Related Applications
Background of the Invention
[0002] The development of the tetracycline antibiotics was the direct result of a systematic
screening of soil specimens collected from many parts of the world for evidence of
microorganisms capable of producing bacteriocidal and/or bacteriostatic compositions.
The first of these novel compounds was introduced in 1948 under the name chlortetracycline.
Two years later, oxytetracycline became available. The elucidation of the chemical
structure of these compounds confirmed their similarity and furnished the analytical
basis for the production of a third member of this group in 1952, tetracycline. A
new family of tetracycline compounds, without the ring-attached methyl group present
in earlier tetracyclines, was prepared in 1957 and became publicly available in 1967;
and minocycline was in use by 1972.
[0003] Recently, research efforts have focused on developing new tetracycline antibiotic
compositions effective under varying therapeutic conditions and routes of administration.
New tetracycline analogues have also been investigated which may prove to be equal
to or more effective than the originally introduced tetracycline compounds. Examples
include
U.S. Patent Nos. 2,980,584;
2,990,331;
3,062,717;
3,165,531;
3,454,697;
3,557,280;
3,674,859;
3,957,980;
4,018,889;
4,024,272; and
4,126,680. These patents are representative of the range of pharmaceutically active tetracycline
and tetracycline analogue compositions.
[0004] Historically, soon after their initial development and introduction, the tetracyclines
were found to be highly effective pharmacologically against rickettsiae; a number
of gram-positive and gram-negative bacteria; and the agents responsible for lymphogranuloma
venereum, inclusion conjunctivitis, and psittacosis. Hence, tetracyclines became known
as "broad spectrum" antibiotics. With the subsequent establishment of their in vitro
antimicrobial activity, effectiveness in experimental infections, and pharmacological
properties, the tetracyclines as a class rapidly became widely used for therapeutic
purposes. However, this widespread use of tetracyclines for both major and minor illnesses
and diseases led directly to the emergence of resistance to these antibiotics even
among highly susceptible bacterial species both commensal and pathogenic (e.g., pneumococci
and Salmonella). The rise of tetracycline-resistant organisms has resulted in a general
decline in use of tetracyclines and tetracycline analogue compositions as antibiotics
of choice.
Summary of the Invention:
[0005] The invention pertains, at least in part, to 7-substituted tetracycline compound
of Formula I:

wherein:
X is CHC(R13Y'Y), CR6'R6, C=CR6'R6, S, NR6, or O;
R2, R2', R4', and R4" are each independently hydrogen, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl,
alkylsulfonyl, alkylamino, arylalkyl, aryl, heterocyclic, heteroaromatic or a prodrug
moiety;
R4 is NR4'R4", alkyl, alkenyl, alkynyl, hydroxyl, halogen, or hydrogen;
R2', R3, R10, R11 and R12 are each hydrogen or a pro-drug moiety;
R5 is hydroxyl, hydrogen, thiol, alkanoyl, aroyl, alkaroyl, aryl, heteroaromatic, alkyl,
alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, arylalkyl,
alkyl carbonyloxy, or aryl carbonyloxy;
R6 and R6' are each independently hydrogen, methylene, absent, hydroxyl, halogen, thiol, alkyl,
alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino,
or an arylalkyl;
R7 is hydrogen, nitro, alkyl, alkenyl, alkynyl, aryl, heterocyclic, alkoxy, alkylthio,
alkylsulfinyl, alkylsulfonyl, arylalkyl, amino, amido, arylalkenyl, arylalkynyl, or
-(CH2)0-3NR7cC(=W')WR7a;
R9 is hydrogen, nitro, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl,
alkylsulfonyl, arylalkyl, amino, amido, arylalkenyl, arylalkynyl, thionitroso(e.g.,
-N=S), or-(CH2)0-3NW9cC(=Z')ZR9a;
Z is CR9dR9e S, , NR9b or O;
Z' is O, S, or NR9f;
W is CR7dR7e S, NR7b or O;
W' is O, NR7f S;
R7a, R7b, R7c, R7d, R7e, R9a, R9b, R9c, R9d , and R9e are each independently hydrogen, acyl, alkyl, alkenyl, alkynyl, alkoxy, alkylthio,
alkylsulfinyl, alkylsulfonyl, alkylamino, arylalkyl, aryl, heterocyclic, heteroaromatic
or a prodrug moiety;
R8 is hydrogen, hydroxyl, halogen, thiol, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio,
alkylsulfinyl, alkylsulfonyl, alkylamino, or an arylalkyl;
R13 is hydrogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl,
alkylsulfonyl, alkylamino, or an arylalkyl; and
Y' and Y are each independently hydrogen, halogen, hydroxyl, cyano, sulfhydryl, amino,
amido, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino,
or an arylalkyl, and pharmaceutically acceptable salts thereof.
[0006] The invention also pertains to 7-substituted sancycline compounds of the formula:

wherein:
R4' and R4" are each alkyl;
R7 is a fused ring moiety of the formula

where Q is C or a heteroatom; an acylfuranyl group; a tri-, tetra- or penta- halo
substituted phenyl group; an aminomethylphenyl group; an acylaminomethyl group; an
alkylesterphenyl group; an acylphenyl group; an acylalkynyl group; an acylalkoxyphenyl
group; a methylphenyl group; a dimethylphenyl group; a carboxyphenyl group; a carboxyalkynyl
group; a thiophene group; a halothiophene group; an alkoxycarbonylphenyl group; an
alkoxyphenyl group; an alkoxyphenylalkynyl group; an alkoxypyridyl group; an alkylenepyridine
group; a cyclopentyl or cyclopentenyl group; a cyclohexylalkynyl group; a cyclohexenylalkynyl
group; a cyclohexenylhaloalkenyl group; a hydroxycyclohexylalkynyl group; a phenylalkynyl
group; a phenylalkenyl group; an aminoalkynyl group; a cyclobutylalkenyl group; a
pyridylalkynyl group; a pyridylalkenyl group; a nitrophenylalkynyl group; a nitrophenylalkenyl
group; a cyanoalkynyl group; an alkynyl group; a cyanoalkenyl group; a cyanophenyl
group; a dialkylamidoalkenyl group; a dialkylamidophenyl group; an aminophenylethyl
group; an aminophenylethynyl group; a haloethenyl group; a halophenylalkynyl group;
or an alkylester-substituted pentenyl group; and pharmaceutically acceptable salts
thereof.
[0007] The invention also pertains to a method for treating a tetracycline responsive state
in a subject, by administering to the subject a 7-substituted tetracycline compound
of the invention (e.g., of Formula I or II), such that the tetracycline responsive
state is treated.
[0008] The invention also includes pharmaceutical compositions comprising an effective amount
of a 7-substituted tetracycline compound of the invention and, optionally, a pharmaceutically
acceptable carrier.
Detailed Description of the Invention:
[0009] The present invention pertains, at least in part, to novel 7-substituted tetracycline
compounds. These tetracycline compounds can be used to treat numerous tetracycline
compound-responsive states, such as bacterial infections and neoplasms, as well as
other known applications for minocycline and tetracycline compounds in general, such
as blocking tetracycline efflux and modulation of gene expression.
[0010] The term "tetracycline compound" includes many compounds with a similar ring structure
to tetracycline. Examples of tetracycline compounds include: tetracycline, chlortetracycline,
oxytetracycline, demeclocycline, methacycline, sancycline, doxycycline, and minocycline.
Other derivatives and analogues comprising a similar four ring structure are also
included. Table 1 depicts tetracycline and several known tetracycline derivatives.

[0011] The term "7-substituted tetracycline compounds" includes tetracycline compounds with
substitution at the 7 position. In one embodiment, the substitution at the 7- position
enhances the ability of the tetracycline compound to perform its intended function,
e.g., treat tetracycline responsive states. In an embodiment, the 7-substituted tetracycline
compound is 7-substituted tetracycline (e.g., wherein R
4 is NR
4'R
4", R
4' and R
4" are methyl, R
5 is hydrogen and X is CR
6R
6', wherein R
6 is methyl and R
6' is hydroxy); 7-substituted doxycycline (e.g., wherein R
4 is NR
4'R
4", R
4' and R
4" are methyl, R
5 is hydroxyl and X is CR
6R
6', wherein R
6 is methyl and R
6' is hydrogen); 7-substituted tetracycline compound, wherein X is CR
6R
6', R
4, R
5, R
6', and R
6 are hydrogen; or 7- substituted sancycline (wherein R
4 is NR
4'R
4", R
4' and R
4" are methyl; R
5 is hydrogen and X is CR
6R
6'wherein R
6 and R
6' are hydrogen atoms.
[0012] The invention pertains, at least in part, to 7-substituted tetracycline compound
of Formula I:

