(19)
(11) EP 2 277 290 B9

(12) CORRECTED EUROPEAN PATENT SPECIFICATION
Note: Bibliography reflects the latest situation

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Claims EN

(48) Corrigendum issued on:
19.11.2014 Bulletin 2014/47

(45) Mention of the grant of the patent:
13.08.2014 Bulletin 2014/33

(21) Application number: 09730176.6

(22) Date of filing: 09.03.2009
(51) International Patent Classification (IPC): 
H04L 12/26(2006.01)
H04L 12/701(2013.01)
H04L 12/707(2013.01)
H04L 12/46(2006.01)
H04L 12/42(2006.01)
H04L 12/24(2006.01)
H04L 12/703(2013.01)
(86) International application number:
PCT/US2009/036548
(87) International publication number:
WO 2009/126390 (15.10.2009 Gazette 2009/42)

(54)

Redundant ethernet automatic protection switching access to virtual private LAN services

Redundanter Ethernet-Automatische-Schutzumschaltungs-Zugang zu virtuellen privaten LAN-Diensten

Accès à commutation de protection automatique ethernet redondant à des services de réseau local privé virtuel


(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

(30) Priority: 11.04.2008 US 101603

(43) Date of publication of application:
26.01.2011 Bulletin 2011/04

(60) Divisional application:
12173669.8 / 2518954

(73) Proprietor: Extreme Networks, Inc.
Santa Clara, CA 95051 (US)

(72) Inventors:
  • STOKES, Olen, L.
    Cary NC 27519 (US)
  • SHAH, Sunil, P.
    San Jose CA 95125 (US)
  • LIM, Arnel
    San Jose CA 95148 (US)

(74) Representative: Regimbeau 
20, rue de Chazelles
75847 Paris Cedex 17
75847 Paris Cedex 17 (FR)


(56) References cited: : 
   
  • ALI SAJASSI; YETIK SERBEST; FRANK BROCKNERS; DINESH MOHAN: "VPLS Interoperability with CE Bridges; draft-sajassi-l2vpn-vpls-bridg e-interop-02.txt" IETF STANDARD-WORKING-DRAFT, INTERNET ENGINEERING TASK FORCE, IETF, CH, no. 2, 1 October 2004 (2004-10-01), pages 1-19, XP015043022 inet ISSN: 0000-0004
  • EXTREME NETWORKS, INC.: "Ethernet automatic protection switching (EAPS)" EXTREME NETWORKS, INC., 30 November 2006 (2006-11-30), pages 1-5, XP007905581 inet
  • IETF: "RFC 3619 - Extreme Network's Ethernet Automatic Protection Switching (EAPS) Version 1" IETF, [Online] October 2003 (2003-10), pages 1-7, XP002449412 inet Retrieved from the Internet: URL:http://www.faqs.org/rfcs/rfc3619.html> [retrieved on 2007-09-03]
  • EXTREME NETWORKS, INC.: "ExtremeWare Operating System, Version 7.7" EXTREME NETWORKS DATA SHEET, [Online] 2006, pages 1-5, XP002527386 Retrieved from the Internet: URL:http://www.extremenetworks.com/librari es/products/DSExWare_1044.pdf> [retrieved on 2009-05-11]
   
Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


Description

FIELD



[0001] Embodiments of the invention relate to computer networking, and more particularly to redundantly connecting a VPLS network with an EAPS network.

BACKGROUND



[0002] Computer networks are becoming increasingly important for businesses and communities. Cost efficiency, network capacity, scalability and flexibility are all important considerations in building and maintaining various networks. With a wide variety of services, protocols and technologies, it can be difficult to integrate and/or provide connectivity between different types of networks.

[0003] Virtual Private LAN Service (VPLS) is a way to provide Ethernet based multipoint to multipoint communication over IP/MPLS networks. VPLS allows geographically dispersed sites to share an Ethernet broadcast domain by connecting sites through pseudowires (PWs).

[0004] Ethernet Automatic Protection Switching (EAPS), offered by Extreme Networks of Santa Clara, CA, is a solution for fault-tolerant networks. EAPS provides for a loop-free operation and a sub-second ring recovery. EAPS version 2 (EAPSv2) is configured and enabled to avoid the potential of super loops in environments where multiple EAPS domains share a common link. EAPSv2 functions use the concept of a "controller" and a "partner" mechanism. Shared port status is verified using health protocol data units (PDUs) exchanged by controller and partner. When a shared-link goes down, the configured controller will open only one segment port for each of the protected VLANs, keeping all other segment ports in a blocking state.

[0005] The Internet Engineering Task Force (IETF) RFC 4762, entitled "Virtual Private LAN Service (VPLS) Using Label Distribution Protocol (LDP) Signaling" proposes the use of redundant pseudowires (PWs) to attach to a VPLS core network. However, this technique is applicable only where a single attachment node is necessary. The IETF draft entitled "VPLS Interoperability with CE Bridges" also discusses redundant access to VPLS core networks. However, this technique does not address ring-based access networks and it utilizes only a single active attachment to a VPLS network. Likewise, the IETF draft entitled "Pseudowire (PW) Redundancy" discusses redundant access to VPLS core networks, but fails to address ring-based access networks and only utilizes a single active attachment to a VPLS core network.

[0006] The internet Engineering Task Force (IETF) Standard-Working-Draft entitled "VPLS Interoperability with CE Bridges; draft-sajassi-12vpn-vpls-bridge-interop-02.txt" by Sajassi et al., illustrates a clear demarcation between the IEEE bridge module and IETF LAN emulation module. By doing so, it shows that the majority of interoperability issues with CE bridges can be delegated to the 802.1ad bridge module, thus removing the burden on the IETF LAN emulation module within a VPLS PE.

