BACKGROUND
1. Field
[0001] Example embodiments relate to substrate structures and methods of manufacturing the
same, and particularly, to substrate structures including nitride semiconductor thin
films grown with a reduced dislocation density, and in which cracks are reduced and/or
prevented, and methods of manufacturing the substrate structures.
2. Description of the Related Art
[0002] Light emitting diodes (LEDs) may be divided into GaN-based LEDs and white LEDs that
are manufactured based on phosphors. The GaN-based LEDs are predominantly manufactured
on 2-inch sapphire substrates. A method of manufacturing GaN-based LEDs on 4-inch
substrates is still at an initial stage. In contrast, most semiconductor based devices
may be manufactured on silicon wafers of 12 inches (300mm) or greater in high volume
production.
[0003] In order to increase LED wafer yield and to reduce LED manufacturing costs, large
diameter substrates may be required. However, the use of larger diameter substrates
for LED manufacture is gated by material compatibility issues. For example, when semiconductor
layers are grown on large diameter sapphire substrates, the substrates may bend at
high temperature due to the low thermal conductivity of sapphire. Thus it is difficult
to maintain uniform thin film characteristics.
[0004] In order to reduce or eliminate substrate bending, a method of epitaxially growing
a GaN LED on a silicon substrate has been suggested. Silicon substrates have higher
thermal conductivity than sapphire substrates. Thus, the degree of bending of a silicon
substrate which is exposed to a high GaN thin film growth temperature may be reduced
and an 8-inch substrate having uniform thin film characteristics may be observed.
Thus, if a high quality LED thin film may be grown in a GaN LED-on-silicon structure,
the limitations of the sapphire substrate may be overcome and manufacturing costs
may be reduced.
[0005] However, the use of silicon substrates poses different issues. Due to large lattice
mismatch and inconformity of thermal expansion coefficients, LED semiconductor thin
films grown on silicon may have high dislocation densities and cracks. In order to
use current silicon substrates as LED-growing substrates, a solution to these issues
may be required.
SUMMARY
[0006] Example embodiments may provide substrate structures supporting nitride semiconductor
thin films (e.g., a GaN thin film) in which a threading dislocation density may be
reduced and cracks may be reduced and/or prevented. Example embodiments may provide
methods of manufacturing the substrate structures.
[0007] According to example embodiments, a substrate structure includes: a substrate; and
a buffer layer formed on the substrate in a predetermined pattern, wherein the buffer
layer is supported by a substrate protrusion that is formed by etching a surface of
the substrate, and a lower surface of the buffer layer not contacting the substrate
protrusion is exposed to the air.
[0008] In an aspect, the invention relates to a substrate structure according to claim 1.
[0009] The substrate structure may further include a plurality of buffer layers identical
to the buffer layer, and the substrate structure may further include a nitride semiconductor
layer that is formed on the plurality of buffer layers by faster lateral growth than
vertical growth. The substrate structure may further include a nitride semiconductor
layer formed on the buffer layer to correspond to the pattern of the buffer layers.
The buffer layer may have a polygonal shape such as a triangle or a square, an oval
shape, or a straight plate shape. The substrate may include Si, GaN, sapphire, SiC,
LiGaO
2, ZrB
2, ZnO or (Mn, Zn)FeO
4.
[0010] The buffer layer may have a single layer structure formed of one selected from the
group consisting of AIN, SiC, Al
2O
3, AlGaN, AllnGaN, AllnBGaN, AlBGaN, GaN, and XY, or a multi-layer structure comprising
a combination of these, wherein X is Ti, Cr, Zr, Hf, Nb or Ta, and Y is nitrogen (N)
or boron (B, B
2). A thickness of the buffer layer may be from about 5 nm to about 5 µm. A width L
of a chip comprising the substrate structure may be in a range of 1 µm ≤ L ≤ 1.5 mm,
and a width m of a portion where the substrate and the buffer layer may be separated
is in a range of 0.01 L ≤ m ≤ 0.49L, and a width of the pattern is in a range from
about 0.02L to about 0.98L. The substrate structure may further include a plurality
of the buffer layers, wherein a width n between the plurality of the buffer layers
is in a range of 10 nm ≤ n ≤ 10 µm.
