(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

19.01.2011 Patentblatt 2011/03

(51) Int Cl.: **B65H 29/66** (2006.01)

(21) Anmeldenummer: 09165698.3

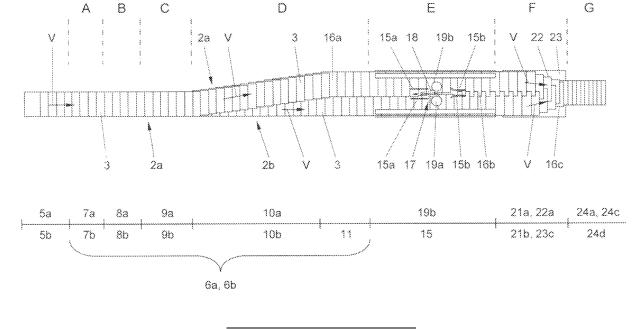
(22) Anmeldetag: 16.07.2009

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Benannte Erstreckungsstaaten:

AL BA RS


- (71) Anmelder: Müller Martini Holding AG 6052 Hergiswil (CH)
- (72) Erfinder:
 - Leuenberger, Hans 4814, Bottenwil (CH)
 - Iseli, Iwan 6005, Luzern (CH)

(54) Verfahren und Vorrichtung zum kontinuierlichen Zusammenführen von zumindest zwei Schuppenströmen flächiger Druckprodukte

(57) Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum kontinuierlichen Zusammenführen von mindestens zwei mit gleicher Geschwindigkeit und beabstandet voneinander transportierten Schuppenströmen flächiger Druckprodukte (3), wobei zunächst ein erster Schuppenstrom (2a) gegenüber einem zweiten Schuppenstrom (2b) einen ersten seitlichen Überlappungsbereich (d1) beider Schuppenströme (2a, 2b) bildend, seitlich versetzt wird, wobei die Druckprodukte (3) beider Schuppenströme (2a, 2b) anschliessend zumindest im ersten seitlichen Überlappungsbereich (d1) fort-

laufend so weit angehoben werden, bis deren seitliche Überlappung aufgehoben ist, wobei schliesslich die Druckprodukte (3) beider Schuppenströme (2a, 2b) zumindest in ihrem angehobenen seitlichen Überlappungsbereich (d1) nacheinander derart abgesenkt oder fallengelassen werden, dass abwechselnd ein Druckprodukt (3) des ersten oder des zweiten Schuppenstroms (2a, 2b) teilweise oberhalb eines Druckprodukts (3) des jeweils anderen Schuppenstroms (2b, 2a) zu liegen kommt und wobei ein einziger Schuppenstrom (16b) mit einem zweiten seitlichen Überlappungsbereich (d2) der Druckprodukte (3) gebildet wird.

Fig. 3

Beschreibung

Verfahren und Vorrichtung zum kontinuierlichen Zusammenführen von zumindest zwei Schuppenströmen flächiger Druckprodukte

1

[0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum kontinuierlichen Zusammenführen von zumindest zwei mit gleicher Geschwindigkeit und beabstandet voneinander transportierten Schuppenströmen flächiger Druckprodukte.

[0002] Beim Rollenoffset-Druck werden ganze Papierbahnen bedruckt, welche von Papierrollen abgewickelt werden. Dabei ist eine Rollenoffset-Druckmaschine in der Lage, mehr als 100000 Druckprodukte pro Stunde zu bedrucken. Um diese hohen Produktionszahlen zu erreichen, werden sehr häufig Doppelproduktionen gefahren. Zum Beispiel können mit einer "16 Seiten"-Druckmaschine zwei gleichartige "8 Seiten"-Prospekte gleichzeitig gedruckt und ausgegeben werden. Häufig sind an den Ausgängen der Druckmaschine Falzaggregate angeschlossen, welche die Druckprodukte falten und an eine Rotationsabnahme übergeben. Aus den Ausgängen einer solchen Druckmaschine bzw. der dieser nachfolgenden Falzaggregate treten kontinuierlich zwei gleichartige flächige Druckprodukte aus, welche von der Rotationsabnahme über zwei Abnahmelinien zu einer Weiterverarbeitung, beispielsweise einem Sammelhefter transportiert werden. Die Druckprodukte werden dabei über Fördersysteme, wie z.B. Förderbänder kontinuierlich und in Form von zwei sogenannten Schuppenströmen, d.h. einander jeweils in Transportrichtung teilweise überlappend weitertransportiert.

[0003] Ein Nachteil der bekannten Anlagen ist die Tatsache, dass zur Weiterverarbeitung zwei Abnahmelinien zur Verfügung gestellt und betrieben werden müssen. Dies führt zu einer Erhöhung der Anschaffungs- und Instandhaltungskosten.

[0004] Um diesem Problem zu begegnen, werden die beiden separaten Schuppenströme zu einem einzigen Schuppenstrom zusammengefasst.

[0005] Die EP 0155633 A2 offenbart ein Verfahren und eine Vorrichtung zum Vereinigen von zwei nebeneinander geförderten Schuppenströmen, die in einer gemeinsamen Transportebene versetzt zueinander und unter einem spitzen Winkel bis zur vollständigen Überschneidung zusammengeführt und im Bereich des Zusammentreffens der Produkte abwechselnd aus der gemeinsamen Transportebene ausgelenkt werden.

[0006] Die EP 0214458 A2 offenbart eine Verbesserung der oben genannten Lösung, bei der die Auslenkeinrichtung als mindestens ein eine glatte, nockenlose Eingriffskontur aufweisender, nicht angetriebener Abweiser ausgebildet ist.

[0007] Mit der WO2008/089565 sind eine weiteres Verfahren sowie eine entsprechende Vorrichtung zum Zusammenführen von zwei Schuppenströmen flächiger Druckprodukte bekannt. Dabei werden die Druckprodukte der beiden Schuppenströme zunächst in Förderrichtung versetzt zueinander und in horizontaler Ausrichtung auf separaten Förderwegen transportiert. Anschliessend werden die Druckprodukte von jedem Schuppenstrom zugeordneten Greifern eines angetriebenen Zwischenförderers erfasst und dabei vereinzelt sowie jeweils in eine vertikale Position verbracht. In die dadurch zwischen den aufeinanderfolgenden Druckprodukten eines Produktestroms entstehenden Abstände wird mittels der Greifer jeweils ein Druckprodukt des anderen Produktestroms kammartig so weit eingebracht, bis die Druckprodukte beider Produkteströme deckungsgleich hintereinander, einen einzigen Produktestrom bilden. Abschliessend wird dieser Produktestrom auf einen nachfolgenden Wegförderer, einen Schuppenstrom bildend abgelegt.

[0008] Angesichts des Standes der Technik liegt die Aufgabe der Erfindung darin, ein Verfahren und eine Vorrichtung zum kontinuierlichen Zusammenführen von zwei Schuppenströmen flächiger Druckprodukte zu schaffen, welche eine Anpassung der Schuppenstromzusammenführung an die Ausgänge moderner Rollenoffset-Druckmaschinen ermöglichen und gleichzeitig zu einer Reduzierung der Anschaffungs-und Instandhaltungskosten bei der Weiterverarbeitung führen.

[0009] Diese Aufgabe wird durch ein Verfahren zum kontinuierlichen Zusammenführen von mindestens zwei mit gleicher Geschwindigkeit und beabstandet voneinander transportierten Schuppenströmen flächiger Druckprodukte und durch eine Vorrichtung zur Durchführung eines solchen Verfahrens gemäss den Merkmalen der unabhängigen Ansprüche gelöst.

[0010] Bei dem erfindungsgemässen Verfahren wird zunächst der erste der beiden Schuppenströme gegenüber dem zweiten Schuppenstrom, einen ersten seitlichen Überlappungsbereich beider Schuppenströme bildend, seitlich versetzt. Anschliessend werden die Druckprodukte beider Schuppenströme zumindest im ersten seitlichen Überlappungsbereich fortlaufend so weit angehoben, bis deren seitliche Überlappung aufgehoben ist und die Druckprodukte der beiden zuvor aufeinander liegenden Schuppenströme voneinander getrennt sind. Schliesslich werden die Druckprodukte beider Schuppenströme zumindest in ihrem angehobenen, seitlichen Überlappungsbereich nacheinander derart abgesenkt oder fallengelassen, dass abwechselnd ein Druckprodukt des ersten oder des zweiten Schuppenstroms teilweise oberhalb eines Druckprodukts des jeweils anderen Schuppenstroms zu liegen kommt, wobei ein einziger Schuppenstrom mit einem zweiten seitlichen Überlappungsbereich der Druckprodukte gebildet wird

[0011] Die erfindungsgemässe Vorrichtung zur Durchführung des erfindungsgemässen Verfahrens umfasst zwei beabstandet voneinander angeordnete Eingangsförderer zum Transport jeweils eines der beiden Schuppenströme zu einem Hauptförderer und eine im Bereich des Hauptförderers angeordnete Einfächerungseinrichtung zum Einfächern, d.h. zum abwechselnden Einfüh-

20

40

50

ren der Druckprodukte eines der Schuppenströme in die Druckprodukte des anderen Schuppenstroms.

