(11) EP 2 299 124 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

23.03.2011 Patentblatt 2011/12

(51) Int Cl.:

F04D 29/32 (2006.01)

F01D 5/14 (2006.01)

(21) Anmeldenummer: 09011392.9

(22) Anmeldetag: 04.09.2009

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Benannte Erstreckungsstaaten:

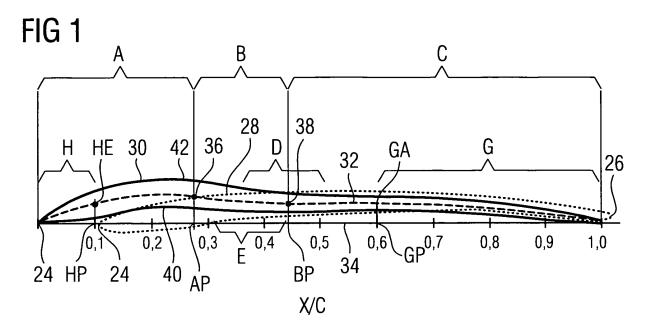
AL BA RS

(71) Anmelder:

 SIEMENS AKTIENGESELLSCHAFT 80333 München (DE) DLR Deutsches Zentrum für Luft- und Raumfahrt e.V.
 51147 Köln (DE)

(72) Erfinder:

 Cornelius, Christian, Dr. 45549 Sprockhövel (DE)


 Kröger, Georg 50823 Köln (DE)

Nicke, Eberhard
 53819 Neunkirchen-Seelscheid (DE)

(54) Verdichterlaufschaufel für einen Axialverdichter

(57) Die Erfindung betrifft eine Verdichterlaufschaufel (10) für axial durchströmte Verdichter vorzugsweise stationärer Gasturbinen. Es ist vorgesehen, dass zur Reduzierung von Radialspaltverlusten die Skelettlinie (32) der schaufelspitzseitigen Profile (30) des Schaufelblatts (12) der Verdichterlaufschaufel (10) mindestens zwei Wendepunkte (36, 38) aufweisen. Durch das Vorhandensein zweier Wendepunkte (36, 38) ergeben sich für

die Saugseitenkontur (42) im Abschnitt von 35 % bis 50 % ein Saugseitenkonturabschnitt (D), der konkav ausgebildet ist und für die Druckseitenkontur (40) ein Druckseitenkonturabschnitt (E), welcher konvex ausgebildet ist. Mit Hilfe dieser Geometrie ist es möglich, verlustärmere Spaltwirbel zu generieren, um den Gesamtwirkungsgrad eines mit diesen Verdichterlaufschaufeln (10) ausgestatteten Axialverdichters zu erhöhen.

EP 2 299 124 A1

Beschreibung

[0001] Die Erfindung betrifft eine Verdichterlaufschaufel für einen Axialverdichter gemäß den Merkmalen des Oberbegriffs von Anspruch 1.

[0002] Verdichterschaufeln für Axialverdichter sind aus dem Stand der Technik in umfangreicher Art bekannt. Beispielsweise offenbart die EP 0 991 866 B1 eine Verdichterschaufel mit einem Profil, dessen Saugseitenkontur an einen Saugseitenschnittpunkt mit einer die Profilsehne bei 5% der Länge der Profilsehne senkrecht schneidenden Bezugsgeraden einen Krümmungsradius aufweist, der kleiner als die Hälfte der Länge der Profilsehne ist. Dadurch soll erreicht werden, dass nach vergleichsweise kurzer Strecke der Umströmung des Schaufelblatts auf der Saugseite das Geschwindigkeitsmaximum erreicht wird und der Ort des Umschlages der Strömung von laminar nach turbulent mit dem Ort des Geschwindigkeitsmaximums zusammenfällt, wodurch dieses Profil einen besonders großen Arbeitsbereich aufweist, in dem es effizient die Gasströmung verdichtet.

[0003] Des Weiteren ist bekannt, dass an den Schaufelblattspitzen von Verdichterlaufschaufeln sogenannte Radialspaltverluste auftreten. Hierbei geht ein Teil des Druckgewinns beim Betrieb des Axialverdichters dadurch verloren, dass über die Schaufelblattspitze hinweg von einer Druckseite des Schaufelblatts zu einer Saugseite des Schaufelblatts sich eine Leckageströmung einstellt. Um diese Leckageströmung zu reduzieren, ist es bekannt, dass ein zwischen den Schaufelblattspitzen und einer dieser gegenüberliegenden Ringwand des Verdichterkanals ausgebildeter Radialspalt stets möglichst klein zu halten ist. Nichtsdestotrotz müssen dabei Mindestgrößen von Spaltmaßen eingehalten werden, um ein Anstreifen von Schaufelblattspitzen an der Ringwand zu vermeiden. Dies gilt dabei insbesondere für instationäre Betriebszustände, bei denen thermisch bedingte Dehnungen sowohl von Kanalwand als auch Laufschaufeln noch nicht abgeschlossen sind.

[0004] Zudem war es häufig so, dass die bisherige Profilierung von Schaufelblattspitzen lediglich auf die besonderen Zuströmbedingungen im Bereich der Ringwand angepasst war. Die eigentliche Profilierung erfolgte allerdings nicht unter Berücksichtigung der tatsächlichen dreidimensionalen Strömungseffekte an der Schaufelblattspitze. Konventionell ausgelegte Schaufelblattprofilierungen wurden daher nicht optimal an die komplexen Strömungsbedingungen im Bereich der Schaufelblattspitze angepasst. Dadurch besteht insbesondere bei Verdichterlaufschaufeln mit kleiner Spannweite und großen relativen Spalthöhen (in Bezug auf Spannweite) ein beachtliches Verbesserungspotential.

[0005] Da moderne, wie aus der EP 0 991 866 B1 bekannte Turbomaschinenbeschaufelungen mittlerweile eine sehr hohe aerodynamische Effizienz erreicht haben, entsteht mit der Tendenz zu immer höheren Profilbelastungen ein zunehmender Anteil an den Gesamtverlusten durch diese Radialspaltverluste, die im äußeren wandnahen Bereich des Ringraums auftreten. Eine Reduktion dieser erheblichen Verluste bewirkt somit eine signifikante Verbesserung des Wirkungsgrades von Turbomaschinen und von Axialverdichtern.

[0006] Um diese Radialspaltverluste zu reduzieren, ist beispielsweise aus der SU 1 751 430-A1 bekannt, die Schaufelblattspitze von Laufschaufeln eines Axialverdichters nach Form eines S auszubilden. Die Skelettlinie des Profils wird von zwei zueinander gegenläufigen Kreisbögen gebildet, die an einem Wendepunkt ineinander übergehen. Der Wendepunkt befindet sich dabei im Bereich zwischen 5% und 15% der relativen Sehnenlänge. Hierdurch werden Sekundärströmungsverluste und Ungleichförmigkeiten der Strömung am Ausgang von subsonischen Verdichterschaufeln vermindert aufgrund der Reduzierung des Druckgradienten. Insbesondere soll dabei der Druckgradient im vorderen und mittleren Bereich in den Passagen zwischen den Laufschaufeln reduziert werden. Gemäß der SU 1 751 430-A1 ist der Vorderkantenbereich in Richtung der Saugseite des Schaufelblatts gedreht, wodurch der vordere, d.h. stromaufwärtige Bereich des Profils eine umgekehrte Wölbung im Vergleich zu dem hinteren, d.h. stromabwärtigen Bereich des Schaufelprofils aufweist.

[0007] Ungeachtet der bereits vorhandenen Lösungen besteht weiterhin ein großes Interesse an der Reduzierung von Radialspaltverlusten von Turbomaschinen, um die Effizienz dieser Maschinen weiter zu vergrößern.

