriebssys-
temschicht (12; 22) umfasst.

Knoten gemal Anspruch 7, wobei die Aktualisie-
rungsvorgange eine Vielzahl umfassen aus: Onlin-
einstallation neuer Software, Sperren einer Deakti-
vierungseinheit, Terminieren der Deaktivierungsein-
heit, Offline-Deinstallation alter Software, Modifizie-
ren eines Informationsmodells und Setzen eines
Wartungsstatus, Offlineinstallation neuer Software,
Instanziieren einer Aktivierungseinheit, Entsperren
der Aktivierungseinheit und Online-Deinstallation
der alten Software.

Knoten gemal Anspruch 7, wobei der Prozessor
weiterhin konfiguriert ist, um die Aktualisierungsvor-
gange zu ordnen, durch Bestimmen, dass entweder:
(a) kein Onlinevorgang verschachtelt werden darf,
(b) Onlinevorgénge bei einer untersten der Vielzahl
von Schichten verschachtelt werden dirfen, (c) On-
linevorgénge bei einer obersten der Vielzahl von
Schichten verschachtelt werden durfen, oder (d) On-
linevorgéange bei einer zwischenliegenden der Viel-
zahl von Schichten verschachtelt werden durfen.

Knoten gemal Anspruch 7, wobei der Prozessor
ebenso konfiguriert ist, um die Aktualisierungsvor-
gange in einer Reihenfolge durchzufiihren, die durch
den Ordnungsvorgang bestimmt ist.

Revendications

Procédé de préparation d’'une mise a jour d’'un sous-
systeme logiciel comportant une pluralité de cou-
ches (12, 14, 16 ; 22, 24, 26) comprenant :

-lacommande (702) d’opérations de mise a jour
pour chacune desdites couches dudit sous-sys-

10

15

20

25

30

35

40

45

50

55

14

teme logiciel sur la base de dépendances d’ins-
tallation entre ladite pluralité de couches et le
temps d’exécution, comprenant :

-- le regroupement d’au moins certaines
desdites opérations de mise ajourdansune
phase de démontage, une phase de recon-
figuration et une phase de reconstruction,
dans lequel i) la phase de démontage com-
prend les opérations qui surviennent lors-
que des entités actuelles et leur logiciel sont
retirés du sous-systéme logiciel, ii) la phase
de reconfiguration comprend les opérations
associées au changement de la configura-
tion du sous-systéme logiciel actuel en une
nouvelle configuration, etiii) la phase de re-
construction comprend les opérations as-
sociées a linstallation du logiciel pour la
configuration changée et l'instanciation ou
la réinstanciation des entités appropriées
en utilisant le logiciel changé dans le sous-
systeme logiciel ;

-- I'entrelacement, pour chacune desdites
couches, d’'une opération de mise a jour en
ligne associée a I'une respective desdites
phases de démontage et de reconstruction
avec des opérations associées a l'autre
desdites phases de démontage et de re-
construction si des couches inférieures
n’ont pas besoin d’étre exécutées au cours
de ladite opération de mise a jour en ligne,
dans lequel I'étape de la commande sans
aucun entrelacement signifie que des enti-
tés de couche supérieure sont hors ligne
pendant le temps de désinstallation/instal-
lation compléte de I'intégralité de la pluralité
de couches ; et

-- sinon, la transformation de ladite opéra-
tion de mise a jour en ligne en une opération
de mise a jour hors ligne et I'exécution de
ladite opération de mise a jour hors ligne
avec d’autres opérations regroupées dans
une méme phase ; et

- la mémorisation (704) desdites opérations de
mise a jour commandées associées aux dites
couches dudit sous-systeme logiciel, dans le-
quel

I'opération de mise a jour en ligne concerne un logi-
ciel qui peut étre installé ou désinstallé sans pertur-
ber ou influencer le fonctionnement en cours d’'une
ou plusieurs entités dans le sous-systéeme, et
I'opération de mise a jour hors ligne concerne des
opérations qui influencent le comportement de 'une
ou plusieurs entités.

Procédé selon la revendication 1, dans lequel la plu-

27 EP 2 274 673 B9

ralité de couches comprend une couche d’applica-
tion (16 ; 26), une couche d'intergiciel (14 ; 24) et
une couche de systéme d’exploitation (12 ; 22).