SUMMARY OF THE INVENTION



[0007] This invention is described by the independent claims 1, 10 and 11. Embodiments disclosed herein provide redundant connectivity between an Ethernet Automatic Protection Switching (EAPS) access network and a Virtual Private LAN Service (VPLS) network. A first VPLS node is provided to function as an EAPS controller node. A second VPLS node is provided to function as an EAPS partner node. The first and second VPLS nodes are linked by a pseudowire. This pseudowire is normally transmitted across an EAPS shared-link. Additional EAPS nodes are also provided. The additional EAPS nodes are linked to each other and one of the additional EAPS nodes is designated as a master node. Links are also established between the VPLS nodes and the EAPS nodes such that one or more EAPS rings are formed. Each EAPS ring includes the shared-link between the first and second VPLS nodes. The EAPS rings are monitored to detect link failures. When a failure of the shared-link between the first and second VPLS nodes is detected, all pseudowire links associated with the first VPLS node are disabled if any of the EAPS nodes has a path to both of the VPLS nodes. Otherwise, the existing pseudowire links associated with the first VPLS node are maintained.

BRIEF DESCRIPTION OF THE DRAWINGS



[0008] The following description includes discussion of figures having illustrations given by way of example of implementations of embodiments of the invention. The drawings should be understood by way of example, and not by way of limitation. As used herein, references to one or more "embodiments" are to be understood as describing a particular feature, structure, or characteristic included in at least one implementation of the invention. Thus, phrases such as "in one embodiment" or "in an alternate embodiment" appearing herein describe various embodiments and implementations of the invention, and do not necessarily all refer to the same embodiment. However, they are also not necessarily mutually exclusive.

Figure 1 is a block diagram illustrating a VPLS-EAPS configuration according to various embodiments.

Figure 2 is a block diagram illustrating a VPLS-EAPS configuration according to various embodiments.

Figure 3 is a block diagram illustrating a VPLS-EAPS configuration according to various embodiments.

Figure 4 is a block diagram illustrating a VPLS-EAPS configuration according to various embodiments.

Figure 5 is a block diagram illustrating a VPLS-EAPS configuration according to various embodiments.

Figure 6 is a flow diagram illustrating a process for redundant connectivity between a VPLS network and an EAPS network according to various embodiments.

Figure 7 is a block diagram illustrating a suitable computing environment for practicing various embodiments described herein.

Figure 8 is a block diagram illustrating a routing device according to various embodiments.


DETAILED DESCRIPTION



[0009] As provided herein, methods, apparatuses, and systems enable redundant connectivity between a Virtual Private LAN Service (VPLS) network and an Ethernet Automatic Protection Switching (EAPS) network. More particularly, multiple active attachments to a VPLS network are provided in various embodiments.

[0010] Figure 1 is a block diagram illustrating a VPLS-EAPS configuration according to various embodiments. As used herein, a VPLS-EAPS configuration involves multiple attachment points between a VPLS network and an EAPS network, the attachments normally active. As shown, VPLS core nodes 110, 112, 114 and 116 are linked via pseudowires. As used herein, a link refers to any line or channel over which data is transmitted. A pseudowire, as used herein, refers to a mechanism for emulating various networking or telecommunications services across packet-switched networks, such as those mechanisms that use Ethernet, Internet Protocol (IP), Label Switched Paths (LSPs), Multi-protocol Label Switching (MPLS) and/or the like. Emulated services can include T1 leased line, frame relay, Ethernet, Asynchronous Transfer Mode (ATM), time-division multiplexing (TDM), or Synchronous Optical Networking (SONET)/Synchronous Digital Hierarchy (SDH). As discussed in RFC 3985 entitled "Pseudo Wire Emulation Edge-to-Edge [PWE3] Architecture," a pseudowire delivers only the functionality necessary to emulate a wire with some required degree of fidelity for some specific service definition.

[0011] As shown in Fig. 1, VPLS core nodes 110 and 112 are attached to the EAPS access ring. Rather than having core node 110 or 112 function as the EAPS master node, distribution node 124 is designated as the master node. When a network failure is detected on the ring, the master node in an EAPS system receives control messages over the control VLAN, the control messages indicating the network failure. During normal operation, the master node blocks the protected data VLAN traffic from traversing its secondary port. During a network failure, the master node unblocks its secondary port and routes the protected data VLAN traffic through its secondary port. The secondary port is re-blocked once the failure has been fixed. In various embodiments, any node in the EAPS ring that is not a VPLS node can be designated as the EAPS master node. In various embodiments, the VPLS core nodes attached to the EAPS ring function as EAPS controller and partner nodes, respectively. In Fig. 1, core node 110 functions as the controller node while core node 112 functions as the partner node. The EAPS controller node (e.g., core node 110) includes a controller state machine, which keeps track of whether EAPS nodes on the ring have access to both attached VPLS nodes (e.g., core nodes 110 and 112).

[0012] In various embodiments, when a VPLS customer VLAN (or VMAN) is attached to an EAPS ring, as shown in Fig. 1, the EAPS ring segment between core nodes 110 and 112 is removed in favor of a pseudowire connection between core nodes 110 and 112. The term "shared-link," as used herein, refers to a special EAPS link that is typically shared among multiple EAPS rings. While a shared-link is often shared among multiple EAPS rings, a shared-link can also be maintained for a single EAPS ring. In addition to facilitating port management among multiple EAPS rings, functions and/or mechanisms associated with the shared-link (e.g., controller node state machine, etc.) may be used to assist in managing communication between EAPS and VPLS. The EAPS master node (e.g., node 124) does not necessarily have or receive any information regarding the connection change between core nodes 110 and 112. However, the EAPS functionality on core nodes 110 and 112 do have information regarding the connection change given that the connection change requires configuring an EAPS-protected VLAN with only one port on the ring. It should be noted that this configuration does not change the EAPS control VLAN - the EAPS ring is still complete and the EAPS master node (e.g., node 124) still blocks a port on the customer access VLAN when the ring is intact.