[0008] Aufgabe der Erfindung ist die Bereitstellung einer Verdichterlaufschaufel mit einer Schaufelblattspitze, die besonders geringe Leckageströmungen und Radialspaltverluste beim Betrieb in einer Turbomaschine aufweist.

[0009] Diese Aufgabe wird mit einer Verdichterlaufschaufel für einen Axialverdichter, mit einem gekrümmten Schaufelblatt gelöst, welches eine Druckseitenwand und eine Saugseitenwand umfasst, die sich zum einen jeweils von einer gemeinsamen Vorderkante zu einer gemeinsamen Hinterkante und zum anderen unter Bildung einer Spannweite von einem befestigungsseitigen Schaufelblattende zur einer Schaufelblattspitze erstrekken, wobei für jede entlang der Spannweite vorhandene Schaufelblatthöhe das Schaufelblatt ein Profil mit einer Saugseitenkontur und einer Druckseitenkontur, eine zumindest teilweise gewölbte Skelettlinie und eine geradlinige Profilsehne aufweist, welche Konturen, Skelettlinie und Profilsehne sich jeweils von einem auf der Vorderkante angeordneten Vorderkantenpunkt zu einem auf der Hinterkante angeordneten Hinterkantenpunkt erstrecken, wobei dass zumindest einige der Skelettlinien der schaufelspitzseitigen Profile mindestens zwei Wendepunkte aufweisen.

[0010] Der Erfindung liegt die Erkenntnis zugrunde, dass Verluste im Radialspalt reduziert werden können, wenn ein für die Verluste auch verantwortlicher Spaltwirbel entsprechend beeinflusst wird. Erfindungsgemäß soll der Spaltwirbel, welcher von dem Spaltmassenstrom erzeugt und angetrieben wird, verglichen mit einem her-

45

30

45

kömmlichen Schaufelblattspitzenprofil, nun später, d. h. an einer stromabwärtigeren Stelle, entstehen. Der somit relativ zum herkömmlichen Profil später entstehende Spaltwirbel lässt sich durch eine geringere Belastung des verbesserten Profils an der Vorderkante erklären. Entgegen dem bisherigen generellen Bestreben, den Spaltwirbel insgesamt zu schwächen, soll erfindungsgemäß nun ein stärkerer lokaler Impuls zur Erzeugung des Spaltwirbels generiert werden, wobei dann dessen strömungstechnische Unterstützung jedoch wesentlich stärker abnehmen soll als beim herkömmlichen Profil. Insgesamt führt dies zu geringen Strömungsverlusten im Radialspalt. Um den gewünschten Spaltwirbel zu erzeugen, weisen zumindest einige der Skelettlinien, vorzugsweise alle Skelettlinien der schaufelspitzseitigen Profile mindestens zwei Wendepunkte auf. Durch das Vorhandensein zweier Wendepunkte in der Skelettlinie und durch die Verwendung einer herkömmlichen Dickenverteilung weisen die schaufelspitzseitigen Profile, und auch die Saugseitenkontur und die Druckseitenkontur einen für das fachmännische Auge eher außergewöhnlichen Knick auf, welcher in Bezug für das betreffende Profil nachfolgend als Profilknick bezeichnet wird. Der Profilknick an sich verursacht an seiner Stelle einen lokalen Anstieg des Spaltmassenstroms, der den Spaltwirbel, wie gewünscht, stärker als bisher antreibt und ihn von der Saugseite des Schaufelblatts wegtreibt. In der stromabwärtigen Zone hinter dem Knick in der Saugseitenkontur fällt die Massenstromdichte im Radialspalt wesentlich stärker ab als beim Verwenden von bisherigen Profilierungen an der Schaufelblattspitze. Insgesamt ergibt sich so ein verringerter Spaltmassenstrom, verglichen mit den herkömmlichen Profilierungen. Durch die saugseitige Kontur des Profilknicks entwickelt sich der Spaltwirbel entlang einer Linie, welche ebenfalls einen Knick stromab des Knicks der Saugseitenkontur aufweist. Das frühe Abknicken des Spaltwirbels fällt mit dem starken Anstieg der Massenstromdichte im Radialspalt zu ihrem Maximum und dem darauf folgenden Absinken desselben zusammen. Die Spaltwirbellinie steht nach ihrem Knick unter einem größeren Winkel von der Saugseitenwand ab als dies bei dem herkömmlichen Profil der Fall ist. Hierdurch läuft fortan der Spaltwirbel mit größer werdendem Abstand von der Saugseite weg als bei der herkömmlichen Profilierung. Der größere Winkel ist dem größeren Gradienten der Massenstromdichte der Spaltströmung sowohl beim Anstieg als auch beim Abfall geschuldet. Insgesamt verursacht die erfindungsgemäße Profilierung weniger Radialspaltverluste und eine geringere Verblockung des Strömungsfeldes am Austritt der Laufschaufelreihe.

[0011] Durch die erzielte Verminderung der Radialspaltverluste lassen sich der Wirkungsgrad der Beschaufelung und somit auch der Wirkungsgrad einer mit der Verdichterlaufschaufel ausgestatteten Turbomaschine wesentlich verbessern.

[0012] Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.

[0013] Bevorzugtermaßen gibt der erste der beiden Wendepunkte bei senkrechter Projektion auf die Profilsehne auf dieser einen ersten Projektionspunkt vor, welcher vom Vorderkantenpunkt zwischen 10% und 30% der Länge der Profilsehne entfernt ist. Gleichzeitig gibt der zweite der beiden Wendepunkte bei senkrechter Projektion auf die Profilsehne auf dieser einen zweiten Projektionspunkt vor, welcher vom Vorderkantenpunkt zwischen 30% und 50% der Länge der Profilsehne entfernt ist. Insbesondere treten bei derartig angeordneten Wendepunkten die mit der Erfindung einhergehenden Vorteile in besonders großem Maße auf. Die beiden Wendepunkte liegen dabei mindestens 3 % der Länge der Profilsehne auseinander.

[0014] Gemäß einer weiteren bevorzugten Ausgestaltung der Erfindung umfassen die Skelettlinien der Profile einen vorderen Abschnitt, welcher sich jeweils vom Vorderkantenpunkt bis zu einem Endpunkt des vorderen Abschnitts erstreckt, dessen Projektionspunkt bei senkrechter Projektion auf die Profilsehne vom Vorderkantenpunkt zwischen 2% und 10% der Länge der Profilsehne entfernt ist, wobei zumindest einige der vorderen Abschnitte, vorzugsweise alle der vorderen Abschnitte der schaufelspitzseitigen Profile einen Krümmungsradius aufweisen, welche größer als das 100-fache der Profilsehne ist. Mit anderen Worten gesagt entsprechen die vorderen Abschnitte der Skelettlinie von schaufelspitzseitigen Profilen jeweils einer Geraden, oder zumindest nahezu. Dementsprechend ist das Profil im betreffenden vorderen Abschnitt symmetrisch - praktisch ohne Wölbung -, was bedeutet, dass auch aus der lokalen Geschwindigkeitsverteilung um den schaufelspitzseitigen Vorderkantenbereich des Schaufelblatts praktisch kein Druckpotential von Druckseite zur Saugseite entsteht. Da das Druckpotential zwischen Druckseite und Saugseite im Vorderkantenbereich als Ursache für das Entstehen des Spaltwirbels und somit als eine Ursache für die Spaltverluste angesehen wird, bewirkt hier diese Entlastung des Vorderkantenbereichs eine Abschwächung und ein verzögertes, d. h. stromabwärtiges Auftreten des Spaltwirbels. Vorzugsweise sind die Saugseitenkontur und die Druckseitenkontur von schaufelspitzseitigen Profilen im vorderen Abschnitt der Skelettlinie dabei symmetrisch ausgebildet oder auch in einer Keilform mit nahezu geradlinigen Konturabschnitten auf Saugseite und Druckseite.

