FIELD OF THE INVENTION
[0001] The present invention relates to a sample processing apparatus for processing a sample
such as blood or urine, and a sample rack transporting method.
BACKGROUND
[0002] U.S. Patent Publication No. 2008/014118 discloses a sample processing apparatus for suctioning a sample from a sample container
held by a sample rack and processing the suctioned sample. Such a sample processing
apparatus is equipped with a transport device for transporting a sample rack holding
sample containers to a suctioning position. The sample rack holding a plurality of
sample containers is set in a rack set region on the transport device. The sample
rack thus set in the rack set region is transported by the transport device toward
the suctioning position in front of a measurement device so that the sample containers
housed in the sample rack are one by one placed at the suctioning position. During
the transport of the sample rack to the suctioning position, barcodes affixed to all
of the sample containers housed in the sample rack are read by a barcode reader. After
the samples in all of the sample containers housed in the sample rack are suctioned,
the sample rack is transported to a rack placement region on the transport device.
[0003] Such a sample processing apparatus temporarily stops the transport operation of the
sample rack when a predetermined transport suspension event has occurred during the
transport operation of the sample rack. In this case, a user returns the sample rack
from a position where the transport operation was suspended to the rack set region
before restarting the transport operation of the sample rack.
[0004] The conventional sample processing apparatus, however, imposes an additional burden
on the user because the user always has to return the sample rack to the rack set
region to restart the transport operation.
[0005] JP 2004 020457 A discloses an analyzing apparatus that is providing a rapid report on a final result
of an analysis without using an extra sample and/or a reagent.
[0006] JP 2002 318237 A discloses a system to efficiently perform an uncompleted treatment when an error
is generated on the way of carrying a specimen in a specimen carrying system for pre-treating
a rack holding a specimen.
[0007] EP 2040081 A2 provides a sample analyzer by which a position of any error status in the sample
analyzer can be easily found by a user to allow the user to carry out an error recovery
operation in an accurate and prompt manner.
[0008] US 2009 0220379 A1 discloses an analyser that includes a measuring section for measuring samples; a
transporting section for transporting a sample rack which holds sample container containing
the sample to the measuring section; a motion controller for controlling the measuring
section and the transporting section; an error detector for detecting an error of
the analyzer; a display section; a display controller for displaying on the display
section information representing handling of the sample rack present on the transporting
section when the error detector detects the error; and a restart command receiver
for receiving an instruction for measurement restart when the error occurs in the
analyzer, wherein the motion controller controls the measuring section and the transporting
section so as to selectively suction a sample required to be suctioned when the restart
command receiver receives the instruction for measurement restart is disclosed.
[0009] WO 2009/107817 A1 and
EP 2256502 A1 disclose a conveyor device for an analyzer which includes: conveyance tracks capable
of conveying a specimen rack along a fixed path; and a frame positioned around the
conveyance tracks, the frame being provided with separable and removable portions
which are separable and removable from the frame and which are capable of providing
the frame with cutouts in an open condition when separated and removed from the frame.
When the frame is provided with the cutouts in open condition, the cutouts allow the
specimen rack to be introduced onto and discharged from the conveyance tracks from
outer lateral sides of the frame through the cutouts.
[0010] JP H11 23581 A discloses an automatic analyzer able to read rack identification(ID) codes and easily
control unprocessed racks even when a device operation is interrupted by counting
the number of the racks remaining on a conveyance line on the upstream side than the
processing position based on the shift quantity of a rack moving member.
SUMMARY
[0011] The scope of the present invention is defined solely by the appended claims, and
is not affected to any degree by the statements within this summary.
A first aspect of the present invention is a sample processing apparatus according
to claim 1, comprising: a sample processing unit for obtaining a sample from a sample
container positioned at a sample obtaining position and performing a predetermined
process of the sample by adding a reagent; a transport unit for transporting, in a
transport operation, a sample rack holding the sample container via the sample obtaining
position along a transport path, wherein the transport unit comprises a cover portion
for covering a part of a transport path; and a transport controller for performing
a stop process to stop the transport operation of the sample rack by the transport
unit after a transport suspension event occurs during the transport operation, and
for controlling the transport unit to restart the transport operation from a stop
position of the sample rack associated with the stop process; further comprising a
detector for detecting a residual quantity of a reagent used by the sample processing
unit being smaller than a predetermined quantity and the transport suspension event
includes the detection by the detector, characterized in that the predetermined position
is a position covered with the cover portion and in that the transport controller
performs a process, as the stop process, to stop the transport of the sample rack
after the sample rack is transported to a predetermined position from a position where
the sample rack was positioned when the suspension event occurred.
[0012] According to the sample processing apparatus, even in the event that the transport
operation of the sample rack was suspended, the transport operation of the sample
rack can restart from a position where the sample rack was stopped. This technical
advantage can save an operator a complicated labor such as returning the sample rack
to a position where its transport operation started before restarting the transport
operation. Thus, the operator can restart the transport operation of the sample rack
with less operational burden. Even in the event that the sample containers are located
in an area not covered with the cover portion when the transport operation is suspended,
all of the sample containers retained in the sample rack can be hidden by the cover
portion during the suspension. This technical advantage can prevent any foreign matters
from entering the sample in the sample containers retained in the sample rack, and
can further prevent the sample containers retained in the rack from being replaced
by mistake. As a result, the sample can be properly processed. The operator can more
readily restart the transport operation of the sample rack, making it
unnecessary to control the apparatus in such a complicated manner that the operator
has to temporarily move the sample rack to the transport start position before restarting
the transport operation.