[0012] Das Verfahren und die Vorrichtung zur Durchführung des Verfahrens schaffen die Möglichkeit, Schuppenströme, welche aus einer Mehrnutzen-Druckmaschine, wie z.B. aus der o.a. "16-Seiten" Druckmaschine, herauskommen, direkt in einen einzigen Schuppenstrom zu vereinen, so dass die in diesem enthaltenen flächigen Druckprodukte ohne weitere Anpassungsschritte weiterverarbeitet werden können. Durch das Wegfallen der Notwendigkeit, zwei oder mehrere Abnahmelinien für die Schuppenströme bereitzustellen, werden die Anschaffungskosten der Weiterverarbeitung und die Aufwendungen für die Instandhaltung reduziert.

[0013] Ausgewählte Ausführungsformen der Erfindung ergeben sich aus den abhängigen Ansprüchen und werden in der nachfolgenden Beschreibung mit Hilfe der im Folgenden beschriebenen Figuren und Beispiele detailliert erläutert. Dabei zeigen:

- Fig. 1 eine Seitenansicht einer bevorzugten Ausführungsform der erfindungsge- mässen Vorrichtung,
- Fig. 2a eine Detaildarstellung des dritten Teilstücks des unteren Eingangsförderers in einem ersten Arbeitszustand,
- Fig. 2b eine Darstellung analog Fig. 2a, jedoch in einem zweiten, der Fig. 1 ent- sprechenden Arbeitszustand,
- Fig. 3 eine Draufsicht des Verlaufs der Schuppenströme in der erfindungsgemäs- sen Vorrichtung,
- Fig. 4 eine Seitenansicht der Einfächerungseinrichtung der erfindungsgemässen Vorrichtung, entsprechend Fig. 1,
- Fig. 5 eine Detailansicht der Einfächerungseinrichtung,
- Fig. 6 die Zusammenführung der beiden Schuppenströme des Doppelschuppen- stroms in drei Schritten (Fig. 6a, 6b, 6c),
- Fig. 7 eine Draufsicht auf den Bereich E der erfindungsgemässen Vorrichtung, mit der Einfächerungseinrichtung und mit einem gegenseitigen Versatz der Schuppenströme in Transportrichtung,
- Fig. 8 eine Draufsicht analog Fig. 6, jedoch ohne einen gegenseitigen Versatz der Schuppenströme in Transportrichtung und mit in Transportrichtung zuein- ander verschobenen Teilen der Einfächerungseinrichtung,

Fig. 9 eine Draufsicht auf die an die Einfächerungseinrichtung anschliessende Zu- sammenschiebeeinrichtung sowie die nachfolgende Zentriereinrichtung.

[0014] In den Figuren bezeichnen gleiche Bezugszeichen strukturell bzw. funktionell gleich wirkende Komponenten.

[0015] Fig. 1 zeigt eine Seitenansicht einer bevorzugten Ausführungsform der erfindungsgemässen Vorrichtung 1 zum Zusammenführen von zwei Schuppenströmen 2a, 2b flächiger Druckprodukte 3. Die vertikalen gestrichelten Linien sind zu Veranschaulichungszwecken eingezeichnet und stellen eine Einteilung der Vorrichtung 1 in Bereiche A - G dar. Stromauf der Vorrichtung 1 befindet sich ein Ausgang 4 einer ansonsten nicht weiter dargestellten Druckmaschine oder eines nicht weiter dargestellten Falzaggregats, mittels dem über zwei übereinander angeordnete Förderbänder 5a, 5b flächige Druckprodukte 3 in Form eines ersten, oberen Schuppenstroms 2a und eines zweiten, unteren Schuppenstroms 2b in einer Transportrichtung V jeweils an einen oberen und einen unteren, als Förderband ausgebildeten Eingangsförderer 6a, 6b der Vorrichtung 1 weitergegeben werden. Die beiden Eingangsförderer 6a, 6b umfassen jeweils mehrere Teilstücke 7a, 7b; 8a, 8b; 9a, 9b; 10a, 10b; 11, welche in den Bereichen A bis D der Vorrichtung 1 angeordnet sind. Im ersten Bereich A werden die Schuppenströme 2a, 2b über zwei erste Teilstücke 7a, 7b der beiden Eingangsförderer 6a, 6b transportiert. Natürlich können die Eingangsförderer 6a, 6b auch mit einer kleineren oder grösseren Anzahl von Teilstücken ausgestattet werden und die Zufuhr der Schuppenströme 2a, 2b kann auch ohne erste Teilstücke 7a, 7b erfolgen. Ausserdem können die Förderbänder 5a, 5b statt übereinander auch nebeneinander oder in Seiten- und/oder Höhenlage versetzt zueinander angeordnet sein. Statt beide Förderbänder 5a, 5b an den Ausgang 4 einer einzigen Druckmaschine anzuschliessen, kann auch jeweils ein Förderband 5a, 5b mit dem Ausgang einer anderen Druckmaschine verbunden sein.

[0016] Im Verlauf ihres weiteren Transportwegs gelangen die Schuppenströme 2a, 2b in einen zweiten Bereich B der Vorrichtung 1, in dem je ein als Weiche ausgebildetes zweites Teilstück 8a, 8b der Eingangsförderer 6a, 6b derart angeordnet ist, dass es zwei Positionen annehmen kann. Dabei handelt es sich um eine erste Position zum Fördern der Schuppenströme 2a, 2b in Transportrichtung V und um eine zweite Position zum Ausschleusen von Makulatur, in der die entsprechenden Druckprodukte 3 beispielsweise in einen nicht dargestellten Makulaturbehälter geleitet werden. Die zum Ausschleusen abgesenkte Position der beiden zweiten Teilstücke 8a, 8b der Eingangsförderer 6a, 6b ist gestrichelt dargestellt. Das Ausschleusen erfolgt vorzugsweise in Anlaufphasen des vorangehenden Druckvorgangs, um fehlerhafte Druckprodukte 3 solange zu entfernen, bis die Druckmaschine auf einen korrekten Druck eingestellt ist. Die Teil-

40

stücke 8a, 8b der Eingangsförderer 6a, 6b sind jedoch jederzeit von einer der beiden Positionen in die andere überführbar.

[0017] Auf dem weiteren Transportweg gelangen die Schuppenströme 2a, 2b in einen dritten Bereich C der Vorrichtung 1, in dem mindestens einer der beiden Eingangsförderer 6a, 6b ein drittes Teilstück 9a, 9b besitzt, welches aus einem Oberband 12 und einem Unterband 13 besteht (Fig. 2a, Fig. 2b). Dabei wird das um eine Anzahl von Umlenkrollen 12a umlaufende Oberband 12 über eine Antriebsrolle 12b angetrieben und weist zudem eine Spannrolle 12c auf. Das Unterband 13 ist ebenfalls mit einer Anzahl von Umlenkrollen 13a, einer Antriebsrolle 13b sowie einer Spannrolle 13c versehen. Es weist zudem ein an Führungselementen 13d höhenverstellbar befestigtes Rollensegment 13e auf, das mittels einer nicht dargestellten Stelleinrichtung aus einer ersten, in Fig. 2a dargestellten Position in eine zweite Position gebracht werden kann, welche in Fig. 2b gezeigt ist. In dem in Fig. 1 dargestellten Ausführungsbeispiel ist lediglich das dritte Teilstück 9b des unteren Eingangsförderers 6b entsprechend ausgebildet. Durch entsprechende Betätigung der Stelleinrichtung kann eine direkte oder eine verzögerte Weiterleitung des jeweiligen Schuppenstroms 2a, 2b bewirkt und damit in Transportrichtung V ein Versatz 14 (Fig. 7) zwischen den Produktrücken der Druckprodukte 3 der beiden Schuppenströme 2a, 2b eingestellt werden, wobei die Länge des zwischen dem Oberband 12 und dem Unterband 13 verlaufenden Transportwegs der flächigen Druckprodukte 3 und damit der Versatz 14 nach Bedarf variiert werden können. Eine maximale Verzögerung des unteren Schuppenstroms 2b erfolgt in der in Fig. 2b dargestellten, maximal ausgelenkten Stellung des Unterbandes 13, was den grösstmöglichen Versatz 14 der beiden Schuppenströme 2a, 2b zur Folge hat. Natürlich kann auch ausschliesslich das obere dritte Teilstück 9a entsprechend ausgebildet werden. Ebenso können beide dritte Teilstücke 9a, 9b mit einer solchen Verlängerungsmöglichkeit für den Transportweg versehen werden. Zu diesem Zweck sind alternativ auch andere Elemente verwendbar, beispielsweise aus miteinander gekoppelten Gelenkstücken bestehende Verzögerungsglieder.

