(11) EP 2 292 880 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 09.03.2011 Bulletin 2011/10

(51) Int Cl.: **E05B** 37/08^(2006.01)

(21) Application number: 09169464.6

(22) Date of filing: 04.09.2009

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(71) Applicants:

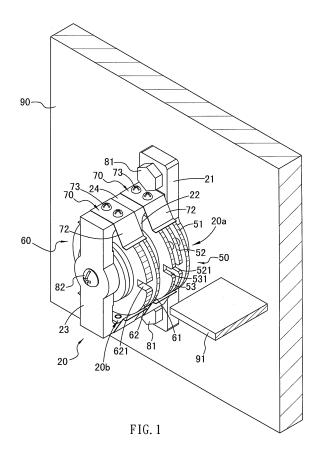
Liu, Wen-Kuei
 Taichung City 406 (TW)

 Liu, Chao-Hsuan Taichung County 427 Tanzi Township (TW)

Liu, Yu-Chun
 Taichung County 427
 Tanzi Township (TW)

(72) Inventors:

 Liu, Wen-Kuei Taichung City 406 (TW)


Liu, Chao-Hsuan
 Taichung County 427
 Tanzi Township (TW)

Liu, Yu-Chun
 Taichung County 427
 Tanzi Township (TW)

(74) Representative: Viering, Jentschura & Partner Grillparzerstrasse 14 81675 München (DE)

(54) Multistage lock apparatus

(57) A multistage lock apparatus has a base, a disk holder, two selecting devices, two disk sets and at least one interfering element. The base has a mounting panel and a central tube. The disk holder is connected to the base and has a mounting beam, two extending beams, a middle beam, a connecting beam and two mounting spaces. The selecting devices are rotatably connected to the base. The disk sets are respectively mounted on the selecting devices in the mounting specs of the disk holder and each disk set has a driving disk and at least one driven disk. The at least one interfering element is mounted securely on the disk holder and each of the at least one interfering element has a mounting tab and two elastic panels.

15

20

25

Description

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to a lock apparatus, and more particularly to a multistage lock apparatus that used on a safe, a strongbox or an exchequer to provide a preferred structure strength and safety.

1

2. Description of Related Art

[0002] A conventional multistage lock apparatus applied for a lock assembly comprises a base, a selecting disk and a disk set. The base is mounted on a door of the lock assembly. The selecting disk is rotatably mounted on the base and has a driving rod extending through the base and multiple number signs. The disk set is connected to the driving rod of the selecting disk and has four disks.

[0003] However, the structure strength of the conventional multistage lock apparatus is weak, and this will decrease the safety of using the conventional multistage lock apparatus. Furthermore, the conventional multistage lock apparatus has only one disk set including four disks, to unlock the multistage lock apparatus only needs four passwords, is easy and takes few time for an unauthorized person. In addition, the unauthorized person can use an electric sound collector or a stethoscope to rotate the disks in the unlock positions, and this will decrease the safety of using the conventional multistage lock apparatus. Therefore, the safety of using the conventional multistage lock apparatus needs to be improved.

[0004] To overcome the shortcomings, the present invention tends to provide a multistage lock apparatus to mitigate or obviate the aforementioned problems.

SUMMARY OF THE INVENTION

[0005] The main objective of the invention is to provide a multistage lock apparatus that can increase the difficulty of unlocking the multistage lock apparatus to provide a preferred structure strength and safety.

[0006] The multistage lock apparatus in accordance with the present invention has a base, a disk holder, two selecting devices, two disk sets and at least one interfering element. The base has a mounting panel and a central tube. The disk holder is connected to the base and has a mounting beam, two extending beam, a middle beam, a connecting beam and two mounting spaces. The selecting devices are rotatably connected to the base. The disk sets are respectively mounted on the selecting devices in the mounting specs of the disk holder and each disk set has a driving disk and at least one driven disk. The at least one interfering element is mounted securely on the disk holder and each of the at least one interfering element has a mounting tab and two elastic panels.

[0007] Other objects, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[8000]

Fig. 1 is a perspective view of a multistage lock apparatus in accordance with the present invention mounted on a lock assembly;

Fig. 2 is an exploded perspective view of the multistage lock cylinder in Fig. 1;

Fig. 3 is a side view of the multistage lock apparatus in Fig. 1;

Fig. 4A is a perspective view of a first selecting device and a first disk set of the multistage lock apparatus in Fig. 1;

Fig. 4B is a perspective view of a second selecting device and a second disk set of the multistage lock apparatus in Fig. 1;

Fig. 5 is an enlarged top view of the multistage lock apparatus in Fig. 1;

Fig. 6 is an operational perspective view of the multistage lock apparatus in Fig. 1 when unlocking the lock device; and

Fig. 7 is an operational top view of the multistage lock apparatus in Fig. 6.

DETAILED DESCRIPTION OF PREFERRED EMBOD-IMENT

[0009] With reference to Figs. 1 to 5, a multistage lock apparatus in accordance with the present invention is used on a lock assembly having a door (90) and a lock panel (91) and comprises a base (10), a disk holder (20), two selecting devices (30, 40), two disk sets (50, 60) and at least one interfering element (70).

[0010] The door (90) of the lock assembly has an outer surface and an inner surface. The lock panel (91) is movably connected to the door (90).