[0013] Preferably, the transport unit comprises an engagement mechanism driven to
engage with the sample rack, and an engagement driver for driving the engagement mechanism;
and the transport controller controls the engagement driver to keep the engagement
mechanism engaged with the sample rack until the transport controller restarts the
transport operation.
[0014] This technical advantage can prevent the sample rack from being replaced by mistake
during the suspension of the transport operation. As a result, the sample can be properly
processed.
[0015] Preferably, the transport unit comprises a movement mechanism for moving the engagement
mechanism engaged with the sample rack in a direction where the sample rack is transported,
a motor for actuating the movement mechanism, and a motor driver for driving the motor;
and the transport controller controls the engagement driver and the motor driver to
continuously excite the motor while the engagement mechanism is kept engaged with
the sample rack until the transport controller restarts the transport operation.
[0016] This technical advantage can control an unexpected positional shift of the sample
rack during the suspension of the transport operation. As a result, the operator can
restart the transport operation of the sample rack without any trouble.
[0017] Preferably, the sample processing unit comprises a pipette for suctioning the sample
from the sample container held by the sample rack; the transport controller controls
the transport unit to transport the sample rack to the predetermined position after
the pipette is removed from the sample container, if the transport suspension event
occurred while the pipette was inserted in the sample container. This technical advantage
can prevent the pipette from coming into contact with the sample containers when the
sample rack is transported to a predetermined position. Preferably, the sample rack
holds a plurality of sample containers; the sample processing apparatus further comprises
a memory for storing information indicating a respective sample obtaining state for
each of the sample containers held by the sample rack; and the transport controller
controls a transport restart operation by the transport unit based on the sample obtaining
state stored in the memory. Preferably, the transport controller controls the transport
unit, when performing the transport restart operation, so that a given one of the
sample containers, from which a sample has not been obtained, is positioned at the
sample obtaining position, and a
further one of the sample containers, from which a sample has been obtained is transported
to a position other than the sample obtaining position, if the transport suspension
event occurred while a sample container held by the sample rack was positioned at
the sample obtaining position.
[0018] This technical advantage can skip the sample fetch for the sample container from
which its sample was already fetched, thereby enabling the apparatus to more efficiently
restart the transport operation.
[0019] Preferably, the sample rack holds a plurality of sample containers; the sample processing
apparatus further comprises an identification information reader for reading respective
identification information for each of the sample containers held by the sample rack
before the sample rack is transported to the sample obtaining position; and the transport
controller controls the transport unit, when performing the transport restart operation,
to transport the sample rack to the sample obtaining position without returning the
sample rack to a position where the identification information is read by the identification
information reader, if the transport suspension event occurred after the reading of
the identification information is completed for all of the sample containers held
by the sample rack.
[0020] This technical advantage can avoid redundant reading of identification information
after the transport operation restarts, thereby enabling speedy transport of the sample
container to the sample fetch position.
[0021] Preferably, the transport controller controls the transport unit, when performing
the transport restart operation, to transport the sample rack to the sample obtaining
position after the reading of the identification information has been completed for
all of the sample containers held by the sample rack, if the reading of the identification
information was not completed for a part of the sample containers held by the sample
rack when the transport suspension event occurred.
[0022] Preferably, the transport controller obtains stop position information indicating
the stop position and restart position information indicating a position where the
sample rack is positioned when the transport operation of the sample rack restarts,
and controls a transport restart operation by the transport unit based on the stop
position information and the restart position information.
[0023] Even in the event that the sample rack is positionally shifted during the suspension
of the transport operation, this technical advantage allows the operator to know the
position of the shifted sample rack, thereby helping the operator restart the transport
operation of the sample rack without any trouble.
[0024] Preferably, the sample processing apparatus further comprises a notifying section
for generating a notification that an operator should not move the sample rack currently
transported when the transport operation by the transport unit has been suspended.
[0025] This technical advantage can prevent the operator from returning the sample rack
to the transport start position by mistake.
[0026] Preferably, the sample processing apparatus further comprises a detector for detecting
at least one of : a residual quantity of a reagent used by the sample processing unit
is smaller than a predetermined quantity; a residual quantity of cuvettes used by
the sample processing unit is smaller than a predetermined quantity; a residual quantity
of a washing solution used by the sample processing unit is smaller than a predetermined
quantity; and at least a predetermined number of sample racks are retained in the
transport unit, wherein the transport suspension event includes the detection by the
detector.
[0027] Preferably, the sample processing apparatus further comprises a receiving section
for receiving a command for suspending the transport operation by the transport unit,
wherein the transport suspension event includes the reception of the suspension command
by the receiving section.
