TECHNICAL FIELD
[0001] The present invention relates to a fluid machine and a refrigeration cycle apparatus.
BACKGROUND ART
[0002] Generally, a refrigerant circuit for a refrigeration cycle apparatus has a configuration
in which a compressor, a heat radiator, an expansion valve and an evaporator are connected
in this order. The refrigerant undergoes a pressure change from high pressure to low
pressure at the expansion valve while being expanded, and releases its internal energy
at that time. The internal energy to be released increases as the pressure difference
between the low-pressure side (evaporator side) and the high-pressure side (heat radiator
side) in the refrigerant circuit increases, thus decreasing the energy efficiency
of the refrigeration cycle. In view of such a problem, various techniques for recovering
the internal energy of the refrigerant have been proposed.
[0003] Fig. 8 is a configuration diagram showing a conventional refrigeration cycle apparatus
501 disclosed in
JP 2004-324595 A and
WO 2008/050654 A. The refrigeration cycle apparatus 501 includes a refrigerant circuit formed by connecting
a heat radiator 502, a power recovery means 503 (expander), an evaporator 504, a positive
displacement blower 505 (sub-compressor) and a main compressor 506 in this order.
A fluid machine 507 includes the power recovery means 503, the positive displacement
blower 505, a shaft 508 and a closed casing 509 that accommodates these. The power
recovery means 503 and the positive displacement blower 505 are coupled to each other
by the shaft 508 so that the power recovered by the power recovery means 503 is transmitted
to the positive displacement blower 505. Part of the internal energy released from
the refrigerant at the power recovery means 503 is converted into a torque on the
shaft 508 and transmitted to the positive displacement blower 505 to be used as power
for driving the positive displacement blower 505. The positive displacement blower
505 preliminarily increases the pressure of the refrigerant before being drawn into
the main compressor 506.
[0004] JP 2004-324595 A describes the startup (self-starting) of the fluid machine 507 as follows. After
the main compressor 506 is started, a negative pressure is first generated in a discharge
pipe of the positive displacement blower 505. Then, a torque for rotating the shaft
508 is generated. Next, a positive pressure is generated in a suction pipe of the
power recovery means 503. Thus, the power recovery means 503 is rotated.
[0005] However, different from the main compressor 506 that receives its driving force for
startup from a motor, the fluid machine 507 receives its driving force for startup
only from the negative pressure in the discharge pipe of the positive displacement
blower 505 or the positive pressure in the suction pipe of the power recovery means
503. Therefore, there is a possibility of failing to ensure sufficient driving force
for startup.
[0006] A specific example of the fluid machine 507 is disclosed in
WO 2008/050654 A. Fig. 9 is a sectional view showing a power recovery means of the fluid machine disclosed
in
WO 2008/050654 A. The power recovery means 503 includes a cylinder 510, a piston 513 and a vane 511.
The refrigerant flows into a working chamber 515 through a suction pipe 514, and flows
out to the outside of the power recovery means 503 through a discharge pipe 516, as
the shaft 508 rotates. According to the power recovery means 503, in the case where
the piston 513 is stopped while blocking the suction port 517, the piston 513 is to
be pushed toward an end plate (which is a member closing the cylinder 510) by the
positive pressure generated in the suction pipe 514 at the next startup. That is,
the friction between the piston 513 and the end plate at the time of startup is relatively
large. Therefore, extra torque for rotating the piston 513 is required. This is not
preferable for starting the fluid machine 507 smoothly.
CITATION LIST
Patent Literature
SUMMARY OF INVENTION
Technical Problem
[0008] The present invention has been devised in view of the problems described above, and
an object thereof is to provide a fluid machine that can be started smoothly. Furthermore,
the present invention provides a refrigeration cycle apparatus using the fluid machine.
Solution to Problem
[0009] That is, the present invention provides a fluid machine that includes: a power recovery
mechanism for recovering power from a working fluid; a sub-compressor that is driven
by the recovered power; and a shaft coupling the power recovery mechanism and the
sub-compressor to each other so that the recovered power is transmitted from the power
recovery mechanism to the sub-compressor. The power recovery mechanism includes: (a1)
a first closing member; (b1) a second closing member facing the first closing member;
(c1) a cylinder surrounding a part of the shaft in the circumferential direction and
having both ends closed by the first closing member and the second closing member;
(d1) a piston that is mounted on the shaft inside the cylinder and that forms a working
chamber between its outer circumferential surface and the inner circumferential surface
of the cylinder; (e1) a partition member partitioning the working chamber into the
high pressure-side working chamber and the low pressure-side working chamber; (f1)
a first suction port provided in the first closing member so as to open and close,
as the piston rotates, so that the working fluid flows into the high pressure-side
working chamber; and (g1) a second suction port provided in the second closing member
at a position facing the first suction port in the axis direction of the shaft so
as to open and close, as the piston rotates, so that the working fluid flows into
the high pressure-side working chamber.
Advantageous Effects of Invention
[0010] According to the above-mentioned present invention, the power recovery mechanism
includes the first suction port, and the second suction port provided at a position
facing the first suction port. Therefore, the positive pressure generated in the suction
pipe acts on both of the upper surface and lower surface of the piston through the
first and second suction ports. That is, the forces pressing the piston toward the
closing members are counteracted. Accordingly, the present invention can provide a
fluid machine that can be started smoothly. Depending on the case, the need for an
auxiliary driving device such as a motor even can be eliminated.
BRIEF DESCRIPTION OF DRAWINGS
[0011]
Fig. 1 is a configuration diagram showing a refrigeration cycle apparatus according
to one embodiment of the present invention.
Fig. 2A is a vertical sectional view of a fluid machine shown in Fig. 1.
Fig. 2B is a vertical sectional view of the fluid machine cut at a different angle
from that of Fig. 2A.
Fig. 3 is an enlarged sectional view showing a suction path provided in a power recovery
mechanism.
Fig. 4 is a horizontal sectional view taken along the line D1-D1 in the fluid machine
shown in Fig. 2.
Fig. 5 is a view illustrating the principle of operation of the power recovery mechanism.
Fig. 6 is a horizontal sectional view taken along the line D2-D2 in the fluid machine
shown in Fig. 2.
Fig. 7 is a view illustrating the principle of operation of a sub-compressor.
Fig. 8 is a configuration diagram showing a conventional refrigeration cycle apparatus.
Fig. 9 is a horizontal sectional view showing a conventional expander.
DESCRIPTION OF EMBODIMENTS
[0012] Hereinafter, the embodiments of the present invention are described with reference
to the drawings. However, the present invention is not limited to the following embodiments.
[0013] In this embodiment, a fluid pressure motor that is generally used only for an incompressible
working fluid in view of the characteristics of the fluid pressure motor is used as
the power recovery mechanism and the sub-compressor of a refrigeration cycle apparatus
that uses a compressible refrigerant as a working fluid. This allows the operational
energy efficiency of the refrigeration cycle apparatus to be enhanced.
[0014] In this description, a "fluid pressure motor" means a motor that is rotated by the
pressure difference between the pressure of the working fluid (typically, a refrigerant)
on the suction side and the pressure of the working fluid on the discharge side, and
that starts a discharge process without allowing the volume change of the drawn working
fluid. The pressure of the working fluid on the suction side means the pressure of
the working fluid to be drawn in the fluid pressure motor. The pressure of the working
fluid on the discharge side means the pressure of the working fluid discharged from
the fluid pressure motor. More specifically, the fluid pressure motor is a motor that
does not allow the volume change of the working fluid until the discharge process
is started. After the discharge process is started, in other words, after the inside
of the fluid pressure motor is brought into communication with a discharge path, the
pressure inside the fluid pressure motor is reduced or raised, so that the working
fluid is expanded or compressed.