[0018] Die Schuppenströme 2a, 2b gelangen anschliessend in einen vierten Bereich D der Vorrichtung 1, in dem jeweils ein viertes Teilstück 10a, 10b der Eingangsförderer 6a, 6b angeordnet ist. Diese Teilstücke 10a, 10b lenken die Transportrichtung V mindestens eines der beiden Eingangsförderer 6a, 6b um. Stromabwärtige Endbereiche der Eingangsförderer 6a, 6b, mit anderen Worten die stromabwärtigen Enden der vierten Teilstücke 10a, 10b, sind derart ausgestaltet, dass sie im Wesentlichen in einer an die Eingangsförderer 6a, 6b anschliessenden Ebene eines ebenfalls als Förderband ausgebildeten Hauptförderers 15 versetzt zusammenkommen und dass einer der Eingangsförderer 6a, 6b, d.h. eines der vierten Teilstücke 10a, 10b in einem vorgegebenen Abstand vor dem Zusammentreffen mit dem

anderen Eingangsförderer 6a, 6b, d.h. mit dem anderen Teilstück 10b, 10a seitlich versetzt zu diesem verläuft (vgl. Fig. 3). In einer bevorzugten Ausgestaltung der Vorrichtung 1 ist nur das vierte Teilstück 10a des oberen Eingangsförderers 6a seitlich schwenkbar, während das vierte Teilstück 10b des unteren Eingangsförderers 6b vorzugsweise bereits direkt auf den Hauptförderer 15 ausgerichtet ist. In einer anderen, hier nicht dargestellten Ausführungsform, sind das vierte Teilstück 10b oder alternativ beide vierten Teilstücke 10a, 10b seitlich schwenkbar ausgebildet.

[0019] Das seitliche Schwenken des vierten Teilstücks 10a, mit anderen Worten ein Versetzen von dessen stromabwärtigen Ende quer zur Transportrichtung V, erfolgt mittels eines stromab des dritten Teilstücks 9a angeordneten Gelenks 10c, an dem das vierte Teilstück 10a befestigt ist. Durch das seitliche Schwenken des vierten Teilstücks 10a werden die Druckprodukte 3 des oberen Schuppenstroms 2a gegenüber denen des unteren Schuppenstroms 2b quer zur Transportrichtung V versetzt, so dass ein erster seitlicher Überlappungsbereich d1 entsteht (Fig. 7), in dem sich die beiden Schuppenströme 2a, 2b in ihrem Randbereich gegenseitig überlappen. Zudem wird durch das seitliche Schwenken des vierten Teilstücks 10a auch der Versatz 14 in Transportrichtung V beeinflusst, was bei der bereits beschriebenen Verstellung im Bereich C der Vorrichtung 1 zu berücksichtigen ist. Der Versatz 14 wird somit in Abhängigkeit von der Breite des vorgesehenen ersten seitlichen Überlappungsbereichs d1 der beiden Schuppenströme 2a, 2b eingestellt.

[0020] In der Ausführungsform gemäss Fig. 1 übergeben das vierte Teilstück 10b des unteren Eingangsförderers 6b und das seitlich schwenkbare vierte Teilstück 10a des oberen Eingangsförderers 6a die Schuppenströme 2b, 2a an ein fünftes und letztes, gemeinsames Teilstück 11 der Eingangsförderer 6a, 6b, welches seinerseits einen dabei entstandenen Doppelschuppenstrom 16a an den Hauptförderer 15 übergibt. Auf seinem weiteren Transportweg trifft der Doppelschuppenstrom 16a auf eine in einem fünften Bereich E der Vorrichtung 1 befindliche Einfächerungseinrichtung 17. In einer anderen, nicht dargestellten Ausführungsform übergeben das vierte Teilstück 10b und das schwenkbare vierte Teilstück 10a die Schuppenströme 2a, 2b direkt an den Hauptförderer 15.

[0021] Die Einfächerungseinrichtung 17 ist vorzugsweise als Einfächerungspflug 18 ausgebildet oder umfasst einen solchen Einfächerungspflug 18, mittels dem die Druckprodukte 3 des oberen Schuppenstroms 2a von den Druckprodukten 3 des unteren Schuppenstroms 2b getrennt werden können. Die Trennung bezieht sich auf einen Teilvorgang der Zusammenführung, bei dem die Druckprodukte 3 der beiden aufeinander liegenden Schuppenströme 2a, 2b des Doppelschuppenstroms 16a zumindest in ihrem Überlappungsbereich d1 aufgerichtet und die beiden Schuppenströme 2a, 2b somit voneinander getrennt werden. Durch ein stromab des Ein-

40

fächerungspflugs 18 erfolgendes Herabfallen auf den Hauptförderer 15, werden die Druckprodukte 3 dann derart zu einem einzigen Schuppenstrom 16b zusammengeführt, dass ein zweiter Überlappungsbereich d2 mit in ihrem Randbereich einander überlappenden Druckprodukten 3 ausgebildet wird. alternativ zum Herabfallen können die Druckprodukte 3 auch auf den Hauptförderer 15 abgesenkt werden.

[0022] Beidseitig des Einfächerungspflugs 18 ist ein erstes Andruckelement 19a, vorzugsweise eine Andruckrolle, vorgesehen, welches derart ausgestaltet ist, dass es die durch den Einfächerungspflug 18 getrennten Druckprodukte 3 der vormaligen Schuppenströme 2a, 2b beim Herabfallen noch gegen Seitenflächen 18a des Einfächerungspflugs 18 (vgl. Fig. 4) drückt, was die Ausbildung des Schuppenstroms 16b fördert.

[0023] Im in Fig. 4 näher dargestellten fünften Bereich E der erfindungsgemässen Vorrichtung 1 sind Stabilisierungselemente für einen kontrollierten Transport der Druckprodukte 3 der beiden Schuppenströme 2a, 2b des Doppelschuppenstroms 16a während des Zusammenführens zum einzigen Schuppenstrom 16b vorgesehen, deren Aufgabe es ist, ein Verrutschen der Druckprodukte 3, insbesondere beim Anheben durch den Einfächerungspflug 18 und beim anschliessenden Herabfallen auf den Hauptförderer 15, zu verhindern. Die Stabilisierungselemente umfassen beispielsweise als Schläuche, Rohre, Schlitten und/oder als Rollen ausgebildete Führungselemente 15a, 15b und beispielsweise als Oberbänder, Gliederketten und/oder Belastungsrollen ausgebildete, zweite Andruckelemente 19b. Wie in Fig. 3 gezeigt, sind vorzugsweise mindestens zwei erste, seitlich und stromauf des Einfächerungspflugs 18 angeordnete Führungselemente 15a und zwei zweite, seitlich und stromab des Einfächerungspflugs 18 angeordnete Führungselemente 15b sowie zwei seitlich des Einfächerungspflugs 18 und oberhalb des Hauptförderers 15 angeordnete, zweite Andruckelemente 19b vorgesehen. Die ersten und die zweiten Führungselemente 15a, 15b sind quer zur Transportrichtung V angeordnet und quer zur Transportrichtung V im Abstand zueinander verstellbar. Die beiden zweiten Andruckelemente 19b sind derart ausgestaltet, dass sie die Druckprodukte 3 gegen den Hauptförderer 15 drücken

[0024] In einem sechsten Bereich F der erfindungsgemässen Vorrichtung 1 gibt der Hauptförderer 15 den Schuppenstrom 16b an einen ebenfalls als Förderband ausgebildeten, ersten Übergabeförderer 21 a ab, wobei eine sichere Führung der Druckprodukte 3 mittels eines im Übergabebereich oberhalb des Hauptförderers 15 und des ersten Übergabeförderers 21 a angeordneten und als Andruckrollen ausgebildeten, dritten Andruckelements 19c erreicht wird (Fig. 9). Mittels des ersten Übergabeförderers 21 a wird der Schuppenstrom 16b an eine Zusammenschiebeeinrichtung 22 weitergeleitet. Diese umfasst beidseitig des ersten Übergabeförderers 21 a angeordnete, von aussen nach innen reichende, als Klemmbandförderer mit jeweils zwei übereinander an-

geordneten Förderbändern ausgebildete Führungselemente 22a, welche derart ausgestaltet sind, dass sie eine Verschiebung der Druckprodukte 3 der beiden vormaligen Schuppenströme 2a, 2b jeweils in Richtung der Mitte des Schuppenstroms 16b bewirken. In Fig. 9 wird dieses Verschieben beispielhaft anhand der Druckprodukte 3 des vormaligen Schuppenstroms 2b dargestellt, d.h. aus Gründen der Übersichtlichkeit ist lediglich die eine Hälfte des Schuppenstroms 16b gezeigt. Nach der Verschiebung entspricht der bereits im fünften Bereich E der Vorrichtung 1, also beim Herabfallen der Druckprodukte 3 nach dem Einfächerungspflug 18 gebildete Überlappungsbereich d2 (Fig. 7) des Schuppenstroms 16b im Wesentlichen der Breite der jeweiligen Druckprodukte 3. Mit anderen Worten reduziert die Zusammenschiebeeinrichtung 22 die Breite des Schuppenstroms 16b und gibt an eine anschliessende Zentriereinrichtung 23 einen sich im Wesentlichen vollständig überlappenden Schuppenstrom 16c ab.

[0025] Im unteren Bereich der Fig. 9 ist eine Reihe von zwei übereinander angeordneten, als Klemmbandförderer ausgebildeten Führungselementen 22a dargestellt. Statt beidseitig jeweils zwei solcher Führungselemente 22a, können auch jeweils mehrere Reihen von Klemmbandförderern nebeneinander angeordnet werden, wie dies im oberen Bereich der Fig. 9 für zwei solche Reihen dargestellt ist. Weiterhin besitzt die Zusammenschiebeeinrichtung 22 stromab der Führungselemente 22a einen zweiten Übergabeförderer 21 b sowie oberhalb davon angeordnete, als Rollen ausgebildete Andruckelemente 22b, wobei letztere den Schuppenstrom 16c beim Übergang zur Zentriereinrichtung 23 führen.