[0028] A second aspect of the present invention is a sample rack transporting method according
to claim 13 comprising: in a transport operation, transporting a sample rack holding
a sample container by a transport unit; obtaining a sample from the sample container
positioned at a sample obtaining position by the transport unit and performing a predetermined
process of the obtained sample; stopping a transport operation of the sample rack
by the transport unit a transport suspension event occurs during the transport operation;
and restarting the transport operation by the transport unit from a stop position
of the sample rack stopped by the stopping of the transport operation; the transport
suspension event occurs when a residual quantity of the reagent is smaller than a
predetermined quantity, in that the stop position is a position covered with the cover
portion, and the stopping is performed by moving the sample rack to the stop position
from a position where the sample rack was positioned when the transport suspension
event occurred.
[0029] According to the sample rack transporting method, even in the event that the transport
operation of the sample rack was suspended, the transport operation of the sample
rack can restart from a position where the sample rack was stopped. This technical
advantage can save an operator a complicated labor such as returning the sample rack
to a position where its transport operation started before restarting the transport
operation. Thus, the operator can restart the transport operation of the sample rack
with less operational burden. Even in the event that the sample containers are located
in an area not covered with the cover portion when the transport operation is suspended,
all of the sample containers retained in the sample rack can be hidden by the cover
portion during the supension. This technical advantage can prevent any foreign matters
from entering the sample in the sample containers retained in the sample rack, and
can further prevent the sample containers retained in the rack from being replaced
by mistake. As a result, the sample can be properly processed. The operator can more
readily restart the transport operation of the sample rack, making it unnecessary
to control the apparatus in such a complicated manner that the operator has to temporarily
move the sample rack to the transport start position before restarting the transport
operation.
BRIEF DESCRIPTION OF THE DRAWINGS
[0030]
Fig. 1 is a diagram illustrating a structure of a sample processing apparatus according
to an embodiment;
Fig. 2 is a plan view schematically illustrating an internal structure of a measurement
device according to the embodiment;
Fig. 3 A is a diagram of a sample container according to the embodiment, and
Figs. 3B and 3C are diagrams illustrating a structure of a sample rack according to
the embodiment;
Figs. 4A and 4B are plan views illustrating a structure of a transport unit according
to the embodiment;
Figs. 5A to 5D are schematic diagrams illustrating principal parts of an engagement
unit according to the embodiment;
Fig. 6 is a perspective view of a transport unit according to the embodiment;
Fig. 7 is a diagram illustrating a circuit configuration of the measurement device
according to the embodiment;
Fig. 8 is a diagram illustrating a circuit configuration of an information processing
device according to the embodiment;
Fig. 9 is a diagram illustrating an example of a reagent information screen displayed
on a display unit of the information processing device according to the embodiment;
Fig. 10 is a flowchart illustrating a sample suction processing according to the embodiment;
Figs. 11A and 11B are flowcharts illustrating a suspension and restart processing
according to the embodiment;
Fig. 12 is an illustration of a measurement suspension message displayed on the display
unit of the information processing device according to the embodiment;
Figs. 13A and 13B are modified examples of flowcharts illustrating the suspension
and restart processing according to the embodiment;
Fig. 14A is a diagram illustrating a transport operation control list of a preceding
rack according to the embodiment, and Fig. 14B is a diagram illustrating a transport
operation control list of a subsequent rack according to the embodiment;
Fig. 15 is a diagram illustrating a job list according to the embodiment;
Fig. 16 is a flowchart illustrating a sample rack stop processing according to the
embodiment;
Fig. 17 is a flowchart illustrating a transport restart processing according to the
embodiment;
Figs. 18A and 18B are flowcharts illustrating an ejection processing according to
the embodiment, and Fig. 18C is a flowchart illustrating a job list display processing
according to the embodiment; and
Fig. 19 is a flowchart illustrating a sample rack ejection processing according to
the embodiment.
DETAILED DESCRIPTION OF THE EMBODIMENT
[0031] Hereinafter, a sample processing apparatus according to an embodiment is described
with reference to the accompanied drawings. The embodiment described below is only
illustrated as an example of embodying the present invention. The present invention
is by no means limited to the embodiment described below.
[0032] Fig. 1 is a diagram illustrating a structure of a sample processing apparatus 1 according
to the present embodiment. The sample processing apparatus 1 is a blood coagulation
analyzing apparatus for optically measuring and analyzing a sample by irradiating
with light a measurement specimen prepared by adding a reagent to the sample (plasma)
by employing techniques of solidification, synthetic substrate, immunonephelometry,
and agglutination. The sample processing apparatus 1 has a measurement device 2 which
optically measures components included in the sample (plasma), and an information
processing device 3 which analyzes measurement data obtained by the measurement device
2 and transmits operation commands to the measurement device 2.
[0033] The measurement device 2 is provided with a main body cover 29 as illustrated in
the figure. As the main body cover 29 rotates on a rotational shaft 29a as illustrated
in the figure, a measurement unit 10 described later can be opened or closed.
[0034] Fig. 2 is a plan view schematically illustrating an internal structure of the measurement
device 2 when viewed from an upper direction. The measurement device 2 includes the
measurement unit 10, a detection unit 40, and a transport unit 50.
[0035] As illustrated in the figure, the transport unit 50 is provided with a rack set region
A where a sample rack L can be disposed, a transport region B, and a rack placement
region C. The sample rack L has holding sections so that a plurality of sample containers
T can be held therein. The sample container T contains therein a sample to be measured.