[0015] Gemäß einer weiteren vorteilhaften Ausgestaltung weist jeder vordere Abschnitt einen Anstellwinkel gegenüber einer ankommenden Gasströmung auf, wobei in Ergänzung oder anstelle des nahezu geraden vorderen Skelettlinienabschnitts zumindest einige der Anstellwinkel, vorzugsweise jedoch alle Anstellwinkel der schaufelspitzseitigen Profile kleiner sind als die Anstellwinkel der übrigen Profile des Schaufelblattes. Vorzugsweise sind die Anstellwinkel des vorderen Skelettlinienabschnitts schaufelspitzseitiger Profile dabei kleiner als 5°, vorzugsweise sogar gleich 0°. Es kann somit gesagt werden, dass der Vorderkantenbereich der Schaufel-

55

blattspitze, im Widerspruch zur Lösung gemäß SU 1751430 A1, in die Anströmung eingedreht wird, was gleichfalls dafür sorgt, dass ein Druckpotential zwischen Druck- und Saugseite im Vorderkantenbereich schaufelspitzseitig vermieden wird. Auch dies verhindert die Erzeugung des Spaltwirbels im Vorderkantenbereich.

[0016] Alternativ oder ergänzend zu den vorgeschlagenen Weiterbildungen können vorzugsweise zumindest einige der Vorderkantenpunkte, vorzugsweise alle Vorderkantenpunkte der schaufelspitzseitigen Profile weiter stromauf angeordnet sein als die Vorderkantenpunkte der übrigen Profile des Schaufelblatts. Mit anderen Worten: die Vorderkante der Profile für Schaufelblattspitzen ist durch eine Verlängerung des Profils nach vorne - in stromaufwärtiger Richtung - gegenüber der übrigen Vorderkante vorgelagert. Dies hat zur Folge, dass kein radialer Druckgradient im Vorderkantenbereich der Schaufelblattspitze wirken kann, so dass es auch bei der radialen Druckverteilung nicht zu einem Potential zwischen Druckseite und Saugseite kommen kann.

[0017] Vorzugsweise weisen ausschließlich die Skelettlinien der im Bereich der Schaufelblattspitze vorhandenen Profile zwei Wendepunkte auf, wobei die Schaufelblattspitzenseite einen Bereich von maximal 20% der Spannweite von der Schaufelblattspitze aus umfasst. Der übrige Bereich des Schaufelblatts, von einem befestigungsseitigen Schaufelblattende bis zu einer Schaufelblatthöhe von minimal 80% der Spannweite, kann nach herkömmlicher Art profiliert sein.

[0018] Dementsprechend betrifft die Erfindung prinzipiell eine modifizierte Schaufelblattspitze von in einem Kranz angeordneten Verdichterlaufschaufeln für Axialverdichter.

[0019] Gemäß einer weiteren vorteilhaften Ausgestaltung umfassen die Skelettlinien einen hinteren Abschnitt, welcher sich jeweils von einem Anfangspunkt des hinteren Abschnitts bis zum Hinterkantenpunkt erstreckt, wobei der hintere Abschnitt von zumindest einigen, vorzugsweise allen schaufelspitzseitigen Skelettlinien eine größere Krümmung aufweist als die hinteren Abschnitte von Skelettlinien der übrigen Profile des Schaufelblatts. Demzufolge sind die Austrittsmetallwinkel von schaufelspitzseitigen Profilen kleiner als die Austrittsmetallwinkel von Profilen auf Höhe der halben Spannweite oder im Bereich des befestigungsseitigen, d.h. nabenseitigen Schaufelblattendes. Bevorzugtermaßen gibt der Abschnittsanfangspunkt des hinteren Skelettlinienabschnitts bei senkrechter Projektion auf die Profilsehne einen auf der Profilsehne angeordneten Projektionspunkt vor, welcher vom Vorderkantenpunkt maximal 60% der Länge der Profilsehne entfernt ist. Die Hinterkante ist im schaufelspitzseitigen Bereich folglich mehr gewölbt als im übrigen Bereich des Schaufelblatts. Die erhöhte Wölbung führt zu einer größeren Arbeitsumsetzung in den vorzugsweise hinteren 40% des Schaufelblatts, so dass insgesamt die Belastung des Schaufelblatts nach hinten verlagert wird. Diese Ausgestaltung kann als Ausgleich der Entlastung an der Vorderkante

dienen, um trotz der Entlastung des schaufelspitzenseitigen Profils im vorderen Bereich der Profilsehne noch eine hohe Arbeitsumsetzung zu erreichen. Insgesamt kann damit auch durch die Reduktion der Blockade im Schaufelblattspitzenbereich der Verdichterlaufschaufel die Anströmung der nachfolgenden Leitschaufel im äußeren Ringwandbereich verbessert werden. Dies reduziert die lokale Fehlanströmung der nachgeordneten Leitschaufeln.

6

[0020] Bevorzugtermaßen sind zumindest einige, vorzugsweise alle der schaufelspitzseitigen Profile im "Aft-Loaded-Design" und die übrigen, d. h. nicht schaufelspitzseitigen Profile im "Front-Loaded-Design" ausgestaltet.

[0021] Der für die Spaltverluste verantwortliche Spaltwirbel kann äußerst effizient beeinflusst werden, wenn auch die Saugseitenkontur und die Druckseitenkontur zumindest drei aufeinanderfolgende Krümmungsabschnitte mit alternierenden Vorzeichen aufweisen, welche benachbarten Krümmungsabschnitte in jeweils einem Wendepunkt angrenzen. Dies kann mit einer geeigneten Dickenverteilung erreicht werden, die nach herkömmlicher Art senkrecht und symmetrisch, d.h. beidseitig zu gleichen Teilen auf die Skelettlinie aufgetragen wird. Derartige Maßnahmen führen auf der Saugseite zu konkaven Konturabschnitten und auf der Druckseite zu konvexen Konturabschnitten, mit denen die Spaltwirbel in besonders einfachem Maße ideegemäß beeinflusst werden können.

[0022] Zweckmäßigerweise ist die Schaufelblattspitze freistehend ausgebildet.

[0023] Wenn sich entlang der Saugseitenkontur vom Vorderkantenpunkt zum Hinterkantenpunkt bei einer Umströmung mit einem Gas eine Geschwindigkeitsverteilung des Gases einstellt, sind zumindest einige, vorzugsweise alle schaufelspitzseitigen Profile so gewählt, dass an einem Maximumort ein Geschwindigkeitsmaximum auftritt, dessen Projektionspunkt bei senkrechter Projektion auf die Profilsehne auf dieser vom Vorderkantenpunkt zwischen 15% und 40% der Länge der Profilsehne entfernt ist. Diese Maßnahme gewährleistet einen besonders großen Impuls zur Entstehung des Spaltwirbels. Um dann die Radialspaltverluste möglichst gering zu halten, ist vorgesehen, dass die Energiezufuhr für den 45 Spaltwirbel besonders schnell, d. h. auf besonders kurzer Länge, in besonders starkem Maße abnimmt. Dazu ist vorgesehen, dass die betreffenden Profile so gewählt sind, dass sich in einem an dem Maximumort anschließenden Saugseitenabschnitt der Saugseitenkontur mit einer Länge von maximal 15% der Länge der Profilsehne sich ein Gradient der Geschwindigkeit einstellt, dessen Gefälle maximal ist. Dies führt dazu, dass der Spaltwirbel für seine Größe stark unterversorgt wird, was dazu führt, dass sich dieser in einem größeren Winkel von der Oberfläche der Saugseite entfernt. Dies führt zu besonders geringen Spaltverlusten bei einem Axialverdichter, dessen Rotor mit den erfindungsgemäßen Verdichterlaufschaufeln ausgestattet ist.