[0026] Die Zentriereinrichtung 23 weist beidseitig jeweils ein verstellbares Zentrierelement 23a auf, deren Abstand über eine nur schematisch dargestellte Stelleinrichtung 23b entsprechend der Breite der Druckprodukte 3 eingestellt werden kann. Auf diese Weise können die im Schuppenstrom 16c aufeinanderfolgenden Druckprodukte 3 nach der Zusammenschiebeeinrichtung 22 endgültig ausgerichtet werden, so dass der Schuppenstrom 16c nach der Zentriereinrichtung 23 stets eine einheitliche Breite besitzt. Auf seinem Weg durch die Zentriereinrichtung 23 wird der Schuppenstrom 16c mittels Transportbändern 23c gefördert und von diesen dann auch an einen anschliessenden, siebenten Bereich G der Vorrichtung 1 weitergeleitet. Natürlich kann die Zentrierung auch mit anderen geeigneten Vorrichtungen erreicht werden.

[0027] Im siebenten Bereich G der Vorrichtung 1 ist eine Prüfeinrichtung 24 mit einem Transportband 24a, einem Durchlaufsensor 24b, einer als Ausschleusweiche ausgebildeten Ausschleuseinrichtung 24c sowie eine Auslage 24d angeordnet. Im Bereich G wird mittels des Durchlaufsensors 24b eine Qualitätsprüfung des Schuppenstrom 16c durchgeführt, wobei fehlerhafte Druckprodukte 3 über die Ausschleuseinrichtung 24c in einen nicht dargestellten Makulaturbehälter abgeführt werden. Die für gut befundenen Druckprodukte 3 des Schuppen-

40

stroms 16c gelangen schliesslich über die Auslage 24d zu einer nicht weiter dargestellten, an die Vorrichtung 1 anschliessenden Weiterverarbeitungsvorrichtung 25. Natürlich kann auch auf die Qualitätsprüfung verzichtet werden, d.h. die Vorrichtung 1 ist entweder ohne einen Bereich Fausgestattet oder letzterer wird zumindest temporär deaktiviert.

[0028] Fig. 3 zeigt eine Draufsicht des Verlaufs der Schuppenströme 2a, 2b, des Doppelschuppenstroms 16a sowie der Schuppenströme 16b und 16c. Die Förderbänder 5a, 5b, die Eingangsförderer 6a, 6b mit ihren Teilstücken 7a, 7b; 8a, 8b; 9a, 9b; 10a, 10b und 11 sowie der Hauptförderer 15 und die Förderer von Zusammenschiebeeinrichtung 22, Zentriereinrichtung 23 sowie Prüfeinrichtung 24 sind im unteren Bereich der Fig. 3 der Einfachheit halber nur angedeutet, während für diese Darstellung nicht relevante Bestandteile der Vorrichtung 1 nicht eingezeichnet sind. Die Bereiche A bis G entsprechen den in Fig. 1 dargestellten Bereichen. In den Bereichen A bis C verlaufen der erste, obere und der zweite, untere Schuppenstrom 2a, 2b übereinander, sodass letzterer in diesen Bereichen der Fig. 3 nicht sichtbar ist. Im vierten Bereich D wird der obere Schuppenstrom 2a seitlich versetzt ausgelenkt, d.h. dessen Druckprodukte 3 weisen am stromabwärtigen Ende des Bereichs D den bereits oben erwähnten ersten Überlappungsbereich d1 quer zur Transportrichtung V auf. Wie bereits zu Fig. 1 beschrieben, wird dies vorzugsweise durch das seitliche Schwenken des vierten Teilstücks 10a des oberen Eingangsförderers 6a mittels des Gelenks 10c realisiert. Im fünften Bereich E bzw. beim Verwenden des Teilstücks 11 der Eingangsförderer 6a, 6b am Ende des vierten Bereichs D, entsteht der Doppelschuppenstrom 16a, indem der obere Schuppenstrom 2a seitlich versetzt auf den unteren Schuppenstrom 2b abgelegt wird. Dabei ist anzumerken, dass die beiden Eingangsförderer 6a, 6b die gleiche Geschwindigkeit haben. Wie bereits im Zusammenhang mit Fig. 1 beschrieben, wird der aus den beiden einzelnen Schuppenströmen 2a, 2b bestehende Doppelschuppenstrom 16a im fünften Bereich E zur Einfächerungseinrichtung 17 transportiert und mittels deren Einfächerungspflug 18, der Führungselemente 15a, 15b, der zweiten und der ersten Andruckelemente 19b, 19a in den einzigen Schuppenstrom 16b überführt. Im sechsten Bereich F wird anschliessend die Breite des Schuppenstroms 16b durch die Zusammenschiebeeinrichtung 22 und die nachfolgende Zentriereinrichtung 23 kontinuierlich so weit reduziert, bis der zweite, in Fig. 7 dargestellte Überlappungsbereich d2 der Breite der Druckprodukte 3 entspricht. Dadurch entsteht ein einziger Schuppenstrom 16c von sich gegenseitig vollständig überdekkenden Druckprodukten 3, der anschliessend weiterverarbeitet werden kann.

[0029] Fig. 4 zeigt eine Detailansicht der Einfächerungspflugs 18 und des Hauptförderers 15. Die Schnitte A-A, B-B und C-C werden nachfolgend im Zusammenhang mit Fig. 5 beschrieben. Im Bereich des Schnittes A-A wird der Doppelschuppenstrom 16a in Richtung des

Einfächerungspflugs 18 bewegt. Die Druckprodukte 3 des vormaligen oberen und unteren Schuppenstroms 2a, 2b, von denen im Bereich des Einfächerungspflugs 18 lediglich der vormalige untere Schuppenstrom 2b sichtbar ist, werden entlang der Seitenflächen 18a sowie deren oberer Kante 18b des Einfächerungspflugs 18 zunehmend aufgestellt und auf diese Weise in ihrem bisherigen, ersten Überlappungsbereich d1 voneinander getrennt. Mit anderen Worten werden die Druckprodukte 3 beginnend mit ihren Innenkanten 26 angehoben. Die beiden ersten Führungselemente 15a bleiben beim Anheben der sich zuvor überlappenden Bereiche der Druckprodukte 3 im Wesentlichen in Kontakt mit dem Einfächerungspflug 18 und beim Anheben der weiteren Bereiche der Druckprodukte 3 im Wesentlichen in Kontakt mit dem Hauptförderer 15, so dass eine ausreichende Reibung der Druckprodukte 3 mit dem Einfächerungspflug 18 bzw. dem Hauptförderer 15 gewährleistet ist. Dadurch wird verhindert, dass die Druckprodukte 3 seitlich wegrutschen können und zudem deren kontrolliertes Aufstellen sichergestellt. In einem stromabwärtigen Bereich des Einfächerungspflugs 18 sind die Druckprodukte 3 des vormals oberen Schuppenstroms 2a bereits von den Druckprodukten 3 des vormals unteren Schuppen-25 stroms 2b getrennt.

[0030] Nach dieser Trennung fallen die Druckprodukte 3 wieder auf den Hauptförderer 15 herab (vgl. Fig. 4, Position des Schnitts B-B) und werden anschliessend in Richtung der in den Figuren. 1, 3 und 9 dargestellten Zusammenschiebeeinrichtung 22 transportiert. Beidseitig des Einfächerungspflugs 18 ist jeweils ein vorzugsweise als Andruckrolle ausgebildetes, erstes Andrukkelement 19a angeordnet, welches derart ausgestaltet ist, dass es die Druckprodukte 3 beim Herabfallen auf den Hauptförderer 15 in Richtung des Einfächerungspflugs 18 drückt. Die ersten Andruckelemente 19a sind seitlich neben dem stromabwärtigen Bereich des Einfächerungspflugs 18 angeordnet, um das an den Innenkanten 26 beginnende Aufrichten der Druckprodukte 3 nicht zu behindern. Durch diese Anordnung verhindern die ersten Andruckelemente 19a vorteilhaft, dass die Druckprodukte 3 nach der Trennung unkontrolliert auf den Hauptförderer 15 herabfallen und dadurch der Verlauf des stromab des Einfächerungspflugs 18 entstehenden Schuppenstroms 16b unregelmässig wird.

[0031] In einer bevorzugten Ausführungsform schliessen sich seitlich und stromab des Einfächerungspflugs 18, d.h. im Bereich des Herabfallens der Druckprodukte 3 die beiden zweiten Führungselemente 15b an. Diese drücken die Druckprodukte 3 gegen den Hauptförderer 15 und gewährleisten damit, dass das zwischen den herabfallenden Druckprodukten 3 und dem Hauptförderer 15 befindliche Luftpolster zuverlässig überwunden wird. Auf diese Weise ist sichergestellt, dass die Druckprodukte 3 geordnet auf dem Hauptförderer 15 abgelegt werden. Wie im Zusammenhang mit Fig. 1 beschrieben, wird das Herabfallen der Druckprodukte 3 durch die zweiten Andruckelemente 19b zusätzlich stabilisiert.