[0036] The sample rack L set in the rack set region A is transported rearward along the
rack set region A (Y-axis positive direction) to reach the right end of the transport
region B (end in X-axis negative direction). The sample rack L positioned at the right
end of the transport region B is then transported leftward (X-axis positive direction)
along the transport region B.
[0037] As illustrated in the figure, a barcode reader 51, which is movable rightward and
leftward (X-axis negative and positive directions), is provided in the transport region
B. The barcode reader 51 reads barcode labels respectively affixed to the sample container
T and the sample rack L at a predetermined position on the transport region B. Sample
suctioning positions 52 and 53 are set at predetermined positions of the transport
region B.
[0038] When the sample containers T are positioned at the sample suctioning positions 52
and 53, the samples contained in the sample containers T at the positions are respectively
suctioned by sample dispensing units 21 and 22 described later. After all of the samples
in the sample containers T held in the sample rack L are suctioned, the sample rack
L is transported to the left end of the transport region B.
[0039] In the sample processing apparatus 1 according to the present embodiment, a measurement
mode from two different measurement modes; "standard measurement" and "trace-level
measurement" can be selected. In the standard measurement, the sample of the sample
container T is suctioned by the sample dispensing unit 21 at the sample suctioning
position 52. In the trace-level measurement, the sample of the sample container T
is suctioned by the sample dispensing unit 22 at the sample suctioning position 53.
[0040] The sample rack L positioned at the left end of the transport region B is transported
forward along the rack placement region C (Y-axis negative direction), where the transport
operation of the sample rack L ends. The transport operation by the transport unit
50 is consecutively carried out for all of the sample racks L set in the rack set
region A.
[0041] The sample dispensing unit 21 includes a support member 21a, an arm 21b supported
by the support member 21a, and a pipette 21c attached to a tip of the arm 21b. The
support member 21a is rotated by a stepping motor 211a provided on a rear side of
a lower surface (see Fig. 7), and the arm 21b is driven upward and downward by the
stepping motor 211a (Z-axis positive and negative directions). The pipette 21c is
used to suction and discharge the sample. When the support member 21a is rotated,
the pipette 21c moves on an outer periphery of a circle centered on the support member
21a.
[0042] The sample dispensing unit 22 has a structure similar to that of the sample dispensing
unit 21. More specifically, the sample dispensing unit 22 includes a support member
22a, an arm 22b, and a pipette 22c attached to a tip of the arm 22b. The support member
22a is rotated by a stepping motor 211b provided on the lower-surface rear side (see
Fig. 7), and the arm 22b is driven upward and downward by the stepping motor 211b.
The pipette 22c is used to suction and discharge the sample.
[0043] To suction the samples, to start with, the sample dispensing units 21 and 22 respectively
rotate the support members 21a and 22a to position the pipettes 21c and 22c at the
sample suctioning positions 52 and 53. When the arms 21b and 22b are thereafter driven
downward, the pipettes 21c and 22c are inserted into the sample containers T. After
the samples are suctioned, the arms 21b and 22b are driven upward so that the pipettes
21c and 22c are drawn out of the sample containers T.
[0044] The samples suctioned at the sample suctioning positions 52 and 53 are put in cuvettes
of a cuvette carrier 31 directly or by way of cuvettes of a cuvette table 15. At this
time, a suitable volume of diluent set in a diluent carrier 32 is suctioned by the
sample dispensing unit 22 to be mixed with the samples of the cuvettes. Then, the
cuvette carrier 31 is driven rightward (X-axis negative direction) so that the cuvettes
are transported to the front of a catcher unit 26. The cuvettes set in the cuvette
carrier 31 are held by the catcher unit 26 and then set in a warming table 16. Then,
the cuvettes are transported by catcher units 27 and 28 to be set in the detection
unit 40. At this time, a suitable volume of reagents retained in reagent tables 11
and 12 are injected into the cuvettes by reagent dispensing units 23, 24 and 25. Then,
the detection unit 40 processes the contents of the cuvettes to detect optical information
which reflects thereon components included in the measurement specimens in the cuvettes.
[0045] A cuvette supply unit 33 can sequentially supply a plurality of cuvettes thus obtained
to a cuvette storage 33a. The cuvettes newly supplied to the cuvette storage 33a are
set in retaining holes of the cuvette table 15 and the cuvette carrier 31 by the catcher
units 26 and 27, respectively. The post-analysis cuvettes to be discarded are thrown
into waste vents 34 and 35 by the catcher units 27 and 28. The sample dispensing units
21 and 22, and the pipettes of the reagent dispensing unit 23 to 25 are washed at
a predetermined washing position (not illustrated). A washing solution which was used
for washing is kept in a waste solution tank (not illustrated).
[0046] On the reagent tables 11 and 12, container racks 13 and 14 are respectively disposed.
The container racks 13 and 14 respectively hold therein a plurality of reagent containers
in which reagents are contained. To exchange the reagents contained in the reagent
container, the main body cover 29 illustrated in Fig. 1 is opened after the measuring
operation by the measurement unit 10 is suspended. Then, an operator can retrieve
the reagent containers from the reagent tables 11 and 12 to replace the reagents with
new ones.