wherein:
X is CHC(R13Y'Y), CR6'R6, C=CR6'R6, S, NR6, or O;
R2, R2', R4', and R4" are each independently hydrogen, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl,
alkylsulfonyl, alkylamino, arylalkyl, aryl, heterocyclic, heteroaromatic or a prodrug
moiety;
R4 is NR4'R4", alkyl, alkenyl, alkynyl, hydroxyl, halogen, or hydrogen;
R2', R3, R10, R11 and R12 are each hydrogen or a pro-drug moiety;
R5 is hydroxyl, hydrogen, thiol, alkanoyl, aroyl, alkaroyl, aryl, heteroaromatic, alkyl,
alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, arylalkyl,
alkyl carbonyloxy, or aryl carbonyloxy;
R6 and R6' are each independently hydrogen, methylene, absent, hydroxyl, halogen, thiol, alkyl,
alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino,
arylalkyl, or, when taken together, ;
R7 is nitro, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl,
arylalkyl, amino, amido, arylalkenyl, arylalkynyl, or -(CH2)0-3NR7cC(=W')WR7a;
R9 is hydrogen, nitro, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl,
alkylsulfonyl, arylalkyl, amino, amido, arylalkenyl, arylalkynyl, thionitroso(e.g.,
-N=S), or -(CH2)0-3NR9cC(=Z')ZR9a;
Z is CR9dR9e, S, NR9b or O;
Z' is O, S, or NR9f;
W is Ck7dR7e,S,NR7b or O;
W' is O, NR7f S;
R7a R7b, R7c R7d, R7e, R9a, R9b, R9c, R9d and R9e are each independently hydrogen, acyl, alkyl, alkenyl, alkynyl, alkoxy, alkylthio,
alkylsulfinyl, alkylsulfonyl, alkylamino, arylalkyl, aryl, heterocyclic, heteroaromatic
or a prodrug moiety;
R8 is hydrogen, hydroxyl, halogen, thiol, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio,
alkylsulfinyl, alkylsulfonyl, alkylamino, or an arylalkyl;
R13 is hydrogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl,
alkylsulfonyl, alkylamino, or an arylalkyl; and
Y' and Y are each independently hydrogen, halogen, hydroxyl, cyano, sulfhydryl, amino,
amido, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino,
or an arylalkyl, and pharmaceutically acceptable salts thereof. In certain embodiment,
R7 is not nitro or amino.
[0013] In an embodiment, X is CR
6R
6'; R
2, R
2', R
6, R
6', R
8, R
9, R
10, R
11, and R
12 are each hydrogen; R
4 is NR
4'R
4"; R
4' and R
4" are lower alkyl (e.g., methyl); and R
5 is hydroxy or hydrogen.
[0014] In an embodiment, R
7 is aryl. Examples of aryl R
7 groups include substituted or unsubstituted phenyl. The phenyl R
7 group can be substituted with any substituent which allow the tetracycline compound
to perform its intended function. Examples of substituents include, but are not limited
to, alkyl, alkenyl, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, alkyloxycarbonyl,
arylcarbonyloxy, alkoxycarbonylamino, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate,
alkylcarbonyl, alkylaminoacarbonyl, arylalkyl aminocarbonyl, alkenylaminocarbonyl,
alkylcarbonyl, arylcarbonyl, aminoalkyl, arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl,
silyl, aminocarbonyl, alkylthiocarbonyl, phosphate, aralkyl, phosphonato, phosphinato,
cyano, amino, acylamino, amido, imino, sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate,
alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl,
alkylaryl, aryl and heteroaryl.
[0015] In a further embodiment, the phenyl R
7 group is substituted with substituted or unsubstituted alkyl. Examples of substituents
of the alkyl include heterocycles such as, morpholine, piperdine, and pyrrolidine.
In another further embodiment, the phenyl R
7 group is substituted with an amino group. The amino group also may be further substituted
e.g., with an alkyl, alkenyl, alkynyl, carbonyl, alkoxy or aryl (e.g., substituted
or unsubstituted, heteroaryl, phenyl, etc.) group. The phenyl amino substituent may
be substituted with any substituent or combination of substituents which allow it
to perform its intended function. Examples of such substituents include halogens (e.g.,
fluorine, chlorine, bromine, iodine, etc.), amino (e.g., which can in turn be substituted
with an alkyl, carbonyl, alkenyl, alkynyl, or aryl moiety), and arylamino (e.g., phenylamino).
[0016] The R
7 phenyl group may also be substituted with alkoxy groups. Examples of alkoxy groups
include, but are not limited to, methoxy, ethoxy, propoxy, butoxy, perfluoromethoxy,
perchloromethoxy, methylenedioxy, etc. The phenyl group may also be substituted with
an amide group such as a carbamate moiety (e.g., an alkoxycarbonylamino group).
[0017] The aryl group R
7 group also may be substituted or unsubstituted biaryl, e.g., naphthyl, fluorenyl,
etc. The biaryl R
7 group can be substituted with any substituent which allow it to perform its intended
function. Examples of substituents include but are not limited to, alkyl, alkenyl,
halogen, hydroxyl, alkoxy, alkylcarbonyloxy, alkyloxycarbonyl, carboxy, arylcarbonyloxy,
alkoxycarbonylamino, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl,
alkylaminoacarbonyl, arylalkyl aminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl,
arylcarbonyl, aminoalkyl, arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, silyl,
aminocarbonyl, alkylthiocarbonyl, phosphate, aralkyl, phosphonato, phosphinato, cyano,
amino, acylamino, amido, imino, sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate,
alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl,
alkylaryl, aryl and heteroaryl.
[0018] In an embodiment, the substituent is amino or formyl.
[0019] The aryl R
7 group also may be heteroaryl. Examples of heteroaryl R
7 moieties include, but are not limited to, furanyl, imidazolyl, benzothiophenyl, benzofuranyl,
quinolinyl, isoquinolinyl, pyridinyl, pyrazolyl, benzodioxazolyl, benzoxazolyl, benzothiazolyl,
benzoimidazolyl, methylenedioxyphenyl, indolyl, thienyl, pyrimidyl, pyrazinyl, purinyl,
pyrazolyl, oxazolyl, isooxazolyl, naphthridinyl, thiazolyl, isothiazolyl, and deazapurinyl.
In certain embodiments, the heteroaryl R
7 group is thiazolyl, thiophenyl, or furanyl.
[0020] R
7 also may be substituted or unsubstituted alkyl. The alkyl group can be a straight
or branched chain, e.g., methyl, ethyl, i-propyl, n-propyl, n-butyl, i-butyl, t-butyl,
pentyl, hexyl, etc. The alkyl group may also comprise a ring, e.g., a cycloalkyl (e.g.,
cyclopentyl, cyclohexyl, cyclopropyl, or cyclobutyl). The alkyl R
7 group may be substituted with any substituent or combination of substituents which
allows the compound to perform its intended function. Examples of substituents include,
but are not limited to, alkenyl, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, alkyloxycarbonyl,
carboxy, arylcarbonyloxy, alkoxycarbonylamino, alkoxycarbonyloxy, aryloxycarbonyloxy,
carboxylate, alkylcarbonyl, alkylaminoacarbonyl, arylalkyl aminocarbonyl, alkenylaminocarbonyl,
alkylcarbonyl, arylcarbonyl, aminoalkyl, arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl,
silyl, aminocarbonyl, alkylthiocarbonyl, phosphate, aralkyl, phosphonato, phosphinato,
cyano, amino, acylamino, amido, imino, sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate,
alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl,
alkylaryl, aryl and heteroaryl.
[0021] In certain embodiments, the alkyl group is substituted with an amino, hydroxy, carboxy,
carbonyl (e.g., substituted carbonyl, e.g., morpholinyl carbonyl), heterocyclic or
aryl groups. Examples heterocyclic groups include, for example, furanyl, imidazolyl,
benzothiophenyl, benzofuranyl, quinolinyl, isoquinolinyl, benzodioxazolyl, benzoxazolyl,
benzothiazolyl, benzoimidazolyl, methylenedioxyphenyl, indolyl, thienyl, pyridinyl,
pyrazolyl, pyrimidyl, pyrazinyl, purinyl, pyrazolyl, oxazolyl, isooxazolyl, naphthridinyl,
thiazolyl, isothiazolyl, and deazapurinyl. In a further embodiment, the aryl group
is pyridinyl.
[0022] In a further embodiment, the aralkyl R
7 group comprises substituted or unsubstituted phenyl. This phenyl group also may be
substituted with any substituent which allows it to perform its intended function.
Examples of substituents include, but are not limited to, sulfonamido, alkyl, and
the other substituents listed supra for alkyl R
7 groups.
[0023] R
7 also may be substituted or unsubstituted alkenyl. Examples of substituents include
those which allow the compound to perform its intended function. Examples of substituents
include but are not limited to alkyl, halogen, hydroxyl, alkoxy, alkylcarbonyloxy,
alkyloxycarbonyl, carboxy, arylcarbonyloxy, alkoxycarbonylamino, alkoxycarbonyloxy,
aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminoacarbonyl, arylalkyl aminocarbonyl,
alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aminoalkyl, arylalkylcarbonyl,
alkenylcarbonyl, alkoxycarbonyl, silyl, aminocarbonyl, alkylthiocarbonyl, phosphate,
aralkyl, phosphonato, phosphinato, cyano, amino, acylamino, amido, imino, sulfhydryl,
alkylthio, sulfate, arylthio, thiocarboxylate, alkylsulfinyl, sulfonato, sulfamoyl,
sulfonamido, nitro, cyano, azido, heterocyclyl, alkylaryl, aryl and heteroaryl moieties..
[0024] In a further embodiment, the alkenyl R
7 group is substituted with an aminocarbonyl (e.g., alkylaminocarbonyl, dialkylaminocarbonyl,
dimethylaminocarbonyl) or alkoxycarbonyl. The alkenyl R
7 group also may be substituted with one or more halogens (e.g., fluorine, chlorine,
bromine, iodine, etc.), hydroxy groups, heteroaryl groups (e.g., furanyl, imidazolyl,
benzothiophenyl, benzofuranyl, quinolinyl, isoquinolinyl, benzodioxazolyl, benzoxazolyl,
benzothiazolyl, benzoimidazolyl, methylenedioxyphenyl, indolyl, thienyl, pyridinyl,
pyrazolyl, pyrimidyl, pyrazinyl, purinyl, pyrazolyl, oxazolyl, isooxazolyl, naphthridinyl,
thiazolyl, isothiazolyl, deazapurinyl, etc.). In an embodiment, the heteroaryl substituent
s thiazolyl.
[0025] In a further embodiment, the alkenyl R
7 group is substituted with a substituted or unsubstituted phenyl. The phenyl can be
substituted with any substituent which allows it to perform its intended function.
Examples of substituents include those listed supra for other phenyl moieties. Other
examples of substituents include, but are not limited to, halogens (e.g., fluorine,
chlorine, bromine, iodine, etc.), alkoxy (e.g., methoxy, ethoxy, propoxy, perfluoromethyl,
perchloromethyl, etc.), hydroxy, or alkyl (e.g., methyl, ethyl, propyl, butyl, pentyl,
hexyl, etc.) groups.
[0026] Another example of R
7 include substituted and unsubstituted alkynyls. The alkynyl moieties can be substituted
with any substituent or combination of substituents which allow the tetracycline compound
of the invention to perform its intended function. Examples of the substituents include,
but are not limited to alkyl, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, alkyloxycarbonyl,
carboxy, arylcarbonyloxy, alkoxycarbonylamino, alkoxycarbonyloxy, aryloxycarbonyloxy,
carboxylate, alkylcarbonyl, alkylaminoacarbonyl, arylalkyl aminocarbonyl, alkenylaminocarbonyl,
alkylcarbonyl, arylcarbonyl, aminoalkyl, arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl,
silyl, aminocarbonyl, alkylthiocarbonyl, phosphate, aralkyl, phosphonato, phosphinato,
cyano, amino, acylamino, amido, imino, sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate,
alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl,
alkylaryl, aryl and heteroaryl moieties.
[0027] In an embodiment, the alkynyl R
7 moiety is substituted with an aryl, e.g., substituted or unsubstituted heteroaryl,
phenyl, etc. This aryl moiety may be substituted with any substituent or combinations
of substituents listed supra for the alkynyl R
7 moiety. Examples of advantageous substituents include, but are not limited to, carbonylamino
(e.g., alkylcarbonylamino, dialkylcarbonylamino, arylcarbonylamino, etc.) and sulphonamido
groups.
[0028] In another embodiment, the alkynyl R
7 group is substituted with a tetracycline moiety. The term "tetracycline moiety" includes
a four ring tetracycline ring system as described above. This may be connected to
the alkynyl R
7 group through a linker of 1-20 atoms. The linker may be attached to the tetracycline
moiety at any position on that ring system which is convenient or allows the compound
to perform its intended function. In a certain embodiment, the tetracycline moiety
is attached to the linker at its 7 position.
[0029] Other examples of R
7 moieties include substituted and unsubstituted alkylcarbonyl amino, sulfonamido,
imino and carbonyl moieties. The carbonyl moieties may be substituted with a substituted
or unsubstituted alkyl group. Examples of possible substituents of the alkyl group
include, but are not limited to, aryl moieties such as phenyl and heteroaryls (e.g.,
pyridinyl, etc.). Examples of substituents of the imino group include, but are not
limited to, hydroxy and alkoxy groups.
[0030] In another embodiment, R
7 is NR
7c(C=W')WR
7a. Examples of tetracycline compounds of the invention include compounds wherein R
7c is hydrogen, W' is oxygen and W is oxygen. In certain embodiments, R
7a is substituted or unsubstituted phenyl. Examples of substituents include, but are
not limited to, alkyl, halogen, hydroxyl, alkoxy, alkylcarbonyloxy, alkyloxycarbonyl,
carboxy, alkylcarbonylamino, arylcarbonyloxy, alkoxycarbonylamino, alkoxycarbonyloxy,
aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminoacarbonyl, arylalkyl aminocarbonyl,
alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aminoalkyl, arylalkylcarbonyl,
alkenylcarbonyl, alkoxycarbonyl, silyl, aminocarbonyl, alkylthiocarbonyl, phosphate,
aralkyl, phosphonato, phosphinato, cyano, amino, acylamino, amido, imino, sulfhydryl,
alkylthio, sulfate, arylthio, thiocarboxylate, alkylsulfinyl, sulfonato, sulfamoyl,
sulfonamido, nitro, cyano, azido, heterocyclyl, alkylaryl, aryl and heteroaryl. In
a further embodiment, R
7a is substituted or unsubstituted alkyl.
[0031] The invention also pertains to 7-substituted sancycline compounds of the formula:

wherein:
R4' and R4" are each alkyl; and
R7 is a fused ring moiety of the formula

where Q is C or a heteroatom; an acylfuranyl group; a tri-, tetra- or penta- halo
substituted phenyl group; an aminomethylphenyl group; an acylaminomethyl group; an
alkylesterphenyl group; an acylphenyl group; an acylalkynyl group; an acylalkoxyphenyl
group; a methylphenyl group; a dimethylphenyl group; a carboxyphenyl group; a carboxyalkynyl
group; a thiophene group; a halothiophene group; an alkoxycarbonylphenyl group; an
alkoxyphenyl group; an alkoxyphenylalkynyl group; an alkoxypyridyl group; an alkylenepyridine
group; a cyclopentyl or cyclopentenyl group; a cyclohexylalkynyl group; a cyclohexenylalkynyl
group; a cyclohexenylhaloalkenyl group; a hydroxycyclohexylalkynyl group; a phenylalkynyl
group; a phenylalkenyl group; an aminoalkynyl group; a cyclobutylalkenyl group; a
pyridylalkynyl group; a pyridylalkenyl group; a nitrophenylalkynyl group; a nitrophenylalkenyl
group; a cyanoalkynyl group; an alkynyl group; a cyanoalkenyl group; a cyanophenyl
group; a dialkylamidoalkenyl group; a dialkylamidophenyl group; an aminophenylethyl
group; an aminophenylethynyl group; a haloethenyl group; a halophenylalkynyl group;
or an alkylester-substituted pentenyl group; and pharmaceutically acceptable salts
thereof.
[0032] The term "7-substituted sancycline compounds" includes sancycline compounds with
a substituent at the 7 position, as described in formula I. In a further embodiment,
both R
4' and R
4" are each methyl.
[0033] In a further embodiment, R
7 is a fused ring moiety of the formula