[0024] Die weitere Erläuterung der Erfindung erfolgt anhand der in der Zeichnung dargestelltem Ausführungsbeispiel.

[0025] Im Einzelnen zeigen:

FIG 1 ein erfindungsgemäßes Profil und ein aus dem Stand der Technik bekanntes Profil für eine Verdichterlaufschaufel;

FIGs 2, 3, 6 die Geschwindigkeitsverteilungen entlang der Saugseitenkontur und der Druckseitenkontur des erfindungsgemäßen Profils und des herkömmli- chen Profils aus FIG 1;

FIG 4 die Kontur von Saugseite und Druckseite des erfindungsgemäßen Profils für eine Verdichter- laufschaufel;

FIG 5 den Krümmungsverlauf des erfindungsgemäßen Profils entlang der Saugseite und Druckseite;

FIG 7 die Massenstromdichte des Massenstrom in einem Radialspalt bei Verwendung eines erfindungsge- mäßen Profils für eine freistehende Schaufel- blattspitze:

FIG 8 die Topologie der Spaltwirbeltrajektoren für das erfindungsgemäße Profil und das konventio- nelle Profil und

FIG 9, 10 perspektivische Darstellungen auf die freiste- hende Schaufelblattspitze einer erfindungsge- mäßen Verdichterlaufschaufel.

[0026] FIG 9 und FIG 10 zeigen jeweils eine freistehende Verdichterlaufschaufel 10 aus unterschiedlichen Perspektiven. Deren Schaufelblatt 12 umfasst eine Druckseitenwand 14 sowie eine Saugseitenwand 16, die sich zum einen jeweils von einer gemeinsamen, von der Gasströmung angeströmten Vorderkante 18 zu einer gemeinsamen Hinterkante 20 und zum anderen unter Bildung einer Spannweite von einem in FIG 9 und FIG 10 nicht weiter dargestellten befestigungsseitigen Schaufelblattende zu einer Schaufelblattspitze 22 erstrecken.

[0027] In FIG 9 ist die Perspektive so gewählt, dass der Blick auf die Hinterkante 20 des Schaufelblattes 12 fällt, in FIG 10 fällt der Blick auf die Vorderkante 18 des Schaufelblatts 12. Am befestigungsseitigen Schaufelblattende kann in bekannter Art und Weise eine Plattform sowie ein daran angeordneter Schaufelfuß vorgesehen sein. Je nach Art und Weise der Befestigung ist der Schaufelfuß der Verdichterlaufschaufel 10 entweder schwalbenschwanz-, tannenbaum- oder hammerförmig ausgestaltet. Die Verdichterlaufschaufel kann auch an

einem Rotor angeschweißt sein.

[0028] In dem Rotor eines Axialverdichters befestigt ist die Orientierung des Schaufelblatts 12 dergestalt, dass sich das Schaufelblatt 12 von der Vorderkante 18 zur Hinterkante 20 in etwa der Axialrichtung des Axialverdichters erstreckt, welche in dem zu FIG 9 und FIG 10 zugehörigen Koordinatensystem mit der Achse X bezeichnet ist. Die Radialrichtung des Axialverdichters fällt mit der Z-Achse des dargestellten Koordinatensystems zusammen und die Tangentialrichtung, d. h. die Umfangsrichtung mit der Y-Achse.

[0029] Eine Spannweite des Schaufelblatts 12 wird somit in Richtung der Z-Achse erfasst.

[0030] Bekanntermaßen werden Verdichterlaufschaufeln 10 für Axialverdichter dergestalt ausgelegt, dass entlang einer nicht dargestellten geradlinigen oder auch geringfügig gekrümmten Stapelachse unterschiedliche oder auch identische Profile aneinandergereiht werden, deren eingeschlossener Raum das Schaufelblatt 12 vorgeben. Jedes Profil weist prinzipiell einen Flächenschwerpunkt auf, der auf der Stapelachse liegt.

[0031] Unter einem Profil wird im Detail ein endloser Linienzug verstanden, welcher eine Saugseitenkontur und eine Druckseitenkontur eines Schaufelblatts umfasst. Die Konturen treffen sich einerseits in einem Vorderkantenpunkt und andererseits in einem Hinterkantenpunkt, welche auch Teil des Profils sind und dabei auf der entsprechenden Kante des Schaufelblatts liegen. Für jede entlang der Spannweite vorhandene Schaufelblatthöhe existiert ein solches Profil. Insofern stellt das Profil die Kontur eines Querschnitts durch das Schaufelblatt für eine bestimmte Schaufelblatthöhe dar, wobei der Querschnitt entweder senkrecht zur Radialrichtung des Axialverdichters oder auch dazu geringfügig geneigt entsprechend einer Ringkanalkontraktion - orientiert sein kann. In FIG 9 sind Druckseitenkonturen 40 von drei Profilen 28, 30 in Volllinie gezeigt. In FIG 10 sind mehrere Saugseitenkonturen 42 von Profilen 28, 30 unterschiedlicher Schaufelblatthöhen ebenfalls in Volllinien dargestellt.

[0032] Das in FIG 9 und FIG 10 dargestellte gekrümmte Schaufelblatt 12 weist einen gegenüber dem Stand der Technik erfindungsgemäß modifizierten Schaufelblattspitzenbereich 43 auf, dessen konkrete Ausgestaltung und Wirkungsweise nachfolgend näher im Detail beschrieben wird.

[0033] In FIG 1 sind zwei grundlegend unterschiedliche Profile 28, 30 gezeigt. Das erste, in gepunkteter Linienart dargestellte Profil 28 zeigt einen Querschnitt durch die Verdichterlaufschaufel 10 gemäß FIG 10 in einer Schaufelblatthöhe von der halben Spannweite des Schaufelblatts 12. Das Profil 28 kann ein konventionelles, aus dem Stand der Technik bekanntes Profil sein. Das in Volllinie dargestellte Profil 30 zeigt einen Querschnitt durch die erfindungsgemäße Verdichterlaufschaufel 10 gemäß FIG 10 im Bereich 43 der Schaufelblattspitze 22. Jedes Profil 28, 30 gemäß FIG 1 weist eine ihr zugehörige Skelettlinie auf, wobei aus Gründen

40

der Übersichtlichkeit in FIG 1 lediglich die eine Skelettlinie 32 des schaufelspitzseitigen Profils 30 in gestrichelter Linienart dargestellt ist. Die Skelettlinie 32 beginnt in einem Vorderkantenpunkt 24, endet in einem zugehörigen Hinterkantenpunkt 26 und befindet sich stets mittig zwischen der Druckseitenkontur 40 und Saugseitenkontur 42. Sie ist auch als Profilmittenlinie bekannt.

[0034] Neben der Skelettlinie 32 werden im Stand der Technik Profile auch mit Hilfe einer geradlinigen Profilsehne definiert. Die Profilsehne ist eine Gerade, welche sich vom Vorderkantenpunkt bis zum Hinterkantenpunkt erstreckt. In FIG 1 ist nur die eine Profilsehne 34 für das schaufelspitzseitige Profil 30 gezeigt. Da die Profilsehne 34 nachfolgend zur geometrischen Definition von signifikanten Punkten des Profils 30 herangezogen wird, wird deren Länge auf Eins normiert, wobei im Vorderkantenpunkt 24 die Länge der Profilsehne 0% beträgt und im Hinterkantenpunkt 26 die Länge der Profilsehne 100%. Darunter wird auch eine relative Sehnenlänge verstanden.