[0015] The technique disclosed in this description is effective particularly for a refrigeration
cycle apparatus using a refrigerant that reaches a supercritical state on the high-pressure
side, such as carbon dioxide. In the case of using such a refrigerant that reaches
a supercritical state on the high-pressure side, the refrigerant exhibits an extremely
small expansion coefficient, which is represented by the ratio of the density of the
refrigerant at the outlet of a radiator to the density of the refrigerant at the inlet
of an evaporator. The energy to be released when the refrigerant of this type is expanded
is composed mostly of the internal energy released due to the pressure drop. The internal
energy released due to the increase of the specific volume is small, and it can be
smaller than the overexpansion loss in some cases. Accordingly, it can be more advantageous,
in terms of energy recovery efficiency, to employ a configuration that can prevent
the occurrence of overexpansion loss while intentionally abandoning the recovery of
the internal energy released due to the increase of the specific volume than to employ
a configuration that tries to recover the full amount of the internal energy to be
released.
[0016] Further, the fluid pressure motor used as a power recovery mechanism and sub-compressor
performs a suction process for drawing the refrigerant and a discharge process for
discharging the drawn refrigerant substantially continuously, in this embodiment.
Specifically, there is substantially no period during which a suction port and a discharge
port are closed simultaneously. In other words, at least one of the suction port and
the discharge port is opened substantially over the entire period.
[0017] For this reason, the occurrence of pressure pulsation can be suppressed. Accordingly,
problems are unlikely to emerge, such as damage to components of the refrigeration
cycle apparatus (e.g., a suction pipe constituting the suction path), rotational instability
of the fluid pressure motor due to torque variation, and generation of vibration and
noise. A phrase "there is substantially no period during which a suction port and
a discharge port are closed simultaneously" means a concept that includes a situation
where the suction port and the discharge port are closed simultaneously but momentarily
within a range that does not cause any torque variation in the fluid pressure motor.
[0018] Furthermore, the refrigerant circuit is configured so that at least part of the refrigerant
discharged from the power recovery mechanism is in the vapor phase as follows. When
part of the refrigerant is in the vapor phase, the refrigerant is allowed to be compressible.
This compressibility reduces the water hammer pressure that results from variation
in discharge flow rate due to intermittent discharge of the refrigerant. This enables
the power recovery mechanism to be started smoothly and reduces vibration and noise
as well.
[0019] Hereinafter, the refrigeration cycle apparatus according to this embodiment is described
in detail with reference to Figs. 1 to 7.
[0020] As shown in Fig. 1, a refrigeration cycle apparatus 101 includes a refrigerant circuit
109 having a main compressor 103, a heat radiator 104, a power recovery mechanism
105, an evaporator 106, and a sub-compressor 102. The refrigerant circuit 109 is filled
with a refrigerant such as carbon dioxide and hydrofluorocarbon to serve as a working
fluid. In the case of using a refrigerant that reaches a supercritical state on the
high-pressure side of the refrigeration cycle such as carbon dioxide, the present
invention exhibits particularly excellent effects.
[0021] The main compressor 103 includes a compression mechanism 103a (compressor main body),
a motor 108 connected to the compression mechanism 103a, and a closed casing 160 that
accommodates the compression mechanism 103a and motor 108. The compression mechanism
103a is driven by the motor 108. The compression mechanism 103a compresses the refrigerant
circulating in the refrigerant circuit 109 to high temperature and high pressure.
For the main compressor 103, a positive displacement compressor such as a scroll compressor
and a rotary compressor can be used.
[0022] The heat radiator 104 is connected to the main compressor 103. The heat radiator
104 causes the refrigerant that has been compressed by the main compressor 103 to
release the heat. In other words, the heat radiator 104 cools the refrigerant. The
refrigerant is cooled by the heat radiator 104 to intermediate temperature and high
pressure.
[0023] The power recovery mechanism 105 is connected to the heat radiator 104. The power
recovery mechanism 105 is composed of a fluid pressure motor. Specifically, the power
recovery mechanism 105 performs a process of drawing the refrigerant flowing from
the heat radiator 104 and a process of discharging the drawn refrigerant, substantially
continuously. That is, the power recovery mechanism 105 draws the refrigerant that
has changed to intermediate temperature and high pressure by the heat radiator 104,
and discharges it to the evaporator 106 side substantially without allowing the volume
change of the refrigerant. The main compressor 103 keeps the pressure on the heat
radiator 104 side relatively high and the pressure on the evaporator 106 side relatively
low with the power recovery mechanism 105 interposed therebetween. Accordingly, the
refrigerant drawn into the power recovery mechanism 105 is expanded when being discharged
from the power recovery mechanism 105, and the pressure thereof is lowered.
[0024] The evaporator 106 is connected to the power recovery mechanism 105. The refrigerant
flowing from the power recovery mechanism 105 is heated and evaporated in the evaporator
106.
[0025] The sub-compressor 102 is arranged between the evaporator 106 and the main compressor
103 in the refrigerant circuit 109. The sub-compressor 102 is coupled to the power
recovery mechanism 105 by a shaft 12. The sub-compressor 102 is driven by the power
recovered by the power recovery mechanism 105. The sub-compressor 102 is composed
of a fluid pressure motor in the same manner as the power recovery mechanism 105.
The sub-compressor 102 performs a process of drawing the refrigerant flowing from
the evaporator 106 and a process of discharging the drawn refrigerant to the main
compressor 103 side, substantially continuously. The sub-compressor 102 draws the
refrigerant flowing from the evaporator 106, and discharges it to the main compressor
103 side substantially without allowing the volume change of the refrigerant. The
refrigerant flowing from the evaporator 106 is preliminarily compressed by being discharged
from the sub-compressor 102. The preliminarily compressed refrigerant is further compressed
to high temperature and high pressure again by the main compressor 103.
[0026] The refrigeration cycle apparatus 101 further includes a bypass circuit 107a. The
bypass circuit 107a bypasses the sub-compressor 102 and connects the outlet of the
evaporator 106 to the inlet of the main compressor 103. The bypass circuit 107a is
provided with a bypass valve 107b. In normal operation, the bypass valve 107b is closed
so that the supercharge effect (pre-compression effect) by the sub-compressor 102
can be obtained. At the time of starting the refrigeration cycle apparatus 101, the
bypass valve 107b is opened. It is possible to cause a relatively large pressure difference
between the inlet and outlet of the power recovery mechanism 105 by opening the bypass
valve 107b. It makes it easy to start the refrigeration cycle apparatus 101 smoothly.
[0027] As shown in Fig. 2A, the power recovery mechanism 105 (first fluid mechanism) and
the sub-compressor 102 (second fluid mechanism) constitute a single fluid machine
110. The fluid machine 110 has a closed casing 111 filled with a refrigeration oil.
The power recovery mechanism 105 and the sub-compressor 102 are arranged in this closed
casing 111. This allows a reduction in size of the refrigeration cycle apparatus 101.
[0028] The fluid machine 110 is provided with balance weights 152. Specifically, the balance
weights 152 each are mounted on both ends of the shaft 12. The balance weight 152
has a function of reducing the unevenness in weight around the central axis of the
shaft 12. One end of an oil equalizing pipe 163 is connected to the closed casing
111. The other end of the oil equalizing pipe 163 is connected to the closed casing
160 of the main compressor 103. In this embodiment, the fluid machine 110 does not
have a motor.
<Configuration of power recovery mechanism 105>
[0029] The power recovery mechanism 105 is arranged at the lower part of the closed casing
111. The present embodiment describes an example in which the power recovery mechanism
105 is composed of a rotary fluid pressure motor. However, the power recovery mechanism
105 is not limited to the rotary fluid pressure motor. The power recovery mechanism
105 may be composed of an expander having a specific volume ratio, such as a rotary
expander and scroll expander.
[0030] The power recovery mechanism 105 includes a first closing member 115 and a second
closing member 113. The first closing member 115 and the second closing member 113
face each other. A first cylinder 22 is arranged between the first closing member
115 and the second closing member 113. The first cylinder 22 has an internal space
of substantially cylindrical shape. The internal space of the first cylinder 22 is
closed by the first closing member 115 and the second closing member 113. The first
closing member 115 and the second closing member 113 are positioned respectively above
and below the first cylinder 22.