[0011] The base (10) is mounted securely on the door (90) and has a mounting panel (11) and a central tube (12). The mounting panel (11) is mounted on the outer surface of the door (90) and has an inner side, two through holes (13) and two first fasteners (80). The inner side of the mounting panel (11) abuts the outer surface of the door (90). The through holes (13) are formed through the mounting panel (11). The first fasteners (80) extended through the through holes (13) to attach the mounting panel (11) securely on the door (90) of the lock assembly. The central tube (12) is formed on and protrudes from the inner side of the mounting panel (11), extends through the door (90) and has an inner end, an external surface and an outer thread (14). The inner end of the central tube (12) extends through the inner surface of the door (90). The outer thread (14) is formed on the

55

external surface of the central tube (12) near the inner end

[0012] The disk holder (20) is mounted on the door (90), is connected to the base (10) and has a mounting beam (21), two extending beams (24), a middle beam (22), a connecting beam (23), a first mounting space (20a) and a second mounting space (20b).

[0013] The mounting beam (21) is mounted on the inner surface of the door (90) and has a mounting side, a forming side, a central threaded hole (210), two side threaded holes (211), two mounting holes (212) and two second fasteners (81). The mounting side of the mounting beam (21) is mounted on the inner surface of the door (90). The central threaded hole (210) is formed through the mounting beam (21) and is screwed with the outer thread (14) of the central tube (12) of the base (10). The side threaded holes (211) are formed through the mounting beam (21) beside the central threaded hole (210) and are screwed with the first fasteners (80) of the base (10). The mounting holes (212) are formed through the mounting beam (21) beside the side threaded holes (211). The second fasteners (81) are respectively mounted in the mounting holes (212) of the mounting beam (21) and are connected to the door (90) of the lock assembly.

[0014] The extending beams (24) are formed on and protrude from the forming side of the mounting beam (21), parallel each other and each extending beam (24) has a middle and a free end. The middle beam (22) is formed on the middles of the extending beams (24) parallel the mounting beam (21) and has two sides, a mounting recess (220) and a pivotal hole (221). The mounting recess (220) is formed in one of the sides of the middle beam (22) and faces to the central threaded hole (210) of the mounting beam (21). The pivotal hole (221) is formed through the other side of the middle beam (22) and communicates with the mounting recess (220).

[0015] The connecting beam (23) is formed on the free ends of the extending beams (24) parallel the middle beam (22) and has a rod hole (230). The rod hole (230) is formed through the connecting beam (23) and aligns with the pivotal hole (221) of the middle beam (22). The first mounting space (20a) is formed between the mounting beam (21), the middle beam (22) and the extending beams (24). The first mounting space (20b) is formed between the middle beam (22), the connecting beam (23) and the extending beams (24).

[0016] The selecting devices (30, 40) are included a first selecting device (30) and a second selecting device (40).

[0017] The first selecting device (30) is rotatably connected to the base (10) and has a driving sleeve (32), a first selecting disk (31) and a positioning bolt (33). The driving sleeve (32) rotatably extends through the central tube (12) of the base (10) and has an outer end, an inner end, an external surface, a disk thread (320), a mounting protrusion (321) and a tube thread (322). The outer end of the driving sleeve (32) extends out of the mounting panel (11) of the base (10). The inner end of the driving

sleeve (32) extends out of the central tube (12) of the base (10) in the first mounting space (20a) of the disk holder (20). The disk thread (320) is formed on the external surface of the driving sleeve (32) near the outer end. The mounting protrusion (321) is formed on the inner end of the driving sleeve (32) and is pivotally mounted in the mounting recess (220) of the middle beam (22) of the disk holder (20). The tube thread (322) is formed on the external surface of the driving sleeve (32) near the mounting protrusion (321) and is mounted in the first mounting space (20a) of the disk holder (20).

[0018] The first selecting disk (31) is rotatably mounted on the mounting panel (11) of the base (10), is connected securely to the driving sleeve (32) and has an outer side, an inner side, multiple number signs, a mounting tube (310), a screwed hole (311) and a positioning threaded hole (312). The number signs are formed around the first selecting disk (31) near the outer side. The mounting tube (310) is formed on and protrudes from the inner side of the first selecting disk (31) and has an external surface. The screwed hole (311) is formed through the first selecting disk (31) and the mounting tube (310) and is screwed with the disk thread (320) of the driving sleeve (32). The positioning threaded hole (312) is radially formed in the external surface of the mounting tube (310) and communicates with the screwed hole (311).

[0019] The positioning bolt (33) is mounted in the positioning threaded hole (312) of the first selecting disk (31) and presses against the disk thread (320) of the driving sleeve (32) to hold the first selecting disk (31) securely with the driving sleeve (32).

[0020] The second selecting device (40) is rotatably connected to the first selecting device (30) and the disk holder (20) and has a driving rod (42), a second selecting disk (41) and a positioning bolt (43).

[0021] The driving rod (42) rotatably extends through the driving sleeve (32) of the first selecting device (30) and has an outer end, an inner end, an external surface, a disk thread (420), a mounting protrusion (421), a tube thread (422), a connecting hole (423) and a third fastener (82). The outer end of the driving rod (42) extends out of the outer end of the driving sleeve (32) of the first selecting device (30). The inner end of the driving rod (42) extends out of the inner end of the driving sleeve (32) in the second mounting space (20b) of the disk holder (20). The disk thread (420) is formed on the external surface of the driving rod (42) near the outer end. The mounting protrusion (421) is formed on the inner end of the driving rod (42) and is pivotally mounted in the rod hole (230) of the connecting beam (23) of the disk holder (20). The tube thread (422) is formed on the external surface of the driving rod (42) near the mounting protrusion (421) and is mounted in the second mounting space (20b) of the disk holder (20). The connecting hole (423) is axially formed in the mounting protrusion (421) of the driving rod (42). The third fastener (82) is mounted in the connecting hole (423) to hold the driving rod (42) with the disk holder (20).