[0047] Fig. 3A is a perspective view illustrating an external appearance of the sample container
T, and Fig. 3B and 3C are front views of the sample rack L. Fig. 3B and Fig. 3C are
front views of the sample rack L when the sample rack L set in the transport unit
50 is viewed in the Y-axis negative direction illustrated in Fig. 2.
[0048] Referring to Fig. 3A, the sample container T is a tubular container made of optically
transparent glass or synthetic resin, wherein an upper end is open. A blood sample
collected from a patient is contained therein, and the opening at the upper end thereof
is sealed with a cap portion CP. A barcode label BL1 is affixed to a side surface
of the sample container T. The barcode label BL1 has a barcode representing a sample
ID printed thereon.
[0049] Referring to Fig. 3B, the sample rack L has 10 holding sections which can hold 10
sample containers T perpendicularly (upright position). The holding sections respectively
have serial numbers 1 to 10 from right which represent their holding positions. A
barcode label BL2 is affixed to a side surface of the sample rack L in the Y-axis
positive direction. The barcode label BL2 has a barcode representing a rack ID printed
thereon.
[0050] As illustrated in Fig. 3B, recesses La as many as the holding sections, that is,
10 recesses open downward are formed in a bottom surface of the sample rack L along
the longitudinal direction of the sample rack L. The recesses La are each defined
by wall portions Lb formed on right and left sides thereof.
[0051] The sample rack may have a structure as illustrated in Fig. 3C. In this case, a bottom
surface of the sample rack L is provided with one recess Lc.
[0052] Fig. 4A is a plan view illustrating a structure of the transport unit 50.
[0053] The rack set region A is equipped with a rack feed mechanism A1 which transports
the sample rack L disposed therein in the Y-axis positive direction. The rack feed
mechanism A1 pushes the side surface of the sample rack L in the rack set region A
closer thereto (in Y-axis negative direction) to transport the sample rack L in the
Y-axis positive direction so that the sample rack L is transferred to the transport
region B. In the event that a plurality of sample racks L are disposed in the rack
set region A, as illustrated in the figure, the rack feed mechanism A similarly pushes
the side surface of the sample rack L which is nearest thereto (in Y-axis negative
direction) so that the sample rack L which is farthest thereto (in Y-axis positive
direction) is transferred to the transport region B.
[0054] In the rack set region A, as illustrated in the figure, a pair of sensors A2 are
provided at an end thereof in the Y-axis positive direction and an end thereof in
the Y-axis negative direction. An optically transparent photosensor or the like constitutes
the sensor A2. The sensor A2 blocks light when the sample rack L is present in the
rack set region A, and transmits light when there is no sample rack L in the rack
set region A.
[0055] The transport region B is provided with a transport path B1 which supports the bottom
surface of the sample rack L, and two rack transverse feed mechanisms B2. The two
rack transverse feed mechanisms B2 are provided below the transport path B1, and independently
move two sample racks L disposed on the transport path B1 rightward and leftward (X-axis
positive and negative directions). A structure of the rack transverse feed mechanism
B2 will be described later with reference to Fig. 4B and Fig. 5.
[0056] In the sample rack L transferred to the transport region B, the barcode reader 51
reads the barcode BL1 of the sample container T and the barcode label BL2 of the sample
rack L (hereinafter, referred to as "pre-read") before the sample container T is transported
to the sample suctioning position 52, 53. As illustrated in the figure, the pre-read
by the barcode reader 51 is performed when the sample rack L is in the range of "a
pre-read position" on the transport region B.
[0057] As illustrated in Fig. 2, the sample suctioning positions 52 and 53 are set in the
transport region B. The sample rack L for which the pre-read was performed is transported
leftward (X-axis positive direction) so that the sample containers T retained in the
sample rack L is positioned at the sample suctioning position 52 or 53. The barcode
label BL1 of the sample container T positioned at the sample suctioning position 52
or 53 is read by the barcode reader 51 (hereinafter, referred to as "post-read"),
and the sample contained therein is then suctioned.
[0058] If a transport suspension event, which will be described later, occurs when the sample
suctioning by the sample dispensing units 21 and 22 is currently performed, the sample
rack L is transferred to "a transport suspending position" and stops there.
[0059] As illustrated in the figure, sensors B51 to B55 are provided in the transport region
B. A reflective photosensor or the like constitutes each of the sensors B51 to B55.
The sensor B51 detects the sample rack L positioned at the right end of the transport
region B (end in the X-axis negative direction). The sensor B52 detects that the sample
rack L has been transported to the pre-read position. The sensors B53 and B54 detect
that the sample rack L is positioned at the sample suctioning position 52, 53. The
sensor B55 detects that the sample rack L has been transported to the transport suspending
position.
[0060] The rack placement region C is provided with a rack feed mechanism C1 which transports
the sample rack L disposed therein in the Y-axis negative direction. The rack feed
mechanism C1 moves the sample rack L disposed at the left end of the transport region
B (end in the X-axis positive direction) in the Y-axis negative direction by one pitch
(equal to width of the sample rack L in its lateral direction) so that the sample
rack L is transferred from the transport region B to the rack placement region C.