[0035] Selbstverständlich existiert auch für das aus dem Stand der Technik bekannte Profil 28 eine Profilsehne. Diese Profilsehne ist jedoch der Klarheit halber in FIG 1 nicht dargestellt.

[0036] Die normierte Profilsehne 34 wird dabei mit x/c angegeben. Das in FIG 1 dargestellte Profil 30 steht dabei repräsentativ für die radial äußersten der schaufelspitzseitigen Profile 30. Das in FIG 1 dargestellte herkömmliche Profil 28 steht einerseits repräsentativ für die aus dem Stand der Technik bekannten Profile und andererseits für die übrigen Profile der Verdichterlaufschaufel 10. Unter den übrigen Profilen 28 sind diejenigen zu verstehen, welche nicht schaufelspitzseitig angeordnet sind und somit beispielsweise im befestigungsseitigen Bereich des Schaufelblatts 12 oder mittig zwischen Schaufelblattspitze 22 und dem befestigungsseitigen Schaufelblattende angeordnet sein können. Der Übergang vom herkömmlichen Profil 28 zum schaufelspitzseitigen Profil 30 erfolgt dabei, wie FIG 10 zeigt, stufenfrei.

[0037] Kennzeichnend für eine erfindungsgemäße Verdichterlaufschaufel 10 ist, dass die Skelettlinien 32 der schaufelspitzseitigen Profile 30 mindestens zwei Wendepunkte 36, 38 aufweisen. Das bedeutet, dass die Skelettlinie 32 stromauf des vordersten Wendepunkts 36 einen ersten Krümmungsabschnitt A mit einer ersten Krümmung aufweist und stromab des ersten Wendepunkts 36 bis zum zweiten Wendepunkt 38 einen zweiten Krümmungsabschnitt B mit einer zweiten Krümmung. Die Vorzeichen der ersten Krümmung und der zweiten Krümmung sind dabei unterschiedlich. Stromab des zweiten Krümmungsabschnitts B schließt sich im zweiten Wendepunkt 38 ein dritter Krümmungsabschnitt C an, dessen Krümmung wiederum ein anderes Vorzeichen aufweist als das der zweiten Krümmung. Durch die unterschiedlichen Vorzeichen der Krümmungen der Krümmungsabschnitte A, B, C weisen auch Saugseitenkontur 42 und Druckseitenkontur 40 entsprechende

Krümmungsabschnitte auf: die hauptsächlich konvex gekrümmte Saugseitenkontur 42 weist in einem Abschnitt D zwischen 35% und 50% der relativen Sehnenlänge eine konkave Gestalt auf. Die hauptsächlich konkav gekrümmte Druckseitenkontur 40 weist einen Abschnitt E auf, welcher konvex ist. Entgegen den bisherigen, aus dem Stand der Technik bekannten Profilformen für Verdichterlaufschaufeln von Axialverdichtern führt dieser konkave Saugseitenkonturabschnitt D und konvexe Druckseitenkonturabschnitt E zu einer lokal abknickenden Profilierung, die hier als Profilknick bezeichnet wird. [0038] Es ist dabei vorgesehen, dass der erste der beiden Wendepunkte 36 bei senkrechter Projektion auf die Profilsehne auf dieser einen ersten Projektionspunkt AP vorgibt, welcher vom Vorderkantenpunkt 24 zwischen 10 % und 30% der Länge der Profilsehne 34 entfernt ist und bei der der zweite der beiden Wendepunkte 38 bei senkrechter Projektion auf die Profilsehne 34 auf dieser einen zweiten Projektionspunkt BP vorgibt, welcher vom Vorderkantenpunkt 24 zwischen 30% und 50% der Länge der Profilsehne 34 entfernt ist. Des Weiteren geht aus FIG 1 klar hervor, dass das schaufelspitzseitige Profil 30 gegenüber dem herkömmlichen Profil 28 eine zur anströmenden Gasströmung hin vorverlagerte Vorderkante 18 aufweist. Die vorverlagerte Vorderkante 18 des schaufelspitzseitigen Profils 30 ist besonders in den perspektivischen Ansichten gemäß FIG 9 und FIG 10 erkennbar. [0039] Des Weiteren ist vorgesehen, dass die Skelettlinie 32 von schaufelspitzseitigen Profilen 30 in einem hinteren Abschnitt G eine größere Krümmung aufweist als die hinteren Abschnitte von Skelettlinien der übrigen Profile 28 des Schaufelblatts 12. Der hintere Abschnitt G der Skelettlinie 32 erstreckt sich vom Abschnittsanfangspunkt GA bis zu dem Hinterkantenpunkt 26 der Skelettlinie 32, welcher Abschnittsanfangspunkt GA bei Projektion auf die Profilsehne 34 auf dieser einen Projektionspunkt GP vorgibt, welcher vom Vorderkantenpunkt 24 maximal 60 % der Länge der Profilsehne 34 entfernt ist.

[0040] Des Weiteren geht aus der FIG 1 hervor, dass das schaufelspitzseitige Profil 30 eine Skelettlinie 32 mit einem vorderen Abschnitt H umfasst. Der vordere Abschnitt H der Skelettlinie 32 erstreckt sich vom Vorderkantenpunkt 24 bis zu einem Projektionspunkt HP der Skelettlinie 32, welcher bei 10% der Länge der Profilsehne 34 angeordnet ist. Der Projektionspunkt HP ergibt sich dabei durch die Projektion eines Endpunktes HE des vorderen Abschnitts H senkrecht zur Profilsehne 34. In diesem vorderen Abschnitt H der Skelettlinie 32 ist die Skelettlinie 32 nahezu ungewölbt, d. h. annähernd gerade. Gleichfalls ist die Dickenverteilung, welche bekanntermaßen senkrecht auf die Skelettlinie 32 beidseitig zu gleichen Teilen aufgetragen wird, hier so gewählt, dass sich ein im Prinzip keilförmiger Vorderkantenbereich für die schaufelspitzseitigen Profile 30 ergibt. Allgemein ist im vorderen Abschnitt H von schaufelspitzseitigen Profilen 30 ein symmetrischer Verlauf der Saugseitenkontur 42 und Druckseitenkontur 40 symmetrisch wünschenswert.

[0041] In FIG 2 sind die Geschwindigkeitsverteilungen entlang des schaufelspitzseitigen Profils 30 und entlang des herkömmlichen Profils 28 sowohl für die Saugseitenströmung als auch für die Druckseitenströmung gegenübergestellt. Jede Geschwindigkeitsverteilung ist dabei entlang der normierten Profilsehne x/c aufgetragen. Die Geschwindigkeiten sind dabei in Machzahlen angegeben, wobei Mach = 1 die Schallgeschwindigkeit für eine gegebene Temperatur bedeutet. Die Geschwindigkeitsverteilung wurde dabei auf derjenigen Schaufelblatthöhe von Verdichterlaufschaufeln erfasst, welche 0,5% des Spaltmaßes eines Radialspaltes zwischen der Schaufelblattspitze 22 und der diese umgebenden Ringwand des Axialverdichters von der Schaufelblattspitze 22 entfernt ist. In gestrichelter Linienart sind in FIG 2, FIG 3 und FIG 6 die Geschwindigkeitsverteilungen 48, 50 eines herkömmlichen Profils 28 für die Saugseitenwand 16 und Druckseitenwand 14 dargestellt. Die Geschwindigkeitsverteilungen 44, 46 für die Saugseitenwand 16 und Druckseitenwand 14 des schaufelspitzseitigen Profils 30 ist in Volllinie dargestellt. Die jeweils untere Linie stellt die Geschwindigkeitsverteilung für die entsprechende Druckseite dar, die jeweils obere Linie stellt die Geschwindigkeitsverteilung für die entsprechende Saugseite dar. Die Saugseitengeschwindigkeitsverteilung für das schaufelspitzseitige Profil 30 ist mit 44 bezeichnet, die Druckseitengeschwindigkeitsverteilung für das schaufelspitzseitige Profil mit 46, die Saugseitengeschwindigkeitsverteilung für das herkömmliche Profil 28 mit 48 und die Druckseitengeschwindigkeitsverteilung für das herkömmliche Profil 28 mit 50. Je größer der Abstand zwischen dem Verlauf der saugseitigen Geschwindigkeitsverteilung 44, 48 und der druckseitigen Geschwindigkeitsverteilung 46, 50 für jede Stelle der normierten Profilsehne 34 ist, umso größer ist der Druckunterschied und somit die Belastung an der jeweiligen betrachteten Stelle der Profilsehne des jeweiligen betrachteten Profils 28, 30. Aus FIG 2 geht hervor, dass mit Hilfe des erfindungsgemäß modifizierten Schaufelblattspitzenbereichs 43 das Schaufelblatt 12 in der vorderen Hälfte, d. h. insbesondere auf den ersten 15% der Profilsehne 34 vom Vorderkantenpunkt 24 aus gesehen, entlastet worden ist.