40

[0022] The second selecting disk (41) is rotatably mounted on the outer side of the first selecting disk (31), is connected securely to the driving rod (42) and has an outer side, an inner side, multiple number signs, a mounting tube (410), a screwed hole (411) and a positioning threaded hole (412). The number signs are formed around the second selecting disk (41) near the outer side. The mounting tube (410) is formed on and protrudes from the inner side of the second selecting disk (41) and has an external surface. The screwed hole (411) is formed through the second selecting disk (41) and the mounting tube (410) and is screwed with the disk thread (420) of the driving rod (42). The positioning threaded hole (412) is radially formed in the external surface of the mounting tube (410) and communicates with the screwed hole (411).

[0023] The positioning bolt (43) is mounted in the positioning threaded hole (412) of the second selecting disk (41) and presses against the disk thread (420) of the driving rod (42) to hold the second selecting disk (41) securely with the driving rod (42).

[0024] The disk sets (50, 60) are respectively mounted on the selecting devices (30, 40) in the mounting specs (20a, 20b) of the disk holder (20) and include a first disk set (50) and a second disk set (60).

[0025] The first disk set (50) is mounted on the driving sleeve (32) of the first selecting device (30) in the first mounting space (20a) of the disk holder (20) and has a first driving disk (51), at least one first driven disk (52, 53), a holding bolt (54), two O-rings (55) and a C-ring (56). [0026] The first driving disk (51) is securely mounted on the inner end of the driving sleeve (32) and has a periphery, an inner side, multiple notches (510), a gap (511), a connecting tube (512), a driving post (513), an attaching threaded hole (514) and a position threaded hole (515). The notches (510) are formed on the periphery of the first driving disk (51). The gap (511) is formed on the periphery of the first driving disk (51). The connecting tube (512) is formed on and protrudes from the inner side of the first driving disk (51), is mounted around the inner end of the driving sleeve (32) of the first selecting device (30) and has an external surface. The driving post (513) is formed on and protrudes from the inner side of the first driving disk (51) between the connecting tube (512) and the periphery of the first driving disk (51). The attaching threaded hole (514) is formed through the connecting tube (512) and the first driving disk (51) and is screwed with the tube thread (322) of the driving sleeve (32) of the first selecting device (30). The position threaded hole (515) is radially formed in the external surface of the connecting tube (512) and communicates with the attaching threaded hole (514) of the first driving disk (51). [0027] The at least one first driven disk (52,53) is rotatably mounted around the connecting tube (512) of the first driving disk (51) and driven by the first driving disk (51). In a preferred embodiment, the first disk set (50) has two first driven disks (52,53). The first driven disk (52) adjacent to the first driving disk (51) has a periphery,

two sides, multiple notches (520), a gap (521), a driven post (522) and a driving post (523). The notches (520) are formed on the periphery of the first driven disk (52). The gap (521) is formed on the periphery of the first driven disk (52). The driven post (522) is formed on and protrudes from one of the sides the first driven disk (52) facing the first driving disk (51) and corresponds to and selectively abuts against the driving post (513) on the first driving disk (51). The driving post (523) is formed on and protrudes from the other side of the first driven disk (52) away from the first driving disk (51).

[0028] The first driven disk (53) far away from the first driving disk (51) has a periphery, two sides, multiple notches (530), a gap (531) and a driven post (532). The notches (530) are formed on the periphery of the first driven disk (53). The gap (531) is formed on the periphery of the first driven disk (53). The driven post (532) is formed on and protrudes from one of the sides of the first driven disk (53) facing the adjacent first driven disk (52) and corresponding to and selectively abuts against the driving post (523) on the adjacent first driven disk (52). With the abutment between the driving posts (513,523) and the driven posts (522,532) on the disks (51,52,53), the first driven disk (51) when the driving sleeve (32) is rotated by the first selecting disk (31).

[0029] The holding bolt (54) is mounted in the positioning threaded hole (515) of the first driving disk (51) and presses against the tube thread (322) of the driving sleeve (32) to hold the first driving disk (51) securely with the driving sleeve (32). The O-rings (55) are rotatably mounted around the connecting tube (512) of the first driving disk (51) between the first driving disk (51), the first driven disks (52, 53) and the middle beam (22) of the disk holder (20). The C-ring (56) is rotatably mounted around the connecting tube (512) of the first driving disk (51) between the first driven disks (52, 53) and has a slit near the positioning threaded hole (515) of the first driving disk (51).

[0030] The second disk set (60) is mounted on the driving rod (42) of the second selecting device (40) in the second mounting space (20b) of the disk holder (20) and has a second driving disk (61), a second driven disk (62), a holding bolt (63), two O-rings (64) and a C-ring (65).