40

45

[0032] Fig. 5 zeigt eine bevorzugte Ausführungsform der als Einfächerungspflug 18 ausgebildeten oder einen solchen umfassenden Einfächerungseinrichtung 17. Dazu weist der Einfächerungspflug 18 die Form von zwei Pyramiden 20 mit jeweils mindestens drei Seitenflächen 20a, 20b, 20c und einer Grundfläche 20d auf. Die Pyramiden 20 sind jeweils mit einer ersten Seitenfläche 20a in der Ebene des hier nicht dargestellten Hauptförderers 15 angeordnet. Sie besitzen jeweils eine Kante 20f, die zwischen der zweiten und der dritten Seitenfläche 20b, 20c jeder Pyramide 20 in einem einstellbaren Winkel α zur Transportrichtung V verläuft, wobei die jeweilige Grundfläche 20d quer zur Transportrichtung V steht. Die Kanten 20f der Pyramiden 20 laufen entgegen der Transportrichtung V in einer gemeinsamen Spitze 20e zusammen. Die Pyramiden 20 sind derart ausgestaltet, dass die Kanten 20f eine einstellbare Steigung β haben. Dabei entsprechen die Seitenflächen 18a des Einfächerungspflugs 18 den zweiten Seitenflächen 20b der Pyramiden 20 und die oberen Kanten 18b des Einfächerungspflugs 18 den Kanten 20f der Pyramiden 20. Selbstverständlich kann der Einfächerungspflug 18 auch mehr oder weniger als zwei Pyramiden 20 umfassen.

[0033] Der einstellbare Winkel α und die einstellbare Steigung β bewirken, dass die Form des Einfächerungspflugs 18 abhängig vom Format der Druckprodukte 3 des oberen und des unteren Schuppenstroms 2a, 2b derart eingestellt werden kann, dass ein regelmässiger Schuppenstrom 16b entsteht. Abhängig von der Form des Einfächerungspflugs 18 ist die Position der im Zusammenhang mit Fig. 1 beschriebenen ersten Andruckelemente 19a ebenfalls quer zur Transportrichtung V und in der Höhe verstellbar.

[0034] Der Einfächerungspflug 18 ist allerdings nicht auf die hier beschriebenen Formen beschränkt. Im Rahmen der beanspruchten Merkmale der Erfindung sind eine Vielfalt anderer Formen denkbar, z.B. die Form einer einzelnen Pyramide oder auch Führungselemente, welche den zweiten Seitenflächen 20b der Pyramiden 20 bzw. den Seitenflächen 18a des Einfächerungspflugs 18 entsprechende Führungsflächen aufweisen. Diese Führungsflächen können natürlich auch mit gekrümmten Flächen ausgestattet sein.

[0035] Die Figuren 6a, 6b und 6c zeigen drei Schritte zum Zusammenführen der Schuppenströme 2a, 2b, die den in der Fig. 4 angeführten Schnitten A-A, B-B und C-C entsprechen. Dabei ist die Transportrichtung V auf den Betrachter ausgerichtet. Während die beidseitig des Einfächerungspflugs 18 angeordneten Andruckelemente, d.h. die ersten Andruckelemente 19a sowie die verstellbar ausgebildeten, zweiten Andruckelemente 19b dargestellt sind, wurde aus Übersichtlichkeitsgründen auf die Darstellung der beiden Führungselemente 15a, 15b verzichtet.

[0036] Die Fig. 6a zeigt den Doppelschuppenstrom 16a mit dem ersten, oberen Schuppenstrom 2a und dem zweiten, unteren Schuppenstrom 2b vor deren Trennung bzw. vor der Trennung der zugehörigen Druckprodukte

3. Dabei liegt der obere Schuppenstrom 2a in Transportrichtung V über seine ganze Länge auf dem unteren Schuppenstrom 2b auf. Im Vorfeld der Bildung dieses Doppelschuppenstroms 16a stellt das schwenkbare Teilstück 10a des oberen Hauptförderers 15 den ersten Überlappungsbereich d1 des Doppelschuppenstroms 16a ein. Aufgrund des Aufbaus der üblichen Weiterverarbeitungsmaschinen kann dieser Doppelschuppenstrom 16a jedoch nicht weiterverarbeitet werden.

[0037] Die Fig. 6b zeigt die Lage eines ersten Druckprodukts 3a des oberen Schuppenstroms 2a und eines ersten Druckprodukts 3b des unteren Schuppenstroms 2b in voneinander getrenntem Zustand. Die beiden Druckprodukte 3a, 3b werden vor ihrer Trennung durch den hier in Form der beiden Pyramiden 20 ausgebildeten Einfächerungspflug 18 im Wesentlichen in der Mitte des ersten Überlappungsbereichs d1 angehoben und liegen teilweise auf den zweiten Seitenflächen 20b der jeweils auf ihren ersten Seitenflächen 20a stehenden Pyramiden 20 auf. Dabei sorgen die ersten Andruckelemente 19a vorteilhaft für eine exakte Führung der voneinander getrennten Druckprodukte 3a, 3b, indem sie diese im stromabwärtigen Bereich des Einfächerungspflugs 18 in Richtung auf die zweiten Seitenflächen 20b der Pyramiden 20 drücken.

[0038] Die Fig. 6c zeigt die Lage der ersten Druckprodukte 3a, 3b des vormals oberen und des vormals unteren Schuppenstroms 2a, 2b stromab des Einfächerungspflugs 18. Nach dem Passieren der Grundflächen 20d der Pyramiden 20, d.h. des stromabwärtigen Endes des Einfächerungspflugs 18, fallen die ersten Druckprodukte 3a, 3b, kontrolliert durch die ersten Andruckelemente 19a, auf den Hauptförderer 15 herab, wobei sie sich in einem zweiten Überlappungsbereich d2 überlappen, welcher hinsichtlich seiner Breite im Wesentlichen dem ersten Überlappungsbereich d1 entspricht. Darauffolgen weitere Druckprodukte 3c bzw. 3d des vormals oberen und unteren Schuppenstroms 2a, 2b, welche in Fig. 6c ebenfalls in getrennter Lage dargestellt sind. Die ersten Druckprodukte 3a, 3b sind Teil des Schuppenstroms 16b, der sich von dem Doppelschuppenstrom 16a dadurch unterscheidet, dass das Druckprodukt 3a des vormals oberen Schuppenstroms 2a auf dem Druckprodukt 3b des vormals unteren Schuppenstroms 2b liegt, dass das nachlaufende Druckprodukt 3d des vormals unteren Schuppenstroms 2b auf dem Druckprodukt 3a und das nachlaufende Druckprodukt 3c des vormals oberen Schuppenstroms 2a auf dem Druckprodukt 3d zu liegen kommt usw., so dass abwechselnd ein Druckprodukt 3 des oberen oder des unteren Schuppenstroms 2a, 2b teilweise auf einem Druckprodukt 3 des jeweils anderen Schuppenstroms 2b, 2a liegt (vgl. Fig. 7). Unabhängig vom konkreten Ausführungsbeispiel liegt dabei nach der Zusammenführung der Schuppenströme stets das in Transportrichtung V vorlaufende Druckprodukt 3 unter dem in Transportrichtung V nachlaufenden Druckprodukt 3. Demgegenüber liegt bei dem Doppelschuppenstrom 16a immer der obere Schuppenstrom 2a auf dem unteren Schuppenstrom 2b.

[0039] Fig. 7 zeigt in einer Draufsicht den Bereich E der erfindungsgemässen Vorrichtung 1, mit der Einfächerungseinrichtung 17 und dem Versatz 14 der Druckprodukte 3 des Schuppenstroms 2a zu den Druckprodukten 3 des Schuppenstroms 2b in Transportrichtung V. Der Doppelschuppenstrom 16a wird dem Einfächerungspflug 18 in Transportrichtung V zugeführt und mit dessen Hilfe in den Schuppenstrom 16b überführt. Dabei ist die Breite des zweiten Überlappungsbereichs d2 vorzugsweise im Wesentlichen gleich der Breite des ersten Überlappungsbereichs d1. Fig. 7 veranschaulicht auch die Lage der ersten Andruckelemente 19a beidseitig des Einfächerungspflugs 18 und in dessen stromabwärtigen Bereich.

[0040] Der obere und der untere Schuppenstrom 2a, 2b wurden im Vorfeld einerseits mittels des in Fig. 2a, 2b im Detail dargestellten dritten Teilstücks 9 des unteren Eingangsförderers 6b sowie mittels des in Fig. 1 gezeigten, schwenkbare vierten Teilstücks 10a des oberen Eingangsförderers 6a in Transportrichtung V um den Versatz 14 gegeneinander versetzt, während der erste seitliche Überlappungsbereich d1 ebenfalls mittels des vierten Teilstücks 10a eingestellt wurde. Der Versatz 14 der beiden Schuppenströme 2a, 2b in Transportrichtung V ist gemäss Fig. 7 grösser als Null. Er entspricht vorzugsweise der Hälfte eines Schuppenabstandes 27 von zwei aufeinanderfolgenden Druckprodukten 3 innerhalb eines der beiden Schuppenströme 2a, 2b stromauf des Einfächerungspflugs 18. Der Versatz 14 kann mittels des Oberbandes 12 und des Unterbandes 13 des dritten Teilstücks 9b des unteren Eingangsförderers 6b beliebig eingestellt werden und kann aber auch gleich Null sein. Dieser Fall wird nachfolgend im Zusammenhang mit Fig. 8 beschrieben.