[0031] The shaft 12 extends through the first cylinder 22 in the axis direction of the first
cylinder 22. The first cylinder 22 surrounds a part of the shaft 12 in the circumferential
direction. The shaft 12 is arranged on the central axis of the first cylinder 22.
The shaft 12 is supported by the second closing member 113 and a third closing member
114 to be described later. The shaft 12 is formed with an oil supply hole 12a extending
through the shaft 12 in the axis direction. The refrigeration oil in the closed casing
111 is supplied to bearings, gaps, etc. in the sub-compressor 102 and the power recovery
mechanism 105 through the oil supply hole 12a. The shaft 12 may be composed of a single
component, or may be composed of a plurality of components.
[0032] A first piston 21 is arranged in the internal space of substantially cylindrical
shape that is defined by the inner circumferential surface of the first cylinder 22,
the first closing member 115 and the second closing member 113. The first piston 21
is mounted on the shaft 12 eccentrically with respect to the central axis of the shaft
12. Specifically, the shaft 12 is provided with an eccentric portion 12b having a
central axis different from that of the shaft 12. The first piston 21 having a tubular
shape is fitted around the eccentric portion 12b. Therefore, the first piston 21 is
eccentric with respect to the central axis of the first cylinder 22. Accordingly,
the first piston 21 eccentrically rotates as the shaft 12 rotates.
[0033] A first working chamber 23 is defined by the outer circumferential surface of the
first piston 21, the inner circumferential surface of the first cylinder 22, the first
closing member 115, and the second closing member 113, in the first cylinder 22 (see
also Fig. 4). The volume of the first working chamber 23 remains substantially unchanged
even if the first piston 21 rotates with the shaft 12.
[0034] As shown in Fig. 4, the first cylinder 22 is formed with a linear groove 22a opening
into the first working chamber 23. A first partition member 24 having a plate shape
is slidably inserted into the linear groove 22a. A biasing means 25 is arranged between
the first partition member 24 and the bottom of the linear groove 22a. The first partition
member 24 is pressed into contact with the outer circumferential surface of the first
piston 21 by the biasing means 25. Thus, the first working chamber 23 is partitioned
into two spaces. Specifically, the first working chamber 23 is partitioned into a
suction working chamber 23a on the high-pressure side and a discharge working chamber
23b on the low-pressure side.
[0035] The biasing means 25 can be composed, for example, of a spring. Specifically, the
biasing means 25 may be a compression coil spring.
[0036] Further, the biasing means 25 may be a so-called gas spring, or the like. In other
words, when the first partition member 24 slides in the direction that reduces the
volume of the back space of the first partition member 24, the pressure in the back
space may be set higher than the pressure in the first working chamber 23, thereby
causing the first partition member 24 to be pressed toward the first piston 21 due
to the pressure difference. For example, the back space of the first partition member
24 may be formed as a closed space so that a reaction force is applied to the first
partition member 24 when the volume of the back space is reduced as the first partition
member 24 moves backward. The biasing means 25 may be composed of a plurality of types
of springs, such as a compression coil spring and a gas spring, of course. It should
be noted that the pressure in the first working chamber 23 means an average pressure
between the pressure in the suction working chamber 23a and the pressure in the discharge
working chamber 23b. The back space means a space formed between the rear edge of
the first partition member 24 and the bottom of the linear groove 22a.
[0037] As shown in Fig. 2A, the first closing member 115 is provided with a first suction
port 26 that opens and closes, as the first piston 21 rotates, so that the refrigerant
flows into the suction working chamber 23a. Similarly, the second closing member 113
is provided with a second suction port 27 that opens and closes, as the first piston
21 rotates, so that the refrigerant flows into the suction working chamber 23a. The
second suction port 27 is provided at a position facing the first suction port 26
in the axis direction of the shaft 12. That is, the power recovery mechanism 105 is
provided with the two suction ports 26 and 27. Even if the first piston 21 is stopped
while blocking the suction ports 26 and 27, a positive pressure acts on both of the
upper surface and lower surface of the first piston 21 at the next startup. This can
prevent the first piston 21 from being pressed strongly toward the closing member
115 or 113, thus enabling the refrigeration cycle apparatus 101 to be started smoothly.
Furthermore, the pressure of the refrigerant acts on both of the upper surface and
lower surface of the first piston 21 in normal operation as well. Therefore, the friction
loss between the first piston 21 and the closing member 115 or 113 can be reduced,
which improves the efficiency of the power recovery mechanism 105.
[0038] Specifically, the power recovery mechanism 105 includes a suction path 53 for supplying
the refrigerant from the outside of the power recovery mechanism 105 (heat radiator
104) to the suction working chamber 23a through each of the first suction port 26
and second suction port 27. This suction path 53 is composed of a common suction path
40, a first suction path 51 and a second suction path 52. The first suction port 26
is located at the terminal end of the first suction path 51, and the second suction
port 27 is located at the terminal end of the second suction path 52. Further, the
power recovery mechanism 105 includes a suction pipe 28 for introducing the refrigerant
from the outside of the closed casing 111 to the suction path 53.
[0039] The common suction path 40 is formed in the second closing member 113, and is a large
path extending from the outer circumferential surface of the second closing member
113 toward the center of the shaft 12. The suction pipe 28 is connected directly to
the common suction path 40. The first suction path 51 branches from the common suction
path 40 and extends through the first cylinder 22 in the axis direction to reach the
first suction port 26 so as to allow the refrigerant to be supplied from the common
suction path 40 to the suction working chamber 23a through the first suction port
26. The second suction path 52 branches from the common suction path 40 at a more
internal position than the first suction path 51 in the radial direction of the shaft
12 and extends in the axis direction to reach the second suction port 27 so as to
allow the refrigerant to be supplied from the common suction path 40 to the suction
working chamber 23a through the second suction port 27. According to such a structure,
it is possible to provide the two suction ports 26 and 27 without increasing the number
of the suction pipe 28.
[0040] More specifically, the first suction path 51 includes a portion formed in the second
closing member 113, a portion formed in the first cylinder 22, and a portion formed
in the first closing member 115. In the axis direction, the first suction path 51
extends around from below to above the working chamber 23. That is, the first suction
path 51 has a hook-shaped cross-sectional profile.
[0041] A configuration in which the common suction path 40 is provided in the first cylinder
22 so that the length of the first suction path 51 should be equal to the length of
the second suction path 52 also is conceivable. However, when the volume of the working
chamber 23 is small, the thickness of the first cylinder 22 is small as well, and
therefore it is impossible to provide the common suction path 40 in the first cylinder
22. In such a case, the configuration of this embodiment is effective. This is also
applicable to the below-mentioned discharge path.
[0042] Next, as shown in Fig. 2B, the first closing member 115 is provided with a first
discharge port 29 (first flow outlet) that opens and closes, as the first piston 21
rotates, so that the refrigerant flows out from the discharge working chamber 23b.
Similarly, the second closing member 113 is provided with a second discharge port
30 (second flow outlet) that opens and closes, as the first piston 21 rotates, so
that the refrigerant flows out from the discharge working chamber 23b. The second
discharge port 30 is provided at a position facing the first discharge port 29 in
the axis direction. That is, the power recovery mechanism 105 includes the two discharge
ports 29 and 30. Even if the first piston 21 is stopped while blocking the discharge
ports 29 and 30, a negative pressure acts on both of the upper surface and lower surface
of the first piston 21 at the next startup. This can prevent the first piston 21 from
being pulled strongly toward the closing member 115 or 113, thus making it easy to
start the refrigeration cycle apparatus 101 smoothly. Furthermore, the pressure of
the refrigerant acts on both of the upper surface and lower surface of the first piston
21 in normal operation as well. Therefore, the friction loss between the first piston
21 and the closing member 115 or 113 can be reduced, which improves the efficiency
of the power recovery mechanism 105.