[0031] The second driving disk (61) is securely mounted on the inner end of the driving rod (42) and has a periphery, an inner side, multiple notches (610), a gap (611), a connecting tube (612), a driving post (613), an attaching threaded hole (614) and a position threaded hole (615). The notches (610) are formed on the periphery of the second driving disk (61). The gap (611) is formed on the periphery of the second driving disk (61). The connecting tube (612) is formed on and protrudes from the inner side of the second driving disk (61), is mounted around the inner end of the driving rod (42) of the second selecting device (40) and has an external surface. The driving post (613) is formed on and protrudes from the inner side of the second driving disk (61)

40

45

between the connecting tube (612) and the periphery of the second driving disk (61). The attaching threaded hole (614) is formed through the connecting tube (612) and the second driving disk (61) and is screwed with the tube thread (422) of the driving rod (42) of the second selecting device (40). The position threaded hole (615) is radially formed in the external surface of the connecting tube (612) and communicates with the attaching threaded hole (614) of the second driving disk (61).

[0032] The second driven disk (62) is rotatably mounted around the connecting tube (612) of the second driving disk (61) and driven by the second driving disk (61) and has a periphery, two sides, multiple notches (620), a gap (621) and a driven post (622). The notches (620) are formed on the periphery of the second driven disk (62). The gap (621) is formed on the periphery of the second driven disk (62). The driven post (622) is formed on and protrudes from one of the sides the second driven disk (62) facing the second driving disk (61) and corresponds to and selectively abuts against the driving post (613) on the second driving disk (61).

[0033] The holding bolt (63) is mounted in the positioning threaded hole (615) of the second driving disk (51) and presses against the tube thread (422) of the driving rod (42) to hold the second driving disk (61) securely with the driving rod (42). The O-rings (64) are rotatably mounted around the connecting tube (612) of the second driving disk (61) between the second driving disk (61), the second driven disk (62) and the connecting beam (23) of the disk holder (20). The C-ring (65) is rotatably mounted around the connecting tube (612) of the second driving disk (61) between the second driving disk (61) and the driven disk (62) and has a slit near the positioning threaded hole (615) of the second driving disk (61).

[0034] The at least one interfering element (70) is mounted securely on the disk holder (20) and each of the at least one interfering element (70) has a mounting tab (71) and two elastic panels (72). The mounting tab (71) is mounted securely on one of the extending beams (24) of the disk holder (20) by multiple fixed bolts (73) and has two opposite edges. The elastic panels (72) are respectively and aslant formed on the opposite edges of the mounting tab (71) to contact the notches (510, 520, 530, 610, 620) of one of the disks (51, 52, 53, 61, 62) of the disk sets (50, 60). In a preferred embodiment, the multistage lock apparatus in accordance with the present invention has four interfering elements (70) mounted on the disk holder (20). When the disks (51, 52, 53, 61, 62) rotate relative to the disk holder (20), the elastic panels (72) of the interfering elements (70) will be moved up and down to generate a sound by contacting with the notches (510, 520, 530, 610, 620) of the disks (51, 52, 53, 61, 62). The sound that generated by the interfering elements (70) when rotating one of the selecting disks (31, 41) can provide an interference effect when using the electric sound collector or the stethoscope to unlock the lock assembly. Then, the multistage lock apparatus in accordance with the present invention provide a burglar proofing

effect.

With reference to Figs. 4A and 4B, when the [0035] first selecting disk (31) is rotated, the first driving disk (51) is rotated. When the driving post (513) on the first driving disk (51) abuts against the driven post (522) on the adjacent first driven disk (52), the adjacent first driven disk (52) will rotate with the first driving disk (51). When the driving post (523) on the first driven disk (52) adjacent to the first driving disk (51) abuts against the driven post (532) on the other first driven disk (53), the first driven disks (52, 53) will be rotated simultaneously. Thus, the gaps (511, 521, 531) in the disks (51, 52, 53) of the first disk set (50) are aligned with each other by means of rotating the first selecting disk (31) in alternative directions. The operation of aligning the gaps (611, 621) in the disks (61, 62) of the second disk set (60) is same as that of the first disk set (50) but by rotating the second selecting disk (41) and further description is omitted.

[0036] With reference to Figs. 6 and 7, when the gaps (511, 521, 531, 611, 621) in the disks (51, 52, 53, 61, 62) of both disk sets (50, 60) are aligned with each other, a space for the lock panel (91) of the lock assembly extending into is defined. When the lock panel (91) of the lock assembly is extended into the space implemented by the gaps (511, 521, 531, 611, 621) of the disks (51, 52, 53, 61, 62), the lock panel (91) is escaped from a lock cavity so that the lock assembly with the multistage lock apparatus is in an unlocked condition. On the contrary, when the disks (51, 52, 53, 61, 62) are rotated to make the gaps (511, 521, 531, 611, 621) misaligning with each other, the lock panel (91) will not be escaped from the lock cavity so that the lock assembly with the multistage lock apparatus is in a locked condition.

[0037] Accordingly, to unlock the multistage lock apparatus needs five passwords for aligning the gaps (511, 521, 531, 611, 621), so the lock assembly with the multistage lock apparatus in accordance with the present invention is difficult unlocked by unauthorized person. In addition, the disks (51, 52, 53, 61, 62) of the disk sets (50, 60) can be arranged in different amounts, so to unlock the multistage lock apparatus is very complicated for any person who does not know passwords and the safety of using the multistage lock apparatus is improved. For example, when the first disk set (50) has four disks and the second disk set (60) has four disks, the group amount of the passwords of the multistage lock apparatus will be 153760000000000.

[0038] Furthermore, the multistage lock apparatus in accordance with the present invention may have three or more than three disk sets by attaching at least one auxiliary holder onto the disk holder (320 to make the additional disk sets to be mounted on the base (10). Accordingly, with the increase of the amount of the disk sets, to unlock the multistage lock apparatus is more complicated and difficult.