[0041] Sobald die Druckprodukte 3 die im Wesentlichen in der Mitte des ersten Überlappungsbereiches d1 angeordnete Spitze 20e der Pyramiden 20 des Einfächerungspflugs 18 erreicht haben, werden die Druckprodukte 3 beginnend mit ihren Innenkanten 26 fortlaufend aufgerichtet. Dies ist in Fig. 7 am Beispiel des oberen Schuppenstroms 2a für die Innenkanten 26a, 26b, 26c, 26d veranschaulicht. Die Innenkante 26d eines Druckprodukts 3 des oberen Schuppenstroms 2a ist nicht mehr mit einem Druckprodukt 3 des unteren Schuppenstroms 2b in Berührung. Die ersten Führungselemente 15a sind vorzugsweise seitlich und die zweiten Führungselemente 15b stromab des Einfächerungspflugs 18 angeordnet. [0042] Fig. 8 zeigt eine Draufsicht auf einen alternativ ausgebildeten Bereich E der erfindungsgemässen Vorrichtung 1, in dem die Einfächerungseinrichtung 17 in Transportrichtung V keinen Versatz 14 zwischen den Druckprodukten 3 des oberen und des unteren Schuppenstroms 2a, 2b erzeugt. Um dennoch eine definierte Reihenfolge des Herabfallens der Druckprodukte 3 stromab eines Einfächerungspflugs 18 und damit einen einzigen Schuppenstrom 16b zu erzeugen, bei dem das in Transportrichtung V vorlaufende Druckprodukt 3 unter

dem in Transportrichtung nachlaufenden Druckprodukt 3 liegt, weisen die beiden Pyramiden 20 des Einfächerungspflugs 18 unterschiedlich lange Seitenflächen 20a, 20b, 20c auf, von denen in Fig. 8 stellvertretend nur die Seitenflächen 20b angedeutet sind. Damit kommt auch bei dem auf diese Weise gebildeten Schuppenstrom 16b abwechselnd ein Druckprodukt 3 des oberen oder des unteren Schuppenstroms 2a, 2b teilweise auf einem Druckprodukt 3 des jeweils anderen Schuppenstroms 2b, 2a zu liegen. Damit die Druckprodukte 3 auch bei einem derart ausgebildeten Einfächerungspflug 18 ausreichend abgestützt werden können, sind das jeder Pyramide 20 zugeordnete erste Andruckelement 19a, das erste Führungselement 15a und das zweite Führungselement 15b dementsprechend angepasst, d.h. in Transportrichtung V zueinander versetzt angeordnet. Der ohne Versatz 14 gebildete Doppelschuppenstrom 16a wird in Transportrichtung V analog dem in der Fig. 7 gezeigten Doppelschuppenstrom 16a zum Einfächerungspflug 18 gefördert und durch diesen in einen einzigen Schuppenstrom 16b überführt. Die Breite des zweiten Überlappungsbereichs d2 ist auch bei dieser alternativen Lösung vorzugsweise im Wesentlichen gleich der Breite des ersten Überlappungsbereichs d1.

[0043] Die Vorteile des erfindungsgemässen Verfahrens und der erfindungsgemässen Vorrichtung 1 liegen darin, dass eine in der Anpassung der Rotationsabnahme an die sich zumeist übereinander befindlichen Ausgänge einer Rollenoffset-Druckmaschine erfolgen kann und dass Anschaffungskosten für eine zusätzliche Weiterverarbeitungslinie eingespart werden können, die andernfalls nötig wäre um ein paralleles Verarbeiten der Druckprodukte 3 des oberen und des unteren Schuppenstroms 2a, 2b zu gewährleisten. Die üblicherweise mit dem Einsatz von zwei Verarbeitungslinien verbundenen Instandhaltungskosten können somit erheblich reduziert werden. Zudem kann vor der Zusammenführung der beiden Schuppenströme 2a, 2b im Bereich B der Vorrichtung 1 Makulatur individuell ausgeschleust werden, was eine Kostenreduktion zur Folge hat.

[0044] Obwohl die Vorrichtung 1 vorgängig anhand eines aus Förderbändern bestehenden Fördersystems beschrieben worden ist, können im Rahmen der Erfindung natürlich auch andere Fördersysteme, wie beispielsweise Greifertransporteure, Verwendung finden. Auch ist eine Kombination verschiedener Fördersysteme möglich. Beispielsweise können die Bereiche A bis D der Vorrichtung 1 mit Greifertransporteuren und die anschliessenden Bereiche E bis G mit Förderbändern bestückt werden.

Patentansprüche

 Verfahren zum kontinuierlichen Zusammenführen von mindestens zwei mit gleicher Geschwindigkeit und beabstandet voneinander transportierten Schuppenströmen flächiger Druckprodukte, da-

50

35

20

25

30

35

40

45

50

durch gekennzeichnet, dass

- zunächst ein erster Schuppenstrom (2a) flächiger Druckprodukte (3) gegenüber einem zweiten Schuppenstrom (2b) flächiger Druckprodukte (3), einen ersten seitlichen Überlappungsbereich (d1) beider Schuppenströme (2a, 2b) bildend, seitlich versetzt wird,
- die Druckprodukte (3) beider Schuppenströme (2a, 2b) anschliessend zumindest im ersten seitlichen Überlappungsbereich (d1) fortlaufend so weit angehoben werden, bis deren seitliche Überlappung aufgehoben ist und,
- die Druckprodukte (3) beider Schuppenströme (2a, 2b) schliesslich zumindest in ihrem angehobenen, seitlichen Überlappungsbereich (d1) nacheinander derart abgesenkt oder fallengelassen werden, dass abwechselnd ein Druckprodukt (3) des ersten oder des zweiten Schuppenstroms (2a, 2b) teilweise oberhalb eines Druckprodukts (3) des jeweils anderen Schuppenstroms (2b, 2a) zu liegen kommt, wobei ein einziger Schuppenstrom (16b) mit einem zweiten seitlichen Überlappungsbereich (d2) der Druckprodukte (3) gebildet wird.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass
 - zunächst der erster Schuppenstrom (2a) seitlich versetzt auf dem zweiten Schuppenstrom (2b), einen Doppelschuppenstrom (16) mit dem ersten seitlichen Überlappungsbereich (d1) bildend, abgelegt wird,
 - anschliessend die Druckprodukte (3) beider Schuppenströme (2a, 2b) zumindest im ersten seitlichen Überlappungsbereich (d1) fortlaufend so weit angehoben werden, bis sie in ihrem ersten seitlichen Überlappungsbereich (d1) voneinander getrennt sind und,
 - die Druckprodukte (3) beider Schuppenströme (2a, 2b) schliesslich zumindest in ihrem angehobenen, seitlichen Überlappungsbereich (d1) nacheinander derart abgesenkt oder fallengelassen werden, dass abwechselnd ein Druckprodukt (3) des ersten oder des zweiten Schuppenstroms (2a, 2b) teilweise auf einem Druckprodukt (3) des jeweils anderen Schuppenstroms (2b, 2a) zu liegen kommt und dadurch der einzige Schuppenstrom (16b) mit dem zweiten seitlichen Überlappungsbereich (d2) der Druckprodukte (3) gebildet wird.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Druckprodukte (3) im Wesentlichen in der Mitte des ersten seitlichen Überlappungsbereichs (d1) angehoben werden.

- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die beiden Schuppenströme (2a, 2b) vor dem Ausbilden des ersten seitlichen Überlappungsbereichs (d1) um einen vorgegebenen Versatz (14) in einer Transportrichtung (V) zueinander verschoben werden.
- 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Versatz (14) der beiden Schuppenströme (2a, 2b) einstellbar ist und insbesondere der Hälfte eines in Transportrichtung (V) gesehenen Schuppenabstands (27) von zwei aufeinanderfolgenden Druckprodukten (3) innerhalb eines der beiden Schuppenströme (2a, 2b) entspricht.
- 6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass der Versatz (14) in Abhängigkeit vom vorgesehenen ersten seitlichen Überlappungsbereich (d1) der beiden Schuppenströme (2a, 2b) eingestellt wird.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Druckprodukte (3) beider Schuppenströme (2a, 2b) mittels einer Einfächerungseinrichtung (17) angehoben und stromab der Einfächerungseinrichtung (17) auf einen Hauptförderer (15) abgesenkt oder fallengelassen werden, wobei die Druckprodukte (3) vor dem Absenken oder Herabfallen auf den Hauptförderer (15) durch erste Andruckelemente (19a) seitlich gegen die Einfächerungseinrichtung (17) gedrückt werden.
- 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Druckprodukte (3) beim Anheben durch mindestens zwei erste Führungselemente (15a), beim Absenken oder Herabfallen durch mindestens zwei zweite Führungselemente (15b) und während ihres Transports auf dem Hauptförderer (15) mittels zwei seitlich der Einfächerungseinrichtung (17) und oberhalb des Hauptförderers (15) angeordneten, zweiten Andruckelementen (19b) gegen den Hauptförderer (15) gedrückt werden.
- 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine Breite des Schuppenstroms (16b) fortlaufend reduziert wird, bis der zweite seitliche Überlappungsbereich (d2) einer Breite der Druckprodukte (3) entspricht und ein Schuppenstrom (16c) einheitlicher Breite entsteht..
- 10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Schuppenstroms (16c) einer Qualitätsprüfung unterzogen und Druckprodukte (3) mit nicht ausreichender Qualität aus dem Schuppenstrom (16c) ausgeschleust werden.