where Q is C or a heteroatom. Examples of sancycline compounds with this R
7 substituent include 7-(2-benzofuran) sancycline.
[0034] In yet another embodiment, R
7 is an acylfuranyl group. Examples of sancycline compounds with this R
7 substituent include 7-(3-formylfuranyl) sancycline.
[0035] In yet another embodiment, R
7 is a tri-, tetra- or penta- halo substituted phenyl group. Examples of sancycline
compounds with this R
7 substituent include 7-(2,3,4,5,6-pentafluorophenyl) sancycline.
[0036] In yet another embodiment, R
7 is an aminomethylphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-aminomethylphenyl) sancycline.
[0037] In yet another embodiment, R
7 is an acylaminomethyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-formylaminomethylphenyl) sancycline.
[0038] In yet another embodiment, R
7 is an alkylesterphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-carboxyphenyl methylester) sancycline and 7-(2-carboxyphenylethylester)
sancycline.
[0039] In yet another embodiment, R
7 is an alkylphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-tolyl) sancycline.
[0040] In yet another embodiment, R
7 is an acylphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(3-formylphenyl) sancycline, 7-(4-formylphenyl) sancycline,
7-(3-acetylphenyl) sancycline, 7-(2-acetylphenyl) sancycline, 7-(3-acetylphenyl) sancycline,
and 7-(4-acetylphenyl) sancycline.
[0041] In yet another embodiment, R
7 is an acylalkoxyphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(3-formyl-6-methoxyphenyl) sancycline.
[0042] In yet another embodiment, R
7 is a methylphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-methylphenyl) sancycline.
[0043] In yet another embodiment, R
7 is a dimethylphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(3,5-dimethylphenyl) sancycline.
[0044] In yet another embodiment, R
7 is a carboxyphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(3-carboxyphenyl) sancycline.
[0045] In yet another embodiment, R
7 is a carboxyalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(carboxyethynyl) sancycline.
[0046] In yet another embodiment, R
7 is a thiophene group. Examples of sancycline compounds with this R
7 substituent include 7-(3-thiophene) sancycline, 7-(3-methyl-2-thiophene) sancycline,
and 7-(3-methyl-5-thiophene) sancycline.
[0047] In yet another embodiment, R
7 is a halothiophene group. Examples of sancycline compounds with this R
7 substituent include 7-(3-chloro-2-thiophene) sancycline and 7-(4-chloro-2-thiophene)
sancycline.
[0048] In yet another embodiment, R
7 is an alkoxycarbonylphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(2-ethoxycarbonylphenyl) sancycline.
[0049] In yet another embodiment, R
7 is an alkoxyphenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(2-ethoxyphenyl) sancycline, 7-(3-ethoxyphenyl) sancycline,
7-(4-methoxyphenyl) sancycline, and 7-(2,5-dimethoxyphenyl) sancycline.
[0050] In yet another embodiment, R
7 is an alkoxyphenylalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-methoxyphenylethynyl) sancycline.
[0051] In yet another embodiment, R
7 is an alkoxypyridyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-methoxy-5-pyridyl) sancycline.
[0052] In yet another embodiment, R
7 is a cyclopentyl or cyclopentenyl group. Examples of sancycline compounds with this
R
7 substituent include 7-(cyclopentenyl) sancycline.
[0053] In yet another embodiment, R
7 is a cyclohexylalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(cyclohexylethynyl) sancycline.
[0054] In yet another embodiment, R
7 is a cyclohexenylalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(1-ethynyl-1-cyclohexyl) sancycline.
[0055] In yet another embodiment, R
7 is a cyclohexenylhaloalkenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(1-chlorovinyl-1-cyclohexyl) sancycline.
[0056] In yet another embodiment, R
7 is a hydroxycyclohexylalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(1-ethynyl-1-hydroxycyclohexyl) sancycline.
[0057] In yet another embodiment, R
7 is a phenylalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(phenylethynyl) sancycline, 7-(tolylethynyl) sancycline, and
7-(4-methoxyphenylethynyl) sancycline.
[0058] In yet another embodiment, R
7 is a phenylalkenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(2-vinylpyridyl) sancycline and 7-(vinylphenyl) sancycline.
[0059] In yet another embodiment, R
7 is an aminoalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(dimethylaminoethynyl) sancycline.
[0060] In yet another embodiment, R
7 is a cyclobutylalkenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(cyclobutylmethenyl) sancycline.
[0061] In yet another embodiment, R
7 is a pyridylalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(2-pyridylethynyl) sancycline and 7-(3-pyridylethynyl) sancycline.
[0062] In yet another embodiment, R
7 is a pyridylalkenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-pyridylethenyl) sancycline.
[0063] In yet another embodiment, R
7 is a nitrophenylalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-nitrophenylethynyl) sancycline.
[0064] In yet another embodiment, R
7 is a nitrophenylalkenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-nitrostyryl) sancycline.
[0065] In yet another embodiment, R
7 is an alkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(ethynyl) sancycline.
[0066] In yet another embodiment, R
7 is a cyanoalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(cyano-1-pentynyl) sancycline.
[0067] In yet another embodiment, R
7 is a cyanoalkenyl group. Examples of sancycline compounds with this R
7 substituent include and 7-(cyanohexenyl) sancycline.
[0068] In yet another embodiment, R
7 is a cyanophenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(3-cyanophenyl) sancycline and 7-(4-cyanophenyl) sancycline.
[0069] In yet another embodiment, R
7 is a hydroxylphenylethynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(3-hydroxylphenylethynyl) sancycline.
[0070] In yet another embodiment, R
7 is a dialkylamidoalkenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(N,N-dimethylacrylamide) sancycline and 7-(dimethylamidoethenyl)
sancycline. In yet another embodiment, R
7 is a dialkylamidophenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(3-dimethylamidophenyl) sancycline.
[0071] In yet another embodiment, R
7 is an aminophenylethyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-aminophenylethyl) sancycline.
[0072] In yet another embodiment, R
7 is an aminophenylethynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-aminophenylethynyl) sancycline.
[0073] In yet another embodiment, R
7 is a haloethenyl group. Examples of sancycline compounds with this R
7 substituent include 7-(2-chloroethenyl) sancycline.
[0074] In yet another embodiment, R
7 is a halophenylalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(2-fluorophenylethenyl) sancycline.
[0075] In yet another embodiment, R
7 is an alkylester-substituted pentenyl group. Examples of sancycline compounds with
this R
7 substituent include 7-(1-iodo-1,3-dicarboethoxy-1,3-butadiene) sancycline..
[0076] In yet another embodiment, R
7 is an aminophenylalkynyl group. Examples of sancycline compounds with this R
7 substituent include 7-(4-aminophenylvinyl) sancycline.
[0078] In a further embodiment, the invention pertains to 7-substituted tetracycline compounds
of the formulae:
[0079] The invention also pertains to each of the 7-substituted tetracycline compounds shown
in Table 2, as well as their pharmaceutically acceptable salts, esters, and prodrugs.
[0080] The tetracycline compounds of this invention can be synthesized using the methods
described in Schemes 1-8.
[0081] Certain 7-substituted tetracycline compounds can be synthesized by the method shown
in Scheme 1. Although in each scheme sancycline is used as the tetracycline compound,
one of skill in the art will appreciate that the methodology can also be applied to
other tetracycline compounds such as tetracycline and doxycycline.

[0082] Generally, 7-substituted tetracycline compounds can be synthesized as shown in Scheme
1 for sancycline. Sancycline (1A) is treated with sulfuric acid and sodium nitrate.
The resulting product is 7-nitro (1B) sancycline (in a mixture with the 9-position
isomers). The nitro sancycline compound is then treated with hydrogen gas and a platinum
catalyst to yield the 7-amino sancycline compound, 1C. To synthesize 7 derivatives,
the 7-amino sancycline compound is treated with HONO, to yield the diazonium salt
(1D). The salt can subsequently be treated with numerous compounds possessing an alkene
or II bond functional group such as alkenes, aryls, and alkynyls (e.g., R
7Br) yielding the 7-substituted sancycline compound (1E).

[0083] As shown in Scheme 2, tetracycline compounds of the invention wherein R
7 is a carbamate or a urea derivative can be synthesized using the following protocol.
Sancycline (2A) is treated with NaNO
2 under acidic conditions forming 7-nitro sancycline (2B) in a mixture of positional
isomers. 7-nitrosancycline (2B) is then treated with H
2 gas and a platinum catalyst to form the 7-amino sancycline derivative (2C). To form
the urea derivative (2E), isocyanate (2D) is reacted with the 7-amino sancycline derivative
(2C). To form the carbamate (2G), the appropriate acid chloride ester (2F) is reacted
with 2C.

[0084] As shown in Scheme 3, tetracycline compounds of the invention, wherein R
7 is a heterocyclic (i.e. thiazole) substituted amino group can be synthesized using
the above protocol. 7-amino sancycline (3A) is reacted with Fmoc-isothiocyanate (3B)
to produce the protected thiourea (3C). The protected thiourea (3C) is then deprotected
yielding the active sancycline thiourea (3D) compound. The sancycline thiourea (3D)
is reacted with an α-haloketone (3E) to produce a thiazole substituted 7-amino sancycline
(3F).

[0085] 7- alkenyl tetracycline compounds, such as 7-alkynyl sancycline (4A) and 7-alkenyl
sancycline (4B), can be hydrogenated to form alkyl 7- substituted tetracycline compounds
(e.g., 7-alkyl sancycline, 4C). Scheme 4 depicts the selective hydrogenation of the
7- position double or triple bond, in saturated methanol and hydrochloric acid solution
with a palladium/carbon catalyst under pressure, to yield the product.

[0086] In Scheme 5, a general synthetic scheme for synthesizing 7-position aryl derivatives
is shown. A Suzuki coupling of an aryl boronic acid with an iodosancycline compound
is shown. An iodo sancycline compound (5B) can be synthesized from sancycline by treating
sancycline (5A) with at least one equivalent N-iodosuccinimide (NIS) under acidic
conditions. The reaction is quenched, and the resulting 7-iodo sancycline (5B) can
then be purified using standard techniques known in the art. To form the aryl derivative,
7-iodo sancycline (5B) is treated with an aqueous base (e.g., Na
2CO
3) and an appropriate boronic acid (5C) and under an inert atmosphere. The reaction
is catalyzed with a palladium catalyst (e.g., Pd(OAc)
2). The product (5D) can be purified by methods known in the art (such as HPLC). Other
7-aryl and alkynyl tetracycline compounds can be synthesized using similar protocols.
[0087] The 7-substituted tetracycline compounds of the invention can also be synthesized
using Stille cross couplings. Stille cross couplings can be performed fusing an appropriate
tin reagent (e.g., R-SnBu
3) and a halogenated tetracycline compound, (e.g., 7-iodosancycline). The tin reagent
and the iodosancycline compound can be treated with a palladium catalyst (e.g., Pd(PPh
3)
2Cl
2 or Pd(AsPh
3)
2Cl
2) and, optionally, with an additional copper salt, e.g., CuI. The resulting compound
can then be purified using techniques known in the art.

[0088] The aryl derivatives formed by Suzuki or Stille couplings, can be further derivitized.
For example in Scheme 6, a formyl aryl sancycline (6A), an amine, and a solvent (e.g.,
1,2 dichloroethane) are combined in a reaction flask. A reducing agent is then added
(e.g., NaBH(OAc)
3. and the reaction is allowed to proceed proceed to completion to yield the product
(6B). The product is purified and characterized using standard methods.

[0089] The compounds of the invention can also be synthesized using Heck-type cross coupling
reactions. As shown in Scheme 7, Heck-type cross-couplings can be performed by suspending
a halogenated tetracycline compound (e.g., 7-iodosancycline, 7A) and an appropriate
palladium or other transition metal catalyst (e.g., Pd(OAc)
2 and CuI) in an appropriate solvent (e.g., degassed acetonitrile). The substrate,
a reactive alkene (7B) or alkyne (7D), and triethylamine are then added and the mixture
is heated for several hours, before being cooled to room temperature. The resulting
7-substituted alkenyl (7C) or 7-substituted alkynyl (7E) tetracycline compound can
then be purified using techniques known in the art.