[0011] According to other example embodiments, a method of forming a substrate structure
includes: forming a buffer layer on a substrate; patterning the buffer layer to expose
a surface of the substrate; forming holes by etching the exposed surface of the substrate
between the buffer layers; forming substrate protrusions by etching a portion of the
substrate under the buffer layer so as to expose a lower portion of the buffer layer
by performing an etching process to the exposed surface of the substrate through the
holes; and forming a semiconductor layer on the buffer layer.
[0012] According to other example embodiments, a method of manufacturing a substrate structure
includes: forming a buffer layer on a substrate; etching a pattern into the buffer
layer; etching the substrate through the patterned buffer layer to form at least one
substrate protrusion, the substrate protrusion separating a part of the patterned
buffer layer from a part of the substrate; and forming a semiconductor layer on the
buffer layer.
[0013] A width of a portion where the substrate and the buffer layer contact each other
may be a smaller than a width of the buffer layer. A plurality of the buffer layers
may be formed by the patterning, and the semiconductor layer may be formed as a single
layer on the plurality of buffer layers. The semiconductor layer may be formed as
a single layer on the plurality of buffer layers by an epitaxial lateral over growth
(ELOG) process. The semiconductor layer may be respectively formed on the buffer layers
by horizontal growth. The method may further include: oxidizing or nitriding a surface
of the substrate or forming an AIN layer on the surface of the substrate after etching
the substrate.
[0014] According to other example embodiments, an electronic device includes: a substrate
including a plurality of protrusions; and a buffer layer that is formed on the plurality
of protrusions and has a greater width than a width of the plurality of protrusions.
The electronic device may further include a semiconductor layer formed on the buffer
layer.
[0015] According to other example embodiments, an electronic device includes: a substrate
including a plurality of protrusions; and a buffer layer on the plurality of protrusions,
a width of the buffer layer greater than a combined width of the plurality of protrusions.
[0016] A substrate structure may thus manufactured by forming a protrusion area of a substrate
under a buffer layer, and forming a semiconductor layer on the buffer layer, thereby
separating the substrate from the buffer layer except in an area where the protrusion
is formed. The semiconductor layer on the buffer layer not contacting the substrate
may have freestanding characteristics, and dislocation or cracks may be reduced and/or
prevented.
BRIEF DESCRIPTION OF THE DRAWINGS
[0017] Example embodiments will be more clearly understood from the following brief description
taken in conjunction with the accompanying drawings. FIGS. 1-6D represent non-limiting,
example embodiments as described herein.
FIG. 1 is a schematic view illustrating a light emitting diode (LED) substrate structure
according to example embodiments;
FIGS. 2A is a schematic view illustrating a LED substrate structure according to example
embodiments;
FIG. 2B is a plan view of the substrate structure of FIG. 2A;
FIG. 2C is a schematic view illustrating an LED device including the substrate structure
of FIG. 2A;
FIG. 3A is a schematic view illustrating a LED substrate structure according to example
embodiments;
FIG. 3B is a plan view illustrating the substrate structure of FIG. 3A;
FIG. 3C is a schematic view illustrating an LED device including the substrate structure
of FIG. 3A;
FIGS. 4A-4E illustrate methods of manufacturing the LED substrate structure of FIG.
2A according to example embodiments;
FIGS. 5A-5E illustrate methods of manufacturing the LED substrate structure of FIG.
3A; and
FIGS. 6A-6D are scanning electron microscope (SEM) images of substrate structures
according to example embodiments.
[0018] It should be noted that these figures are intended to illustrate the general characteristics
of methods, structure and/or materials utilized in certain example embodiments and
to supplement the written description provided below. These drawings are not, however,
to scale and may not precisely reflect the precise structural or performance characteristics
of any given embodiment, and should not be interpreted as defining or limiting the
range of values or properties encompassed by example embodiments. For example, the
relative thicknesses and positioning of molecules, layers, regions and/or structural
elements may be reduced or exaggerated for clarity. The use of similar or identical
reference numbers in the various drawings is intended to indicate the presence of
a similar or identical element or feature.