[0043] Specifically, the power recovery mechanism 105 includes a discharge path 58 for introducing
the refrigerant from the discharge working chamber 23b to the outside of the power
recovery mechanism 105 (to the evaporator 106) through each of the first discharge
port 29 and the second discharge port 30. This discharge path 58 is composed of a
common discharge path 55, a first discharge path 56 and a second discharge path 57.
The first discharge port 29 is located at the starting end of the first discharge
path 56, and the second discharge port 30 is located at the starting end of the second
discharge path 57. Further, the power recovery mechanism 105 includes a discharge
pipe 31 for introducing the refrigerant from the discharge path 58 to the outside
of the closed casing 111. When the refrigeration cycle apparatus 101 is being started,
a negative pressure is generated in the discharge path 58 by opening the bypass valve
107b and activating the main compressor 103.
[0044] The common discharge path 55 is formed in the second closing member 113, and is a
large path extending from the outer circumferential surface of the second closing
member 113 toward the center of the shaft 12. The discharge pipe 31 is connected directly
to the common discharge path 55. The first discharge path 56 extends from the first
discharge port 29 outwardly through the first cylinder 22 in the axis direction to
merge with the common discharge path 55 so as to allow the refrigerant to be introduced
from the discharge working chamber 23b to the common discharge path 55 through the
first discharge port 29. The second discharge path 57 extends from the second discharge
port 30 in the axis direction and merges with the common discharge path 55 at a more
internal position than the first discharge path 56 in the radial direction of the
shaft 12 so as to allow the refrigerant to be introduced from the discharge working
chamber 23b to the common discharge path 55 through the second discharge port 30.
According to such a structure, it is possible to provide the two discharge ports 29
and 30 without increasing the number of the discharge pipe 31.
[0045] More specifically, the first discharge path 56 includes a portion formed in the first
closing member 115, a portion formed in the first cylinder 22, and a portion formed
in the second closing member 113 and extends around from above to below the working
chamber 23. That is, the first discharge path 56 has a hook-shaped cross-sectional
profile.
[0046] As shown in Fig. 4, the suction path 53 opens into the suction working chamber 23a
in the area adjacent to the first partition member 24. More specifically, the first
suction path 51 and the second suction path 52 that have been described with reference
to Fig. 2A each open into the suction working chamber 23a.
[0047] The second suction port 27 is formed in a substantially fan shape that extends in
an arc shape from the portion of the suction working chamber 23a adjacent to the first
partition member 24 in the direction in which the suction working chamber 23a is enlarged.
The second suction port 27 is closed completely by the first piston 21 only when the
first piston 21 is located at its top dead center. At least a part of the second suction
port 27 is exposed to the suction working chamber 23a over the entire period except
for the moment when the first piston 21 is located at its top dead center. Specifically,
the second suction port 27 has an outer edge side 27a that is formed in an arc shape
along the outer circumferential surface of the first piston 21 located at its top
dead center, in plan view. In other words, the outer edge side 27a is formed in an
arc shape having substantially the same radius as the outer circumferential surface
of the first piston 21. It should be noted that the "outer edge side" herein means
an edge side located outward of the shaft 5 in the radial direction. The "top dead
center" means a location of the piston at which the vane is pushed into the deepest
point of the vane groove.
[0048] Though not shown in Fig. 4, the first suction port 26 has the same opening shape
as the second suction port 27. Furthermore, the first suction port 26 has an opening
area equal to the opening area of the second suction port 27. With such a configuration,
the force acting on the lower surface of the first piston 21 can be counteracted effectively
by the force acting on the upper surface thereof.
[0049] The pressure of the refrigerant flowing into the suction working chamber 23a through
the first suction port 26 is substantially equal to the pressure of the refrigerant
flowing into the suction working chamber 23a through the second suction port 27. When
the first suction port 26 and the second suction port 27 completely overlap each other
in the axis direction, the overlapping area of the first piston 21 and the first suction
port 26 is equal to the overlapping area of the first piston 21 and the second suction
port 27. Accordingly, the force acting on the upper surface of the first piston 21
is equal to the force acting on the lower surface thereof (force = pressure × area).
That is, the effect to counteract the forces acting on the first piston 21 in the
thickness direction (axis direction) can be enhanced most.
[0050] It should be noted that since the first suction path 51 is longer than the second
suction path 52, when the cross-sectional area of the first suction path 51 is equal
to that of the second suction path 52, the pressure loss in the first suction path
51 exceeds the pressure loss in the second suction path 52. Therefore, even if the
first suction port 26 and the second suction port 27 completely overlap each other
in the axis direction, the force acting on the upper surface of the first piston 21
is not strictly equal to the force acting on the lower surface thereof due to the
influence of the difference in pressure loss.
[0051] As shown in Fig. 3, the first suction path 51 has a larger cross-sectional area than
the second suction path 52 in this embodiment. This configuration can reduce the pressure
loss in the first suction path 51, and therefore is more effective to make the force
acting on the upper surface of the first piston 21 equal to the force acting on the
lower surface thereof. As a result, the effect to counteract the forces acting on
the first piston 21 in the thickness direction can be more enhanced.
[0052] The cross-sectional shape of each suction path is not specifically limited. However,
each suction path typically has a circular cross-sectional shape. The first suction
port 26 and the second suction port 27 each having a shape shown in Fig. 4 are formed
by shallow counterbores provided on the ends of the first suction path 51 and the
second suction path 52. Such a configuration also can be applied to the sub-compressor
102 in addition to the discharge paths and discharge ports.
[0053] As shown in Fig. 4, the discharge path 58 opens into the discharge working chamber
23b in the area adjacent to the first partition member 24. More specifically, the
first discharge path 56 and the second discharge path 57 that have been described
with reference to Fig. 2B each open into the discharge working chamber 23b.
[0054] The second discharge port 30 is formed in a substantially fan shape that extends
in an arc shape from the portion of the suction working chamber 23b adjacent to the
first partition member 24 in the direction in which the discharge working chamber
23b is enlarged. The second discharge port 30 is closed completely by the first piston
21 only when the first piston 21 is located at its top dead center. At least a part
of the second discharge port 30 is exposed to the discharge working chamber 23b over
the entire period except for the moment when the first piston 21 is located at its
top dead center. Specifically, the second discharge port 30 has an outer edge side
30a that is formed in an arc shape along the outer circumferential surface of the
first piston 21 located at its top dead center, in plan view. In other words, the
outer edge side 30a is formed in an arc shape having substantially the same radius
as the outer circumferential surface of the first piston 21.
[0055] Though not shown in Fig. 4, the first discharge port 29 has the same opening shape
as the second discharge port 30. Furthermore, the first discharge port 29 has an opening
area equal to the opening area of the second discharge port 30. With such a configuration,
the force acting on the lower surface of the first piston 21 (suction force) can be
counteracted effectively by the force acting on the upper surface thereof (suction
force).
[0056] The pressure of the refrigerant discharged to the discharge path 58 through the first
discharge port 29 is substantially equal to the pressure of the refrigerant discharged
to the discharge path 58 through the second discharge port 30. When the first discharge
port 29 and the second discharge port 30 completely overlap each other in the axis
direction, the overlapping area of the first piston 21 and the first discharge port
29 is equal to the overlapping area of the first piston 21 and the second discharge
port 30. Accordingly, the force acting on the upper surface of the first piston 21
is equal to the force acting on the lower surface thereof (force = pressure × area).
That is, the effect to counteract the forces acting on the first piston 21 in the
thickness direction (axis direction) can be enhanced most.
[0057] Similarly to the first suction path 51 and the second suction path 52 that has been
described with reference to Fig. 3, the first discharge path 56 may have a larger
cross-sectional area than the second discharge path 57. This configuration can reduce
the pressure loss in the first discharge path 56, and therefore is more effective
to make the force acting on the upper surface of the first piston 21 equal to the
force acting on the lower surface thereof.