[0090] To prepare 7-(2'-Chloro-alkenyl)-tetracycline compounds, the following procedure
can be used. 7-(alkynyl)-sancycline (8A) is dissolved in saturated methanol and hydrochloric
acid and stirred. The solvent is then removed to yield the product (8B).
[0091] The term "alkyl" includes saturated aliphatic groups, including straight-chain alkyl
groups (e.g., methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl,
etc.), branched-chain alkyl groups (isopropyl, tert-butyl, isobutyl, etc.), cycloalkyl
(alicyclic) groups (cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl),
alkyl substituted cycloalkyl groups, and cycloalkyl substituted alkyl groups. The
term alkyl further includes alkyl groups, which can further include oxygen, nitrogen,
sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone.
In certain embodiments, a straight chain or branched chain alkyl has 6 or fewer carbon
atoms in its backbone (e.g., C
1-C
6 for straight chain, C
3-C
6 for branched chain), and more preferably 4 or fewer. Likewise, preferred cycloalkyls
have from 3-8 carbon atoms in their ring structure, and more preferably have 5 or
6 carbons in the ring structure. The term C
1-C
6 includes alkyl groups containing 1 to 6 carbon atoms.
[0092] Moreover, the term alkyl includes both "unsubstituted alkyls" and "substituted alkyls",
the latter of which refers to alkyl moieties having substituents replacing a hydrogen
on one or more carbons of the hydrocarbon backbone. Such substituents can include,
for example, alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy,
alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl,
aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl,
phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino,
arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino,
arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio,
thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro,
trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic
moiety. Cycloalkyls can be further substituted, e.g., with the substituents described
above. An "alkylaryl" or an "arylalkyl" moiety is an alkyl substituted with an aryl
(e.g., phenylmethyl (benzyl)). The term "alkyl" also includes the side chains of natural
and unnatural amino acids.
[0093] The term "aryl" includes groups, including 5- and 6-membered single-ring aromatic
groups that may include from zero to four heteroatoms, for example, benzene, phenyl,
pyrrole, furan, thiophene, thiazole, isothiaozole, imidazole, triazole, tetrazole,
pyrazole, oxazole, isooxazole, pyridine, pyrazine, pyridazine, and pyrimidine, and
the like. Furthermore, the term "aryl" includes multicyclic aryl groups, e.g., tricyclic,
bicyclic, e.g., naphthalene, benzoxazole, benzodioxazole, benzothiazole, benzoimidazole,
benzothiophene, methylenedioxyphenyl, quinoline, isoquinoline, napthridine, indole,
benzofuran, purine, benzofuran, deazapurine, or indolizine. Those aryl groups having
heteroatoms in the ring structure may also be referred to as "aryl heterocycles",
"heterocycles," "heteroaryls" or "heteroaromatics". The aromatic ring can be substituted
at one or more ring positions with such substituents as described above, as for example,
halogen, hydroxyl, alkoxy, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy,
carboxylate, alkylcarbonyl, alkylaminoacarbonyl, arylalkyl aminocarbonyl, alkenylaminocarbonyl,
alkylcarbonyl, arylcarbonyl, arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, aminocarbonyl,
alkylthiocarbonyl, phosphate, phosphonato, phosphinato, cyano, amino (including alkyl
amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino (including
alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl,
alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl,
sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an
aromatic or heteroaromatic moiety. Aryl groups can also be fused or bridged with alicyclic
or heterocyclic rings which are not aromatic so as to form a polycycle (e.g., tetralin).
[0094] The term "alkenyl" includes unsaturated aliphatic groups analogous in length and
possible substitution to the alkyls described above, but that contain at least one
double bond.
[0095] For example, the term "alkenyl" includes straight-chain alkenyl groups (e.g., ethylenyl,
propenyl, butenyl, pentenyl, hexenyl, heptenyl, octenyl, nonenyl, decenyl, etc.),
branched-chain alkenyl groups, cycloalkenyl (alicyclic) groups (cyclopropenyl, cyclopentenyl,
cyclohexenyl, cycloheptenyl, cyclooctenyl), alkyl or alkenyl substituted cycloalkenyl
groups, and cycloalkyl or cycloalkenyl substituted alkenyl groups. The term alkenyl
further includes alkenyl groups which include oxygen, nitrogen, sulfur or phosphorous
atoms replacing one or more carbons of the hydrocarbon backbone. In certain embodiments,
a straight chain or branched chain alkenyl group has 6 or fewer carbon atoms in its
backbone (e.g., C
2-C
6 for straight chain, C
3-C
6 for branched chain). Likewise, cycloalkenyl groups may have from 3-8 carbon atoms
in their ring structure, and more preferably have 5 or 6 carbons in the ring structure.
The term C
2-C
6 includes alkenyl groups containing 2 to 6 carbon atoms.
[0096] Moreover, the term alkenyl includes both "unsubstituted alkenyls" and "substituted
alkenyls", the latter of which refers to alkenyl moieties having substituents replacing
a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can
include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy,
arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl,
arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl,
alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including
alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino
(including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino,
imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl,
sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl,
alkylaryl, or an aromatic or heteroaromatic moiety.
[0097] The term "alkynyl" includes unsaturated aliphatic groups analogous in length and
possible substitution to the alkyls described above, but which contain at least one
triple bond.
[0098] For example, the term "alkynyl" includes straight-chain alkynyl groups (e.g., ethynyl,
propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl, etc.),
branched-chain alkynyl groups, and cycloalkyl or cycloalkenyl substituted alkynyl
groups. The term alkynyl further includes alkynyl groups which include oxygen, nitrogen,
sulfur or phosphorous atoms replacing one or more carbons of the hydrocarbon backbone.
In certain embodiments, a straight chain or branched chain alkynyl group has 6 or
fewer carbon atoms in its backbone (e.g., C
2-C
6 for straight chain, C
3-C
6 for branched chain). The term C
2-C
6 includes alkynyl groups containing 2 to 6 carbon atoms.
[0099] Moreover, the term alkynyl includes both "unsubstituted alkynyls" and "substituted
alkynyls", the latter of which refers to alkynyl moieties having substituents replacing
a hydrogen on one or more carbons of the hydrocarbon backbone. Such substituents can
include, for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy,
arylcarbonyloxy, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl,
arylcarbonyl, alkoxycarbonyl, aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl,
alkylthiocarbonyl, alkoxyl, phosphate, phosphonato, phosphinato, cyano, amino (including
alkyl amino, dialkylamino, arylamino, diarylamino, and alkylarylamino), acylamino
(including alkylcarbonylamino, arylcarbonylamino, carbamoyl and ureido), amidino,
imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate, sulfates, alkylsulfinyl,
sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl, cyano, azido, heterocyclyl,
alkylaryl, or an aromatic or heteroaromatic moiety.
[0100] Unless the number of carbons is otherwise specified, "lower alkyl" as used herein
means an alkyl group, as defined above, but having from one to five carbon atoms in
its backbone structure. "Lower alkenyl" and "lower alkynyl" have chain lengths of,
for example, 2-5 carbon atoms.
[0101] The term "acyl" includes compounds and moieties which contain the acyl radical (CH
3CO-) or a carbonyl group. It includes substituted acyl moieties. The term "substituted
acyl" includes acyl groups where one or more of the hydrogen atoms are replaced by
for example, alkyl groups, alkynyl groups, halogens, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy,
alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl,
aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl,
phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino,
arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino,
arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio,
thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro,
trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic
moiety.
[0102] The term "acylamino" includes moieties wherein an acyl moiety is bonded to an amino
group. For example, the term includes alkylcarbonylamino, arylcarbonylamino, carbamoyl
and ureido groups.
[0103] The term "aroyl" includes compounds and moieties with an aryl or heteroaromatic moiety
bound to a carbonyl group. Examples of aroyl groups include phenylcarboxy, naphthyl
carboxy, etc.
[0104] The terms "alkoxyalkyl", "alkylaminoalkyl" and, "thioalkoxyalkyl" include alkyl groups,
as described above, which further include oxygen, nitrogen or sulfur atoms replacing
one or more carbons of the hydrocarbon backbone, e.g., oxygen, nitrogen or sulfur
atoms.
[0105] The term "alkoxy" includes substituted and unsubstituted alkyl, alkenyl, and alkynyl
groups covalently linked to an oxygen atom. Examples of alkoxy groups include methoxy,
ethoxy, isopropyloxy, propoxy, butoxy, and pentoxy groups. Examples of substituted
alkoxy groups include halogenated alkoxy groups. The alkoxy groups can be substituted
with groups such as alkenyl, alkynyl, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy,
alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, arylcarbonyl, alkoxycarbonyl,
aminocarbonyl, alkylaminocarbonyl, dialkylaminocarbonyl, alkylthiocarbonyl, alkoxyl,
phosphate, phosphonato, phosphinato, cyano, amino (including alkyl amino, dialkylamino,
arylamino, diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino,
arylcarbonylamino, carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio,
thiocarboxylate, sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro,
trifluoromethyl, cyano, azido, heterocyclyl, alkylaryl, or an aromatic or heteroaromatic
moieties. Examples of halogen substituted alkoxy groups include, but are not limited
to, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chloromethoxy, dichloromethoxy,
trichloromethoxy, etc.
[0106] The term "amine" or "amino" includes compounds where a nitrogen atom is covalently
bonded to at least one carbon or heteroatom. The term includes "alkyl amino" which
comprises groups and compounds wherein the nitrogen is bound to at least one additional
alkyl group. The term "dialkyl amino" includes groups wherein the nitrogen atom is
bound to at least two additional alkyl groups. The term "arylamino" and "diarylamino"
include groups wherein the nitrogen is bound to at least one or two aryl groups, respectively.
The term "alkylarylamino," "alkylaminoaryl" or "arylaminoalkyl" refers to an amino
group which is bound to at least one alkyl group and at least one aryl group. The
term "alkaminoalkyl" refers to an alkyl, alkenyl, or alkynyl group bound to a nitrogen
atom which is also bound to an alkyl group.
[0107] The term "amide," "amido" or "aminocarbonyl" includes compounds or moieties which
contain a nitrogen atom which is bound to the carbon of a carbonyl or a thiocarbonyl
group. The term includes "alkaminocarbonyl" or "alkylaminocarbonyl" groups which include
alkyl, alkenyl, aryl or alkynyl groups bound to an amino group bound to a carbonyl
group. It includes arylaminocarbonyl and arylcarbonylamino groups which include aryl
or heteroaryl moieties bound to an amino group which is bound to the carbon of a carbonyl
or thiocarbonyl group. The terms "alkylaminocarbonyl," "alkenylaminocarbonyl," "alkynylaminocarbonyl,"
"arylaminocarbonyl," "alkylcarbonylamino," "alkenylcarbonylamino," "alkynylcarbonylamino,"
and "arylcarbonylamino" are included in term "amide." Amides also include urea groups
(aminocarbonylamino) and carbamates (oxycarbonylamino).
[0108] The term "carbonyl" or "carboxy" includes compounds and moieties which contain a
carbon connected with a double bond to an oxygen atom. The carbonyl can be further
substituted with any moiety which allows the compounds of the invention to perform
its intended function. For example, carbonyl moieties may be substituted with alkyls,
alkenyls, alkynyls, aryls, alkoxy, aminos, etc. Examples of moieties which contain
a carbonyl include aldehydes, ketones, carboxylic acids, amides, esters, anhydrides,
etc.
[0109] The term "thiocarbonyl" or "thiocarboxy" includes compounds and moieties which contain
a carbon connected with a double bond to a sulfur atom.
[0110] The term "ether" includes compounds or moieties which contain an oxygen bonded to
two different carbon atoms or heteroatoms. For example, the term includes "alkoxyalkyl"
which refers to an alkyl, alkenyl, or alkynyl group covalently bonded to an oxygen
atom which is covalently bonded to another alkyl group.
[0111] The term "ester" includes compounds and moieties which contain a carbon or a heteroatom
bound to an oxygen atom which is bonded to the carbon of a carbonyl group. The term
"ester" includes alkoxycarboxy groups such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl,
butoxycarbonyl, pentoxycarbonyl, etc. The alkyl, alkenyl, or alkynyl groups are as
defined above.
[0112] The term "thioether" includes compounds and moieties which contain a sulfur atom
bonded to two different carbon or hetero atoms. Examples of thioethers include, but
are not limited to alkthioalkyls, alkthioalkenyls, and alkthioalkynyls. The term "alkthioalkyls"
include compounds with an alkyl, alkenyl, or alkynyl group bonded to a sulfur atom
which is bonded to an alkyl group. Similarly, the term "alkthioalkenyls" and alkthioalkynyls"
refer to compounds or moieties wherein an alkyl, alkenyl, or alkynyl group is bonded
to a sulfur atom which is covalently bonded to an alkynyl group.
[0113] The term "hydroxy" or "hydroxyl" includes groups with an -OH or -O-.
[0114] The term "halogen" includes fluorine, bromine, chlorine, iodine, etc. The term "perhalogenated"
generally refers to a moiety wherein all hydrogens are replaced by halogen atoms.
[0115] The terms "polycyclyl" or "polycyclic radical" refer to two or more cyclic rings
(e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls) in which
two or more carbons are common to two adjoining rings, e.g., the rings are "fused
rings". Rings that are joined through non-adjacent atoms are termed "bridged" rings.
Each of the rings of the polycycle can be substituted with such substituents as described
above, as for example, halogen, hydroxyl, alkylcarbonyloxy, arylcarbonyloxy, alkoxycarbonyloxy,
aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkoxycarbonyl, alkylaminoacarbonyl,
arylalkylaminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, arylalkyl
carbonyl, alkenylcarbonyl, aminocarbonyl, alkylthiocarbonyl, alkoxyl, phosphate, phosphonato,
phosphinato, cyano, amido, amino (including alkyl amino, dialkylamino, arylamino,
diarylamino, and alkylarylamino), acylamino (including alkylcarbonylamino, arylcarbonylamino,
carbamoyl and ureido), amidino, imino, sulfhydryl, alkylthio, arylthio, thiocarboxylate,
sulfates, alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, trifluoromethyl,
cyano, azido, heterocyclyl, alkyl, alkylaryl, or an aromatic or heteroaromatic moiety.
[0116] The term "heteroatom" includes atoms of any element other than carbon or hydrogen.
Preferred heteroatoms are nitrogen, oxygen, sulfur and phosphorus.
[0117] The term "prodrug moiety" includes moieties which can be metabolized
in vivo to a hydroxyl group and moieties which may advantageously remain esterified
in vivo. Preferably, the prodrugs moieties are metabolized
in vivo by esterases or by other mechanisms to hydroxyl groups or other advantageous groups.
Examples of prodrugs and their uses are well known in the art (See,
e.g.,
Berge et al. (1977) "Pharmaceutical Salts", J. Pharm. Sci. 66:1-19). The prodrugs can be prepared
in situ during the final isolation and purification of the compounds, or by separately reacting
the purified compound in its free acid form or hydroxyl with a suitable esterifying
agent. Hydroxyl groups can be converted into esters
via treatment with a carboxylic acid. Examples of prodrug moieties include substituted
and unsubstituted, branch or unbranched lower alkyl ester moieties, (e.g., propionoic
acid esters), lower alkenyl esters, di-lower alkylamino lower-alkyl esters (e.g.,
dimethylaminoethyl ester), acylamino lower alkyl esters (e.g., acetyloxymethyl ester),
acyloxy lower alkyl esters (e.g., pivaloyloxymethyl ester), aryl esters (phenyl ester),
aryl-lower alkyl esters (e.g., benzyl ester), substituted (e.g., with methyl, halo,
or methoxy substituents) aryl and aryl-lower alkyl esters, amides, lower-alkyl amides,
di-lower alkyl amides, and hydroxy amides. Preferred prodrug moieties are propionoic
acid esters and acyl esters.
[0118] It will be noted that the structure of some of the tetracycline compounds of this
invention includes asymmetric carbon atoms. It is to be understood accordingly that
the isomers arising from such asymmetry (e.g., all enantiomers and diastereomers)
are included within the scope of this invention, unless indicated otherwise. Such
isomers can be obtained in substantially pure form by classical separation techniques
and by stereochemically controlled synthesis. Furthermore, the structures and other
compounds and moieties discussed in this application also include all tautomers thereof.
[0119] The invention also pertains to methods for treating a tetracycline responsive states
in subjects, by administering to a subject an effective amount of a 7-substituted
tetracycline compound of the invention (e.g., a compound of Formula (I) or shown in
Table 1), such that the tetracycline responsive state is treated.
[0120] The language "tetracycline compound responsive state" includes states which can be
treated, prevented, or otherwise ameliorated by the administration of a tetracycline
compound of the invention. Tetracycline compound responsive states include bacterial
infections (including those which are resistant to other tetracycline compounds),
cancer, diabetes, and other states for which tetracycline compounds have been found
to be active (see, for example,
U.S. Patent Nos. 5,789,395;
5,834,450; and
5,532,227). Compounds of the invention can be used to prevent or control important mammalian
and veterinary diseases such as diarrhea, urinary tract infections, infections of
skin and skin structure, ear, nose and throat infections, wound infection, mastitis
and the like. In addition, methods for treating neoplasms using tetracycline compounds
of the invention are also included (
van der Bozert et al., Cancer Res., 48:6686-6690 (1988)).
[0121] Bacterial infections may be caused by a wide variety of gram positive and gram negative
bacteria. The compounds of the invention are useful as antibiotics against organisms
which are resistant to other tetracycline compounds. The antibiotic activity of the
tetracycline compounds of the invention may be determined using the method discussed
in Example 2, or by using the in vitro standard broth dilution method described in
Waitz, J.A., National Commission for Clinical Laboratory Standards, Document M7-A2,
vol. 10, no. 8, pp. 13-20, 2nd edition, Villanova, PA (1990).
[0122] The tetracycline compounds may also be used to treat infections traditionally treated
with tetracycline compounds such as, for example, rickettsiae; a number of gram-positive
and gram-negative bacteria; and the agents responsible for lymphogranuloma venereum,
inclusion conjunctivitis, psittacosis. The tetracycline compounds may be used to treat
infections of,
e.g., K. pneumoniae, Salmonella, E. hirae, A. baumanii, B. catarrhalis, H influenzae,
P. aeruginosa, E. faecium, E. coli, S. aureus or
E. faecalis. In one embodiment, the tetracycline compound is used to treat a bacterial infection
that is resistant to other tetracycline antibiotic compounds. The tetracycline compound
of the invention may be administered with a pharmaceutically acceptable carrier.
[0123] The language "effective amount" of the compound is that amount necessary or sufficient
to treat or prevent a tetracycline compound responsive state. The effective amount
can vary depending on such factors as the size and weight of the subject, the type
of illness, or the particular tetracycline compound. For example, the choice of the
tetracycline compound can affect what constitutes an "effective amount". One of ordinary
skill in the art would be able to study the aforementioned factors and make the determination
regarding the effective amount of the tetracycline compound without undue experimentation.
[0124] The invention also pertains to methods of treatment against microorganism infections
and associated diseases. The methods include administration of an effective amount
of one or more tetracycline compounds to a subject. The subject can be either a plant
or, advantageously, an animal, e.g., a mammal, e.g., a human.
[0125] In the therapeutic methods of the invention, one or more tetracycline compounds of
the invention may be administered alone to a subject, or more typically a compound