DETAILED DESCRIPTION
[0019] Example embodiments will now be described more fully with reference to the accompanying
drawings, in which example embodiments are shown. Example embodiments may, however,
be embodied in many different forms and should not be construed as being limited to
the embodiments set forth herein; rather, these embodiments are provided so that this
disclosure will be thorough and complete, and will fully convey the concept of example
embodiments to those of ordinary skill in the art. In the drawings, the thicknesses
of layers and regions are exaggerated for clarity. Like reference numerals in the
drawings denote like elements, and thus their description will be omitted.
[0020] It will be understood that when an element is referred to as being "connected" or
"coupled" to another element, it can be directly connected or coupled to the other
element or intervening elements may be present. In contrast, when an element is referred
to as being "directly connected" or "directly coupled" to another element, there are
no intervening elements present. Like numbers indicate like elements throughout. As
used herein the term "and/or" includes any and all combinations of one or more of
the associated listed items. Other words used to describe the relationship between
elements or layers should be interpreted in a like fashion (e.g., "between" versus
"directly between," "adjacent" versus "directly adjacent," "on" versus "directly on").
[0021] It will be understood that, although the terms "first", "second", etc. may be used
herein to describe various elements, components, regions, layers and/or sections,
these elements, components, regions, layers and/or sections should not be limited
by these terms. These terms are only used to distinguish one element, component, region,
layer or section from another element, component, region, layer or section. Thus,
a first element, component, region, layer or section discussed below could be termed
a second element, component, region, layer or section without departing from the teachings
of example embodiments.
[0022] Spatially relative terms, such as "beneath," "below," "lower," "above," "upper" and
the like, may be used herein for ease of description to describe one element or feature's
relationship to another element(s) or feature(s) as illustrated in the figures. It
will be understood that the spatially relative terms are intended to encompass different
orientations of the device in use or operation in addition to the orientation depicted
in the figures. For example, if the device in the figures is turned over, elements
described as "below" or "beneath" other elements or features would then be oriented
"above" the other elements or features. Thus, the exemplary term "below" can encompass
both an orientation of above and below. The device may be otherwise oriented (rotated
90 degrees or at other orientations) and the spatially relative descriptors used herein
interpreted accordingly.
[0023] The terminology used herein is for the purpose of describing particular embodiments
only and is not intended to be limiting of example embodiments. As used herein, the
singular forms "a," "an" and "the" are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be further understood that
the terms "comprises", "comprising", "includes" and/or "including," if used herein,
specify the presence of stated features, integers, steps, operations, elements and/or
components, but do not preclude the presence or addition of one or more other features,
integers, steps, operations, elements, components and/or groups thereof.
[0024] Example embodiments are described herein with reference to cross-sectional illustrations
that are schematic illustrations of idealized embodiments (and intermediate structures)
of example embodiments. As such, variations from the shapes of the illustrations as
a result, for example, of manufacturing techniques and/or tolerances, are to be expected.
Thus, example embodiments should not be construed as limited to the particular shapes
of regions illustrated herein but are to include deviations in shapes that result,
for example, from manufacturing. For example, an implanted region illustrated as a
rectangle may have rounded or curved features and/or a gradient of implant concentration
at its edges rather than a binary change from implanted to non-implanted region. Likewise,
a buried region formed by implantation may result in some implantation in the region
between the buried region and the surface through which the implantation takes place.
Thus, the regions illustrated in the figures are schematic in nature and their shapes
are not intended to illustrate the actual shape of a region of a device and are not
intended to limit the scope of example embodiments.
[0025] Unless otherwise defined, all terms (including technical and scientific terms) used
herein have the same meaning as commonly understood by one of ordinary skill in the
art to which example embodiments belong. It will be further understood that terms,
such as those defined in commonly-used dictionaries, should be interpreted as having
a meaning that is consistent with their meaning in the context of the relevant art
and will not be interpreted in an idealized or overly formal sense unless expressly
so defined herein.