[0061] As illustrated in the figure, the rack placement region C is equipped with a sensor
C2 which detects the presence or absence of the sample rack L. A reflective photosensor
or the like constitutes the sensor C2. The sensor C2 detects the sample rack L which
has been transported to a transport end position (end in the Y-axis negative direction)
of the rack placement region C.
[0062] Fig. 4B is a plan view illustrating a structure of the rack transverse feed mechanism
B2. The two rack transverse feed mechanisms B2 are provided next to each other in
the Y-axis direction. The rack transverse feed mechanism B2 is equipped with an engagement
unit B3 that can be engaged with the sample rack L, and a movement mechanism B4 which
moves the engagement unit B3 rightward and leftward (X-axis positive and negative
directions).
[0063] The movement mechanism B4 has a pair of pulleys B41 provided at both ends of the
transport region B, a belt 42 that bridges the pulleys B41, a stepping motor B43 which
rotates one of the pulleys B41, and a rotary encoder B44 which detects number of rotations
of the stepping motor B43.
[0064] The engagement unit B3 is coupled with the belt B42 of the movement mechanism B4
to move rightward and leftward when the stepping motor B43 is driven. An amount of
the movement of the engagement unit B3 is detected by the rotary encoder B44 as the
number of rotations of the stepping motor B43. The operation of the stepping motor
B43 is controlled based on a detection result obtained by the rotary encoder B44.
A movement start position and a movement end position of the engagement unit B3 are
respectively set at a right end (end in X-axis negative direction) and a left end
(end in X-axis positive direction) in a drivable range of the engagement unit B3.
Further, sensors B55 and B56 each including an optically transparent photosensor or
the like are provided. The sensors B55 and B56 respectively detect the engagement
unit B3 positioned at the movement start position and the movement end position.
[0065] Fig. 5A is a front view of the engagement units B3 illustrating a state where the
engagement units B3 are not engaged with the sample rack L. Fig. 5B is a side view
of the engagement units B3. Figs. 5C and 5D are front views of the engagement units
B3 illustrating a state where the engagement units B3 are engaged with the sample
rack L.
[0066] Referring to Fig. 5A, the engagement unit B3 has a substrate B31, a pair of engagement
members B32, and an action member B33. The engagement unit B3 further has an air cylinder
B34 (not illustrated), which moves the action member B33 upward and downward (see
Fig. 7).
[0067] A guide member (not illustrated) is attached to the substrate B31. The guide member
is slidably engaged with a guide rail (not illustrated) along the X-axis direction
below the transport path B1. The substrate B31 is supported by the guide rail so as
to freely move in the X-axis positive and negative directions.
[0068] As illustrated in the figure, the pair of engagement members B32 are secured to an
upper side of the substrate B31 by securing tools B31a including bolts and screw nuts
so as to freely rotate in the Y-axis direction. Engagement claws B32a are formed at
an upper section of the engagement member B32, and engagement rollers B32b are provided
at a lower end thereof. The substrate B31 has regulating holes (not illustrated) formed
therein each regulating a rotational range of the engagement roller B32b along a rotational
line of the engagement roller B32b when the engagement member B32 rotates on the securing
tool B31a as a rotational center. The engagement roller 32b is movably engaged with
the regulating hole. Accordingly, the engagement member B32 can be rotated in the
Y-axis direction within a predetermined range with the securing tool B31a as a rotational
center.
[0069] A rectangular engagement hole B33a having a larger dimension in its lateral direction
is formed at an upper section of the action member B33 so that the pair of engagement
rollers B32b are engaged therewith. When the action member B33 is driven in the Z-axis
direction, the pair of engagement members B32 respectively rotate on the securing
tools B31a in the Y-axis direction via the engagement rollers 32b engaged with the
engagement hole B33a. As illustrated in Fig. 5A, in a state where the pair of engagement
members B32b rotate downward (Z-axis negative direction), the engagement claws B32a
are positioned below the transport path B1, and does not engage with the sample rack
L.
[0070] The air cylinder B34 is supplied with compressed air from a compressor (not illustrated).
The air cylinder B34 has a rod which generates an up-and-down movement as the compressed
air is supplied. The action member B33 is fixed to an upper end of the rod of the
air cylinder B34. As the rod of the air cylinder B34 moves upward and downward, the
action member B33 simultaneously moves upward and downward. In conjunction therewith,
the pair of engagement members B32 rotate upward and downward.
[0071] Referring to Fig. 5B, as described above, a state where the engagement claws B32a
stick out beyond the transport path B1 through grooves formed therein, and a state
where the engagement claws B32a stay below the transport path B1 occur in turns as
the engagement members B32 rotate, as illustrated in the figure.
[0072] Referring to Fig. 5C, when the engagement member B32 rotates upward (Z-axis positive
direction), the engagement claws B32a stick out beyond the transport path B1 to advance
into the recess La formed in the bottom section of the sample rack L. As a result,
the pair of engagement claws B32a are moved away from each other. Accordingly, the
engagement claws B32a abut with the wall portions Lb on both sides of the recess La
in the X-axis positive and negative directions as illustrated in the figure. Accordingly,
the pair of engagement members B32 are finally engaged with the sample rack so that
the sample rack L can be securely transported.