of the invention will be administered as part of a pharmaceutical composition in mixture
with conventional excipient, i.e., pharmaceutically acceptable organic or inorganic
carrier substances suitable for parenteral, oral or other desired administration and
which do not deleteriously react with the active compounds and are not deleterious
to the recipient thereof.
[0126] The invention also pertains to pharmaceutical compositions comprising a therapeutically
effective amount of a tetracycline compound (e.g., a compound of Formula 1, Table
2, or other compound described herein) and, optionally; a pharmaceutically acceptable
carrier.
[0127] The language "pharmaceutically acceptable carrier" includes substances capable of
being coadministered with the tetracycline compound(s), and which allow both to perform
their intended function, e.g., treat or prevent a tetracycline responsive state. Suitable
pharmaceutically acceptable carriers include but are not limited to water, salt solutions,
alcohol, vegetable oils, polyethylene glycols, gelatin, lactose, amylose, magnesium
stearate, talc, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides
and diglycerides, petroethral fatty acid esters, hydroxymethyl-cellulose, polyvinylpyrrolidone,
etc. The pharmaceutical preparations can be sterilized and if desired mixed with auxiliary
agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers,
salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic
substances and the like which do not deleteriously react with the active compounds
of the invention.
[0128] The tetracycline compounds of the invention that are basic in nature are capable
of forming a wide variety of salts with various inorganic and organic acids. The acids
that may be used to prepare pharmaceutically acceptable acid addition salts of the
tetracycline compounds of the invention that are basic in nature are those that form
non-toxic acid addition salts, i.e., salts containing pharmaceutically acceptable
anions, such as the hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate,
phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid
citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate,
fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate,
ethanesulfonate, benzenesulfonate, p-toluenesulfonate and palmoate [i.e., 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)]
salts. Although such salts must be pharmaceutically acceptable for administration
to a subject, e.g., a mammal, it is often desirable in practice to initially isolate
a tetracycline compound of the invention from the reaction mixture as a pharmaceutically
unacceptable salt and then simply convert the latter back to the free base compound
by treatment with an alkaline reagent and subsequently convert the latter free base
to a pharmaceutically acceptable acid addition salt. The acid addition salts of the
base compounds of this invention are readily prepared by treating the base compound
with a substantially equivalent amount of the chosen mineral or organic acid in an
aqueous solvent medium or in a suitable organic solvent, such as methanol or ethanol.
Upon careful evaporation of the solvent, the desired solid salt is readily obtained.
The preparation of other tetracycline compounds of the invention not specifically
described in the foregoing experimental section can be accomplished using combinations
of the reactions described above that will be apparent to those skilled in the art.
[0129] The preparation of other tetracycline compounds of the invention not specifically
described in the foregoing experimental section can be accomplished using combinations
of the reactions described above that will be apparent to those skilled in the art.
[0130] The tetracycline compounds of the invention that are acidic in nature are capable
of forming a wide variety of base salts. The chemical bases that may be used as reagents
to prepare pharmaceutically acceptable base salts of those tetracycline compounds
of the invention that are acidic in nature are those that form non-toxic base salts
with such compounds. Such non-toxic base salts include, but are not limited to those
derived from such pharmaceutically acceptable cations such as alkali metal cations
(e.g., potassium and sodium) and alkaline earth metal cations (e.g., calcium and magnesium),
ammonium or water-soluble amine addition salts such as N-methylglucamine-(meglumine),
and the lower alkanolammonium and other base salts of pharmaceutically acceptable
organic amines. The pharmaceutically acceptable base addition salts of tetracycline
compounds of the invention that are acidic in nature may be formed with pharmaceutically
acceptable cations by conventional methods. Thus, these salts may be readily prepared
by treating the tetracycline compound of the invention with an aqueous solution of
the desired pharmaceutically acceptable cation and evaporating the resulting solution
to dryness, preferably under reduced pressure. Alternatively, a lower alkyl alcohol
solution of the tetracycline compound of the invention may be mixed with an alkoxide
of the desired metal and the solution subsequently evaporated to dryness.
[0131] The preparation of other tetracycline compounds of the invention not specifically
described in the foregoing experimental section can be accomplished using combinations
of the reactions described above that will be apparent to those skilled in the art.
[0132] The tetracycline compounds of the invention and pharmaceutically acceptable salts
thereof can be administered via either the oral, parenteral or topical routes. In
general, these compounds are most desirably administered in effective dosages, depending
upon the weight and condition of the subject being treated and the particular route
of administration chosen. Variations may occur depending upon the species of the subject
being treated and its individual response to said medicament, as well as on the type
of pharmaceutical formulation chosen and the time period and interval at which such
administration is carried out.
[0133] The pharmaceutical compositions of the invention may be administered alone or in
combination with other known compositions for treating tetracycline responsive states
in a subject, e.g., a mammal. Preferred mammals include pets (e.g., cats, dogs, ferrets,
etc.), farm animals (cows, sheep, pigs, horses, goats, etc.), lab animals (rats, mice,
monkeys, etc.), and primates (chimpanzees, humans, gorillas). The language "in combination
with" a known composition is intended to include simultaneous administration of the
composition of the invention and the known composition, administration of the composition
of the invention first, followed by the known composition and administration of the
known composition first, followed by the composition of the invention. Any of the
therapeutically composition known in the art for treating tetracycline responsive
states can be used in the methods of the invention.
[0134] The tetracycline compounds of the invention may be administered alone or in combination
with pharmaceutically acceptable carriers or diluents by any of the routes previously
mentioned, and the administration may be carried out in single or multiple doses.
For example, the novel therapeutic agents of this invention can be administered advantageously
in a wide variety of different dosage forms, i.e., they may be combined with various
pharmaceutically acceptable inert carriers in the form of tablets, capsules, lozenges,
troches, hard candies, powders, sprays, creams, salves, suppositories, jellies, gels,
pastes, lotions, ointments, aqueous suspensions, injectable solutions, elixirs, syrups,
and the like. Such carriers include solid diluents or fillers, sterile aqueous media
and various non-toxic organic solvents, etc. Moreover, oral pharmaceutical compositions
can be suitably sweetened and/or flavored. In general, the therapeutically-effective
compounds of this invention are present in such dosage forms at concentration levels
ranging from about 5.0% to about 70% by weight.
[0135] For oral administration, tablets containing various excipients such as microcrystalline
cellulose, sodium citrate, calcium carbonate, dicalcium phosphate and glycine may
be employed along with various disintegrants such as starch (and preferably corn,
potato or tapioca starch), alginic acid and certain complex silicates, together with
granulation binders like polyvinylpyrrolidone, sucrose, gelatin and acacia. Additionally,
lubricating agents such as magnesium stearate, sodium lauryl sulfate and talc are
often very useful for tabletting purposes. Solid compositions of a similar type may
also be employed as fillers in gelatin capsules; preferred materials in this connection
also include lactose or milk sugar as well as high molecular weight polyethylene glycols.
When aqueous suspensions and/or elixirs are desired for oral administration, the active
ingredient may be combined with various sweetening or flavoring agents, coloring matter
or dyes, and, if so desired, emulsifying and/or suspending agents as well, together
with such diluents as water, ethanol, propylene glycol, glycerin and various like
combinations thereof.
[0136] For parenteral administration (including intraperitoneal, subcutaneous, intravenous,
intradermal or intramuscular injection), solutions of a therapeutic compound of the
present invention in either sesame or peanut oil or in aqueous propylene glycol may
be employed. The aqueous solutions should be suitably buffered (preferably pH greater
than 8) if necessary and the liquid diluent first rendered isotonic. These aqueous
solutions are suitable for intravenous injection purposes. The oily solutions are
suitable for intraarticular, intramuscular and subcutaneous injection purposes. The
preparation of all these solutions under sterile conditions is readily accomplished
by standard pharmaceutical techniques well known to those skilled in the art. For
parenteral application, examples of suitable preparations include solutions, preferably
oily or aqueous solutions as well as suspensions, emulsions, or implants, including
suppositories. Therapeutic compounds may be formulated in sterile form in multiple
or single dose formats such as being dispersed in a fluid carrier such as sterile
physiological saline or 5% saline dextrose solutions commonly used with injectables.
[0137] Additionally, it is also possible to administer the compounds of the present invention
topically when treating inflammatory conditions of the skin. Examples of methods of
topical administration include transdermal, buccal or sublingual application. For
topical applications, therapeutic compounds can be suitably admixed in a pharmacologically
inert topical carrier such as a gel, an ointment, a lotion or a cream. Such topical
carriers include water, glycerol, alcohol, propylene glycol, fatty alcohols, triglycerides,
fatty acid esters, or mineral oils. Other possible topical carriers are liquid petrolatum,
isopropylpalmitate, polyethylene glycol, ethanol 95%, polyoxyethylene monolauriate
5% in water, sodium lauryl sulfate 5% in water, and the like. In addition, materials
such as anti-oxidants, humectants, viscosity stabilizers and the like also may be
added if desired.
[0138] For enteral application, particularly suitable are tablets, dragees or capsules having
talc and/or carbohydrate carrier binder or the like, the carrier preferably being
lactose and/or corn starch and/or potato starch. A syrup, elixir or the like can be
used wherein a sweetened vehicle is employed. Sustained release compositions can be
formulated including those wherein the active component is protected with differentially
degradable coatings, e.g., by microencapsulation, multiple coatings, etc.
[0139] In addition to treatment of human subjects, the therapeutic methods of the invention
also will have significant veterinary applications, e.g. for treatment of livestock
such as cattle, sheep, goats, cows, swine and the like; poultry such as chickens,
ducks, geese, turkeys and the like; horses; and pets such as dogs and cats. Also,
the compounds of the invention may be used to treat non-animal subjects, such as plants.
[0140] It will be appreciated that the actual preferred amounts of active compounds used
in a given therapy will vary according to the specific compound being utilized, the
particular compositions formulated, the mode of application, the particular site of
administration, etc. Optimal administration rates for a given protocol of administration
can be readily ascertained by those skilled in the art using conventional dosage determination
tests conducted with regard to the foregoing guidelines.
[0141] In general, compounds of the invention for treatment can be administered to a subject
in dosages used in prior tetracycline therapies. See, for example, the
Physicians' Desk Reference. For example, a suitable effective dose of one or more compounds of the invention
will be in the range of from 0.01 to 100 milligrams per kilogram of body weight of
recipient per day, preferably in the range of from 0.1 to 50 milligrams per kilogram
body weight of recipient per day, more preferably in the range of 1 to 20 milligrams
per kilogram body weight of recipient per day. The desired dose is suitably administered
once daily, or several sub-doses, e.g. 2 to 5 sub-doses, are administered at appropriate
intervals through the day, or other appropriate schedule.
[0142] It will also be understood that normal, conventionally known precautions will be
taken regarding the administration of tetracyclines generally to ensure their efficacy
under normal use circumstances. Especially when employed for therapeutic treatment
of humans and animals
in vivo, the practitioner should take all sensible precautions to avoid conventionally known
contradictions and toxic effects. Thus, the conventionally recognized adverse reactions
of gastrointestinal distress and inflammations, the renal toxicity, hypersensitivity
reactions, changes in blood, and impairment of absorption through aluminum, calcium,
and magnesium ions should be duly considered in the conventional manner.
[0143] Furthermore, the invention also pertains to the use of a tetracycline compound of
formula I, for the preparation of a medicament. The medicament may include a pharmaceutically
acceptable carrier and the tetracycline compound is an effective amount,
e.g., an effective amount to treat a tetracycline responsive state.
EXEMPLIFICATION OF THE INVENTION
[0144] Compounds of the invention may be made as described below, with modifications to
the procedure below within the skill of those of ordinary skill in the art.
EXAMPLE 1: Synthesis of 7-Substituted Sancyclines
7 Iodo Sancycline
[0145] One gram of sancycline was dissolved in 25 mL of TFA (trifluoroacetic acid) that
was cooled to 0 C (on ice). 1.2 equivalents ofN-iodosuccinimide (NIS) was added to
the reaction mixture and reacted for forty minutes. The reaction was removed from
the ice bath and was allowed to react at room temperature for an additional five hours.
The mixture was then analyzed by HPLC and TLC, was driven to completion by the stepwise
addition of NIS. After completion of the reaction, the TFA was removed
in vacuo and 3 mL of MeOH was added to dissolve the residue. The methanolic solution was the
added slowly to a rapidly stirring solution of diethyl ether to form a greenish brown
precipitate. The 7-iodo isomer of sancycline was purified by treating the 7-iodo product
with activated charcoal., filtering through Celite, and subsequent removal of the
solvent
in vacuo to produce the 7-isomer compound as a pure yellow solid in 75% yield.
MS(M+H) (formic acid solvent) 541.3.
\Rt: Hypersil C18 BDS Column, 11.73
1H NMR (Methanol d
4-300 MHz) δ 7.87-7.90 (d, 1H), 6.66-6.69 (d, 1H), 4.06 (s, 1H), 2.98 (s, 6H), 2.42
(m, 1H), 2.19 (m, 1H), 1.62 (m, 4H), 0.99 (m, 2H)
Compound B (7-Phenyl Sancycline)
[0146] 7-iodosancycline, 150 mg (0.28 mM), Pd(OAc)
2 and 1 0 mL of MeOH are added to a flask with a stir bar and the system degassed 3x
using argon. Na
2CO
3 (87 mg, 0.8 mM) dissolved in water and argon degassed is added via syringe is added
along with phenylboronic acid (68 mg, 0.55 mM) in MeOH that was also degassed . The
reaction was followed by HPLC for 2 hours and cooled to room temperature. The solution
was filtered, and dried to produce a crude mixture. The solid was dissolved in dimethylformamide
and injected onto a preparative HPLC system using C18 reverse-phase silica. The fraction
at 36-38 minutes was isolated, and the solvent removed in vacuo to yield the product
plus salts. The salts were removed by extraction into 50:25:25 water, butanol, ethyl
acetate and dried
in vacuo. This solid was dissolved in MeOH and the HCl salt made by bubbling in HCl gas. The
solvent was removed to produce the product in 42% yield as a yellow solid.
[0147] Rt 21.6 min: MS (M+H, formic acid solvent): 491.3
1H NMR (Methanol d
4-300 MHz)δ 7.87 (d, J=8.86 Hz, 1H), 7.38 (m, 5H), 6.64 (d, 8.87 Hz, 1H), 4.00 (s,
1H), 3.84 (s, 2H), 3.01 (s, 6H), 2.46 (m, 2H), 1.63 (m, 4H), 0.95 (m, 2H)
Compound E (7-(4'-Chlorophenyl) Sancycline)
[0148] 7-iodosancycline, 500 mg (0.91 mM), Pd(OAc)
2 21 mg, and 20 mL of MeOH are added to a flask with a stir bar and the system degassed
3x using argon. Na
2CO
3 (293 mg, 2.8 mM) dissolved in water and argon degassed is added via syringe is added
along with 4-Cl-phenylboronic acid (289 mg, 1.85 mM) in MeOH that was also degassed.
The reaction was followed by HPLC for 45 minutes and cooled to room temperature. The
solution was filtered, and dried to produce a crude mixture. The solid was dissolved
in dimethylformamide and injected onto a preparative HPLC system using C18 reverse-phase
silica. The fraction at 39 minutes was isolated, and the solvent removed in vacuo
to yield the product plus salts. The salts were removed by extraction into 50:25:25
water, butanol, ethyl acetate and dried in vacuo. This solid was dissolved in MeOH
and the HCl salt made by bubbling in HCl gas. The solvent was removed to produce the
product in 57% yield as a yellow solid.
[0149] Rt 20.3 min: MS (M+H, formic acid solvent): 525.7
1H NMR (Methanol d
4-300 MHz)δ 7.49-7.52 (d, J=8.54 Hz, 1H), 6.99-7.01 (d, 8.61 Hz, 1H), 4.12 (s, 1H),
3.67 (m, 1H), 3.06 (s, 6H), 2.58 (m, 2H), 1.62(m, 4H), 1.01 (m, 2H)
Compound A (7-(4'-Fluorophenyl) Sancycline)
[0150] 7-iodosancycline, 200 mg (0.3 mM), Pd(OAc)
2 8.3 mg, and 10 mL of MeOH are added to a flask with a stir bar and the system degassed
3x using argon. Na
2CO
3 (104 mg, 1.1 mM) dissolved in water and argon degassed is added via syringe is added
along with 4-F-phenylboronic acid (104 mg, 0.7 mM) in MeOH that was also degassed
. The reaction was followed by HPLC for 20 minutes and cooled to room temperature.
The solution was filtered, and dried to produce a crude mixture. The solid was dissolved
in dimethylformamide and injected onto a preparative HPLC system using C18 reverse-phase
silica. The fraction at 19-20 minutes was isolated, and the solvent removed in vacuo
to yield the product plus salts. The salts were removed by extraction into 50:25:25
water, butanol, ethyl acetate and dried
in vacuo. This solid was dissolved in MeOH and the HCl salt made by bubbling in HCl gas. The
solvent was removed to produce the product in 47% yield as a yellow solid.
Rt 19.5 min: MS (M+H, formic acid solvent): 509.4
[0151] 1H NMR (Methanol d
4-300 MHz)δ 6.92-6.95 (d, 1H), 7.45-7.48 (d, 1H), 7.15-7.35 (m, 4H), 4.05 (s, 1H),
3.62 (m, 1H), 3.08 (s, 6H), 2.55 (m, 2H), 1.65(m, 4H), 1.00 (m, 2H)
Compound AT (7-(4'-Iodo-1',3'-carboethoxy-1',3'-butadiene) Sancycline)
[0152] 7-1-Sancycline (1 gm, 1.86 mmol), was dissolved in 25 mL of acetonitrile and was
degassed and purged with nitrogen (three times). To this suspension Pd(OAc)
2 (20 mg, .089 mmol), CuI (10 mg, .053 mmol), (o-tolyl)
3P (56 mg, .183 mmol) were added and purged with nitrogen. Ethyl propiolate (1 mL)
and triethylamine (1 mL) were added to the suspension. It turned to a brown solution
upon addition of Et
3N. The reaction mixture was then heated to 70 degrees C for two hours. Progress of
the reaction was monitored by HPLC. It was then cooled down to room temperature and
was filtered through celite. Evaporation of the solvent gave a brown solid, which
was then purified on preparative HPLC to give a yellow solid.
Compound AI (7-(2'-Chloroethenyl)-Sancycline)
[0153] To a solution/suspension of 0.65 g (1 mmol) of 7-iodo sancycline, 0.05 g tetrakis
triphenyl phosphinato palladate, 0.012 g palladium acetate, 0.05 g copper (I) iodide
in 10 mL acetonitrile, 2 mL triethylamine and 0.5 g trimethylsilyl acetylene was added
at room temperature. The reaction proceeded for two hours before being filtered through
a celite bed and concentrated. The crude product was purified by preparative HPLC.
The collected fractions were concentrated and the residue was taken up in about 1
mL of methanol and 2 mL of HCl saturated methanol. The product was precipitated with
ether. The solids were filtered off and dried under reduced pressure. NMR spectroscopy
and LC-MS showed that the compound was 7-(2-chloroethenyl) sancycline.
Compound D (7-(4'-aminophenyl) Sancycline)
[0154] To a solution of 200 mg of 7-(4-nitrophenyl) sancycline in 50 mL methanol, 10 mg
of 10% palladium on charcoal catalyst was added. The reaction mixture was shaken under
40 psi hydrogen pressure for 2 hours and was then filtered followed by concentration.
The residue was further purified by preparative HPLC. 35 mg was isolated as the HCl
salt and the structure was proved by MNR and LC-MS to be 7-(4-aminophenyl) sancycline.
Compound EF (1,8-Di-7-Sancyclinyl-1,8-Heptyne)
[0155]