10

15

20

25

30

40

45

- 11. Vorrichtung zur Durchführung eines Verfahrens nach einem der vorhergehenden Ansprüche, gekennzeichnet durch zwei beabstandet voneinander angeordnete Eingangsförderer (6a, 6b) zum Transport jeweils eines Schuppenstroms (2a, 2b) von Druckprodukten (3) zu einem Hauptförderer (15) und eine im Bereich des Hauptförderers (15) angeordnete Einfächerungseinrichtung (17) zum Einfächern der Druckprodukte (3) eines der Schuppenströme (2a, 2b) in die Druckprodukte (3) des anderen Schuppenstroms (2b, 2a).
- 12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass stromabwärtige Endbereiche der Eingangsförderer (6a, 6b) derart ausgestaltet sind, dass sie im Wesentlichen in einer Ebene des Hauptförderers (15) versetzt zueinander zusammenkommen und dass einer der Eingangsförderer (6a, 6b) in einem vorgegebenen Abstand vor dem Zusammentreffen zum anderen Eingangsförderer (6b, 6a) seitlich versetzt verläuft.
- 13. Vorrichtung nach einem der Ansprüche 11 oder 12, dadurch gekennzeichnet, dass mindestens einer der Eingangsförderer (6a, 6b) ein Teilstück (9b) zur Einstellung eines Versatzes (14) der Schuppenströme (2a, 2b) in Transportrichtung (V) aufweist.
- 14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, dass einer der Eingangsförderer (6a, 6b) ein mittels eines Gelenks (10c) quer zur Transportrichtung (V) derart schwenkbares Teilstück (10a) aufweist, dass sich die gewünschte Breite des ersten seitlichen Überlappungsbereichs (d1) der Schuppenströme (2a, 2b) ergibt.
- 15. Vorrichtung nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Einfächerungseinrichtung (17) einen Einfächerungspflug (18) umfasst oder als Einfächerungspflug (18) ausgebildet ist, der insbesondere die Form von zwei Pyramiden (20) mit jeweils mindestens drei Seitenflächen (20a, 20b, 20c) und einer Grundfläche (20d) aufweist, welche Pyramiden (20) jeweils mit einer ersten Seitenfläche (20a) in der Ebene des Hauptförderers (15) angeordnet sind und jeweils eine Kante (20f) aufweisen, die zwischen einer zweiten und einer dritten Seitenfläche (20b, 20c) jeder Pyramide (20) in einem einstellbaren Winkel (α) zur Transportrichtung (V) verläuft, wobei die jeweilige Grundfläche (20d) quer zur Transportrichtung (V) angeordnet ist und die Kanten (20f) der Pyramiden (20) entgegen der Transportrichtung (V) in einer gemeinsamen Spitze (20e) zusammenlaufen.
- 16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass die Pyramiden (20) derart ausgestaltet sind, dass die Kanten (20f) eine einstellbare

Steigung (β) aufweisen.

- 17. Vorrichtung nach einem der Ansprüche 11 bis 16, dadurch gekennzeichnet, dass beidseitig der Einfächerungseinrichtung (17) erste Andruckelemente (19a) angeordnet und insbesondere als Andruckrollen ausgebildet sind, welche derart ausgestaltet sind, dass sie die Druckprodukte (3) beim Herabfallen auf den Hauptförderer (15) quer zur Transportrichtung (V) gegen Seitenflächen (18a) der Einfächerungseinrichtung (17) oder gegen die zweiten Seitenflächen (20b) der Pyramiden (20) drücken.
- **18.** Vorrichtung nach einem der Ansprüche 11 bis 17, dadurch gekennzeichnet, dass mindestens zwei erste und/oder mindestens zwei zweite Führungselemente (15a, 15b) stromauf und/oder stromab sowie jeweils seitlich der Einfächerungseinrichtung (17) angeordnet sind.
- 19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass die ersten und die zweiten Führungselemente (15a, 15b) quer zur Transportrichtung und/oder in Transportrichtung (V) im Abstand zueinander verstellbar sind.
- 20. Vorrichtung nach einem der Ansprüche 11 bis 19, dadurch gekennzeichnet, dass zwei zweite Andruckelemente (19b) in Transportrichtung (V) seitlich der Einfächerungseinrichtung (17) sowie oberhalb des Hauptförderers (15) angeordnet und derart ausgestaltet sind, dass sie die Druckprodukte (3) gegen den Hauptförderer (15) drücken.
- 21. Vorrichtung nach einem der Ansprüche 11 bis 20, dadurch gekennzeichnet, dass stromab der Einfächerungseinrichtung (17) eine Zusammenschiebeeinrichtung (22) angeordnet ist, die zur Erzeugung eines einzigen Schuppenstroms (16c) auf jeder Seite des Hauptförderers (15) zumindest ein Führungselement (22a) umfasst, welche dazu ausgestaltet sind, dass sie eine Verschiebung der Druckprodukte (3) in Richtung der Mitte des Schuppenstroms (16b) bewirken, so dass der zweite seitliche Überlappungsbereich (d2) nach der Verschiebung der Druckprodukte (3) entspricht.
- 22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass stromab der Zusammenschiebeeinrichtung (22) eine Zentriereinrichtung (23) angeordnet ist.
 - 23. Vorrichtung nach Anspruch 21 oder 22, dadurch gekennzeichnet, dass stromab der Zusammenschiebeeinrichtung (22) oder der Zentriereinrichtung (23) eine Prüfeinrichtung (24) mit einer Ausschleuseinrichtung, insbesondere einer Ausschleusweiche

55

(24c), angeordnet ist.