[0073] Referring to Fig. 5D, in the case where the sample rack L illustrated in Fig. 3C
is used, the engagement claws B32a similarly stick out beyond the transport path B1
to advance into the recess Lc formed in the bottom section of the sample rack L so
that the pair of engagement claws B32a are moved away from each other. In this case,
the engagement claws B32a are engaged with protruding wall portions formed in the
recess Lc as illustrated in the figure. Accordingly, the sample rack L illustrated
in Fig. 3C can be transported in the same manner as the sample rack L illustrated
in Fig. 3B.
[0074] The engagement units B3 each having the structure described so far are disposed facing
each other in the Y-axis direction below the transport path B1 as illustrated in Fig.
4B, so that two sample racks L is independently driven in the transport region B.
[0075] The rack transverse feed mechanism B2 having the structure and function described
so far transports the sample rack L on the transport path B1 while supporting the
recess La in the bottom surface of the sample rack L using the engagement claws B32a.
At the time of occurrence of a transport suspension event, which will be described
later, the sample rack L is stopped on the transport region B. Nevertheless, the recess
La in the bottom surface of the sample rack L still remains supported by the engagement
claws B32a. The stepping motor B43 is continuously excited after the sample rack L
is thus stopped, which prevents any positional shift of the sample rack L.
[0076] Fig. 6 is a perspective view of the transport unit 50.
[0077] A roof 54 is provided in an upper section (Z-axis positive direction) near the center
of the transport region B. At the right end of the roof 54 (end in the X-axis negative
direction) and the left end of the roof 54 (end in the X-axis positive direction),
flange portions 54a and 54b are respectively formed as illustrated in the figure.
Further, openings 54c and 54d are formed in the roof 54 as illustrated in the figure.
The sample dispensing units 21 and 22 respectively suction the samples of the sample
containers T positioned at the sample suctioning positions 52 and 53 through the openings
54c and 54d. As illustrated in the figure, a front cover 55 is removably fitted on
the near side of the transport region B (Y-axis negative direction).
[0078] According to the transport operation unit 50 structured as described above, upper
sides of the sample rack L and the sample container T in the transport region B are
left unexposed except for the areas of the openings 54a and 54b. With this structure,
foreign matters are prevented from entering the sample container T in the transport
region B from an upper direction, and the operator is also prevented from accidentally
coming into contact with the sample rack L and the sample container T. When the transport
operation unit 50 is structured as described above, the operator is prevented from
coming into contact with the sample rack L and the sample container T near the center
of the transport region B (area covered with the front cover 55). Thus, the operator
is prevented from accidentally coming into contact with the sample rack L and the
sample container T.
[0079] The pre-read position illustrated in Fig. 4 is included in the area covered with
the front cover 55. Therefore, when the sample rack L is positioned at the pre-read
position, the sample rack L is entirely covered with the front cover 55. The transport
suspending position illustrated in Fig. 4 is also included in the area covered with
the front cover 55. That is, in the case where the left end of the sample rack L sticks
out of the front cover 55 when the sample of the sample rack L is suctioned, the sample
rack L is positioned at the transport suspending position under the front cover 55
at the time of occurrence of a transport suspension event described later. Accordingly,
the operator may be further prevented from coming into contact with the sample rack
L and the sample container T during the suspension of the measuring operation.
[0080] Fig. 7 is a diagram illustrating a circuit configuration of the measurement device
2.
[0081] The measurement device 2 includes a controller 200, a barcode reader 51, a dispensing
unit stepping motor unit 211, a dispensing unit rotary encoder unit 212, a motor drive
circuit 213, a rack transverse feed mechanism stepping motor unit 221, a rack transverse
feed mechanism rotary encoder unit 222, a motor drive circuit 223, an air cylinder
B34, a temperature detector 231, a reagent residual quantity detector 232, a liquid
quantity detector 233, a cuvette storage quantity detector 234, a rack detector 235,
a sensor unit 236, and a measurement unit drive unit 237.
[0082] The controller 200 includes a CPU 201, a ROM 202, a RAM 203, a hard disc 204, a communication
interface 205, and an I/O interface 206.
[0083] The CPU 201 runs a computer program stored in the ROM 202 and a computer program
loaded in the RAM 203. The RAM 203 is used to read computer programs recorded in the
ROM 202 and the hard disc 204. The RAM 203 is also used as a working region of the
CPU 201 when these computer programs are run. The hard disc 204 stores therein various
computer programs to be run by the CPU 201, for example, an operating system and an
application program, and data used to run these computer programs. Through the communication
interface 205, data can be transmitted and received to and from the information processing
device 3.
[0084] The CPU 201 is connected via the I/O interface 206 to the barcode reader 51, dispensing
unit rotary encoder unit 212, motor drive circuit 213, rack transverse feed mechanism
rotary encoder unit 222, motor drive circuit 223, air cylinder B34, temperature detector
231, reagent residual quantity detector 232, liquid quantity detector 233, cuvette
storage quantity detector 234, rack detector 235, sensor unit 236, and measurement
unit drive unit 237.