[0156] A flask was charged with 7-iodosancycline (3.0 g, 4.57 mmol, 9A), Pd(OAc)
2 (0.102 g, 0.46 mmol), CuI (0.044 g, 0.23 mmol), and P(
o-Tol)
3 (0.278 g, 0.91 mmol) and the contents were suspended in anhydrous acetonitrile. After
purging this mixture with dinitrogen at 60 °C (bath temperature), 1,7-octadiyne (0.305
mL, 2.29 mmol, 9B) was added to it, followed by the addition of triethylamine. The
dark colored solution was stirred at 60 °C for 3h, filtered through a bed of celite,
dried. A methanol: DMF: TFA (90:8:2) solution of the product (9C) was purified on
preparative HPLC column. The final product (9C) was characterized by HPLC, MS, and
1H NMR spectroscopy.
Compound U (7-(NN-Dimethylpropynyl)-Sancycline)
[0157]

[0158] 7-1-Sancycline (1 gm, 1.86 mmol), taken in 25 mL of acetonitrile was degassed and
purged with nitrogen (three times). To this suspension Pd(OAc)
2 (20 mg, .089 mmol), CuI (10 mg, .053 mmol), (o-tolyl)
3P (56 mg, 0.183 mmol) were added and purged with nitrogen for few minutes. NN-Dimethylpropyne
(308 mg, 3.72 mmol) and triethylamine (1 mL) were added to the suspension. It was
turned into a brown solution upon addition of Et
3N. The reaction mixture was then heated to 70 °C for 3 hours. Progress of the reaction
was monitored by HPLC. It was then cooled down to rt and was filtered through celite.
Evaporation of the solvent gave a brown solid, which was then purified on preparative
HPLC to give a yellow solid. The structure of this compound has been characterized
using 1H NMR, HPLC, and MS.
Compound BA (7-(2'-Chloro-3-Hydroxypropenyl)-Sancycline)
[0159]

[0160] 7-(alkynyl)-sancycline (100 mg) was taken in 20 ml of saturated MeOH/HCl and stirred
for 20 min. The solvent was then evaporated to give a yellow powder. The structure
of this compound has been characterized using 1H NMR, HPLC, and MS.
Compound CC (7-(3'-Methoxyphenylethyl)-Sancycline)
[0161]

[0162] 7-(3'-Methoxyphenylethynyl)-sancycline (1mmol)/ was taken in saturated solution of
MeOH/HCl. To this solution 10% Pd/C was added and was subjected to hydrogenation at
50 psi for 12 hrs. It was then filtered through celite. The solvent was evaporated
to give a yellow powder. Finally, it was precipitated from MeOH/diethylether. The
structure of this compound has been characterized using 1H NMR, HPLC, and MS.
Compound CW ((2-Dimethylamino-Acetylamino)-Sancycline)
[0163]

[0164] NN-Dimethylglycine (1.2 mmol) was dissolved in DMF (5 mL) and
O-Benzotriazol-1-yl-
N,
N, N', N',-tetramethyluronium hexafluorophosphate (HBTU, 1.2 mmol) was added. The solution
was then stirred for 5 minutes at room temperature. To this solution, 7-aminosancycline
(1 mmol, 10A) was added, followed by the addition of diisopropylethyl amine (DIEA,
1.2 mmol). The reaction was then stirred at room temperature for 2 hours. The solvent,
DMF, was removed on vaccum. The crude material was dissolved in 5 mL of MeOH and filtered
using autovials and purified using preparative HPLC. The structure of the product
(10B) has been characterized using 1H NMR, HPLC, and MS.
Compound DJ (7-(N-Methylsulphonamidopropargylamine) Sancycline)
[0165]

[0166] To a mixture of 7-iodosancycline mono trifluoroacetic acid salt (1g; 1.53 mmoles,
11A), palladium II acetate(17.2 mg; 0.076 mmoles), tetrakis triphenylphosphine palladium
(176.8 mg; 0.153 mmoles), and copper (I) iodide(49 mg; 0,228 mmoles) was added 15
ml of reagent grade acetonitrile in a clean dry 2 necked round bottom flask. The reaction
was purged with a slow steam of argon gas, with stirring, for 5 minutes before the
addition (in one portion as a solid) of N-methylsulphonamidopropargyl amine (11B).
The sulphonamide was prepared by a method known in the art (
J.Med.Chem 31(3) 1988; 577-82). This was followed by one milliliter of triethylamine (1 ml; 0.726 mg; 7.175 mmoles)
and the reaction was stirred, under an argon atmosphere, for approximately 1.0 hour
at ambient temperature. The reaction mixture was suctioned filtered through a pad
of diatomaceous earth and washed with acetonitrile. The filtrates were reduced to
dryness under vacuo and the residue was treated with a dilute solution of trifluroroacetic
acid in acetonitrile to adjust the pH to approximately 2. The residue was treated
with more dilute trifluoroacetic acid in acetonitrile, resulting in the formation
of a precipitate, which was removed via suction filtration. The crude filtrates were
purified utilizing reverse phase HPLC with DVB as the solid phase; and a gradient
of 1:1 methanol/acetonitrile 1% trifluoroacetic acid and 1% trifluoroacetic acid in
water. The appropriate fractions were reduced to dryness under reduced pressure and
solid collected. The product (11C) was characterized via
1H NMR, mass spectrogram and LC reverse phase.
Compound BK (7-(2'-methoxy-5'-formylphenyl)sancycline)
[0167]