[0026] FIG. 1 is a schematic view illustrating a substrate structure according to example
embodiments. Referring to FIG. 1, a substrate structure may include a substrate 10.
The substrate 10 may include a substrate protrusion 11. A buffer layer 12 may be on
the substrate 10. The buffer layer 12 may be patterned and supported by the substrate
protrusion 11. A semiconductor layer 13 including, for example, a nitride semiconductor
layer (e.g., a GaN-based material) may be on the buffer layer 12.
[0027] A surface of the substrate 10, except for part of a surface of the substrate protrusion
11, may be exposed (e.g., exposed to air). A lower surface of the buffer layer 12
not contacting the substrate protrusion 11 may be exposed. The substrate protrusion
11 may have a narrower width than the buffer layer 12 and may include curved side
portions. A center of the substrate protrusion 11 may be narrower than ends of the
substrate protrusion 11. For example, the width of the substrate protrusion 11 may
increase in upward and downward directions from the center.
[0028] The buffer layer 12 may only contact the substrate 10 via the substrate protrusion
11. The semiconductor layer 13 on the buffer layer 12 may not contact the substrate
10 and may have freestanding characteristics. Strain generated due to lattice constant
and thermal expansion coefficient mismatch between the substrate 10 and the semiconductor
layer 13 may be reduced. As a surface area of the substrate 10 in contact with the
buffer layer 12 may be limited to a surface area of the substrate protrusion 11, cracks,
which may be caused due to a difference in the thermal expansion coefficients of an
LED device and the semiconductor layer 13 generated when cooling the LED device from
a high temperature to room temperature, may be prevented. The substrate structure
illustrated in FIG. 1 may be used in, for example, an array structure as illustrated
in FIG. 2A or FIG. 3A.
[0029] The substrate 10 may be, for example, a Si substrate, and may include Si(111), Si(110)
and/or Si(100). The substrate 10 may be, for example, GaN, sapphire, SiC, LiGaO
2, ZrB
2, ZnO and/or (Mn,Zn)FeO
4(111). The buffer layer 12 may be a single layer structure and/or a multi-layer structure
including AIN, SiC, Al
2O
3, AlGaN, AllnGaN, AllnBGaN, AlBGaN, GaN, and/or XY, wherein X may be Ti, Cr, Zr, Hf,
Nb and/or Ta, and Y may be nitrogen (N) and/or boron (B, B
2). A thickness t of the buffer layer 12 may be in the range of, for example, about
5 nm ≤ t ≤ 5 µm. A substrate structure according to example embodiments may be used
in various electric devices such as an electric power device (e.g., a GaN-based light
emitting device or a high electron mobility transistor (HEMP) device).
[0030] FIGS. 2A is a schematic view illustrating a substrate structure array according to
example embodiments. The substrate structure illustrated in FIG. 1 may be a single
unit supporting a buffer layer and/or may be one of a plurality of substrate structures
supporting one or more buffer layers. The substrate structure illustrated in FIG.
1 may be in the form of an array including a plurality of substrate structures and
buffer layers in a chip without limitation. Referring to FIG. 2A, a substrate 20 may
include a plurality of substrate protrusions 21. A plurality of buffer layers 22 may
be on the substrate protrusions 21. A semiconductor layer 23 (e.g., a GaN-based material
layer) may be on the buffer layer 22. The semiconductor layer 23 may be a nitride
semiconductor layer. The semiconductor layer 23 may be, for example, a single layer
structure on the plurality of buffer layers 22.
[0031] FIG. 2B is a plan view of the substrate structure of FIG. 2A. A width n between the
buffer layers 22 may be, for example, about 10 nm or greater. The buffer layers 22
in FIG. 2B may have a square form but are not limited thereto, and may have an array
structure including different shapes such as a polygonal shape (e.g., a triangle and/or
a square), an oval shape (e.g., a circle), and/or a straight plate shape.