[0013] Figure 2 shows an example of a link failure, in this case between nodes 122 and 124. From a connectivity perspective, various embodiments of the VPLS-EAPS configuration appropriately handle access ring failures like the link failure shown in Fig. 2. When the EAPS master node (e.g., node 124) detects a topology change (e.g., due to a link failure notification from a node on the ring, a hello timeout, etc.), the master node unblocks its secondary port on the protected VLAN. The only difference in Fig. 2 (as compared to Fig. 1) is that the link failure and subsequent unblocking of the master node's secondary port causes node 124 to now connect to the VPLS network via core node 112 instead of via core node 110. Thus, connectivity is recovered.

[0014] The connectivity recovery scenario changes when the shared-link between core nodes 110 and 112 fails. As illustrated in Figure 3, when the shared-link fails, the EAPS master node (e.g., node 124) again unblocks its secondary port (as it does whenever there is a failure on the access ring). However, when this occurs, both VPLS core nodes (i.e., nodes 110 and 112) might receive a copy of any traffic that is not destined for a node on the EAPS access ring. For example, if the shared-link between core nodes 110 and 112 failed and distribution node 126 was trying to send a packet to VPLS core node 116, core nodes 110 and 112 might each receive a copy of the packet. This would result in duplicate packets being sent into the VPLS network. Additionally, given that the pseudowire between core nodes 110 and 112 could be reestablished using a different path (e.g., via the path from node 112 to node 116 to node 114 to node 110), this scenario could result in a traffic loop on the EAPS access ring as well as a storm into the VPLS network. To prevent this scenario from occurring, VPLS core node 110 (functioning as the EAPS controller node) takes the action of removing and/or disabling all pseudowires associated with core node 110 when the shared-link between core nodes 110 and 112 fails. The removal of pseudowires can be seen in Fig. 3. Once the pseudowires have been removed and/or disabled, all traffic traveling between the EAPS access network and the VPLS network passes through VPLS core node 112. When core node 110 (i.e., the controller node) detects that the shared-link between nodes 110 and 112 is repaired, the pseudowires are reestablished.

[0015] When core node 110 removes its pseudowires, core node 110 also signals its VPLS peers (e.g., VPLS core nodes 114, 116, and 112) to inform them that the pseudowires are no longer active. In some embodiments, this signaling is accomplished by completely withdrawing the pseudowires. In other embodiments, the signaling is accomplished by indicating a "standby" state for the pseudowires.

[0016] Figure 4 shows a link failure on both the shared-link (i.e., the link between nodes 110 and 112) and on the access ring (e.g., between nodes 122 and 124). In a dual failure scenario such as this, VPLS core nodes 110 and 112 do not both receive a copy of ring traffic, unlike the scenario where only the shared-link fails. For example, in Fig. 4, the only path to the VPLS network for distribution node 122 is through core node 110 in this dual failure scenario. Similarly, the only path to the VPLS network for distribution node 128 is through core node 112. Accordingly, in a dual failure scenario where one of the failed links is the VPLS core shared-link, core node 110 maintains its pseudowires rather than removing and/or disabling the pseudowires.

[0017] Figure 5 illustrates multiple parallel EAPS access rings attached to a VPLS core network. As shown, each of the EAPS rings is attached to both core node 210 and core node 212. Each of the EAPS rings shares the link (i.e., the shared-link) between node 210 and node 212. Functions and/or mechanisms associated with the shared-link manage and/or maintain EAPS topology information that can be propagated to the VPLS network. Here, as long as any of the parallel EAPS rings is complete, there exists a path to both core VPLS nodes - in this case, nodes 210 and 212. When the shared-link between nodes 210 and 212 is in a failed state (as shown), the EAPS master node on each ring unblocks its secondary port. For the two inner EAPS rings, illustrated in Fig. 5, this causes no problems because each of these rings has an additional link failure on the ring which prevents nodes in these rings from having a path to both VPLS core nodes (i.e., nodes 210 and 212). However, the outer ring has no other link failures. Thus, distribution nodes (e.g., 250, 252, 254 and 256) on this outer ring do have a path to both VPLS nodes 210 and 212. It should be noted that both VPLS nodes still perform L2 switching on all of the access rings. Therefore, all of the nodes on all three rings have a path to both VPLS nodes. As discussed above, a path from an EAPS ring to both core nodes on the VPLS network can cause an access ring loop and/or a VPLS storm. Thus, in embodiments having parallel EAPS rings attached to the VPLS core, the controller node (e.g., core node 210) must disable all pseudowires associated with the controller node if and when any of the parallel EAPS rings are complete or "up" (e.g., no link failures) and the shared-link is failed. If all parallel EAPS rings are in a failed state or "down" (e.g., at least one failed link on each ring), then the controller node (e.g., node 210) maintains all its existing pseudowires regardless of the state of the shared-link. The following table shows the recovery actions to be taken on the controller node in various embodiments:
Table 1
  Core Link State
Ring State Core Link Up Core Link Down
Any Parallel Ring Up PWs Active PWs Inactive
Any Parallel Ring Down PWs Active PWs Active


[0018] In various embodiments, changes in topology on either the access ring(s) or the VPLS network may cause changes to the path(s) used to reach customer devices. For example, in Fig. 2, the path that distribution node 124 would take to reach other parts of the VPLS network changes following the failure on the access ring of the link between nodes 122 and 124. Prior to failure of that link, node 124 reached the VPLS network via core node 110. Following the failure, node 124 accesses the VPLS network via core node 112.