[0058] Meanwhile, the effect to counteract the forces acting on the first piston 21 can
be obtained independently from the configuration in which a plurality of the suction
ports 26 and 27 are provided, and from the configuration in which a plurality of the
discharge ports 29 and 30 are provided. However, the pressure of the refrigerant in
the suction path 53 is far higher than the pressure of the refrigerant in the discharge
path 58. For example, in the case of using carbon dioxide as a refrigerant, the difference
between the pressure in the suction path 53 and the pressure in the discharge path
58 reaches as high as several MPa. Taking this into consideration, the effect to be
obtained by combining the suction ports 26 and 27 is higher than the effect to be
obtained by combining the discharge ports 29 and 30.
[0059] Fig. 5 is a view illustrating the principle of operation of the power recovery mechanism
105, and illustrates four states ST1 to ST4 of the power recovery mechanism 105.
[0060] As shown in Fig. 5 (ST2 to ST4), when the suction ports 26 and 27 are opened as the
first piston 21 rotates, the volume of the suction working chamber 23a gradually increases
due to the refrigerant at high pressure flowing in through the suction ports 26 and
27. The rotational torque applied to the first piston 21 as the volume of the suction
working chamber 23a increases is incorporated as part of the rotational driving force
for the shaft 12. In the case where the first suction port 26 overlaps the second
suction port 27 in the axis direction, the timings of the opening and closing of the
two suction ports 26 and 27 match each other. Similarly, in the case where the first
discharge port 29 overlaps the second discharge port 30 in the axis direction, the
timings of the opening and closing of the two discharge ports 29 and 30 also match
each other.
[0061] As viewed from the power recovery mechanism 105, the pressure on the evaporator 106
side is lower than that on the heat radiator 104 side. The refrigerant at low temperature
and high pressure in the discharge working chamber 23b is drawn to the evaporator
106 side, and discharged from the discharge working chamber 23b to the discharge path
58. When the discharge working chamber 23b is brought into communication with the
discharge path 58 so as to start the discharge process, the specific volume of the
refrigerant rapidly increases. The rotational torque applied to the first piston 21
due to this discharge process of the refrigerant also is incorporated as part of the
rotational driving force for the shaft 12. That is, the shaft 12 rotates by the inflow
of the refrigerant at high pressure to the suction working chamber 23a and the suction
of the refrigerant in the discharge process. Then, the rotational torque of the shaft
12 is used as power for the sub-compressor 102 as described later in detail.
[0062] The suction working chamber 23a constantly communicates with the suction path 53.
Further, the discharge working chamber 23b constantly communicates with the discharge
path 58. In other words, the process for drawing the refrigerant and the process for
discharging the drawn refrigerant are performed substantially continuously in the
power recovery mechanism 105. For this reason, the drawn refrigerant passes through
the power recovery mechanism 105 substantially without changing its volume.
[0063] As shown in the upper left view (ST1) of Fig. 5, both of the suction port 27 and
the discharge port 30 are closed completely only at the moment when the first piston
21 is located at its top dead center. That is, both of the suction port 27 and the
discharge port 30 are closed completely at the moment when the first working chamber
23 is allowed to be one without being partitioned. More specifically, the suction
working chamber 23a communicates with the suction path 53 until the moment when the
suction working chamber 23a communicates with the discharge path 58. After the moment
when the suction working chamber 23a communicates with the discharge path 58 so that
the suction working chamber 23a comes to serve as the discharge working chamber 23b,
the discharge working chamber 23b is separated from the suction path 53 by the first
piston 21. This can inhibit the direct flow of the refrigerant from the suction path
53 to the discharge path 58. Accordingly, high-efficiency power recovery can be achieved.
[0064] In order to completely restrict the direct flow of the refrigerant from the suction
path 53 to the discharge path 58, it is preferable that both of the suction port 27
and the discharge port 30 be closed at the moment when the first piston 21 is located
at its top dead center. However, even if only one of the suction port 27 and the discharge
port 30 is closed at the moment when the first piston 21 is located at its top dead
center, the direct flow between the suction path 53 and the discharge path 58 substantially
does not occur as long as the difference between the timing of the closing of the
suction port 27 and the timing of the closing of the discharge port 30 is less than
about 10° in terms of the rotation angle of the shaft 12. That is, the direct flow
of the refrigerant from the suction path 53 to the discharge path 58 can be inhibited
by setting the difference between the timing of the closing of the suction port 27
and the timing of the closing of the discharge port 30 to less than about 10° in terms
of the rotation angle of the shaft 12.
[0065] For preventing the direct flow of the refrigerant, it is preferable that the timings
of the opening and closing of the suction ports 26 and 27 match each other, and the
timings of the opening and closing of the discharge ports 29 and 30 also match each
other.
<Configuration of sub-compressor 102>
[0066] As shown in Fig. 2A, the sub-compressor 102 is arranged above the power recovery
mechanism 105 in the closed casing 111. In this way, it is possible to inhibit the
heat exchange between the sub-compressor 102 and the power recovery mechanism 105
by arranging the sub-compressor 102 at a relatively high temperature above the power
recovery mechanism 105 at a relatively low temperature. However, the sub-compressor
102 may be arranged below the power recovery mechanism 105.
[0067] The sub-compressor 102 is coupled to the power recovery mechanism 105 by the shaft
12. This embodiment describes an example in which the sub-compressor 102 is composed
of a rotary fluid pressure motor. However, the sub-compressor 102 is not limited to
a rotary fluid pressure motor. The sub-compressor 102 may be composed of a compressor
having a specific volume ratio, such as a rotary compressor and scroll compressor.
[0068] The sub-compressor 102 has a basic configuration substantially the same as that of
the power recovery mechanism 105. Specifically, the sub-compressor 102 includes the
first closing member 115 that serves as a lower closing member and a third closing
member 114 that serves as an upper closing member, as shown in Fig. 2A. The power
recovery mechanism 105 and the sub-compressor 102 are arranged adjacent to each other
in the axis direction in the closed casing 111 so that the first closing member 115
of the power recovery mechanism 105 can be used commonly as the lower closing member
of the sub-compressor 102. Such a configuration allows the number of components to
be reduced and is advantageous in reducing the size of the fluid machine 110.
[0069] The first closing member 115 and the third closing member 114 face each other. Specifically,
the third closing member 114 faces one surface of the first closing member 115 opposite
to the other surface thereof that faces the second closing member 113. A second cylinder
42 is arranged between the first closing member 115 and the third closing member 114.
The second cylinder 42 has an internal space of substantially cylindrical shape. The
internal space of the second cylinder 42 is closed by the first closing member 115
and the third closing member 114. The third closing member 114 and the first closing
member 115 are arranged respectively above and below the second cylinder 42.
[0070] The shaft 12 extends through the second cylinder 42 in the axis direction of the
second cylinder 42. The second cylinder 42 surrounds a part of the shaft 12 in the
circumferential direction. The shaft 12 is arranged on the central axis of the second
cylinder 42. A second piston 41 is arranged in the internal space of substantially
cylindrical shape that is defined by the inner circumferential surface of the second
cylinder 42, the first closing member 115 and the third closing member 114. The second
piston 41 is mounted on the shaft 12 eccentrically with respect to the central axis
of the shaft 12. Specifically, the shaft 12 is provided with an eccentric portion
12c having a central axis different from that of the shaft 12. The second piston 41
having a tubular shape is fitted around the eccentric portion 12c. Therefore, the
second piston 41 is eccentric with respect to the central axis of the second cylinder
42. Accordingly, the second piston 41 eccentrically rotates as the shaft 12 rotates.
[0071] The eccentric portion 12c is eccentric substantially in the same direction as the
eccentric portion 12b. For this reason, the eccentric direction of the first piston
21 with respect to the central axis of the first cylinder 22 and the eccentric direction
of the second piston 41 with respect to the central axis of the second cylinder 42
are substantially the same as each other in this embodiment. Here, the phrase "substantially
the same" is intended to include not only the case of these directions being completely
the same, but also the case of them having an error of about ± 2 to 3°.