[0039] With further reference to Figs. 4A and 4B, each one of the disk sets (50, 60) of the multistage lock apparatus has a password group. When the user needs to

35

40

45

50

unlock the lock assembly frequently, he can operate one of the disk sets (50, 60) in advance with the corresponding correct password group. Then, the user only need to rotate the other disk set (50, 60) in the unlock condition. In addition, the two password groups of the disk sets (50, 60) of the multistage lock apparatus can be held by different persons to increase the safety of using the multistage lock apparatus with the lock assembly.

[0040] In addition, the multistage lock apparatus in accordance with the present invention may have three or more than one interfering element (70) mounted on the disk holder (20) to generate additional sound when the disks (51, 52, 53, 61, 62) rotate relative to the disk holder (20) and contact with the notches (510, 520, 530, 610, 620) of the disks (51, 52, 53, 61, 62). Accordingly, with the increase of the amount of the interfering element (70), to unlock the multistage lock apparatus is more complicated and difficult.

[0041] Even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims 30

1. A multistage lock apparatus for a lock assembly having a door with an outer surface and an inner surface, the multistage lock apparatus comprising:

a base being adapted to mount on the door and having

a mounting panel being adapted to mount on the outer surface of the door and having

an inner side being adapted to abut the outer surface of the door; multiple through holes formed through the mounting panel; and multiple first fasteners extended through the through holes to attach the mounting panel securely on the door of the lock assembly; and

a central tube formed on and protruding from the inner side of the mounting panel, extending through the door and having

an inner end extending through the inner surface of the door; an external surface; and an outer thread formed on the external surface of the central tube near the inner end:

a disk holder being adapted to mount on the door, connected to the base and having

a mounting beam being adapted to mount on the inner surface of the door and having

> a mounting side being adapted to mount on the inner surface of the door; a forming side;

> a central threaded hole formed through the mounting beam and screwed with the outer thread of the central tube of the base:

multiple side threaded holes formed through the mounting beam beside the central threaded hole and screwed with the first fasteners of the base;

multiple mounting holes formed through the mounting beam beside the side threaded holes; and

multiple second fasteners mounted in the mounting holes of the mounting beam to connect with the door of the lock assembly;

two extending beams formed on and protruding from the forming side of the mounting beam, parallel each other and each extending beam having

a middle; and a free end;

a middle beam formed on the middles of the extending beams parallel the mounting beam and having

two sides;

a mounting recess formed in one of the sides of the middle beam and facing to the central threaded hole of the mounting beam; and

a pivotal hole formed through the other side of the middle beam and communicating with the mounting recess;

a connecting beam formed on the free ends of the extending beams parallel the middle beam and having a rod hole formed through the connecting beam and aligning with the pivotal hole of the middle beam;

a first mounting space formed between the mounting beam, the middle beam and the extending beams; and

a second mounting space formed between

15

20

40

50

the middle beam, the connecting beam and the extending beams;

a first selecting device rotatably connected to the base and having

a driving sleeve rotatably extending through the central tube of the base and having

an outer end extending out of the mounting panel of the base;

an inner end extending out of the central tube of the base in the first mounting space of the disk holder;

an external surface;

a mounting protrusion formed on the inner end of the driving sleeve and pivotally mounted in the mounting recess of the middle beam of the disk holder; and a tube thread formed on the external surface of the driving sleeve near the mounting protrusion and mounted in the first mounting space of the disk holder; and

a first selecting disk rotatably mounted on the mounting panel of the base and connected securely to the driving sleeve;

a second selecting device rotatably connected to the first selecting device and the disk holder and having

a driving rod rotatably extending through the driving sleeve of the first selecting device and having

an outer end extending out of the outer end of the driving sleeve of the first selecting device;

an inner end extending out of the inner end of the driving sleeve in the second mounting space of the disk holder; an external surface;

a mounting protrusion formed on the inner end of the driving rod and pivotally mounted in the rod hole of the connecting beam of the disk holder;

a tube thread formed on the external surface of the driving rod near the mounting protrusion and mounted in the second mounting space of the disk

a connecting hole axially formed in the mounting protrusion of the driving rod;

a third fastener mounted in the connecting hole to hold the driving rod with the disk holder; and

a second selecting disk rotatably mounted on the outer side of the first selecting disk and connected securely to the driving rod;

a first disk set mounted on the driving sleeve of the first selecting device in the first mounting space of the disk holder and having

first driving disk securely mounted on the inner end of the driving sleeve and having

an inner side;

first driving disk;

a connecting tube formed on and prolecting device and having an external

an attaching threaded hole formed through the connecting tube and the first driving disk and screwed with the tube thread of the driving sleeve of the

at least one first driven disk rotatably mounted around the connecting tube of the first driving disk and driven by the first driving disk and each of the at least one first driven disk having

two sides: and

a gap formed on the periphery of the at

a second disk set mounted on the driving rod of the second selecting device in the second mounting space of the disk holder and having

a second driving disk securely mounted on the inner end of the driving rod and having

a periphery;

an inner side;

a gap formed on the periphery of the second driving disk;

a connecting tube formed on and protruding from the inner side of the second driving disk, mounted around the inner end of the driving rod of the second selecting device and having an external surface; and

an attaching threaded hole formed

7

a periphery;

a gap formed on the periphery of the

truding from the inner side of the first driving disk, mounted around the inner end of the driving sleeve of the first sesurface; and

first selecting device; and

a periphery;

least one first driven disk; and

through the connecting tube and the second driving disk and screwed with the tube thread of the driving rod of the second selecting device; and

a second driven disk rotatably mounted around the connecting tube of the second driving disk and driven by the second driving disk and having

> a periphery; two sides; and a gap formed on the periphery of the second driven disk.