Procédé selon la revendication 1, dans lequel lesdi-
tes opérations de mise a jour comprennent une plu-
ralité de : l'installation en ligne d’'un nouveau logiciel,
le verrouillage d’'une unité de désactivation, la termi-
naison de ladite unité de désactivation, la désinstal-
lation hors ligne d’'un ancien logiciel, la modification
d’'un modele d’informations et le réglage d’un statut
de maintenance, l'installation hors ligne d’'un nou-
veau logiciel, I'instanciation d’une unité d’activation,
le déverrouillage de ladite unité d’activation et la dé-
sinstallation en ligne dudit ancien logiciel.

Procédé selon la revendication 1, dans lequel ladite
étape de la commande comprend en outre la déter-
mination que :

(a) aucune opération en ligne ne peut étre en-
trelacée,

(b) des opérations en ligne peuvent étre entre-
lacées a l'une inférieure de ladite pluralité de
couches, (c) des opérations en ligne peuvent
étre entrelacées al'une supérieure de ladite plu-
ralité de couches, ou (d) des opérations en ligne
peut étre entrelacées a 'une intermédiaire de
ladite pluralité de couches.

Procédé selon la revendication 1, comprenant en
outre I'étape de :

- 'exécution desdites opérations de mise a jour
dans un ordre déterminé par ladite étape de la
commande.

Support lisible par ordinateur comprenant des por-
tions de code qui, lorsqu’elles sont exécutées sur un
processeur, configurentle processeur pour effectuer
toutes les étapes d’'un procédé selon I'une quelcon-
que des revendications de procédé précédentes.

Noeud (600) pouvant préparer une mise a jour d’'un
sous-systeme logiciel comportant une pluralité de
couches (12, 14, 16; 22, 24, 26), ledit noeud
comprenant :

un processeur (602) configuré pour:

- commander des opérations de mise a jour
pour chacune desdites couches dudit sous-
systeme logiciel sur la base de dépendan-
ces d’installation entre ladite pluralité de
couches et le temps d’exécution,
comprenant :

-- le regroupement d’au moins certai-

10

15

20

25

30

35

40

45

50

55

15

28

nes desdites opérations de mise a jour
dans une phase de démontage, une
phase de reconfiguration et une phase
dereconstruction, dans lequel i) la pha-
se de démontage comprend les opéra-
tions qui surviennent lorsque des enti-
tés actuelles et leur logiciel sont retirés
du sous-systeme logiciel, ii) la phase
de reconfiguration comprend les opé-
rations associées au changementde la
configuration du sous-systéme logiciel
actuel en une nouvelle configuration, et
iii) la phase de reconstruction com-
prend les opérations associées a l'ins-
tallation du logiciel pour la configuration
changée et l'instanciation ou la réins-
tanciation des entités appropriées en
utilisant le logiciel changé dans le sous-
systeme logiciel ;

-- I'entrelacement, pour chacune des-
dites couches, d’'une opération de mise
ajouren ligne associée a l'une respec-
tive desdites phases de démontage et
de reconstruction avec des opérations
associées a l'autre desdites phases de
démontage et de reconstruction si des
couches inférieures n'ont pas besoin
d’étre exécutées au cours de ladite
opération de mise a jour en ligne, dans
lequel la commande sans aucun entre-
lacement signifie que des entités de
couche supérieure sont hors ligne pen-
dant le temps de désinstallation/instal-
lation compléte de I'intégralité de la plu-
ralité de couches ; et

--sinon, latransformation de ladite opé-
ration de mise a jour en ligne en une
opération de mise a jour hors ligne et
I'exécution de ladite opération de mise
a jour hors ligne avec d’autres opéra-
tions regroupées dans une méme
phase ; et

- mémoriser lesdites opérations de mise a
jour commandées associées aux dites cou-
ches dudit sous-systeme logiciel dans un
dispositif de mémoire (604), dans lequel :

I'opération de mise a jour en ligne con-
cerne un logiciel qui peut étre installé
ou désinstallé sans perturber ou in-
fluencer le fonctionnement en cours
d’une ou plusieurs entités dans le sous-
systeme, et

I'opération de mise a jour hors ligne
concerne des opérations qui influen-
cent le comportement de I'une ou plu-
sieurs entités.

10.

1.

29 EP 2 274 673 B9

Noeud selon la revendication 7, dans lequel la plu-
ralité de couches comprend une couche d’applica-
tion (16 ; 26), une couche d'intergiciel (14 ; 24) et
une couche de systéme d’exploitation (12 ; 22).

Noeud selon la revendication 7, dans lequel lesdites
opérations de mise a jour comprennent une pluralité
de : linstallation en ligne d’'un nouveau logiciel, le
verrouillage d’'une unité de désactivation, la termi-
naison de ladite unité de désactivation, la désinstal-
lation hors ligne d’'un ancien logiciel, la modification
d’'un modele d’informations et le réglage d’un statut
de maintenance, l'installation hors ligne d’'un nou-
veau logiciel, I'instanciation d’une unité d’activation,
le déverrouillage de ladite unité d’activation et la dé-
sinstallation en ligne dudit ancien logiciel.