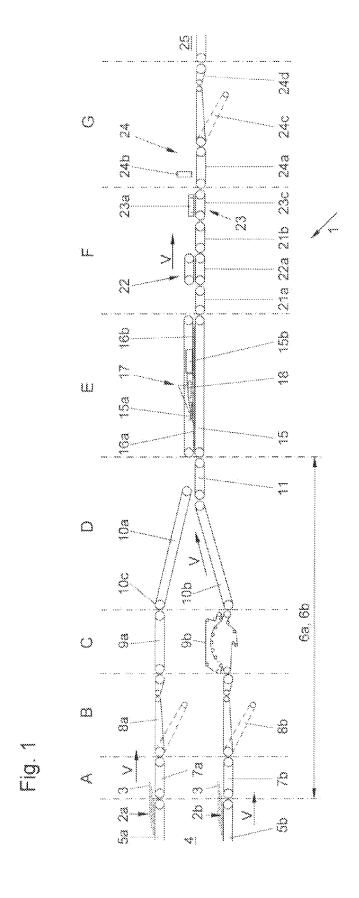


Fig. 2a

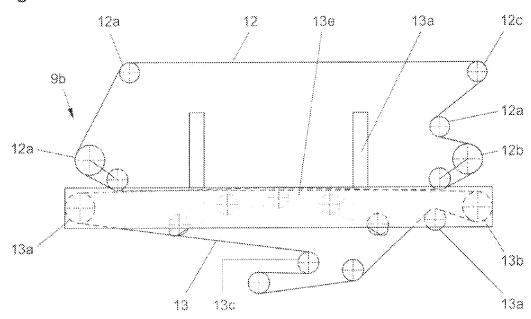
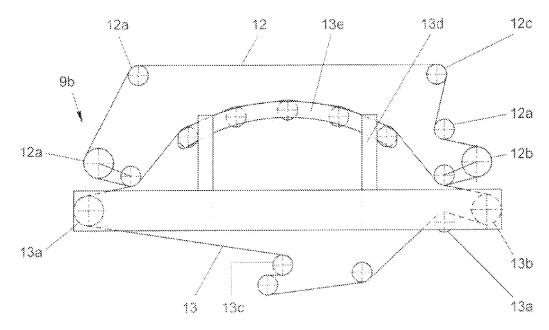
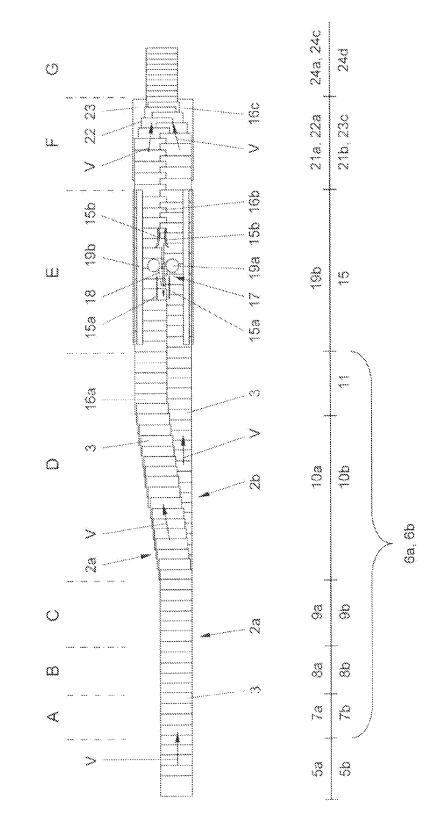
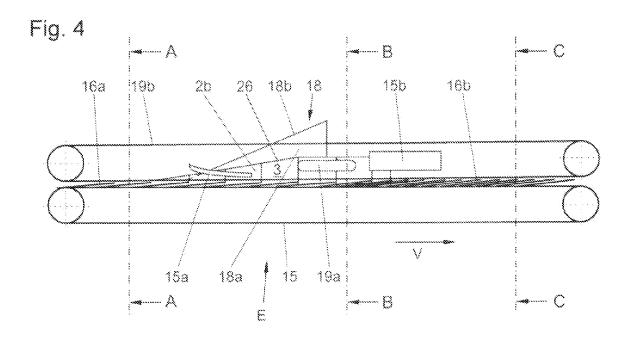
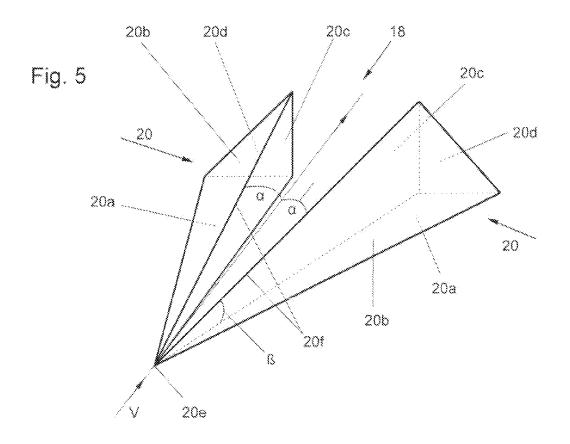
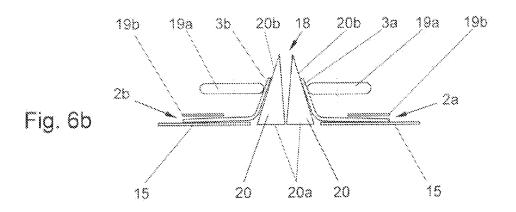
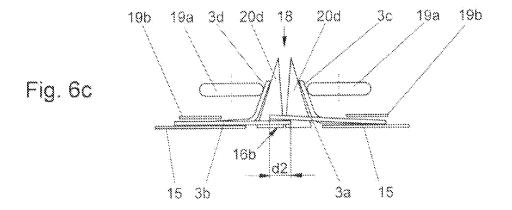
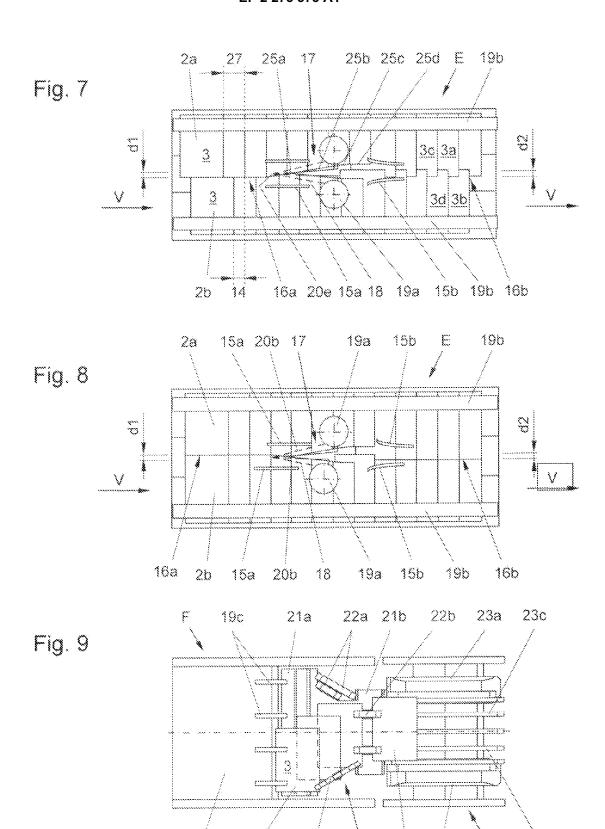






Fig. 2b







16b

22a

22 16c

15

23

23a

23b

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 09 16 5698

	EINSCHLÄGIGE		_		
Kategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, soweit erforderl en Teile		etrifft spruch	KLASSIFIKATION DER ANMELDUNG (IPC)
A,D	[DE]) 18. März 1987	RANKENTHAL AG ALBERT 7 (1987-03-18) 5 - Seite 13, Zeile		1	INV. B65H29/66
A,D	[DE]) 25. September	RANKENTHAL AG ALBERT 1985 (1985-09-25) 3 - Seite 13, Zeile	27;	1	
А	H ULRICH [CH]) 28. * Seite 9, Zeile 19	FERAG AG [CH]; STAUE Juni 2007 (2007-06-2) - Seite 10, Zeile 3 3-13; Abbildungen *	28)	.1	
A,D	ERWIN [CH]) 31. Jul	FERAG AG [CH]; MUELI i 2008 (2008-07-31) 9 - Seite 13, Zeile		1	
Α	US 3 693 486 A (MAN 26. September 1972 * Abbildungen *	IIACI PHILIP J ET AL) (1972-09-26)) 1,1	.1	RECHERCHIERTE SACHGEBIETE (IPC)
Α	US 5 913 656 A (COL 22. Juni 1999 (1999 * Abbildungen *	LINS MICHAEL A [US]) 0-06-22)) 1,1	1	
Α	EP 0 189 896 A2 (GA 6. August 1986 (198 * Abbildung 5 *		1,1	1	
Α	WO 88/00919 A1 (LIE [AT]) 11. Februar 1 * Abbildungen *	BE HERZING F GRAPHIS 988 (1988-02-11)	SCHE 1,1	1	
Dorve	vljegende Recherabonborisht	rde für alle Patentansprüche erste	VII+		
Dei vo	Recherchenort	Abschlußdatum der Recherci			Prüfer
	Den Haag	22. Januar 20		Lemr	men, René
X : von Y : von ande A : tech	ATEGORIE DER GENANNTEN DOKI besonderer Bedeutung allein betrach besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg inologischer Hintergrund tschriftliche Offenbarung	JMENTE T : der Erfind E : älteres Pa tet nach dem mit einer D : in der Anr jorie L : aus anden	ung zugrunde atentdokument, Anmeldedatur meldung angef en Gründen ar	liegende Th das jedool n veröffentl ührtes Dok ngeführtes	neorien oder Grundsätze n erst am oder icht worden ist ument

EPO FORM 1503 03.82 (P04C03)

- O : nichtschriftliche Offenbarung P : Zwischenliteratur

& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 09 16 5698

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

22-01-2010

EP 0214458 A2 18-03-1987 KEINE EP 0155633 A2 25-09-1985 DE 3410327 A1 03-10-19 W0 2007071084 A1 28-06-2007 AU 2006329228 A1 28-06-20
W0 2007071084 A1 28-06-2007 AU 2006329228 A1 28-06-20
CA 2633463 A1 28-06-20 EP 1966070 A1 10-09-20 US 2008308996 A1 18-12-20 WO 2008089586 A1 31-07-2008 AU 2007345138 A1 31-07-20 CA 2676202 A1 31-07-20 US 3693486 A 26-09-1972 KEINE US 5913656 A 22-06-1999 CA 2275843 A1 21-12-20 EP 0189896 A2 06-08-1986 DE 3502896 A1 31-07-19 JP 62136452 A 19-06-19 US 4696464 A 29-09-19 WO 8800919 A1 11-02-1988 AT 385747 B 10-05-19 DK 161188 A 24-03-19
W0 2008089586 A1 31-07-2008 AU 2007345138 A1 31-07-20 US 3693486 A 26-09-1972 KEINE US 5913656 A 22-06-1999 CA 2275843 A1 21-12-20 EP 0189896 A2 06-08-1986 DE 3502896 A1 31-07-19 JP 62136452 A 19-06-19 US 4696464 A 29-09-19 W0 8800919 A1 11-02-1988 AT 385747 B 10-05-19 DK 161188 A 24-03-19
US 3693486 A 26-09-1972 KEINE US 5913656 A 22-06-1999 CA 2275843 A1 21-12-20 EP 1061021 A1 20-12-20 EP 0189896 A2 06-08-1986 DE 3502896 A1 31-07-19 JP 62136452 A 19-06-19 US 4696464 A 29-09-19 WO 8800919 A1 11-02-1988 AT 385747 B 10-05-19 DK 161188 A 24-03-19
EP 1061021 A1 20-12-20 EP 0189896 A2 06-08-1986 DE 3502896 A1 31-07-19
US 4696464 A 29-09-19 WO 8800919 A1 11-02-1988 AT 385747 B 10-05-19 DK 161188 A 24-03-19
WO 8800919 A1 11-02-1988 AT 385747 B 10-05-19 DK 161188 A 24-03-19
EP 0280694 A1 07-09-19 FI 881332 A 21-03-19

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EPO FORM P0461

EP 2 275 373 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- EP 0155633 A2 [0005]
- EP 0214458 A2 [0006]

• WO 2008089565 A [0007]