2. The multistage lock apparatus as claimed in claim 1, wherein

the first driving disk has multiple notches formed on the periphery of the first driving disk;

each of the at least one first driven disk has multiple notches formed on the periphery of the first driven disk;

the second driving disk has multiple notches formed on the periphery of the second driving disk; the second driven disk has multiple notches formed on the periphery of the second driven disk; and the multistage lock apparatus has at least one interfering element mounted securely on the disk holder and each of the at least one interfering element having at least one elastic panel to contact the notches

3. The multistage lock apparatus as claimed in claim 2, wherein

of one of the disks of the disk sets.

each of the at least one interfering element has

a mounting tab mounted securely on one of the extending beams of the disk holder; and multiple fixed bolts mounted in the mounting tab and the corresponding extending beam; and

the least one elastic panel of each of the at least one interfering element is aslant formed on the mounting tab.

4. The multistage lock apparatus as claimed in claim 3, wherein

the first driving disk has a position threaded hole radially formed in the external surface of the connecting tube and communicating with the attaching threaded hole of the first driving disk;

the first disk set has a holding bolt mounted in the positioning threaded hole of the first driving disk and pressed against the tube thread of the driving sleeve to hold the first driving disk securely with the driving sleeve;

the second driving disk has a position threaded hole radially formed in the external surface of the connecting tube and communicating with the attaching threaded hole of the second driving disk; and the second disk set has a holding bolt mounted in the positioning threaded hole of the second driving disk and pressed against the tube thread of the driving rod to hold the second driving disk securely with the driving rod.

5. The multistage lock apparatus as claimed in claim 4, wherein

> the driving sleeve has a disk thread formed on the external surface of the driving sleeve near the outer end:

the first selecting disk has

an outer side:

an inner side;

a mounting tube formed on and protruding from the inner side of the first selecting disk and having an external surface;

a screwed hole formed through the first selecting disk and the mounting tube and screwed with the disk thread of the driving sleeve; and

a positioning threaded hole radially formed in the external surface of the mounting tube and communicating with the screwed hole;

the first selecting device has a positioning bolt mounted in the positioning threaded hole of the first selecting disk and pressed against the disk thread of the driving sleeve to hold the first selecting disk securely with the driving sleeve; the driving rod has a disk thread formed on the external surface of the driving rod near the outer end:

the second selecting disk has

an outer side;

an inner side;

a mounting tube formed on and protruding from the inner side of the second selecting disk and having an external surface;

a screwed hole formed through the second selecting disk and the mounting tube and screwed with the disk thread of the driving rod; and

a positioning threaded hole radially formed in the external surface of the mounting tube and communicating with the screwed hole; and

the second selecting device has a positioning bolt mounted in the positioning threaded hole of the second selecting disk and pressed against

8

10

15

20

5

35

40

45

20

the disk thread of the driving rod to hold the second selecting disk securely with the driving rod.

6. The multistage lock apparatus as claimed in claim 5, wherein

15

the first selecting disk has multiple number signs formed around the first selecting disk near the outer side; and

the second selecting disk has multiple number signs formed around the second selecting disk near the outer side.

The multistage lock apparatus as claimed in claim
 wherein

the first driving disk has a driving post formed on and protruding from the inner side of the first driving disk between the connecting tube and the periphery of the first driving disk;

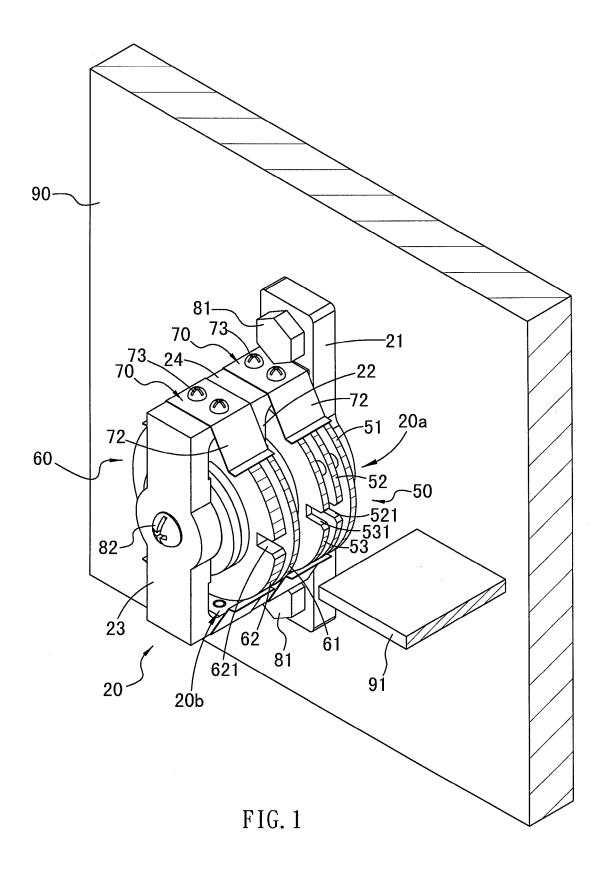
the first disk set has two first driven disks, the first driven disk adjacent to the first driving disk has a driven post formed on and protruding from one of the sides the first driven disk facing the first driving disk and corresponds to and selectively abutting against the driving post on the first driving disk and a driving post formed on and protruding from the other side of the first driven disk away from the first driving disk, the first driven disk far away from the first driving disk has a driven post formed on and protruding from one of the sides of the first driven disk facing the adjacent first driven disk and corresponding to and selectively abutting against the driving post on the adjacent first driven disk;