Noeud selon la revendication 7, dans lequel le pro-
cesseur est configuré pour commander lesdites opé-
rations de mise en niveau par la détermination que :
(a) aucune opération en ligne ne peut étre entrela-
cée, (b) des opérations en ligne peuvent étre entre-
lacées a l'une inférieure de ladite pluralité de cou-
ches, (c) des opérations en ligne peuvent étre en-
trelacées a l'une supérieure de ladite pluralité de
couches, ou (d) des opérations en ligne peut étre
entrelacées a l'une intermédiaire de ladite pluralité
de couches.

Noeud selonlarevendication 7, dans lequel ledit pro-
cesseur est également configuré pour exécuter les-
dites opérations de mise a jour dans un ordre déter-
miné par ladite étape de commande.

10

15

20

25

30

35

40

45

50

55

16

30

EP 2 274 673 B9

Application 16

Middleware 14
Operating System 17
|

Application <TDy3, RC,3, RBj3>

Middleware <TD,,, RC;y, RBp>

Operating System <TDy;, RC;¢, RB{>

B o =)

17

EP 2 274 673 B9

El ==L

JUn UOjleAR oojun g

1UN UOKBARIER Yoojun '8'Z]

Jiun UOIBAE Yoo ‘g T1

11UN UOREARR BJeRUeISU] /€]

Hun UolzeAae ayenuelsut '/

Jun uoleaoe sjenuelsul /1

2UeM0s SIBMYOS 2JeMLOS
ASU JO UOIR|[ISUI SUKO '9'ET| M3U JO LONRIRISUI BULKO '9'7] | MBU JO UoiefjeIsul SUIO ‘9T
SIRMOS DIEMHOS 21eM3J0s
M8U JO UORe|[eIsUl BUIUQ 'T'E]| MaU JO Uonejlelsul sujuQ Tz | Meu Jo uone|elsul auijuo T'T1| gy
SNJe)s SdUBUS}ULRW 1S pue SME3s AdUeUSIUIEW 185 pue SN1ess AoURUSIULEW 18S pue
[Bpow LOIjewLojul AYpojy ‘SE1| [BPOW UoReuHojul AUpOp §71 | |9po uoleuliot AIpop 'S 77 | 3y
BIEMY0S 210 oS 3JBMyos
P[0 JO UONE[eISUIUN BUlUQ ‘G'€T | PIO 40 UORE[BISUIUN SUIUO 671 | PO 40 UOREelsuIun Bulu0 ‘6 T]
2JeMJOS BIEM}CS 2BMY0S
PI0 JO UOHE||EISUIUN BUIO €| PIO JO LOREI[eISUIUN SUIRO 7] | IO JO UOHBEISUIIN SUIHO 7]
Jun nun Hun
UCHeALDESP Sjeuiia) £'E] UoiJeAlIoBSp S)eullia] €71 UONBATOESD S]RUILLIB] €T
Jun uoneAndesp Y01 e Jiun UoIleAl}de3D X007 771 Jun uoneAesp Yo7 711 al

¢ 19/ Joj deys apeibdn

7 Joke7 Joj days apeibdp

1 Jofe Jo} days apelidp

18

s

™,

EP 2 274 673 B9

RB,;

19

] Reconfiguratio>

B k7

o

Installation depends
on the layer below

EP 2 274 673 B9

D

If no impact on the
deactivation unit

Dy,

-

Reinstallation depends
on the layer below

el

RB,,

RC,4

RC,,

RC,3

20

_FE=—"5

If no impact within
the activation unit

EP 2 274 673 B9

SO
/ f A \
604 606
»1 PROCESSOR |«
A \602

1 4
INTERFACE }——608

b

Y

G aE7—— i

21

EP 2 274 673 B9

{{START)

¥

ORDER UPGRADE OPERATIONS

BASED ON ATLEASTONEOF | -,
RUNTIME AND INSTALLATION

DEPENDENCIES BETWEEN THE LAYERS

) 4

STORING THE ORDERED UPGRADE
OPERATIONS ASSOCIATED WITH THE LAYERS -7
OF THE SOFTWARE SUBSYSTEM

END

o T—— g

22

EP 2 274 673 B9
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

« WO 2004010292 A [0010]

23

	bibliography
	description
	claims
	drawings
	cited references