[0019] When the EAPS master node (e.g., node 124 in Fig. 1, node 222 in Fig. 5, etc.) detects a topology change, it sends a "flush FDB" message to its other transit nodes (i.e., the other nodes on the ring). In some embodiments, the flush message causes the ring's MAC addresses to be relearned on each node in the ring. Given that the flush message is an EAPS message that is propagated to the other nodes on the ring, the flush message is not inherently propagated over the VPLS network. Also, the attachments at the remote VPLS nodes may not be utilizing EAPS. Using the above example, VPLS node 114 (Fig. 2) would expect to find node 124 via the pseudowire between VPLS node 114 and VPLS node 110. However, upon the occurrence of a link failure between nodes 122 and 124, any traffic sent from VPLS node 114 to node 124 via VPLS node 110 will not reach its destination given that VPLS node 114 is not aware of the topology change and is configured to send traffic on a path through the failed link. To overcome this problem, EAPS informs VPLS about any received EAPS "flush FDB" messages on both the controller and partner nodes (e.g., nodes 110 and 112). The controller and partner nodes can then propagate this information so that other VPLS nodes can flush their respective forwarding databases (e.g., MAC addresses, etc.). Given that MAC addresses, for example, are learned from a particular originating node (e.g., VPLS node 116 learns the MAC address for node 128 from VPLS node 112), both the controller and the partner node inform the other VPLS nodes of any topology changes.

[0020] Figure 6 is a flow diagram illustrating a process for redundant connectivity between a VPLS network and an EAPS network. Two VPLS nodes are provided 310 to function as an EAPS controller node and partner node, respectively. The two VPLS nodes are linked by a pseudowire across an EAPS shared-link. Additional EAPS nodes are also provided 320. The additional EAPS nodes are linked to each other and one of the additional EAPS nodes is designated as a master node. Links are also established between the VPLS nodes and the EAPS nodes such that one or more EAPS rings are formed 330. Each EAPS ring includes the shared-link between the first and second VPLS nodes. The EAPS rings are monitored 340 to detect link failures. When a failure of the pseudowire shared-link between the first and second VPLS nodes is detected 350, it is determined 360 whether any of the EAPS nodes has a path to both of the VPLS nodes. If yes, then all pseudowires associated with the controller node are disabled 370. If no, then the existing pseudowire links associated with the first VPLS node are maintained 380.

[0021] Figure 7 is a block diagram illustrating a suitable computing environment for practicing various embodiments described herein. Collectively, these components are intended to represent a broad category of hardware systems, including but not limited to general purpose computer systems and specialized network switches.

[0022] Computer system 700 includes processor 710, I/O devices 740, main memory 720 and flash memory 730 coupled to each other via a bus 780. Main memory 720, which can include one or more of system memory (RAM), and nonvolatile storage devices (e.g., magnetic or optical disks), stores instructions and data for use by processor 710. Additionally, the network interfaces 770, data storage 760, and switch fabric 750 are coupled to each other via a bus 780. Data storage 760 represents the routing database (e.g., forwarding database tables, etc.) described herein as well as other storage areas such as packet buffers, etc., used by the switch fabric 750 for forwarding network packets or messages.

[0023] The various components of computer system 700 may be rearranged in various embodiments, and some embodiments may not require nor include all of the above components. Furthermore, additional components may be included in system 700, such as additional processors (e.g., a digital signal processor), storage devices, memories, network/communication interfaces, etc.

[0024] In the illustrated embodiment of Fig. 7, methods and apparatuses for providing redundant connectivity between an EAPS network and a VPLS network according to the present invention as discussed above may be implemented as a series of software routines run by computer system 700 of Fig. 7. These software routines comprise a plurality or series of instructions to be executed by a processing system in a hardware system, such as processor 710. Initially, the series of instructions are stored on a data storage device 760 (e.g., in a route manager database), memory 720 or flash 730.

[0025] Figure 8 illustrates the various components of a routing device that may be used in various embodiments. Routing device 810 includes a VPLS control component 812, a pseudowire (PW) control component 814, an EAPS control component 816, and a Bridge control component 818. The VPLS control component 812 facilitates establishing a complete VPLS comprised of multiple PWs. The PW control function 814 establishes the individual PWs and signals PW state information to peers. The EAPS control function 816 monitors and controls EAPS operation. The bridge control function 818 monitors and controls normal L2 bridge operation. The EAPS control function 816 provides the VPLS control 812 and/or PW control 814 functions with information about the state of the EAPS shared-link and the EAPS ring connectivity. The VPLS forwarding logic component 820, the PW forwarding logic component 822, and the bridge forwarding component 824 combine to forward data packets between PWs and VPLS customers. These forwarding components are coupled via bus 826. Based on the logic of these components, traffic is routed on the routing device ports 828. Routing device 810 is an example of a routing device that could be used for VPLS core nodes 110 and/or 112 of Fig. 2, for example.

[0026] Various components described herein may be a means for performing the functions described herein. Each component described herein includes software, hardware, or a combination of these. The components can be implemented as software modules, hardware modules, special-purpose hardware (e.g., application specific hardware, application specific integrated circuits (ASICs), digital signal processors (DSPs), etc.), embedded controllers, hardwired circuitry, etc. Software content (e.g., data, instructions, configuration) may be provided via an article of manufacture including a computer readable medium, which provides content that represents instructions that can be executed. The content may result in a computer performing various functions/operations described herein. A computer readable medium includes any mechanism that provides (i.e., stores and/or transmits) information in a form accessible by a computing device (e.g., computer, PDA, electronic system, etc.), such as recordable/non-recordable media (e.g., read only memory (ROM), random access memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, etc.). The content may be directly executable ("object" or "executable" form), source code, or the like. A computer readable medium may also include a storage or database from which content can be downloaded. A computer readable medium may also include a device or product having content stored thereon at a time of sale or delivery. Thus, delivering a device with stored content, or offering content for download over a communication medium may be understood as providing an article of manufacture with such content described herein.