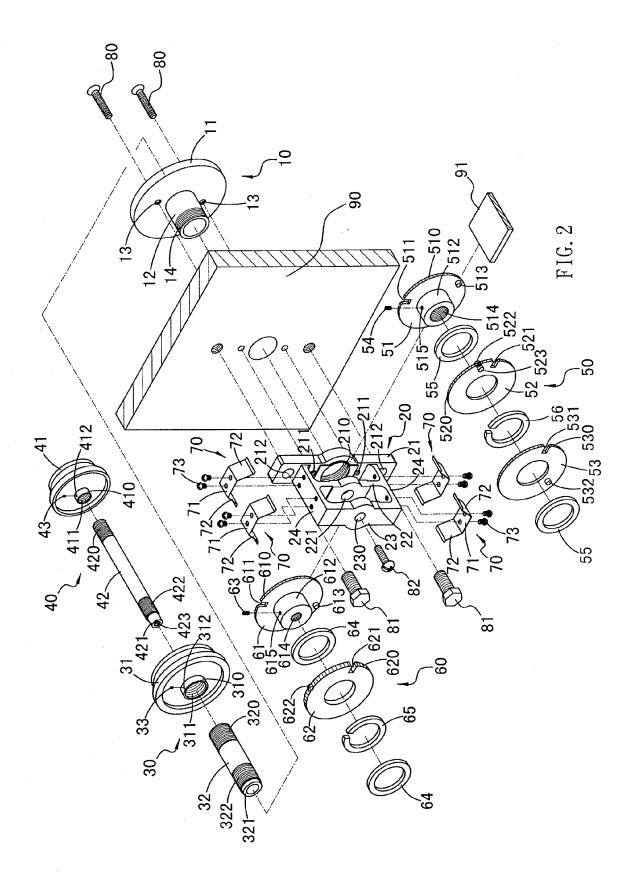
the second driving disk has a driving post formed on and protrudes from the inner side of the second driving disk between the connecting tube and the periphery of the second driving disk; and

the second driven disk has a driven post formed on and protruding from one of the sides the second driven disk facing the second driving disk and corresponds to and selectively abutting against the driving post on the second driving disk.

8. The multistage lock apparatus as claimed in claim 7, wherein

the first disk set has


two O-rings rotatably mounted around the connecting tube of the first driving disk between the first driving disk, the first driven disks and the middle beam of the disk holder: and


a C-ring rotatably mounted around the connecting tube of the first driving disk between the first driven disks and having a slit near the positioning threaded hole of the first driving disk; and the second disk set

two O-rings rotatably mounted around the connecting tube of the second driving disk between the second driving disk, the second driven disk and the connecting beam of the disk holder; and

a C-ring rotatably mounted around the connecting tube of the second driving disk between the second driving disk and the driven disk and having a slit near the positioning threaded hole of the second driving disk.

45

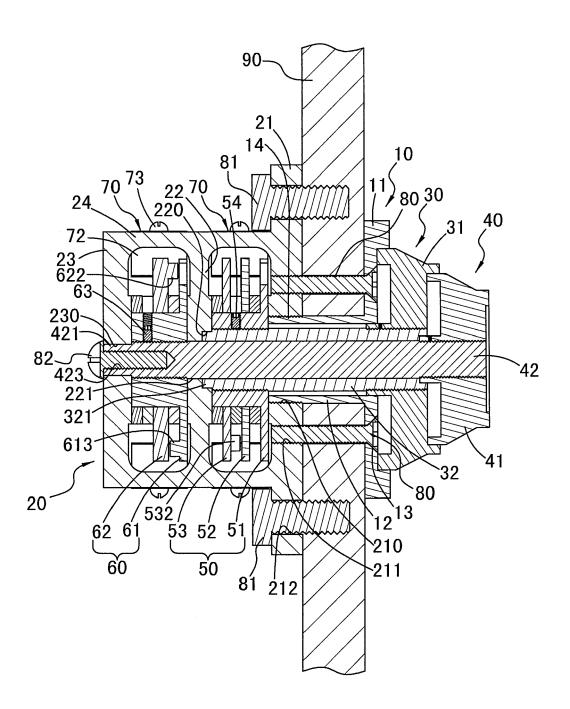
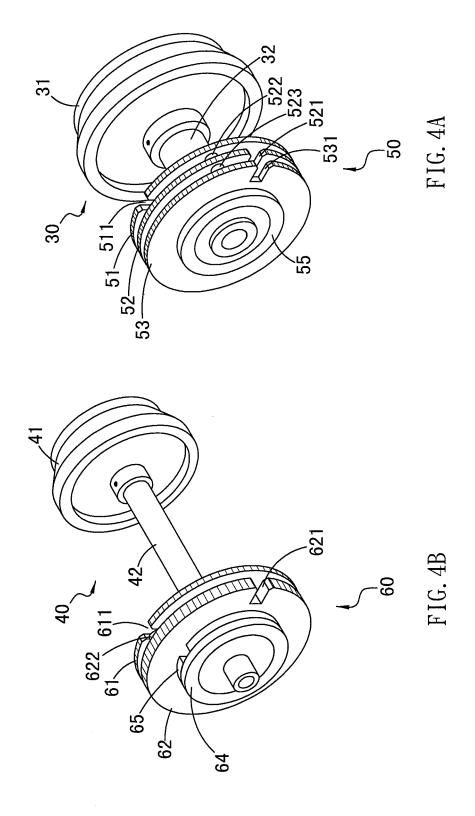