[0168] 7-iodo-sancycline (12A, 1g, 1.5 3mmol), Pd(OAc)
2 (34 mg, 0.153 mmol), and MeOH (50 mL) were combined in a 250 mL 2 neck round bottom
flask equipped with a condenser and argon line. The solution was then purged with
argon (15min) while heated in an oil bath to approximately 70°C. Sodium carbonate
(482mg, 4.58mmol) was dissolved in water (3-5mL) and added to reaction flask. The
flask was then purged with argon for another 5 minutes. 2-Methoxy-5-formylphenyl boronic
acid (12B, 333mg, 1.83mmol) was dissolved in MeOH (5mL) and added to reaction flask.
The flask was then purged again with argon for 10 minutes. The reaction was monitored
to completion within 3 hours. The contents of the flask were filtered through filter
paper and the remaining solvent was evacuated. To make the hydrochloric acid salt,
the residue was dissolved in MeOH (sat. HCl) to make the HCl salt. The solution was
then filtered and the solvent was evacuated. The product (12C) was then characterized
by
1H NMR, LC-MS.
Compound FD (7-(2'-Methoxy-5'-N,N'-Dimethylaminomethylphenyl)Sancycline)
[0169]

[0170] The aldehyde (12A, 1g, 1.82mmol), dimethylamine HCl (13B, 297 mg, 3.64 mmol), triethylamine
(506 µL, 3.64 mmol), and 1,2-DCE (7 mL) were combined in a 40 mL vial. The contents
were dissolved within several minutes of shaking or stirring. Sodium triacetoxyborohydride
(772 mg, 3.64 mmol) was then added as a solid. The reaction was monitored by HPLC
and LC-MS and was complete within 3 hours. The reaction was quenched with MeOH (2
0mL) and the solvent was subsequently evacuated. The residue was redissolved in 3mL
DMF and separated on a C-18 column. Fractions from the prep column dried down in-vacuo
and the HCl salt was made by dissolving contents in methanol (sat. HCl). The solvent
was reduced and a yellow powder formed (13C). Characterized by
1H NMR, LC-MS, HPLC.
Example 2: In vitro Minimum Inhibitory Concentration (MIC) Assay
[0171] The following assay is used to determine the efficacy of the tetracycline compounds
against common bacteria. 2 mg of each compound is dissolved in 100 µl of DMSO. The
solution is then added to cation-adjusted Mueller Hinton broth (CAMHB), which results
in a final compound concentration of 200 µg per ml. The tetracycline compound solutions
are diluted to 50 µL volumes, with a test compound concentration of .098 µg/ml. Optical
density (OD) determinations are made from fresh log-phase broth cultures of the test
strains. Dilutions are made to achieve a final cell density of 1x10
6 CFU/ml. At OD=1, cell densities for different genera should be approximately:
E. coli |
1x109 CFU/ml |
S. aureus |
5x108 CFU/ml |
Enterococcus sp. |
2.5x109 CFU/ml |
[0172] 50 µl of the cell suspensions are added to each well of microtiter plates. The final
cell density should be approximately 5x10
5 CFU/ml. These plates are incubated at 35°C in an ambient air incubator for approximately
18 hr. The plates are read with a microplate reader and are visually inspected when
necessary. The MIC is defined as the lowest concentration of the tetracycline compound
that inhibits growth. Compounds of the invention indicate good inhibition of growth.
[0173] In Table 2, compounds which were good inhibitors of growth of a particular bacteria
are indicated with *, compounds which were very good inhibitors of a particular bacteria
are indicated with **, and compounds with were particularly good inhibitors of a particular
bacteria are indicated with ***.
EQUIVALENTS
[0174] Those skilled in the art will recognize, or be able to ascertain using no more than
routine experimentation, numerous equivalents to the specific procedures described
herein. Such equivalents are considered to be within the scope of the present invention
and are covered by the following claims. The contents of all references, patents,
and patent applications cited throughout this application are hereby incorporated
by reference. The appropriate components, processes, and methods of those patents,
applications and other documents may be selected for the present invention and embodiments
thereof.
[0175] For the avoidance of doubt, the present invention includes the subject-matter of
the following numbered paragraphs (hereafter "para.").
- 1. A substituted tetracycline compound of Formula I:

wherein:
X is CHC(R13Y'Y), CR6'R6, C=CR6'R6, S, NR6, or O;
R2, R2', R4', and R4" are each independently hydrogen, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl,
alkylsulfonyl, alkylamino, arylalkyl, aryl, heterocyclic, heteroaromatic or a prodrug
moiety;
R4 is NR4'R4", alkyl, alkenyl, alkynyl, aryl, hydroxyl, halogen, or hydrogen;
R2', R3, R10, R11 and R12 are each hydrogen or a pro-drug moiety;
R5 is hydroxyl, hydrogen, thiol, alkanoyl, aroyl, alkaroyl, aryl, heteroaromatic, alkyl,
alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino, arylalkyl,
alkyl carbonyloxy, or aryl carbonyloxy;
R6 and R6' are each independently hydrogen, methylene, absent, hydroxyl, halogen, thiol, alkyl,
alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino,
or an arylalkyl;
R7 is nitro, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl,
arylalkyl, amino, arylalkenyl, arylalkynyl, or-(CH2)0-3NR7cC(=W')WR7a;
R9 is hydrogen, nitro, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio, alkylsulfinyl,
alkylsulfonyl, arylalkyl, amino, arylalkenyl, arylalkynyl, thionitroso(e.g., - N=S),
or -(CH2)0-3NR9cC(=Z')ZR9a;
Z is CR9dR9e, S, NR9b or O;
Z' is O, S, or NR9f;
W is CR7dR7e, S, NR7b or O;
W' is O, NR7f S;
R7a, R7b, R7c, R7d, R7e, R9a, R9b, R9c, R9d, and R9e are each independently hydrogen, acyl, alkyl, alkenyl, alkynyl, alkoxy, alkylthio,
alkylsulfinyl, alkylsulfonyl, alkylamino, arylalkyl, aryl, heterocyclic, heteroaromatic
or a prodrug moiety;
R8 is hydrogen, hydroxyl, halogen, thiol, alkyl, alkenyl, alkynyl, aryl, alkoxy, alkylthio,
alkylsulfinyl, alkylsulfonyl, alkylamino, or an arylalkyl;
R13 is hydrogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl,
alkylsulfonyl, alkylamino, or an arylalkyl; and
Y' and Y are each independently hydrogen, halogen, hydroxyl, cyano, sulfhydryl, amino,
alkyl, alkenyl, alkynyl, alkoxy, alkylthio, alkylsulfinyl, alkylsulfonyl, alkylamino,
or an arylalkyl, and pharmaceutically acceptable salts thereof.
- 2. The tetracycline compound of para. 1, wherein R4 is NR4'R4", X is CR6R6'; R2, R2', R6 R6', R8, R9 R10, R11, and R12 are each hydrogen; R4' and R4" are lower alkyl; and R5 is hydroxy or hydrogen.
- 3. The tetracycline compound of para. 2, wherein R4' and R4" are each methyl and R5 is hydrogen.
- 4. The tetracycline compound of any one of para. 1-3, wherein R7 is aryl.
- 5. The tetracycline compound of para. 4, wherein R7 is substituted or unsubstituted phenyl.
- 6. The tetracycline compound of para. 5, wherein said phenyl is substituted with a
substituent selected from the group consisting of alkyl, alkenyl, halogen, hydroxyl,
alkoxy, alkylcarbonyloxy, alkyloxycarbonyl, arylcarbonyloxy, alkoxycarbonylamino,
alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminoacarbonyl,
arylalkyl aminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aminoalkyl,
arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, silyl, aminocarbonyl, alkylthiocarbonyl,
phosphate, aralkyl, phosphonato, phosphinato, cyano, amino, acylamino, amido, imino,
sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate, alkylsulfinyl, sulfonato,
sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl, alkylaryl, aryl and heteroaryl.
- 7. The tetracycline compound of para. 6, wherein said substituent is substituted or
unsubstituted alkyl.
- 8. The tetracycline compound of para. 5, wherein said alkyl is substituted with a
heterocycle.
- 9. The tetracycline compound of para. 8, wherein said heterocycle is morpholine, piperdine,
or pyrrolidine.
- 10. The tetracycline compound of para. 5, wherein said phenyl is substituted with
an amino group.
- 11. The tetracycline compound of para. 10, wherein said amino group is substituted
with one or more substituent selected from the group consisting of alkyl, alkenyl,
alkynyl, carbonyl, alkoxy and aryl group.
- 12. The tetracycline compound of para. 11, wherein said amino group is substituted
with an alkoxy group.
- 13. The tetracycline compound of para. 11, wherein said amino group is substituted
with a substituted or unsubstituted phenyl group.
- 14. The tetracycline compound of para. 13, wherein said substituted phenyl is substituted
with a halogen.
- 15. The tetracycline compound of para. 13, wherein said substituted phenyl amino group
is substituted with a second substituted amino group.
- 16. The tetracycline compound of para. 15, wherein said second substituted amino group
is substituted or unsubstituted aryl.
- 17. The tetracycline compound of para. 16, wherein said second substituted amino group
is a second substituted phenyl.
- 18. The tetracycline compound of para. 5, wherein said phenyl group is substituted
with alkoxy.
- 19. The tetracycline compound of para. 5, wherein said phenyl group is substituted
with an alkoxycarbonylamino group.
- 20. The tetracycline compound of para. 4, wherein said aryl group is substituted or
unsubstituted napthyl.
- 21. The tetracycline compound of para. 20, wherein said naphthyl group is substituted
with one or more substituents selected from the group consisting of alkyl, alkenyl,
halogen, hydroxyl, alkoxy, alkylcarbonyloxy, alkyloxycarbonyl, carboxy, arylcarbonyloxy,
alkoxycarbonylamino, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl,
alkylaminoacarbonyl, arylalkyl aminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl,
arylcarbonyl, aminoalkyl, arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, silyl,
aminocarbonyl, alkylthiocarbonyl, phosphate, aralkyl, phosphonato, phosphinato, cyano,
amino, acylamino, amido, imino, sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate,
alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl,
alkylaryl, aryl and heteroaryl.
- 22. The tetracycline compound of para. 21, wherein said substituent is amino or formyl.
- 23. The tetracycline compound of para. 4, wherein R7 is heteroaryl.
- 24. The tetracycline compound of para. 23, wherein said heteroaryl is selected from
the group consisting of furanyl, imidazolyl, benzothiophenyl, benzofuranyl, quinolinyl,
isoquinolinyl, pyridinyl, pyrazolyl, benzodioxazolyl, benzoxazolyl, benzothiazolyl,
benzoimidazolyl, methylenedioxyphenyl, indolyl, thienyl, pyrimidyl, pyrazinyl, purinyl,
pyrazolyl, oxazolyl, isooxazolyl, naphthridinyl, thiazolyl, isothiazolyl, and deazapurinyl.
- 25. The tetracycline compound of para. 24, wherein said heteroaryl is thiazolyl, thiophenyl,
or furanyl.
- 26. The tetracycline compound of any one of para. 1-3, wherein R7 is substituted or unsubstituted alkyl.
- 27. The tetracycline compound of para. 26, wherein said alkyl is a straight or branched
chain.
- 28. The tetracycline compound of para. 27, wherein said alkyl is methyl, ethyl, i-propyl,
n-propyl, n-butyl, i-butyl, t-butyl, pentyl, or hexyl.
- 29. The tetracycline compound of para. 26, wherein said alkyl comprises a cycloalkyl.
- 30. The tetracycline compound of para. 29, wherein said cycloalkyl is cyclopentyl,
cyclohexyl, cyclopropyl, or cyclobutyl.
- 31. The tetracycline compound of para. 26, wherein said alkyl is substituted with
one or more substituents selected from the group consisting of alkenyl, halogen, hydroxyl,
alkoxy, alkylcarbonyloxy, alkyloxycarbonyl, carboxy, arylcarbonyloxy, alkoxycarbonylamino,
alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminoacarbonyl,
arylalkyl aminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aminoalkyl,
arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, silyl, aminocarbonyl, alkylthiocarbonyl,
phosphate, aralkyl, phosphonato, phosphinato, cyano, amino, acylamino, amido, imino,
sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate, alkylsulfinyl, sulfonato,
sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl, alkylaryl, aryl and heteroaryl.
- 32. The tetracycline compound of para. 31, wherein said alkyl is substituted with
an amino, hydroxy, carboxy, carbonyl or aryl group.
- 33. The tetracycline compound of para. 32, wherein said aryl group is heteroaromatic.
- 34. The tetracycline compound of para. 33, wherein said heteroaromatic group is furanyl,
imidazolyl, benzothiophenyl, benzofuranyl, quinolinyl, isoquinolinyl, benzodioxazolyl,
benzoxazolyl, benzothiazolyl, benzoimidazolyl, methylenedioxyphenyl, indolyl, thienyl,
pyridinyl, pyrazolyl, pyrimidyl, pyrazinyl, purinyl, pyrazolyl, oxazolyl, isooxazolyl,
naphthridinyl, thiazolyl, isothiazolyl, and deazapurinyl.
- 35. The tetracycline compound of para. 34, wherein said heteroaromatic group is pyridinyl.
- 36. The tetracycline compound of para. 32, wherein said aryl group is substituted
or unsubstituted phenyl.
- 37. The tetracycline compound of para. 36, wherein said phenyl group is substituted
with sulfonamido or alkyl.
- 38. The tetracycline compound of para. 32, wherein said carbonyl group is morpholinylcarbonyl.
- 39. The tetracycline compound of any one of para. 1-3, wherein R7 is substituted or unsubstituted alkenyl.
- 40. The tetracycline compound of para. 39, wherein said alkenyl group is substituted
with one or more substituents selected from the group consisting of alkyl, halogen,
hydroxyl, alkoxy, alkylcarbonyloxy, alkyloxycarbonyl, carboxy, arylcarbonyloxy, alkoxycarbonylamino,
alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate, alkylcarbonyl, alkylaminoacarbonyl,
arylalkyl aminocarbonyl, alkenylaminocarbonyl, alkylcarbonyl, arylcarbonyl, aminoalkyl,
arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl, silyl, aminocarbonyl, alkylthiocarbonyl,
phosphate, aralkyl, phosphonato, phosphinato, cyano, amino, acylamino, amido, imino,
sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate, alkylsulfinyl, sulfonato,
sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl, alkylaryl, aryl and heteroaryl.
- 41. The tetracycline compound of para. 40, wherein said alkenyl group is substituted
with an aminocarbonyl or alkoxycarbonyl.
- 42. The tetracycline compound of para. 41, wherein said aminocarbonyl is dialkylaminocarbonyl.
- 43. The tetracycline compound of para. 40, wherein said alkenyl group is substituted
with one or more halogens.
- 44. The tetracycline compound of para. 40, wherein said alkenyl group is substituted
with one or more hydroxy groups.
- 45. The tetracycline compound of para. 40, wherein said alkenyl group is substituted
with a heteroaryl.
- 46. The tetracycline compound of para. 45, wherein said heteroaryl is selected from
the group consisting of furanyl, imidazolyl, benzothiophenyl, benzofuranyl, quinolinyl,
isoquinolinyl, benzodioxazolyl, benzoxazolyl, benzothiazolyl, benzoimidazolyl, methylenedioxyphenyl,
indolyl, thienyl, pyridinyl, pyrazolyl, pyrimidyl, pyrazinyl, purinyl, pyrazolyl,
oxazolyl, isooxazolyl, naphthridinyl, thiazolyl, isothiazolyl, and deazapurinyl.
- 47. The tetracycline compound of para. 46, wherein said heteroaryl is thiazolyl.
- 48. The tetracycline compound of para. 40, wherein said aryl substituent is substituted
or unsubstituted phenyl.
- 49. The tetracycline compound of para. 48, wherein said substituted phenyl is substituted
with one or more halogens, alkoxy, hydroxy, or alkyl groups.
- 50. The tetracycline compound of para. 49, wherein said substituted phenyl is substituted
with one or more fluorines.
- 51. The tetracycline compound of any one para. 1-3, wherein R7 is substituted or unsubstituted alkynyl.
- 52. The tetracycline compound of para. 51, wherein said substituted alkynyl is substituted
with an aryl.
- 53. The tetracycline compound of para. 52, wherein said substituted alkynyl is substituted
with substituted or unsubstituted phenyl.
- 54. The tetracycline compound of para. 53, wherein said substituted phenyl is substituted
with one or more substituents selected from the group consisting of alkyl, halogen,
hydroxyl, alkoxy, alkylcarbonyloxy, alkyloxycarbonyl, carboxy, alkylcarbonylamino,
arylcarbonyloxy, alkoxycarbonylamino, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate,
alkylcarbonyl, alkylaminoacarbonyl, arylalkyl aminocarbonyl, alkenylaminocarbonyl,
alkylcarbonyl, arylcarbonyl, aminoalkyl, arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl,
silyl, aminocarbonyl, alkylthiocarbonyl, phosphate, aralkyl, phosphonato, phosphinato,
cyano, amino, acylamino, amido, imino, sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate,
alkylsulfinyl, sulfonato, sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl,
alkylaryl, aryl and heteroaryl.
- 55. The tetracycline compound of para. 54, wherein said phenyl is substituted with
alkylcarbonylamino or sulphonamido.
- 56. The tetracycline compound of para. 51, wherein said substituted alkynyl is substituted
with a tetracycline moiety.
- 57. The tetracycline compound of any one of para. 1-3, wherein R7 is alkylcarbonyl amino.
- 58. The tetracycline compound of any one of para. 1-3, wherein R7 is carbonyl.
- 59. The tetracycline compound of para. 58, wherein R7 is substituted or unsubstituted alkyl carbonyl.
- 60. The tetracycline compound of para. 59, wherein said alkyl carbonyl is substituted
with an aryl.
- 61. The tetracycline compound of para. 60, wherein said aryl substituent is heteroaryl.
- 62. The tetracycline compound of para. 61, wherein said heteroaryl substituent is
pyridinyl.
- 63. The tetracycline compound of any one para. 1-3, wherein R7 is substituted or unsubstituted imino.
- 64. The tetracycline compound of any one of para. 1-3, wherein said substituted imino
is substituted with an hydroxy or alkoxy group.
- 65. The tetracycline compound of any one of para. 1-3, wherein R7 is NR7c(C=W')WR7a.
- 66. The tetracycline compound of para. 55, wherein R7c is hydrogen, W' is oxygen and W is oxygen.
- 67. The tetracycline compound of para. 65 or 66, wherein R7a is substituted or unsubstituted phenyl.
- 68. The tetracycline compound of para. 67, wherein said substituted phenyl is substituted
with one or more substituents selected from the group consisting of alkyl, halogen,
hydroxyl, alkoxy, alkylcarbonyloxy, alkyloxycarbonyl, carboxy, alkylcarbonylamino,
arylcarbonyloxy, alkoxycarbonylamino, alkoxycarbonyloxy, aryloxycarbonyloxy, carboxylate,
alkylcarbonyl, alkylaminoacarbonyl, arylalkyl aminocarbonyl, alkenylaminocarbonyl,
alkylcarbonyl, arylcarbonyl, aminoalkyl, arylalkylcarbonyl, alkenylcarbonyl, alkoxycarbonyl,
silyl, aminocarbonyl, alkylthiocarbonyl, phosphate, aralkyl, phosphonato, phosphinato,
cyano, amino, acylamino, amido, imino, sulfhydryl, alkylthio, sulfate, arylthio, thiocarboxylate,
alkylsulfmyl, sulfonato, sulfamoyl, sulfonamido, nitro, cyano, azido, heterocyclyl,
alkylaryl, aryl and heteroaryl.
- 69. The tetracycline compound of para. 65 or 66 wherein R7a is alkyl.
- 70. The tetracycline compound of any one of para. 1-3, wherein R7 is sulfonamido.
- 71. A tetracycline compound selected from the group consisting of:














and pharmaceutically acceptable salts, prodrugs and esters thereof.
- 72. A 7-substituted sancycline compound of the formula

wherein:
R4' and R4" are each alkyl;
R7 is a fused ring moiety of the formula

where Q is C or a heteroatom; an acylfuranyl group; a tri-, tetra- or penta- halo
substituted phenyl group; an aminomethylphenyl group; an acylaminomethyl group; an
alkylesterphenyl group; an acylphenyl group; an acylalkynyl group; an acylalkoxyphenyl
group; a methylphenyl group; a dimethylphenyl group; a carboxyphenyl group; a carboxyalkynyl
group; a thiophene group; a halothiophene group; an alkoxycarbonylphenyl group; an
alkoxyphenyl group; an alkoxyphenylalkynyl group; an alkoxypyridyl group; an alkylenepyridine
group; a cyclopentyl or cyclopentenyl group; a cyclohexylalkynyl group; a cyclohexenylalkynyl
group; a cyclohexenylhaloalkenyl group; a hydroxycyclohexylalkynyl group; a phenylalkynyl
group; a phenylalkenyl group; an aminoalkynyl group; a cyclobutylalkenyl group; a
pyridylalkynyl group; a pyridylalkenyl group; a nitrophenylalkynyl group; a nitrophenylalkenyl
group; a cyanoalkynyl group; an alkynyl group; a cyanoalkenyl group; a cyanophenyl
group; a dialkylamidoalkenyl group; a dialkylamidophenyl group; an aminophenylethyl
group; an aminophenylethynyl group; a haloethenyl group; a halophenylalkynyl group;
or an alkylester-substituted pentenyl group; and pharmaceutically acceptable salts,
esters and prodrugs thereof.
- 73. The compound of para. 72, wherein said compound is 7-(2-benzofuran) sancycline,
7-(3-formylfuranyl) sancycline, 7-(2,3,4,5,6-pentafluorophenyl) sancycline, 7-(4-aminomethylphenyl)
sancycline, 7-(4-formylaminomethylphenyl) sancycline, 7-(4-carboxyphenyl methylester)
sancycline, 7-(2-carboxyphenyl ethylester) sancycline, 7-(4-tolyl) sancycline, 7-(3-formylphenyl)
sancycline, 7-(4-formylphenyl) sancycline, 7-(3-acetylphenyl) sancycline, 7-(2-acetylphenyl)
sancycline, 7-(3-acetylphenyl) sancycline, 7-(4-acetylphenyl) sancycline, 7-(3-formyl-6-methoxyphenyl)
sancycline, 7-(4-methylphenyl) sancycline, 7-(3,5-dimethylphenyl) sancycline, 7-(3-carboxyphenyl)
sancycline, 7-(carboxyethynyl) sancycline, 7-(3-thiophene) sancycline, 7-(3-methyl-2-thiophene)
sancycline, 7-(3-methyl-5-thiophene) sancycline, 7-(3-chloro-2-thiophene) sancycline
and 7-(4-chloro-2-thiophene) sancycline, 7-(2-ethoxycarbonylphenyl) sancycline, 7-(2-ethoxyphenyl)
sancycline, 7-(3-ethoxyphenyl) sancycline, 7-(4-methoxyphenyl) sancycline, 7-(2,5-dimethoxyphenyl)
sancycline, 7-(4-methoxyphenylethynyl) sancycline, 7-(4-methoxy-5-pyridyl) sancycline,
7-(cyclopentenyl) sancycline, 7-(cyclohexylethynyl) sancycline, 7-(1-ethynyl-1-cyclohexyl)
sancycline, 7-(1-chlorovinyl-1-cyclohexyl) sancycline, 7-(1-ethynyl-1-hydroxycyclohexyl)
sancycline, 7-(phenylethynyl) sancycline, 7-(tolylethynyl) sancycline, 7-(4-methoxyphenylethynyl)
sancycline, 7-(2-vinylpyridyl) sancycline, 7-(vinylphenyl) sancycline, 7-(dimethylaminoethynyl)
sancycline, 7-(cyclobutylmethenyl) sancycline, 7-(2-pyridylethynyl) sancycline, 7-(3-pyridylethynyl)
sancycline, 7-(4-pyridylethenyl) sancycline, 7-(cyano-1-pentynyl) sancycline, 7-(cyanohexenyl)
sancycline, 7-(3-cyanophenyl) sancycline, 7-(4-cyanophenyl) sancycline, 7-(3-hydroxylphenylethynyl)
sancycline, 7-(N,N-dimethylacrylamide) sancycline, 7-(dimethylamidoethenyl) sancycline,
7-(4-nitrophenylethynyl) sancycline, 7-(4-nitrostyryl) sancycline, 7-(ethynyl) sancycline,
7-(N,N-dimethylacrylamide) sancycline, 7-(3-dimethylamidophenyl) sancycline, 7-(4-methoxyphenyl)
sancycline, 7-(4-aminophenylethyl) sancycline, 7-(2-chloroethenyl) sancycline, 7-(2-fluorophenylethenyl)
sancycline, 7-(1-iodo-1,3-dicarboethoxy-1,3-butadiene) sancycline, or 7-(4-aminophenylvinyl)
sancycline.
- 74. The compound of para. 1 or 71, wherein said compound is at least 75% free of positional
isomers.
- 75. The compound of para. 74, wherein said compound is at least 80% free of positional
isomers.
- 76. The compound of para. 75, wherein said compound is at least 85% free of positional
isomers.
- 77. The compound of para. 76, wherein said compound is at least 90% free of positional
isomers.
- 78. The compound of para. 77, wherein said compound is at least 95% free of positional
isomers.
- 79. A method for treating a tetracycline responsive state in a subject, comprising
administering to said subject a tetracycline compound of para. 1, 71, or 72, such
that said subject is treated.
- 80. The method of para. 79, wherein said tetracycline responsive state is a bacterial
infection.
- 81. The method of para. 80, wherein said bacterial infection is associated with E. coli.
- 82. The method of para. 80, wherein said bacterial infection is associated with S. aureus.
- 83. The method of para. 80, wherein said bacterial infection is associated with E. faecalis.
- 84. The method of para. 80, wherein said bacterial infection is resistant to other
tetracycline antibiotics.
- 85. The method of para. 79, wherein said subject is a human.
- 86. The method of para. 79, wherein said tetracycline compound is administered with
a pharmaceutically acceptable carrier.
- 87. A substituted tetracycline compound selected from the group listed in Table 2.
- 88. A pharmaceutical composition comprising a therapeutically effective amount of
a tetracycline compound of para. 1, 71, 72, or 87 and a pharmaceutically acceptable
carrier.