[0027] Besides what is described herein, various modifications may be made to the disclosed embodiments and implementations of the invention without departing from their scope. Therefore, the illustrations and examples herein should be construed in an illustrative, and not a restrictive sense. The scope of the invention should be measured solely by reference to the claims that follow.


Claims

1. A method for providing redundant access to a Virtual Private LAN Service, VPLS, network characterized by a method for providing redundant connectivity between an Ethernet Automatic Protection Switching, EAPS, access network and the VPLS network, the latter method comprising:

providing (310) a first VPLS node of a plurality of VPLS nodes (110, 112, 114, 116), to function as an EAPS controller node;

providing (310) a second VPLS node (112) of a plurality of VPLS nodes (110, 112, 114, 116), wherein the plurality of VPLS nodes (110, 112, 114, 116) including the first and second VLPS nodes (110, 112) are linked with each other by pseudowire links, PWs, and wherein the first and second VPLS nodes (110, 112) are linked with each other by an EAPS shared-link;

establishing (330) an EAPS ring coupling the first VPLS node (110), the second VPLS node (112), and a plurality of EAPS nodes (122, 124, 126, 128, 130);

detecting a network failure (350) of the EAPS shared-link between the first and second VPLS nodes (110, 114); and

disabling (370, 360), in response to detecting the failure, all pseudowire links, PWs, associated with the first VPLS node (110) when any of the plurality of EAPS nodes (122, 124, 126, 128, 130) has a path to both the first and second VPLS nodes (110, 112).


 
2. The method of claim 1 further comprising:

maintaining (380, 360), in response to detecting the failure, existing pseudowire links associated with the first VPLS node (110) when any of the plurality of EAPS nodes (122, 124, 126, 128, 130) lacks a path to both the first and second VPLS nodes (110, 112).


 
3. The method of claim 1, wherein the first and second VPLS nodes (110, 112) are normally active, and wherein the first VPLS node (110) comprises a controller state machine to track whether each of the plurality of EAPS nodes (122, 124, 126, 128, 130) has access to the first and the second VPLS nodes (110, 112).
 
4. The method of claim 1 further comprising:

monitoring (340) the EAPS ring; and

flushing forwarding database addresses on the plurality of VPLS nodes (110, 112, 114, 116) in response to detecting a network failure on the monitored EAPS ring.


 
5. The method of claim 1, wherein disabling all pseudowire links associated with the first VPLS node (110) further comprises communicating an indication of the disabled pseudowire links to VPLS nodes of the plurality of VPLS nodes (110, 112, 114, 116) coupled by the pseudowire links with the first VPLS node (110).
 
6. The method of claim 1, wherein the pseudowire link between the first and second VPLS nodes (110, 112) replaces part of a customer virtual local area network, VLAN.
 
7. The method of claim 1, wherein one of the pluralities of EAPS nodes (122, 124, 126, 128, 130) is designated as a master node (124), the master node (124) to receive a control message indicating a network failure in the EAPS ring.
 
8. The method of claim 7 further comprises:

blocking a secondary port of the master node (124) during normal operation; and

unblocking the secondary port of the master node (124) in response to detecting the network failure (350).


 
9. The method of claim 1 further comprising reestablishing pseudowire links between the VPLS nodes (110, 112) when the first VPLS node (110) detects that a shared-link between the VPLS nodes (110, 112) is repaired.
 
10. An article of manufacture comprising a computer-readable medium (760) having content stored thereon to provide instructions, that when executed, causes an electronic device (710) to perform any of one of claims 1 to 9.
 
11. A system for providing redundant access to a Virtual Private LAN Service, VPLS, network characterized by a system for providing redundant connectivity between an Ethernet Automatic Protection Switching, EAPS, access network and the VPLS network, the latter system comprising:

means for providing (310) a first VPLS node (810, 110) of a plurality of VPLS nodes (110, 112, 114, 116), to function as an EAPS controller node;

means for providing (310) a second VPLS node (810, 112) of a plurality of VPLS nodes (110, 112, 114, 116), wherein the plurality of VPLS nodes including the first and second VLPS nodes (110, 112) are linked via ports (828) with each other by pseudowire links, PWs, and wherein the first and second VPLS nodes (110, 112) are linked via ports (828) with each other by an EAPS shared-link;

means for establishing (330) an EAPS ring coupling the first VPLS node (810, 110), the second VPLS node (810, 110), and a plurality of EAPS nodes (122, 124, 126, 128, 130);

means for detecting a network failure (350, 816) of the EAPS shared-link between the first and second VPLS nodes (110, 114); and

means for disabling (370, 360, 822), in response to detecting the failure, all pseudowire links, PWs, associated with the first VPLS node (110) when any of the plurality of EAPS nodes (122, 124, 126, 128, 130) has a path to both the first and second VPLS nodes (110, 112).


 
12. The system of claim 11 further comprising:

means for maintaining (380, 360, 822), in response to detecting the failure, existing pseudowire links associated with the first VPLS node (110) when any of the plurality of EAPS nodes (122, 124, 126, 128, 130) lacks a path to both the first and second VPLS nodes (110, 112).


 
13. The system of claim 11 further comprising means for monitoring (340, 816) the EAPS ring, wherein the first and second routing devices (110, 112) are normally active.
 