[0032] FIG. 2C is a schematic view illustrating an LED device including the substrate structure
of FIG. 2A. Referring to FIGS. 2A and 2C, an LED structure may be on a semiconductor
layer 23. A first electrode 24a may be on a portion of the semiconductor layer 23.
A first clad layer 25, a first light waveguide layer 26, an active layer 27, a second
light waveguide layer 28, a second clad layer 29, and/or a second electrode 24b may
be stacked on a different portion of the semiconductor layer 23 than the first electrode
24a. Although a single semiconductor layer 23 is illustrated as being on a plurality
of buffer layers 22, and one LED structure is illustrated on the semiconductor layer
23, example embodiments are not limited thereto. For example, a plurality of LED structures
may be on the semiconductor layer 23. The substrate 20 may be removed from the LED
structures.
[0033] FIG. 3A is a schematic view illustrating a LED substrate structure according to example
embodiments. FIG. 3A illustrates a substrate structure array including a plurality
of semiconductor layers 33 corresponding to a plurality of buffer layers 32. FIG.
3B is a plan view illustrating the substrate structure of FIG. 3A. Referring to FIGS.
3A and 3B, a plurality of substrate protrusions 31 may be on a substrate 30. The buffer
layers 32 may be on the substrate protrusions 31. A width n between the buffer layers
32 may be, for example, about 10 nm or greater. The buffer layers 32 of FIG. 3B may
be a square shape but are not limited thereto. The buffer layers 32 may be an array
structure including different shapes, such as a polygonal shape (e.g., a triangle
and/or a square), an oval shape (e.g., a circle), and/or a straight plate shape.
[0034] FIG. 3C is a schematic view illustrating an LED device including the substrate structure
of FIG. 3A. Referring to FIGS. 3A and 3C, a first electrode 34a may be on a portion
of each of the semiconductor layers 33. A first clad layer 35, a first light waveguide
layer 36, an active layer 37, a second light waveguide layer 38, a second clad layer
39, and/or a second electrode 34b may be stacked on a different portion of each of
the semiconductor layers 33 than the first electrode 34a. The substrate 30 may be
removed from the LED structures.
[0035] As illustrated in FIGS. 2A and 3A, the form of the semiconductor layers 23 and 33
on the buffer layers 22 and 32, respectively, may vary, for example, according to
a method of forming the same. Referring to FIG. 2A, the plurality of buffer layers
22 may be formed in one chip, but the semiconductor layer 23 thereon may have a single-layer
structure due to, for example, an ELOG method. Referring to FIG. 3A, the plurality
of semiconductor layers 33 may be formed on the buffer layers 32 in one chip according
to, for example, a generally-used vertical growth method.
[0036] FIGS. 4A-4E illustrate methods of manufacturing the LED substrate structure of FIG.
2A according to example embodiments. Referring to FIG. 4A, a buffer layer material
22a may be coated on a substrate 20. The buffer layer material 22a may be, for example,
a single layer structure including AIN, SiC, Al
2O
3, AlGaN, AllnGaN, AllnBGaN, AlBGaN, GaN, and/or XY, wherein X may be Ti, Cr, Zr, Hf,
Nb and/or Ta, and Y may be nitrogen (N) and/or boron (B, B
2).
[0037] Referring to FIGS. 4B and 4C, the buffer layer material 22a may be patterned to form
a plurality of buffer layers 22. The form of the buffer layers 22 may vary according
to a patterning method. For example, a shape of the buffer layers 22 may be polygonal,
oval, etc. A thickness t of the buffer layers 22 may be, for example, in a range of
about 5 nm ≤ t ≤ 5 µm. An etching process may be performed on portions of a surface
of the substrate 20 that are exposed between the buffer layers 22 to form holes h.
Referring to FIG. 4D, portions of the substrate 20 under the buffer layers 22 may
be etched to form substrate protrusions 21 by performing, for example, a wet etch
process or a dry/wet etch process on the exposed portions of the substrate 20. For
example, the substrate 20 may be etched through the holes h.