[0072] A second working chamber 43 is defined by the outer circumferential surface of the
second piston 41, the inner circumferential surface of the second cylinder 42, the
first closing member 115, and the third closing member 114 in the second cylinder
42 (see also Fig. 6). The volume of the second working chamber 43 remains substantially
unchanged even if the second piston 41 rotates as the shaft 12 rotates.
[0073] As shown in Fig. 6, the second cylinder 42 is formed with a linear groove 42a opening
into the second working chamber 43. A second partition member 44 having a plate shape
is slidably inserted into the linear groove 42a. A biasing means 45 is arranged between
the second partition member 44 and the bottom of the linear groove 42a. The second
partition member 44 is pressed into contact with the outer circumferential surface
of the second piston 41 by the biasing means 45. Thus, the second working chamber
43 is partitioned into two spaces. Specifically, the second working chamber 43 is
partitioned into a suction working chamber 43a on the low-pressure side and a discharge
working chamber 43b on the high-pressure side.
[0074] The biasing means 45 can be composed, for example, of a spring. Specifically, the
biasing means 45 may be a compression coil spring, or a so-called gas spring, similarly
to the aforementioned biasing means 25.
[0075] As shown in Fig. 2B, the first closing member 115 is provided with a first discharge
port 49 (lower discharge port) that opens and closes, as the second piston 41 rotates,
so that the refrigerant flows out from the discharge working chamber 43b. Similarly,
the third closing member 114 is provided with a second discharge port 50 (upper discharge
port) that opens and closes, as the second piston 41 rotates, so that the refrigerant
flows out from the discharge working chamber 43b. The second discharge port 50 is
provided at a position facing the first discharge port 49 in the axis direction. That
is, the sub-compressor 102 includes the two discharge ports 49 and 50. Even if the
second piston 41 is stopped while blocking the discharge ports 49 and 50, a negative
pressure acts on both of the upper surface and lower surface of the second piston
41 at the next startup. This can prevent the second piston 41 from being pulled strongly
toward the closing member 115 or 114, thus making it easy to start the refrigeration
cycle apparatus 101 smoothly. Furthermore, the pressure of the refrigerant acts on
both of the upper surface and lower surface of the second piston 41 in normal operation
as well. Therefore, the friction loss between the second piston 41 and the closing
member 115 or 114 can be reduced, which improves the efficiency of the sub-compressor
102.
[0076] Specifically, the sub-compressor 102 includes a discharge path 68 for introducing
the refrigerant from the discharge working chamber 43b to the outside of the sub-compressor
102 (to the main compressor 103) through each of the first discharge port 49 and the
second discharge port 50. This discharge path 68 is composed of a common discharge
path 65, a first discharge path 66 and a second discharge path 67. The first discharge
port 49 is located at the starting end of the first discharge path 66, and the second
discharge port 50 is located at the starting end of the second discharge path 67.
Further, the sub-compressor 102 includes a discharge pipe 151 for introducing the
refrigerant from the discharge path 68 to the outside of the closed casing 111. When
the refrigeration cycle apparatus 101 is being started, a negative pressure is generated
in the discharge path 68 by opening the bypass valve 107b and activating the main
compressor 103.
[0077] The common discharge path 65 is formed in the third closing member 114, and is a
large path extending from the outer circumferential surface of the third closing member
114 toward the center of the shaft 12. The discharge pipe 151 is connected directly
to the common discharge path 65. The first discharge path 66 extends from the first
discharge port 49 outwardly through the second cylinder 42 in the axis direction to
merge with the common discharge path 65 so as to allow the refrigerant to be introduced
from the discharge working chamber 43b to the common discharge path 65 through the
first discharge port 49. The second discharge path 67 extends from the second discharge
port 50 in the axis direction and merges with the common discharge path 65 at a more
internal position than the first discharge path 66 in the radial direction of the
shaft 12 so as to allow the refrigerant to be introduced from the discharge working
chamber 43b to the common discharge path 65 through the second discharge port 50.
According to such a structure, it is possible to provide the two discharge ports 49
and 50 without increasing the number of the discharge pipe 151.
[0078] More specifically, the first discharge path 66 includes a portion formed in the first
closing member 115, a portion formed in the second cylinder 42, and a portion formed
in the third closing member 114, and extends around from below to above the working
chamber 43. That is, the first discharge path 66 has a hook-shaped cross-sectional
profile.
[0079] As shown in Fig. 2A, the first closing member 115 is provided with a first suction
port 46 (lower suction port) that opens and closes, as the second piston 41 rotates,
so that the refrigerant flows into the suction working chamber 43a. Similarly, the
third closing member 114 is provided with a second suction port 47 (upper suction
port) that opens and closes, as the second piston 41 rotates, so that the refrigerant
flows into the suction working chamber 43a. The second suction port 47 is provided
at a position facing the first suction port 46 in the axis direction of the shaft
12. That is, the sub-compressor 102 includes the two suction ports 46 and 47. Even
if the second piston 41 is stopped while blocking the suction ports 46 and 47, a negative
pressure acts on both of the upper surface and lower surface of the second piston
41 at the next startup. This can prevent the second piston 41 from being pulled strongly
toward the closing member 115 or 114, thus making it easy to start the refrigeration
cycle apparatus 101 smoothly. Furthermore, the pressure of the refrigerant acts on
both of the upper surface and lower surface of the second piston 41 in normal operation
as well. Therefore, the friction loss between the second piston 41 and the closing
member 115 or 114 can be reduced, which improves the efficiency of the sub-compressor
102.
[0080] Specifically, the sub-compressor 102 includes a suction path 63 for supplying the
refrigerant from the outside of the sub-compressor 102 (from the evaporator 106) to
the suction working chamber 43a through each of the first suction port 46 and the
second suction port 47. This suction path 63 is composed of a common suction path
60, a first suction path 61 and a second suction path 62. The first suction port 46
is located at the terminal end of the first suction path 61, and the second suction
port 47 is located at the terminal end of the second suction path 62. Further, the
sub-compressor 102 includes a suction pipe 48 for introducing the refrigerant from
the outside of the closed casing 111 to the suction path 63. When the refrigeration
cycle apparatus 101 is being started, a negative pressure is generated also in the
suction path 63 by opening the bypass valve 107b and activating the main compressor
103. That is, the pressure in the suction path 63 is equal to the pressure in the
discharge path 68 in the state where the bypass valve 107b is opened.
[0081] The common suction path 60 is formed in the third closing member 114, and is a large
path extending from the outer circumferential surface of the third closing member
114 toward the center of the shaft 12. The suction pipe 48 is connected directly to
the common suction path 60. The first suction path 61 branches from the common suction
path 60 and extends through the second cylinder 42 in the axis direction to reach
the first suction port 46 so as to allow the refrigerant to be supplied from the common
suction path 60 to the suction working chamber 43a through the first suction port
46. The second suction path 62 branches from the common suction path 60 at a more
internal position than the first suction path 61 in the radial direction of the shaft
12 and extends in the axis direction to reach the second suction port 47 so as to
allow the refrigerant to be supplied from the common suction path 60 to the suction
working chamber 43a through the second suction port 47. According to such a structure,
it is possible to provide the two suction ports 46 and 47 without increasing the number
of the suction pipe 48.
[0082] More specifically, the first suction path 61 includes a portion formed in the third
closing member 114, a portion formed in the second cylinder 42, and a portion formed
in the first closing member 115. In the axis direction, the first suction path 61
extends around from above to below the working chamber 43. That is, the first suction
path 61 has a hook-shaped cross-sectional profile.