[0042] Durch die sich einstellenden Geschwindigkeitsverteilungen 44, 46 tritt eine höhere Belastung im hinteren Abschnitt G des schaufelspitzseitigen Profils 30 auf, da die Fläche zwischen saugseitiger Geschwindigkeitsverteilung 44 und druckseitiger Geschwindigkeitsverteilung 46 für einen hinteren Profilabschnitt von 60% der Profilsehne 34 bis 100% der Profilsehne 34 größer ist als die entsprechende Fläche zwischen den entsprechenden Geschwindigkeitsverteilungen 48, 50 des aus dem Stand der Technik bekannten herkömmlichen Profils 28. Da das herkömmliche Profil 28 für nicht schaufelspitzseitige Bereiche der Verdichterlaufschaufel 10 vorgesehen ist, tritt somit entlang der Schaufelblatthöhe ein Wechsel der Belastung vom vorderen Abschnitt ("FrontLoaded-Design") zum hinteren Abschnitt des Schaufel-

blattes ("Aft-Loaded-Design"). Charakteristisch ist, dass die Profilform des Schaufelblatts 12 schaufelspitzseitig so gewählt ist, dass der Geschwindigkeitsanstieg zu einem Geschwindigkeitsmaximum in einem Maximumsort bei ca. 20% der Länge der Profilsehne 34 in einem möglichst kurzen Profilsehnenabschnitt erreicht wird. Weiter ist in den sich an den Maximumsort anschließenden nachfolgenden 15% der Profilsehne 34 eine vergleichsweise große Abnahme der Geschwindigkeit der saugseitigen Gasströmung in einem möglichst kurzen Profilsehnenabschnitt gewünscht. Insbesondere dieser Geschwindigkeitsverlauf entlang der Saugseitenwand 16 führt dazu, dass ein für die Spaltverluste verantwortlicher Spaltwirbel mit vergleichsweise mehr Energie erzeugt wird, wobei durch den großen Geschwindigkeitsrückgang nach dem Erreichen des Geschwindigkeitsmaximums diesem jedoch nur vergleichsweise wenig Energie weiter zugeführt wird, was ihn dann umso mehr schwächt. Dies führt insgesamt zu reduzierten Radialspaltverlusten.

[0043] Die Abbildungen 3 bis 8 geben einen weiteren Überblick über die durch den Profilknick auftretenden Effekte. In FIG 3 und FIG 6 sind erneut die Machzahlverteilungen des herkömmlichen Profils 28 und des schaufelspitzseitigen Profils 30 über die relative Sehnenlänge dargestellt. FIG 4 beschreibt das schaufelspitzseitige Profil 30 im ungestaffelten m'-theta Koordinatensystem. Die untere Abbildung, FIG 5, stellt eine Krümmung 52 der Saugseitenkontur 42 und eine Krümmung 54 der Druckseitenkontur 40 über der m'-Koordinate dar. Es ist deutlich zu sehen, dass im Bereich eines Druckseitenknicks 56 ein starker Anstieg der Machzahldifferenz und somit des Druckpotentials zwischen Saugseitenkontur 42 und Druckseitenkontur 40 entsteht.

[0044] FIG 7 zeigt die Massenstromdichte des Massenstroms, der orthogonal zur Profilsehne 34 durch den Radialspalt strömt, bezogen auf die betrachtete lokale Fläche. Die Massenstromdichte für ein herkömmliches Profil 28 ist mit 58 bezeichnet, die für das schaufelspitz-40 seitige Profil 30 mit 60. Für das schaufelspitzseitige Profil 30 ist einen klarer Zusammenhang zwischen dem Anstieg des Druckpotentials und dem Anstieg der Massenstromdichte im Radialspalt erkennen. Die Massenstromdichte im Radialspalt erreicht außerdem ihr globales Maximum kurz nach dem beschriebenen Profilknick. Das globale Maximum der Massenstromdichte für das schaufelspitzseitige Profil 30 liegt höher als im herkömmlichen Fall. Der Abfall der Massenstromdichte im Radialspalt nach ihrem Maximum ist ebenfalls größer als bei der herkömmlichen Profilierung 28.

[0045] FIG 8 zeigt die Topologie der Spaltwirbeltrajektoren (Spaltwirbellinien) für die beiden Profile 28, 30. Die Spaltwirbellinie für das herkömmliche Profil 28 ist mit 62 bezeichnet, die Spaltwirbellinie für das schaufelspitzseitige Profil mit 64. Relativ zur Vorderkante 18 entsteht der Spaltwirbel beim schaufelspitzseitigen Profil 30 deutlich später - bezogen auf die relative Sehnenlänge des bestreffenden Profils - und knickt dann von der Saugseiten-

10

15

20

25

40

45

50

55

wand 16 mit einem größeren Winkel ab als bei der herkömmlichen Profilierung 28. Das frühe Abknicken des Spaltwirbels fällt mit dem starken Anstieg der Massenstromdichte zu ihrem Maximum und dem darauf folgenden Absinken desselben zusammen. Der größere Winkel ist dem größeren Gradienten sowohl beim Anstieg als auch beim Abfall der Massenstromdichte geschuldet. Das zum herkömmlichen Profil 28 relativ späte Entstehen des Spaltwirbels lässt sich durch die geringe Belastung des verbesserten Profils 30 an der Vorderkante 18 erklären.

[0046] Durch die Entlastung der Schaufelblattspitze 22 im Vorderkantenbereich wird die Bildung des Spaltwirbels verzögert. Anschließend folgt im Bereich des saugseitigen Profilknicks ein starker Anstieg des Spaltmassenstroms, der den Spaltwirbel antreibt und von der Saugseitenwand 16 des schaufelspitzseitigen Profils 30 wegtreibt. In der Zone nach dem saugseitigen Profilknick fällt die Massenstromdichte im Radialspalt wesentlich stärker ab als bei der herkömmlichen Profilierung 28. Insgesamt ergibt sich so ein geringerer Spaltmassenstrom. Die Spaltwirbellinie knickt nach dem saugseitigen Profilknick mit einem höheren Winkel von der Saugseitenwand 16 ab als dies bei der herkömmlichen Profilierung 28 der Fall ist. Sie läuft fortan mit einem größeren Abstand von der Saugseitenwand 16 weg als bei der herkömmlichen Profilierung 28. Insgesamt verursacht die Spaltströmung bei der modifizierten Profilierung 30 somit weniger Verluste und eine geringere Verblockung des Strömungsfeldes am Austritt der Laufschaufelreihe. Um trotz der Entlastung des Profils 30 in der vorderen Hälfte der Profilsehne 34 noch eine hohe Arbeitsumsetzung zu erreichen, wird die Belastung durch eine höhere Wölbung des Profils 30 in den hinteren 40% der Profilsehne 34 erhöht. [0047] Besonders bevorzugt ist die Ausgestaltung, bei der das Zusammenspiel der Verschiebung der Belastung von vorne nach hinten mit der besonderen Krümmungsverteilung des neuen Profils 30 bei etwa 20% der Profilsehne 34 ausmacht.