[0038] By using an etch process, a surface of the substrate 20 may be etched via the holes
h. The surface of the substrate 20, except for at least one surface of the substrate
protrusions 21, and the lower surface of the buffer layers 22 not contacting the substrate
protrusions 21, may be exposed (e.g., exposed to air). Due to the etch process, the
substrate protrusions 21 may have curved side portions. A center of the substrate
protrusions 21 may be narrower than ends of the substrate protrusion 11. For example,
the width of the substrate protrusions 21 may increase in upward and downward directions
from the center. By using the etch process, the substrate 20 and the buffer layers
22 may be separated from each other except where the substrate protrusions 21 contact
the buffer layers 22. The buffer layers 22 in an area where the substrate 20 and the
buffer layers 22 are separated may have freestanding characteristics. Dislocations
and cracks occurring in the substrate 20 may not affect the buffer layers 22.
[0039] According to example embodiments, the substrate 20 may be etched to form the holes
h in advance. In this case, a buffer layer material may be coated on the substrate
20 in which the holes h are formed. The buffer layer material may be patterned to
form a plurality of the buffer layers 22, and substrate protrusions 21 may be formed
through the holes h by performing, for example, a wet or dry/wet etch process to the
substrate 20.
[0040] Referring to FIG. 4E, a semiconductor material (e.g., a GaN-based material) may be
grown on the buffer layers 22 using, for example, an epitaxial lateral over growth
(ELOG) method to form a semiconductor layer 23. According to the ELOG method lateral
growth may be faster than vertical growth. A semiconductor material layer may be partially
grown on each of the buffer layers 22 in a direction perpendicular to an upper surface
of the buffer layers 22. By adjusting the growth direction, the semiconductor material
may be grown horizontally on the upper surface of the buffer layers 22. The semiconductor
material on the upper surfaces of the buffer layers 22 may be connected to one another
by the lateral growth and a single semiconductor layer 23 may be formed.
[0041] If a nitride semiconductor material is directly grown on the buffer layers 22 in
a metal oxide chemical vapor deposition (MOCVD) chamber, and if a Si substrate is
used, melt-back etching of Si due to Ga may occur. To prevent and/or reduce melt-back
etching surfaces of the substrate 20 and/or the substrate protrusions 21 may be treated
according to one or more of the following example methods. Surfaces of the substrate
20 and/or the substrate protrusions 21 may be oxidized to convert the surfaces to
SiO
2, a high temperature surface treatment using NH
3 may be performed on the surface of the substrate 20 and/or the substrate protrusions
21 to convert Si to a Si nitride, and/or an AIN layer may be formed on the surface
of the substrate 20 and/or the substrate protrusions 21.
[0042] FIGS. 5A-5E illustrate methods of manufacturing the LED substrate structure of FIG.
3A. Referring to FIG. 5A, a buffer layer material 32a may be coated on a substrate
30. The buffer layer material 32a may be, for example, a single layer structure or
a multi-layer structure including AIN, SiC, Al
2O
3, AlGaN, AllnGaN, AllnBGaN, AlBGaN, GaN, and/or XY, wherein X may be Ti, Cr, Zr, Hf,
Nb and/or Ta, and Y may be nitrogen (N) and/or boron (B, B
2).
[0043] Referring to FIGS. 5B and 5C, the buffer layer material 32a may be patterned to expose
portions of the substrate 30 and form a plurality of buffer layers 32. A thickness
t of each of the buffer layers 32 may be in the range of about 5 nm ≤ t ≤ 5 µm. Portions
of an exposed surface of the substrate 30 between the buffer layers 32 may be, for
example, etched to form holes h. Referring to FIG. 5D, a wet etch or dry/wet etch
process, for example, may be performed on the exposed substrate 30. For example, a
portion of the substrate 30 under the buffer layers 32 may be etched through the holes
h to form substrate protrusions 31. The surface of the substrate 30 except for the
substrate protrusion 31, and a lower surface of the buffer layer 32 not contacting
the substrate protrusion 31, may be exposed (e.g., exposed to air). The substrate
protrusions 31 may include curved side portions.