[0083] As shown in Fig. 6, the suction path 63 opens into the suction working chamber 43a
in the area adjacent to the second partition member 44. More specifically, the first
suction path 61 and the second suction path 62 that have been described with reference
to Fig. 2A each open into the suction working chamber 43a.
[0084] The first suction port 46 is formed in a substantially fan shape that extends in
an arc shape from the portion of the suction working chamber 43a adjacent to the second
partition member 44 in the direction in which the suction working chamber 43a is enlarged.
The first suction port 46 is closed completely by the second piston 41 only when the
second piston 41 is located at its top dead center. At least a part of the first suction
port 46 is exposed to the suction working chamber 43a over the entire period except
for the moment when the second piston 41 is located at its top dead center. Specifically,
the first suction port 46 has an outer edge side 46a that is formed in an arc shape
along the outer circumferential surface of the second piston 41 located at its top
dead center, in plan view. In other words, the outer edge side 46a is formed in an
arc shape having substantially the same radius as the outer circumferential surface
of the second piston 41.
[0085] Though not shown in Fig. 6, the second suction port 47 has the same opening shape
as the first suction port 46. Furthermore, the first suction port 46 has an opening
area equal to the opening area of the second suction port 47. With such a configuration,
the force acting on the lower surface of the second piston 41 can be counteracted
effectively by the force acting on the upper surface thereof.
[0086] The pressure of the refrigerant flowing into the suction working chamber 43a through
the first suction port 46 is substantially equal to the pressure of the refrigerant
flowing into the suction working chamber 43a through the second suction port 47. When
the first suction port 46 and the second suction port 47 completely overlap each other
in the axis direction, the overlapping area of the second piston 41 and the first
suction port 46 is equal to the overlapping area of the second piston 41 and the second
suction port 47. Accordingly, the force acting on the upper surface of the second
piston 41 is equal to the force acting on the lower surface thereof (force = pressure
× area). That is, the effect to counteract the forces acting on the second piston
41 in the thickness direction (axis direction) can be enhanced most.
[0087] As shown in Fig. 6, the discharge path 68 opens into the discharge working chamber
43b in the area adjacent to the second partition member 44. More specifically, the
first discharge path 66 and the second discharge path 67 that have been described
with reference to Fig. 2B each open into the discharge working chamber 43b.
[0088] The first discharge port 49 is formed in a substantially fan shape that extends in
an arc shape from the portion of the suction working chamber 43b adjacent to the second
partition member 44 in the direction in which the discharge working chamber 43b is
enlarged. The first discharge port 49 is closed completely by the second piston 41
only when the second piston 41 is located at its top dead center. At least a part
of the first discharge port 49 is exposed to the discharge working chamber 43b over
the entire period except for the moment when the second piston 41 is located at its
top dead center. Specifically, the first discharge port 49 has an outer edge side
49a that is formed in an arc shape along the outer circumferential surface of the
second piston 41 located at its top dead center, in plan view. In other words, the
outer edge side 49a is formed in an arc shape having substantially the same radius
as the outer circumferential surface of the second piston 41.
[0089] Though not shown in Fig. 6, the second discharge port 50 has the same opening shape
as the first discharge port 49. That is, the first discharge port 49 has an opening
area equal to the opening area of the second discharge port 50. With such a configuration,
the force acting on the lower surface of the second piston 41 can be counteracted
effectively by the force acting on the upper surface thereof.
[0090] The pressure of the refrigerant discharged to the discharge path 68 through the first
discharge port 49 is substantially equal to the pressure of the refrigerant discharged
to the discharge path 68 through the second discharge port 50. When the first discharge
port 49 and the second discharge port 50 completely overlap each other in the axis
direction, the overlapping area of the second piston 41 and the first discharge port
49 is equal to the overlapping area of the second piston 41 and the second discharge
port 50. Accordingly, the force acting on the upper surface of the second piston 41
is equal to the force acting on the lower surface thereof (force = pressure × area).
That is, the effect to counteract the forces acting on the second piston 41 in the
thickness direction (axis direction) can be enhanced most.
[0091] As shown in Fig. 6, the discharge path 68 is connected to a back space 155 via a
communication path 156. Specifically, the communication path 156 communicates with
the back space 155 when the second partition member 44 approaches the central axis
of the shaft 12 most closely, in this embodiment. The communication path 156 is configured
to be closed by the second partition member 44 when the second partition member 44
shifts away from the central axis of the shaft 12 to some extent. That is, while the
second partition member 44 slides from the forward position, which is closest to the
central axis of the shaft 12, to the backward position, which is most distant from
the central axis of the shaft 12, the communication path 156 changes its state from
open to closed, and the back space 155 changes from an open space that communicates
with the communication path 156 to a closed space that is isolated from the communication
path 156. This causes the communication path 156 to be closed by the second partition
member 44. Upon the back space 155 having changed into a closed space, the back space
155 that serves as a gas spring presses the second partition member 44 toward the
second piston 41.
[0092] The configuration of the suction paths 51 and 52 of the power recovery mechanism
105 that has been described with reference to Fig. 3 can be adopted to the sub-compressor
102. That is, the first suction path 61 may have a larger cross-sectional area than
the second suction path 62 in the sub-compressor 102. Furthermore, the first discharge
path 66 may have a larger cross-sectional area than the second discharge path 67.
This configuration can reduce the pressure loss in the first suction path 61 and the
first discharge path 66, and therefore is more effective to make the force acting
on the upper surface of the second piston 41 equal to the force acting on the lower
surface thereof.
[0093] The effect to counteract the force acting on the second piston 41 can be obtained
independently from the configuration in which a plurality of the suction ports 46
and 47 are provided, and from the configuration in which a plurality of the discharge
ports 49 and 50 are provided. However, the effect to be obtained by combining the
discharge ports 49 and 50 is higher than the effect to be obtained by combining the
suction ports 46 and 47. The reasons for this are as follows. First, when the refrigeration
cycle apparatus 101 is being started, the suction path 63 and the discharge path 68
have the same pressure temporarily. This is because the bypass valve 107b is opened
at the time of startup (see Fig. 1). On the other hand, after the refrigeration cycle
apparatus 101 is started, the bypass valve 107b is closed, which causes the pressure
in the discharge path 68 to be higher than the pressure in the suction path 63. Accordingly,
the combination of the discharge ports 49 and 50 can reduce the friction loss of the
refrigeration cycle apparatus 101 in normal operation more effectively.
[0094] Next, the principle of operation of the sub-compressor 102 is described in detail
with reference to Fig. 7. Fig. 7 illustrates four states T1 to T4 of the sub-compressor
102. The sub-compressor 102 has almost the same principle of operation as the power
recovery mechanism 105.
[0095] The shaft 12 is rotated by power recovered by the power recovery mechanism 105. The
second piston 41 rotates as the shaft 12 rotates, so that the sub-compressor 102 is
driven. In the case where the first suction port 46 overlaps the second suction port
47 in the axis direction, the timings of the opening and closing of the two suction
ports 46 and 47 match each other. Similarly, in the case where the first discharge
port 49 overlaps the second discharge port 50 in the axis direction, the timings of
the opening and closing of the two discharge ports 49 and 50 also match each other.
[0096] The volume of the second working chamber 43 remains substantially unchanged. The
suction working chamber 43a constantly communicates with the suction path 63. The
discharge working chamber 43b constantly communicates with the discharge path 68.
Therefore, the refrigerant is neither compressed nor expanded in the second working
chamber 43 of the sub-compressor 102. When the shaft 12 is rotated by the power recovery
mechanism 105 and the sub-compressor 102 is driven, the pressure on the downstream
side of the second working chamber 43 is rendered higher than the pressure on the
upstream side of the second working chamber 43. In other words, the sub-compressor
102 that is driven by the power recovered by the power recovery mechanism 105 causes
the pressure on the main compressor 103 side from the discharge ports 49 and 50 to
be higher than that on the evaporator 106 side from the suction ports 46 and 47. That
is, the sub-compressor 102 causes an increase in pressure.