14. The system of claim 11, wherein each VPLS node of the plurality of VPLS nodes (110, 112, 114, 116) includes a forwarding logic component (820, 822, 824) to forward data packets to customers of VPLS.
 
15. The system of claim 11, wherein each VPLS node of the plurality of VPLS nodes (110, 112, 114, 116) includes a pseudowire control logic (814) to indicate a state of the pseudowire links to the VPLS nodes of the plurality of VPLS nodes 110, 112, 114, 116), wherein the plurality of VPLS nodes 110, 112, 114, 116) are coupled to the pseudowire links via the ports (828).
 


Ansprüche

1. Verfahren zum Bereitstellen eines redundanten Zugriffs auf ein Virtual Private LAN Service, VPLS, - Netz, gekennzeichnet durch ein Verfahren zum Bereitstellen einer redundanten Konnektivität zwischen einem Ethernet Automatic Protection Switching, EAPS, - Zugangsnetz und dem VPLS-Netz, wobei das letztgenannte Verfahren umfasst:

Bereitstellen (310) eines ersten VPLS-Knoten aus einer Mehrzahl von VPLS-Knoten (110, 112, 114, 116), der als EAPS-Steuerknoten fungiert;

Bereitstellen (310) eines zweiten VPLS-Knoten (112) aus einer Mehrzahl von VPLS-Knoten (110, 112, 114, 116), wobei die mehreren VPLS-Knoten (110, 112, 114, 116), einschließlich der ersten und zweiten VPLS-Knoten (110, 112) über Pseudowire-Links, PWs, miteinander verbunden sind, und wobei die ersten und die zweiten VPLS-Knoten (110,112) miteinander verbunden sind durch einen gemeinsamen EAPS-Link;

Einrichten (330) eines EAPS-Ringes, der den ersten VPLS-Knoten (110), den zweiten VPLS-Knoten (112) und mehrere EAPS-Knoten (122, 124, 126, 128, 130) miteinander verbindet,

Erfassen eines Netzausfalls (350) des gemeinsamen EAPS-Links zwischen den ersten und zweiten VPLS-Knoten (110, 114); und

Außerkraftsetzen (370, 360) sämtlicher Pseudowire-Links, PWs, die mit dem ersten VPLS-Knoten (110) assoziiert sind, als Antwort auf die Erfassung des Ausfalls, wenn irgendwelche von den mehreren EAPS-Knoten (122, 124, 126, 128, 130) einen Pfad zu sowohl dem ersten als auch dem zweiten VPLS-Knoten (110, 112) aufweisen.


 
2. Verfahren nach Anspruch 1, ferner umfassend:

Aufrechterhalten (380, 360) von bestehenden Pseudowire-Links, die mit dem ersten VPLS-Knoten (110) assoziiert sind, als Antwort auf die Erfassung des Ausfalls, wenn irgendwelche von den mehreren EAPS-Knoten (122, 124, 126, 128, 130) keinen Pfad zu sowohl dem ersten als auch dem zweiten VPLS-Knoten (110, 112) aufweisen.


 
3. Verfahren nach Anspruch 1, wobei die ersten und zweiten VPLS-Knoten (110, 112) normalerweise aktiv sind, und wobei der erste VPLS-Knoten (110) eine Steuerungszustandsmaschine umfasst, um nachzuverfolgen, ob irgendwelche von den mehreren EAPS-Knoten (122, 124, 126, 128, 130) Zugriff auf die ersten und zweiten VPLS-Knoten (110, 112) haben.
 
4. Verfahren nach Anspruch 1, ferner umfassend:

Überwachen (340) des EAPS-Ringes; und

Übergehen von Weiterleitungs-Datenbankadressen an den mehreren VPLS-Knoten (110, 112, 114, 116) als Antwort auf einen Netzausfall auf dem überwachten EAPS-Ring.


 
5. Verfahren nach Anspruch 1, wobei die Außerkraftsetzung sämtlicher Pseudowire-Links, die mit dem ersten VPLS-Knoten (110) assoziiert sind, ferner die Übermittlung eines Hinweises auf die außer Kraft gesetzten Pseudowire-Links an VPLS-Knoten von den mehreren VPLS-Knoten (110, 112, 114, 116) beinhaltet, die über die Pseudowire-Links mit dem ersten VPLS-Knoten (110) verbunden sind.
 
6. Verfahren nach Anspruch 1, wobei der Pseudowire-Link zwischen den ersten und zweiten VPLS-Knoten (110, 112) einen Teil eines Virtual Local Area Network, VLAN, eines Benutzers ersetzt.
 
7. Verfahren nach Anspruch 1, wobei einer von den mehreren EAPS-Knoten (122, 124, 126, 128, 130) als Master-Knoten (124) bestimmt wird, wobei der Master-Knoten (124) eine Steuernachricht empfängt, die einen Netzausfalls im EAPS-Ring anzeigt.
 
8. Verfahren nach Anspruch 7, ferner umfassend:

Blockieren eines sekundären Ports des Master-Knotens (124) während eines normalen Betriebs; und

Freigeben des sekundären Ports des Mater-Knotens (124) als Antwort auf die Erfassung eines Netzausfalls (350).


 
9. Verfahren nach Anspruch 1, ferner das Neueinrichten von Pseudowire-Links zwischen den VPLS-Knoten (110, 112) umfassend, wenn der erste VPLS-Knoten (110) erfasst, dass ein gemeinsamer Link zwischen den VPLS-Knoten (110, 112) repariert worden ist.
 
10. Erzeugnis, ein computerlesbares Medium (760) mit einem darauf gespeicherten Inhalt umfassend, um Befehle auszugeben, die, wenn sie ausgeführt werden, bewirken, dass eine elektronische Vorrichtung (710) verfährt wie in einem der Ansprüche 1 bis 9 beansprucht.
 