FIG. 3

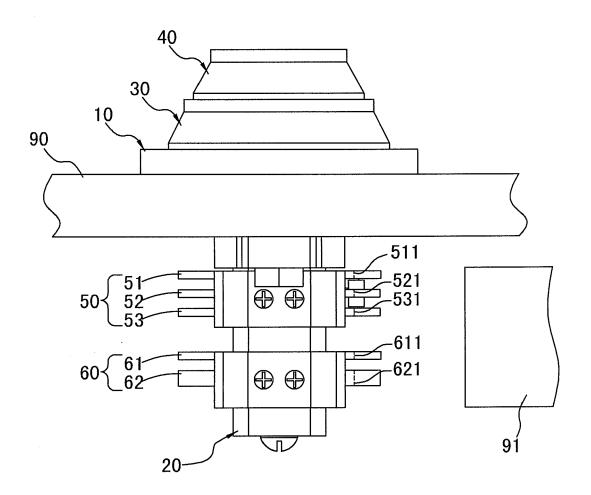
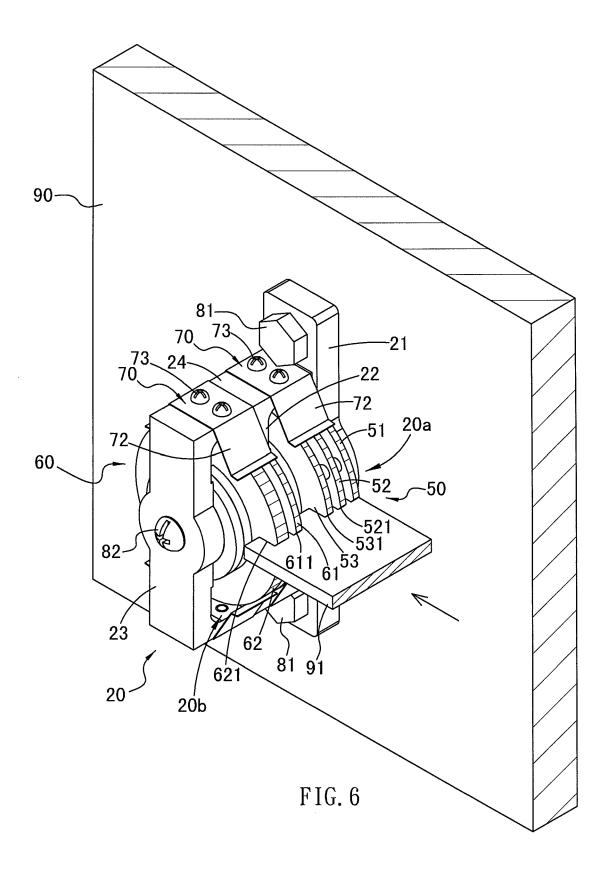



FIG. 5

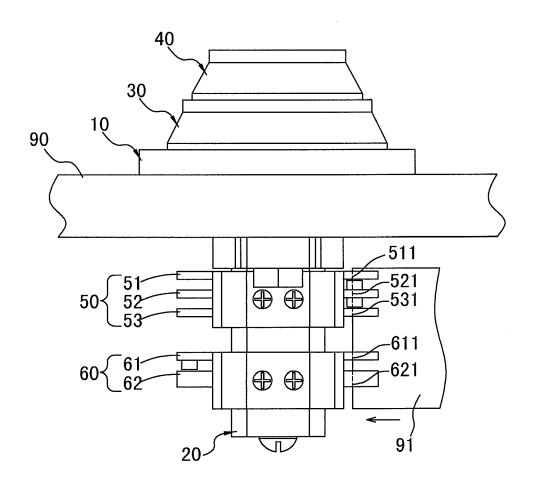


FIG. 7

EUROPEAN SEARCH REPORT

Application Number EP 09 16 9464

Category	Citation of document with in of relevant pass	ndication, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)	
A	US 2007/245785 A1 (25 October 2007 (20 * the whole documer	LIU ET AL) 107-10-25)	1-8	INV. E05B37/08	
A	US 2 966 788 A (AMC 3 January 1961 (196 * the whole documen	1-01-03)	1-8		
				TECHNICAL FIELDS SEARCHED (IPC)	
				E05B	
	The present search report has	oeen drawn up for all claims			
	Place of search	Date of completion of the search		Examiner	
	The Hague	8 February 2010	Var	n Beurden, Jason	
CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure		E : earlier patent do after the filing de ner D : document cited L : document cited	T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filing date D: document cited in the application L: document cited for other reasons		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 09 16 9464

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-02-2010

l cite	Patent document ed in search report		Publication date		Patent family member(s)	Publication date
US	2007245785	A1	25-10-2007	NONE		
US	2966788	Α	03-01-1961	NONE		
			icial Journal of the Euro			