[0097] The suction working chamber 43a constantly communicates with the suction path 63.
Further, the discharge working chamber 43b constantly communicates with the discharge
path 68. In other words, the process for drawing the refrigerant and the process for
discharging the drawn refrigerant are performed substantially continuously in the
sub-compressor 102. For this reason, the drawn refrigerant passes through the sub-compressor
102 substantially without changing its volume.
[0098] It should be noted that the timing at which the first piston 21 is located at its
top dead center substantially match the timing at which the second piston 41 is located
at its top dead center, in this embodiment.
[0099] As shown in the upper left view (T1) of Fig. 7, both of the suction port 46 and the
discharge port 49 are closed completely only at the moment when the second piston
41 is located at its top dead center. That is, both of the suction port 46 and the
discharge port 49 are closed completely at the moment when the second working chamber
43 is allowed to be one without being partitioned. More specifically, the suction
working chamber 43a communicates with the suction path 63 until the moment when the
suction working chamber 43a communicates with the discharge path 49. After the moment
when the suction working chamber 43a communicates with the discharge path 68 so that
the suction working chamber 43a comes to serve as the discharge working chamber 43b,
the discharge working chamber 43b is separated from the suction path 63 by the second
piston 41. This can inhibit the back flow of the refrigerant from the discharge path
68 at relatively high pressure to the suction path 63 at relatively low pressure.
Accordingly, high-efficiency supercharge can be achieved. As a result, the efficiency
of using recovered power is enhanced.
[0100] In order to restrict the back flow of the refrigerant from the discharge path 68
to the suction path 63 completely, it is preferable that both of the suction path
63 and the discharge path 68 be closed at the moment when the second piston 41 is
located at its top dead center. However, even if only one of the suction port 46 and
the discharge port 49 is closed at the moment when the second piston 41 is located
at its top dead center, the back flow of the refrigerant from the discharge path 68
to the suction path 63 substantially does not occur as long as the difference between
the timing of closing of the suction port 46 and the timing of closing of the discharge
port 49 is less than about 10° in terms of the rotation angle of the shaft 12. That
is, it is possible to inhibit the back flow of the refrigerant from the discharge
path 68 to the suction path 63 by setting the difference between the timing of closing
of the suction port 46 and the timing of closing of the discharge port 49 to less
than about 10° in terms of the rotation angle of the shaft 12.
[0101] For preventing the back flow of the refrigerant, it is preferable that the timings
of the opening and closing of the suction ports 46 and 47 match each other, and the
timings of the opening and closing of the discharge ports 49 and 50 also match each
other.
INDUSTRIAL APPLICABILITY
[0102] The present invention is useful for a refrigeration cycle apparatus such as a water
heater and an air conditioner.
1. A fluid machine comprising:
a power recovery mechanism for recovering power from a working fluid;
a sub-compressor that is driven by the recovered power; and
a shaft coupling the power recovery mechanism and the sub-compressor to each other
so that the recovered power is transmitted from the power recovery mechanism to the
sub-compressor, wherein
the power recovery mechanism includes:
(a1) a first closing member;
(b1) a second closing member facing the first closing member;
(c1) a cylinder surrounding a part of the shaft in the circumferential direction,
the cylinder having both ends closed by the first closing member and the second closing
member;
(d1) a piston mounted on the shaft in the cylinder, the piston forming a working chamber
between its outer circumferential surface and the inner circumferential surface of
the cylinder;
(e1) a partition member partitioning the working chamber into a high pressure-side
working chamber and a low pressure-side working chamber;
(f1) a first suction port provided in the first closing member so as to open and close,
as the piston rotates, so that the working fluid flows into the high pressure-side
working chamber; and
(g1) a second suction port provided in the second closing member at a position facing
the first suction port in the axis direction of the shaft so as to open and close,
as the piston rotates, so that the working fluid flows into the high pressure-side
working chamber.
2. The fluid machine according to claim 1, wherein
the power recovery mechanism further includes:
(h1) a first discharge port provided in the first closing member so as to open and
close, as the piston rotates, so that the working fluid flows out from the low pressure-side
working chamber; and
(i1) a second discharge port provided in the second closing member at a position facing
the first discharge port in the axis direction so as to open and close, as the piston
rotates, so that the working fluid flows out from the low pressure-side working chamber.
3. The fluid machine according to claim 2, wherein
the first discharge port has the same opening shape as the second discharge port.
4. The fluid machine according to claim 2 or 3, wherein
the first discharge port has an opening area equal to an opening area of the second
discharge port.
5. The fluid machine according to any one of claims 1 to 4, wherein
the first suction port has the same opening shape as the second suction port.
6. The fluid machine according to any one of claims 1 to 5, wherein
the first suction port has an opening area equal to an opening area of the second
suction port.
7. The fluid machine according to any one of claims 1 to 6, wherein
the power recovery mechanism further includes a suction path for supplying the working
fluid from the outside of the power recovery mechanism to the high pressure-side working
chamber through each of the first suction port and the second suction port, and
the suction path includes:
(i) a common suction path extending from the outer circumferential surface of the
second closing member toward the center of the shaft;
(ii) a first suction path branching from the common suction path and extending through
the cylinder in the axis direction to reach the first suction port so as to allow
the working fluid to be supplied from the common suction path to the high pressure-side
working chamber through the first suction port; and
(iii) a second suction path branching from the common suction path at a more internal
position than the first suction path in the radial direction of the shaft and extending
in the axis direction to reach the second suction port so as to allow the working
fluid to be supplied from the common suction path to the high pressure-side working
chamber through the second suction port.
8. The fluid machine according to claim 7, wherein
the first suction path has a larger cross-sectional area than the second suction path.
9. The fluid machine according to any one of claims 1 to 8, wherein
the sub-compressor includes:
(a2) a lower closing member;
(b2) an upper closing member facing the lower closing member;
(c2) a second cylinder surrounding a part of the shaft in the circumferential direction,
the second cylinder having both ends closed by the lower closing member and the upper
closing member;
(d2) a second piston mounted on the shaft in the second cylinder, the second piston
forming a working chamber between its outer circumferential surface and the inner
circumferential surface of the second cylinder;
(e2) a second partition member partitioning the working chamber into a low pressure-side
working chamber and a high pressure-side working chamber;
(f2) a first suction port provided in the lower closing member so as to open and close,
as the second piston rotates, so that the working fluid flows into the low pressure-side
working chamber; and
(g2) a second suction port provided in the upper closing member at a position facing
the first suction port in the axis direction of the shaft so as to open and close,
as the second piston rotates, so that the working fluid flows into the low pressure-side
working chamber.
10. The fluid machine according to claim 9, wherein
the sub-compressor further includes:
(h2) a first discharge port provided in the lower closing member so as to open and
close, as the second piston rotates, so that the working fluid flows out from the
high pressure-side working chamber; and
(i2) a second discharge port provided in the upper closing member at a position facing
the first discharge port in the axis direction so as to open and close, as the second
piston rotates, so that the working fluid flows out from the high pressure-side working
chamber.
11. The fluid machine according to claim 9 or 10, further comprising:
a closed casing accommodating the power recovery mechanism, the sub-compressor and
the shaft, wherein
the power recovery mechanism and the sub-compressor are arranged adjacent to each
other in the axis direction in the closed casing so that the first closing member
of the power recovery mechanism is used commonly as the lower closing member of the
sub-compressor.
12. A refrigeration cycle apparatus provided with a refrigerant circuit in which a refrigerant
circulates, the refrigerant circuit comprising:
the fluid machine according to any one of claims 1 to 11;
a main compressor for compressing the refrigerant that has been pre-compressed by
the sub-compressor in the fluid machine;
a heat radiator for cooling the refrigerant that has been compressed by the main compressor;
and
an evaporator for evaporating the refrigerant discharged from the power recovery mechanism
in the fluid machine.