11. System zum Bereitstellen eines redundanten Zugriffs auf ein Virtual Private LAN Service, VPLS, - Netz, gekennzeichnet durch ein System zum Bereitstellen einer redundanten Konnektivität zwischen einem Ethernet Automatic Protection Switching, EAPS, -Zugangsnetz und dem VPLS-Netz, wobei das letztgenannte System umfasst:

eine Einrichtung zum Bereitstellen (310) eines ersten VPLS-Knotens (810, 110) aus einer Mehrzahl von VPLS-Knoten (110, 112, 114, 116), der als EAPS-Steuerknoten fungiert;

eine Einrichtung zum Bereitstellen (310) eines zweiten VPLS-Knotens (810, 112) aus einer Mehrzahl von VPLS-Knoten (110, 112, 114, 116), wobei die mehreren VPLS-Knoten (110, 112, 114, 116), einschließlich der ersten und zweiten VPLS-Knoten (110, 112) über Ports (828) durch Pseudowire-Links, PWs, miteinander verbunden sind, und wobei die ersten und zweiten VPLS-Knoten (110, 112) über Ports (828) durch einen gemeinsamen EAPS-Link miteinander verbunden sind;

eine Einrichtung zum Einrichten (330) eines EAPS-Ringes, der den ersten VPLS-Knoten (810, 110), den zweiten VPLS-Knoten (810, 110) und mehrere EAPS-Knoten (122, 124, 126, 128, 130) miteinander verbindet,

eine Einrichtung zum Erfassen eines Netzausfalls (350, 816) des gemeinsamen EAPS-Links zwischen den ersten und zweiten VPLS-Knoten (110, 114); und

eine Einrichtung zum Außerkraftsetzen (370, 360, 822) sämtlicher Pseudowire-Links, PWs, die mit dem ersten VPLS-Knoten (110) assoziiert sind, als Antwort auf die Erfassung des Ausfalls, wenn irgendwelche von den mehreren EAPS-Knoten (122, 124, 126, 128, 130) einen Pfad zu sowohl dem ersten als auch dem zweiten VPLS-Knoten (110, 112) aufweisen.


 
12. System nach Anspruch 11, ferner umfassend:

eine Einrichtung zum Aufrechterhalten (380, 360, 822) von bestehenden Pseudowire-Links, die mit dem ersten VPLS-Knoten (110) assoziiert sind, als Antwort auf die Erfassung des Ausfalls, wenn irgendwelche von den mehreren EAPS-Knoten (122, 124, 126, 128, 130) keinen Pfad zu sowohl dem ersten als auch dem zweiten VPLS-Knoten (110, 112) aufweisen.


 
13. System nach Anspruch 11, ferner eine Einrichtung zum Überwachen (340, 816) des EAPS-Ringes umfassend, wobei die ersten und zweiten Routing-Vorrichtungen (110, 112) normalerweise aktiv sind.
 
14. System nach Anspruch 11, wobei jeder VPLS-Knoten von der Mehrzahl von VPLS-Knoten (110, 112, 114, 116) eine weiterleitende logische Komponente (820, 822, 824) aufweist, um Datenpakete an Kunden des VPLS weiterzuleiten.
 
15. System nach Anspruch 11, wobei jeder VPLS-Knoten von den mehreren VPLS-Knoten (110, 112, 114, 116) eine Pseudowire-Steuerlogik (814) aufweist, um einen Zustand der Pseudowire-Links zu den VPLS-Knoten von den mehreren VPLS-Knoten (110, 112, 114, 116) anzuzeigen, wobei die Mehrzahl von VPLS-Knoten (110, 112, 114, 116) über die Ports (828) mit den Pseudowire-Links verbunden sind.
 


Revendications

1. Méthode pour fournir un accès redondant à un réseau de services de réseau local privé virtuel, VPLS, caractérisée par une méthode pour fournir une connectivité redondante entre un réseau d'accès à commutation de protection automatique Ethernet, EAPS, et le réseau VPLS, cette méthode comprenant :

la fourniture (310) d'un premier noeud VPLS d'une pluralité de noeuds VPLS (110, 112, 114, 116), pour fonctionner comme un noeud de contrôleur EAPS ;

la fourniture (310) d'un deuxième noeud VPLS (112) d'une pluralité de noeuds VPLS (110, 112, 114, 116), dans laquelle la pluralité de noeuds VPLS (110, 112, 114, 116) comprenant les premier et deuxième noeuds VPLS (110, 112) sont reliés entre eux par des liaisons de pseudo-fil, PW, et dans laquelle les premier et deuxième noeuds VPLS (110, 112) sont reliés entre eux par une liaison partagée EAPS ;

l'établissement (330) d'un anneau EAPS couplant le premier noeud VPLS (110), le deuxième noeud VPLS (112) et une pluralité de noeuds EAPS (122, 124, 126, 128, 130) ;

la détection d'une défaillance de réseau (350) de la liaison partagée EAPS entre les premier et deuxième noeuds VPLS (110, 114) ; et

la désactivation (370, 360), en réponse à la détection de la défaillance, de toutes les liaisons de pseudo-fil, PW, associées au premier noeud VPLS (110) quand l'un quelconque de la pluralité de noeuds EAPS (122, 124, 126, 128, 130) a un chemin à la fois vers les premier et deuxième noeuds VPLS (110, 112).


 
2. Méthode selon la revendication 1, comprenant en outre :

le maintien (380, 360), en réponse à la détection de la défaillance, de liaisons de pseudo-fil existantes associées au premier noeud VPLS (110) quand l'un quelconque de la pluralité de noeuds EAPS (122, 124, 126, 128, 130) n'a pas un chemin à la fois vers les premier et deuxième noeuds VPLS (110, 112).