[0044] A center of the substrate protrusions 31 may be narrower than ends of the substrate
protrusions 31. For example, a width of the substrate protrusions 31 may increase
in upward and downward directions from the center. Except where the substrate protrusions
31 are formed, the substrate 30 and the buffer layers 32 may be separated from each
other due to the etch process. The buffer layers 32 in an area where the substrate
30 and the buffer layers 32 are separated may have freestanding characteristics. Dislocations
and cracks occurring in the substrate 30 may not affect the buffer layers 32. According
to example embodiments, the substrate 30 may be etched to form holes h in advance
of the buffer layers 32 and the substrate protrusions 31. Referring to FIG. 5E, a
semiconductor material (e.g., GaN) may be grown on the buffer layers 32 to form semiconductor
layers 33. The embodiment of FIG. 5E may be different from that of FIG. 4E in that
the semiconductor layers 33 may be formed on the buffer layers 32 by using a deposition
method in a vertical direction of the buffer layers 32 and/or the substrate 30.
[0045] When the substrate 30 is formed of Si, in order to prevent and/or reduce melt-back
etching of Si due to Ga, a surface of the substrate 30 and/or the substrate protrusions
31 may be treated according to one or more of the following example methods. A surface
of the substrate 30 and/or the substrate protrusions 31 may be oxidized to convert
the surface to SiO
2, and/or a high temperature surface treatment using NH
3 may be performed on the surface of the substrate 30 and/or the substrate protrusions
31 to convert Si to a Si nitride, and/or an AIN layer may be formed on the surface
of the substrate 30 and/or the substrate protrusions 31.
[0046] FIGS. 6A-6D are scanning electron microscope (SEM) images of substrate structures
according to example embodiments. FIG. 6A may be a perspective view of a substrate
structure array and FIG. 6B may be a cross-sectional view of the substrate structure
array of FIG. 6A. FIG. 6C may be a plan view of a substrate structure array and FIG.
6D may be a cross-sectional view of the substrate structure array of FIG. 6C. Referring
to FIGS. 6A-6D, according to a chemical wet etch process a shape of a substrate protrusion
may be based on an etch rate with respect to the substrate crystal orientation (directional
rates of etch) and an undercut pattern formed in a buffer layer. Different mask patterns
may be used to create different undercut patterns in order to vary the shape of the
protrusions.
[0047] For example, FIG. 6A may illustrate circular undercut patterns formed in buffer layers
that are formed over a silicon substrate with a (111) crystal orientation. The substrate
structures illustrated in FIGS. 6A and 6B may be formed by etching the buffer layer
and the silicon substrate through a masking layer including the circular patterns.
The etch process may include an anisotropic dry etch of the buffer layer and the silicon
substrate followed by an isotropic wet etch of only the silicon substrate. The masking
layer may be removed and a GaN layer may be grown by ELOG. FIG. 6C may illustrate
substrate structures manufactured according to the same process as described with
respect to FIGS. 6A and 6B except that a hexagonal undercut pattern is used and GaN
is grown according to a vertical process. FIGS. 6A and 6D may show different substrate
protrusion shapes formed according to different undercut patterns. FIG. 6B may show
a single semiconductor layer substrate array (e.g., similar to FIG. 2A). FIG. 6D may
show a one to one correspondence between vertically grown semiconductor structures
and substrate protrusions (e.g., similar to FIG. 3A).
[0048] As described above, according to the one or more of the above example embodiments,
substrate structures of a semiconductor device and methods of manufacturing the substrate
structures, in which a dislocation density may be reduced and generation of cracks
may be reduced and/or prevented when growing a semiconductor material (e.g., a nitride
based semiconductor material), may be provided.
[0049] While example embodiments have been particularly shown and described, it will be
understood by one of ordinary skill in the art that variations in form and detail
may be made therein without departing from the spirit and scope of the claims.
1. A substrate structure comprising:
a substrate (10,20,30) including a substrate protrusion (11,21,31); and
a buffer layer (12,22,32) on the substrate protrusion, the substrate protrusion separating
the buffer layer (12,22,32) from a part of the substrate (11,21,31).