[0048] Insgesamt betrifft die Erfindung somit eine Verdichterlaufschaufel 10 für axial durchströmte Verdichter vorzugsweise stationärer Gasturbinen. Die Erfindung sieht vor, dass zur Reduzierung von Radialspaltverlusten die Skelettlinie 32 der schaufelspitzseitigen Profile 30 des Schaufelblatts 12 der Verdichterlaufschaufel 10 mindestens zwei Wendepunkte 36, 38 aufweisen. Durch das Vorhandensein zweier Wendepunkte 36, 38 ergeben sich für die Saugseitenkontur 42 im Abschnitt von 35% bis 50% ein Saugseitenkonturabschnitt D, der konkav ausgebildet ist und für die Druckseitenkontur 40 ein Druckseitenkonturabschnitt E, welcher konvex ausgebildet ist. Mit Hilfe dieser Geometrie ist es möglich, verlustärmere Spaltwirbel zu generieren, um den Gesamtwirkungsgrad eines mit diesen Verdichterlaufschaufeln 10 ausgestatteten Axialverdichters zu erhöhen.

Patentansprüche

- Verdichterlaufschaufel (10) für einen Axialverdichter, mit einem gekrümmten Schaufelblatt (12), welches eine Druckseitenwand (14) und eine Saugseitenwand (16) umfasst, die sich zum einen jeweils von einer gemeinsamen Vorderkante (18) zu einer gemeinsamen Hinterkante (20) und zum anderen unter Bildung einer Spannweite von einem befestigungsseitigen Schaufelblattende zur einer Schaufelblattspitze (22) erstrecken,
 - wobei für jede entlang der Spannweite vorhandene Schaufelblatthöhe das Schaufelblatt (12)
 - ein Profil (28, 30) mit einer Saugseitenkontur (42) und einer Druckseitenkontur (40),
 - eine zumindest teilweise gewölbte Skelettlinie (32) und
 - eine geradlinige Profilsehne (34)

aufweist, welche Konturen (40, 42), Skelettlinie (32) und Profilsehne (34) sich jeweils von einem Vorderkantenpunkt (24) zu einem Hinterkantenpunkt (26) erstrecken,

dadurch gekennzeichnet, dass

zumindest einige der Skelettlinien (32) der schaufelspitzseitigen Profile (30) mindestens zwei Wendepunkte (36, 38) aufweisen.

- Verdichterlaufschaufel (10) nach Anspruch 1, bei der der erste der beiden Wendepunkte (36) bei senkrechter Projektion auf die Profilsehne (34) auf dieser einen ersten Projektionspunkt (AP) vorgibt, welcher vom Vorderkantenpunkt (24) zwischen 10% und 30% der Länge der Profilsehne (34) entfernt ist und
 - bei der der zweite der beiden Wendepunkte (38) bei senkrechter Projektion auf die Profilsehne (34) auf dieser einen zweiten Projektionspunkt (BP) vorgibt, welcher vom Vorderkantenpunkt (24) zwischen 30% und 50% der Länge der Profilsehne (34) entfernt ist.
 - 3. Verdichterlaufschaufel (10) nach Anspruch 1 oder 2, bei der die Skelettlinien (32) einen vorderen Abschnitt (H) umfassen, welcher sich vom Vorderkantenpunkt (24) bis zu einem Abschnittsendpunkt (HE) erstreckt, dessen Projektionspunkt (HP) bei senkrechter Projektion auf die Profilsehne (34) vom Vorderkantenpunkt (24) zwischen 2% und 10% der Länge der Profilsehne (34) entfernt ist, wobei zumindest einige der vorderen Abschnitte (H) der schaufelspitzseitigen Profile (30) einen Krümmungsradius aufweisen, welche größer als das 100-
 - Verdichterlaufschaufel (10) nach Anspruch 3, bei der jeder vordere Abschnitt (H) einen Anstellwinkel gegenüber einer ankommenden Gasströmung

fache der Profilsehne (34) sind.

20

30

35

40

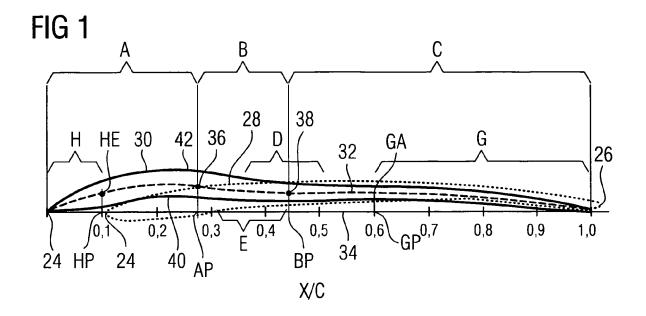
45

50

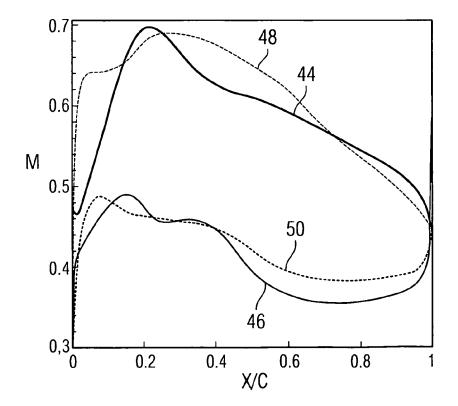
aufweist, wobei zumindest einige der Anstellwinkel der schaufelspitzseitigen Profile (30) kleiner sind als die Anstellwinkel der übrigen Profile (28) des Schaufelblatts (12).

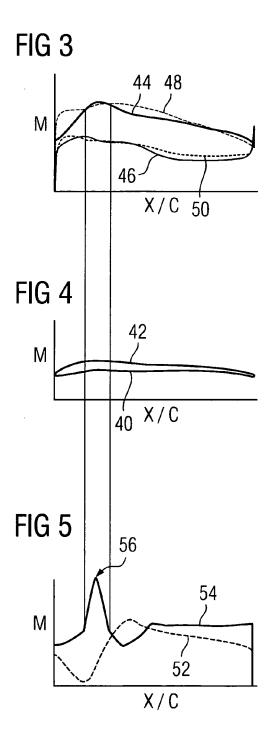
- Verdichterlaufschaufel (10) nach Anspruch 4, bei der der Anstellwinkel des vorderen Abschnitts (H) schaufelspitzseitiger Profile (30) kleiner als 5° ist.
- 6. Verdichterlaufschaufel (10) nach einem der Ansprüche 3 bis 5, deren Saugseitenkontur (42) und Druckseitenkontur (40) von schaufelspitzseitigen Profilen (30) im vorderen Abschnitt (H) der Skelettlinie (32) symmetrisch ausgebildet sind.
- Verdichterlaufschaufel (10) nach einem der Ansprüche 1 bis 6,
 bei der zumindest einige der Vorderkantenpunkte (24) der schaufelspitzseitigen Profile (30) weiter stromauf angeordnet sind als die Vorderkantenpunkte (24) der übrigen Profile (28) des Schaufelblatts (12).
- 8. Verdichterlaufschaufel (10) nach einem der Ansprüche 1 bis 7, bei der ausschließlich die Skelettlinien (32) der im Bereich der Schaufelblattspitze (22) vorhandenen Profile (30) zwei Wendepunkte (36, 38) aufweisen.