 
3. Méthode selon la revendication 1, dans laquelle les premier et deuxième noeuds VPLS (110, 112) sont normalement actifs et dans laquelle le premier noeud VPLS (110) comprend une machine d'état de contrôleur pour vérifier si chacun de la pluralité de noeuds EAPS (122, 124, 126, 128, 130) a accès aux premier et deuxième noeuds VPLS (110, 112).
 
4. Méthode selon la revendication 1, comprenant en outre :

la surveillance (340) de l'anneau EAPS ; et

l'évacuation d'adresses de base de données de redirection sur la pluralité de noeuds VPLS (110, 112, 114, 116) en réponse à la détection d'une défaillance de réseau sur l'anneau EAPS surveillé.


 
5. Méthode selon la revendication 1, dans laquelle la désactivation de toutes les liaisons de pseudo-fil associées au premier noeud VPLS (110) comprend en outre la communication d'une indication des liaisons de pseudo-fil désactivées aux noeuds VPLS de la pluralité de noeuds VPLS (110, 112, 114, 116) couplés par les liaisons de pseudo-fil avec le premier noeud VPLS (110).
 
6. Méthode selon la revendication 1, dans laquelle la liaison de pseudo-fil entre les premier et deuxième noeuds VPLS (110, 112) remplace une partie d'un réseau local virtuel, VLAN, de client.
 
7. Méthode selon la revendication 1, dans laquelle un parmi les pluralités de noeuds EAPS (122, 124, 126, 128, 130) est désigné comme un noeud maître (124), le noeud maître (124) étant destiné à recevoir un message de commande indiquant une défaillance de réseau dans l'anneau EAPS.
 
8. Méthode selon la revendication 1, comprenant en outre :

le blocage d'un port secondaire du noeud maître (124) durant le fonctionnement normal ; et

le déblocage du port secondaire du noeud maître (124) en réponse à la détection de la défaillance de réseau (350).


 
9. Méthode selon la revendication 1, comprenant en outre le rétablissement de liaisons de pseudo-fil entre les noeuds VPLS (110, 112) quand le premier noeud VPLS (110) détecte qu'une liaison partagée entre les noeuds VPLS (110, 112) est réparée.
 
10. Article manufacturé comprenant un support lisible par ordinateur (760) ayant un contenu stocké sur celui-ci pour fournir des instructions qui, quand elles sont exécutées, font réaliser à un dispositif électronique (710) l'une quelconque des revendications 1 à 9.
 
11. Système pour fournir un accès redondant à un réseau de services de réseau local privé virtuel, VPLS, caractérisé par un système pour fournir une connectivité redondante entre un réseau d'accès à commutation de protection automatique Ethernet, EAPS, et le réseau VPLS, ce système comprenant :

des moyens pour fournir (310) un premier noeud VPLS (810, 110) d'une pluralité de noeuds VPLS (110, 112, 114, 116), pour fonctionner comme un noeud de contrôleur EAPS ;

des moyens pour fournir (310) un deuxième noeud VPLS (810, 112) d'une pluralité de noeuds VPLS (110, 112, 114, 116), dans lequel la pluralité de noeuds VPLS comprenant les premier et deuxième noeuds VPLS (110, 112) sont reliés via des ports (828) entre eux par des liaisons de pseudo-fil, PW, et dans lequel les premier et deuxième noeuds VPLS (110, 112) sont reliés via des ports (828) entre eux par une liaison partagée EAPS ;

des moyens pour établir (330) un anneau EAPS couplant le premier noeud VPLS (810, 110), le deuxième noeud VPLS (810, 110) et une pluralité de noeuds EAPS (122, 124, 126, 128, 130) ;

des moyens pour détecter une défaillance de réseau (350, 816) de la liaison partagée EAPS entre les premier et deuxième noeuds VPLS (110, 114) ; et

des moyens pour désactiver (370, 360, 822), en réponse à la détection de la défaillance, toutes les liaisons de pseudo-fil, PW, associées au premier noeud VPLS (110) quand l'un quelconque de la pluralité de noeuds EAPS (122, 124, 126, 128, 130) a un chemin à la fois vers les premier et deuxième noeuds VPLS (110, 112).


 
12. Système selon la revendication 11, comprenant en outre :

des moyens pour maintenir (380, 360, 822), en réponse à la détection de la défaillance, des liaisons de pseudo-fil existantes associées au premier noeud VPLS (110) quand l'un quelconque de la pluralité de noeuds EAPS (122, 124, 126, 128, 130) n'a pas un chemin à la fois vers les premier et deuxième noeuds VPLS (110, 112).


 
13. Système selon la revendication 11, comprenant en outre des moyens pour surveiller (340, 816) l'anneau EAPS, dans lequel les premier et deuxième dispositifs de routage (110, 112) sont normalement actifs.
 
14. Système selon la revendication 11, dans lequel chaque noeud VPLS de la pluralité de noeuds VPLS (110, 112, 114, 116) comprend un composant de logique de redirection (820, 822, 824) pour transférer des paquets de données à des clients de VPLS.
 
15. Système selon la revendication 11, dans lequel chaque noeud VPLS de la pluralité de noeuds VPLS (110, 112, 114, 116) comprend une logique de commande de pseudo-fil (814) pour indiquer un état des liaisons de pseudo-fil aux noeuds VPLS de la pluralité de noeuds VPLS (110, 112, 114, 116), dans lequel la pluralité de noeuds VPLS (110, 112, 114, 116) est couplée aux liaisons de pseudo-fil via les ports (828).
 




Drawing





























Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Non-patent literature cited in the description