2. The substrate structure of claim 1, further comprising:
a nitride semiconductor layer (23,33),
wherein the substrate (20,30) includes a plurality of substrate protrusions (21,31),
there are a plurality of buffer layers (22,32) corresponding to the plurality of substrate
protrusions, and
the nitride semiconductor layer (23,33) extends across the plurality of buffer layers.
3. The substrate structure of claim 1, further comprising:
a semiconductor layer (13,23,33) formed on the buffer layer.
4. The substrate structure of any preceding claim claim, wherein a thickness of the buffer
layer is from about 5nm to about 5 µm, and optionally a shape of the buffer layer
or layers is one of polygonal, oval, and straight plate.
5. The substrate structure of any preceding claim, wherein a width of the substrate protrusion
(11) or protrusions (21,31) is less at a center of the substrate protrusion than at
ends of the substrate protrusion, the width increasing as a function of distance from
the center.
6. The substrate structure of any preceding claim, wherein the substrate (10,20,30) includes
at least one of Si, GaN, sapphire, SiC, LiGaO2, ZrB2, ZnO and (Mn, Zn)FeO4.
7. The substrate structure of any preceding claim, wherein the buffer layer has one of
a single layer structure and a multi-layer structure,
a material of the buffer layer (12,22,32) includes at least one of AIN, SiC, Al2O3, AlGaN, AllnGaN, AllnBGaN, AlBGaN, GaN, and XY,
X is at least one of Ti, Cr, Zr, Hf, Nb and Ta, and
Y is at least one of nitrogen (N) and boron (B, B2).
8. The substrate structure of claim 1, wherein the substrate (20,30) includes a plurality
of substrate protrusions (21,31),
there are a plurality of buffer layers (22,32) corresponding to the plurality of substrate
protrusions, and
the nitride semiconductor layer (23,33) extends across the plurality of buffer layers.
the substrate (20,30) includes a plurality of substrate protrusions,
there are a plurality of buffer layers (22,32) corresponding to the substrate protrusions,
and
a width of a region separating the plurality of buffer layers (22,32) is greater than
10 nm.
9. An electronic device comprising a substrate structure according to any preceding claim.
10. A method of manufacturing a substrate structure, the method comprising:
forming a buffer layer on a substrate;
etching a pattern into the buffer layer;
etching the substrate through the patterned buffer layer to form at least one
substrate protrusion, the substrate protrusion separating a part of the patterned
buffer layer from a part of the substrate; and
forming a semiconductor layer on the buffer layer.
11. The method of claim 10, further comprising:
forming an etch mask on the buffer layer,
wherein the etching of the pattern into the buffer layer includes anisotropically
etching the buffer layer through the etch mask to expose a surface of the substrateand
optionally wherein the etching of the substrate through the patterned buffer layer
includes anisotropically etching the substrate to form a substrate recess and isotropically
etching the substrate recess to expose a part of a lower surface of the buffer layer.
12. The method of claim 10 or 11, wherein a width of a surface of the substrate protrusion
contacting the buffer layer is smaller than a width of the buffer layer.
13. The method of claim 10, 11, or 12 wherein the etching of the pattern into the buffer
layer includes separating the buffer layer into a plurality of buffer layers, and
the forming of the semiconductor layer includes forming the semiconductor layer as
a single semiconductor layer supported by the plurality of buffer layers, and optionally
wherein the forming of the semiconductor layer includes forming the semiconductor
layer using an epitaxial lateral over growth (ELOG) process.
14. The method of claim 10, 11 or 12 wherein the etching of the pattern into the buffer
layer includes separating the buffer layer into a plurality of buffer layers, and
the forming of the semiconductor layer includes forming the semiconductor layer as
a plurality of semiconductor layers, each of the plurality of semiconductor layers
formed on a different one of the buffer layersand optionally wherein the forming of
the semiconductor layer on the buffer layer includes forming the semiconductor layer
using a vertical growth process.
15. The method of any of claims 10 to 14, further comprising:
treating exposed surfaces of the substrate and the substrate protrusion by performing
at least one of an oxidization process, a nitridization process, and an AIN layer
forming process.