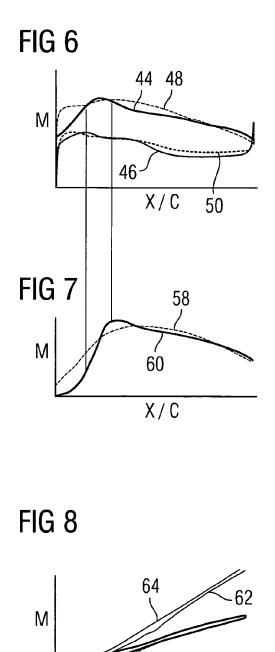
9. Verdichterlaufschaufel (10) nach einem der Ansprü-

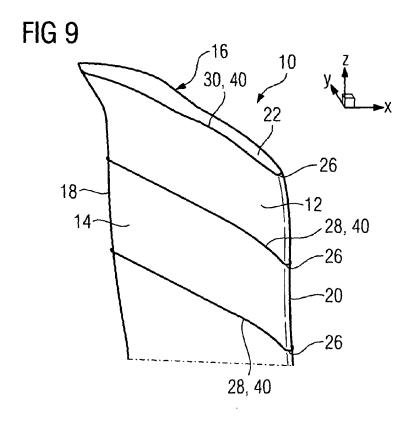

- che 1 bis 8,
 bei der die Skelettlinien (32) einen hinteren Abschnitt
 (G) umfassen, welcher sich von einem Abschnittsanfangspunkt (GA) und bis zum Hinterkantenpunkt
 (26) erstreckt,
 wobei der hintere Abschnitt (G) von zumindest einigen der schaufelspitzseitigen Skelettlinien (32) eine
 größere Krümmung aufweist als die hinteren Abschnitte von Skelettlinien (32) der übrigen Profile des
 Schaufelblatts (12).
- 10. Verdichterlaufschaufel (10) nach Anspruch 9, bei der der Abschnittsanfangspunkt (GA) bei senkrechter Projektion auf die Profilsehne (34) einen auf der Profilsehne (34) angeordneten Projektionspunkt (GP) vorgibt, welcher vom Vorderkantenpunkt (24) maximal 60% der Länge der Profilsehne (34) entfernt ist
- 11. Verdichterlaufschaufel (10) nach einem der Ansprüche 1 bis 10, bei der die Saugseitenkontur (42) und die Druckseitenkontur (40) von schaufelspitzseitigen Profilen (30) jeweils mindestens zwei Wendepunkte aufweisen.
- 12. Verdichterlaufschaufel (10) nach einem der Ansprü-

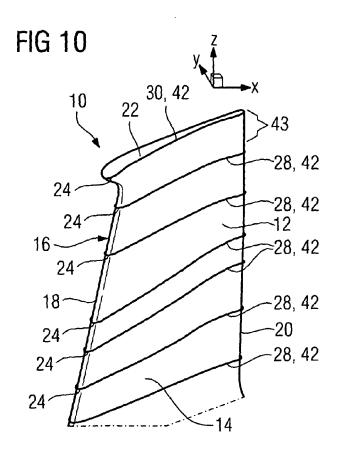
che 1 bis 11, bei der die Schaufelblattspitze (22) freistehend ist.


che 1 bis 12, bei der zumindest einige der schaufelspitzseitigen Profile (30) im "Aft-Loaded-Design" und die übrigen Profile (28) im "Front-Loaded-Design" ausgestaltet sind.


13. Verdichterlaufschaufel (10) nach einem der Ansprü-


- 14. Verdichterlaufschaufel (10) nach einem der Ansprüche 1 bis 13, bei der die Schaufelblattspitzenseite einen Bereich (43) von maximal 20% der Spannweite von der Schaufelblattspitze (22) aus umfasst.
- 15. Verdichterlaufschaufel (10) nach einem der Ansprüche 1 bis 14, wobei sich entlang der Saugseitenkontur (42) vom Vorderkantenpunkt (24) zum Hinterkantenpunkt (26) bei einer Umströmung mit einem Gas eine Geschwindigkeitsverteilung (44) des Gases einstellt, wobei zumindest einige der schaufelspitzseitigen Profile (30) so gewählt sind, dass an einem Maximumort ein Geschwindigkeitsmaximum auftritt, dessen Projektionspunkt bei senkrechter Projektion auf die Profilsehne (34) vom Vorderkantenpunkt (24) zwischen 15% und 40% der Länge der Profilsehne (34) entfernt ist.
- 16. Verdichterlaufschaufel (10) nach Anspruch 15, bei der die betreffenden Profile (30) so gewählt sind, dass in einem sich an den Maximumort anschließenden Saugseitenabschnitt der Saugseitenkontur (42) mit einer Länge von maximal 15% der Länge der Profilsehne (34) sich ein Gradient der Geschwindigkeit einstellt, dessen Gefälle maximal ist.
- 17. Axialverdichter mit einem Rotor, an dessen Außenumfang zumindest ein Laufschaufelkranz mit Verdichterlaufschaufeln (10) nach einem der Ansprüche 1 bis 16 ausgebildet ist.





X/C

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 09 01 1392

		DOKUMENTE		
Kategorie	Kennzeichnung des Dokun der maßgebliche	nents mit Angabe, soweit erforderlich, en Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
A	[JP]) 7. Dezember 2	11 (HONDA MOTOR CO LTD 2006 (2006-12-07) [0028]; Ansprüche 1-3;	1-4,7-12	INV. F04D29/32 F01D5/14
A	GB 2 106 192 A (ROL 7. April 1983 (1983 * Seite 1, Zeile 63 1; Abbildungen 2,3	3-04-07) 3 - Zeile 80; Anspruch	1	
A,D	SU 1 751 430 A1 (KF [SU]) 30. Juli 1992 * das ganze Dokumer	I AVIATSIONNYJ INSTITUT 2 (1992-07-30) 1t *	1	
A,D	EP 0 991 866 A1 (SI 12. April 2000 (200 * das ganze Dokumer	00-04-12)	1	
				RECHERCHIERTE
				SACHGEBIETE (IPC)
				F04D
				F01D
]	
Der vo	rliegende Recherchenbericht wu	rde für alle Patentansprüche erstellt		
	Recherchenort	Abschlußdatum der Recherche	<u> </u>	Prüfer
	München	18. Januar 2010	Di	Giorgio, F
K	TEGORIE DER GENANNTEN DOKI		grunde liegende T	heorien oder Grundsätze
	besonderer Bedeutung allein betrach		dedatum veröffent	tlicht worden ist
ande	besonderer Bedeutung in Verbindung ren Veröffentlichung derselben Kateg			
A : tech	nologischer Hintergrund tschriftliche Offenbarung			, übereinstimmendes
	chenliteratur	Dokument		,

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 09 01 1392

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

18-01-2010

	Recherchenbericht ihrtes Patentdokum		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE	1020050252	13 A1	07-12-2006	JP US	2006336637 2006275134		14-12-200 07-12-200
GB	2106192	Α	07-04-1983	KEIN	NE		
SU	1751430	A1	30-07-1992	KEIN	NE		
EP	0991866	A1	12-04-2000	WO JP JP RU US	9859175 4087461 2002508043 2191930 6264429	B2 T C2	30-12-199 21-05-200 12-03-200 27-10-200 24-07-200
				RU	2191930	C2	27-10-20

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82

EP 2 299 124 A1

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• EP 0991866 B1 [0002] [0005]

• SU 1751430 A1 [0006] [0015]