[0085] The dispensing unit stepping motor unit 211 includes stepping motors 211a and 211b
which independently rotate the support member 21a of the sample dispensing unit 21
and the support member 22a of the sample dispensing unit 22. The dispensing unit rotary
encoder unit 212 includes rotary encoders 212a and 212b provided for the stepping
motors 211a and 211b of the sample dispensing units 21 and 22. The motor drive circuit
213 is controlled by the CPU 201 to drive the stepping motors 211a and 211b included
in the dispensing unit stepping motor unit 211.
[0086] The rack transverse feed mechanism stepping motor unit 221 includes the stepping
motors B43 of the two rack transverse feed mechanisms B2. The rack transverse feed
mechanism rotary encoder unit 222 includes the rotary encoders B44 of the two rack
transverse feed mechanisms B2. The motor drive circuit 223 is controlled by the CPU
201 to independently drive the two stepping motors B43 included in the rack transverse
feed mechanism stepping motor unit 221.
[0087] The rotary encoders constituting the dispensing unit rotary encoder unit 212 and
the rack transverse feed mechanism rotary encoder unit 222 are incremental encoders.
The rotary encoder is configured to output a pulse signal depending on a rotational
displacement of the stepping motor. The rotational speed of the stepping motor can
be detected by counting the number of pulses outputted from the rotary encoder.
[0088] The temperature detector 231 is provided with a temperature sensor to detect a temperature
of the warming table 16. The reagent residual quantity detector 232 is provided with
a liquid surface detecting sensor to detect respective residual quantities of the
reagents in the reagent containers disposed on the reagent table 11, 12. The liquid
quantity detector 233 is equipped with a plurality of liquid surface detecting sensors
to detect a residual quantity of the washing solution tank containing the washing
solution used to wash the sample dispensing units 21 and 22 and the reagent dispensing
units 23 to 25, and a waste liquid quantity of the waste washing solution tank containing
the wasted solution. The cuvette storage quantity detector 234 is equipped with a
cuvette storage sensor to detect a residual storage quantity of the cuvettes housed
in the cuvette supply unit 33. The rack detector 235 includes sensors A2, B51 to B55
and C2 provided in the transport unit 50. The sensor unit 236 includes a photosensor
which detects that the main body cover 29 is open. To carry out dispensing operations
by the sample dispensing units 21 and 22 and the reagent dispensing units 23 to 25,
the measurement unit drive unit 237 includes a pneumatic source for supplying pressure
to these dispensing units, and a driver for driving the tables (reagent tables 11
and 12, cuvette table 15, and warming table 16).
[0089] Fig. 8 is a diagram illustrating a circuit configuration of the information processing
device 3.
[0090] The information processing device 3 includes a personal computer and also includes
a main body 300, an input unit 310, and a display unit 320. The main body 300 includes
a CPU 301, a ROM 302, a RAM 303, a hard disc 304, a readout device 305, an input/output
interface 306, an image output interface 307, and a communication interface 308.
[0091] The CPU 301 runs a computer program stored in the ROM 302 and a computer program
loaded in the RAM 303. The RAM 303 is used to read computer programs recorded in the
ROM 302 and the hard disc 304. The RAM 303 is also used as a working region of the
CPU 301 when these computer programs are run.
[0092] The hard disc 304 stores therein various computer programs to be run by the CPU 301,
for example, an operating system and an application program, and data used to run
these computer programs. Specifically, in the hard disc 304, there are installed a
display program for receiving a reagent condition in the measurement device 2 to,
for example, display a message notifying the reagent residual quantity on the display
unit 309, and operation programs for replacing the reagent or operating the measurement
device 2 in accordance with additional operation commands.
[0093] The readout device 305 includes, for example, a CD drive or a DVD drive. The readout
device 305 can read computer programs and data recorded on a recording medium. The
input unit 310 including a mouse and a keyboard is connected to the input/output interface
306. The operator inputs data to the information processing device 3 by using the
input unit 310. The image output interface 307 is connected to the display unit 320
including, for example, a display screen to output a video signal suitable for image
data to the display unit 320. The display unit 320 displays an image based on the
inputted video signal. Through the communication interface 308, data can be transmitted
and received to and from the measurement device 2.
[0094] Fig. 9 is a diagram illustrating an example of a reagent information screen displayed
on the display unit 320 of the information processing device 3. The reagent information
screen includes a location display region 410, a detailed information display region
420, an operation command display region 430, and an operation decision display region
440.
[0095] The location display region 410 displays the positions of the container racks 13
and 14 on the reagent tables 11 and 12, and a condition of the reagent containers
housed in these container racks.
[0096] When a reagent mark 411 or 412 in the location display region 410 is selected, detailed
information on contents of the reagent container retained at the position of the selected
mark is displayed in the detailed information display region 420.
[0097] The operation command display region 430 has a plurality of different command buttons
including a sample rack ejection button 431. When the operator presses any of the
buttons, an operation corresponding to the pressed button is carried out.
[0098] The measurement command display region 440 has a measurement suspending button 441
and a measurement start button 442. When the operator presses the measurement suspending
button 441, a measurement suspension processing is carried out. When the operator
presses the measurement start button 442 during the suspension of the measurement,
a measurement restart processing is carried out. The measurement start button 442
is displayed in active state as far as the measurement can restart. When the measurement
start button 442 is pressed whenever the measurement restart is infeasible, a message
is displayed on the screen so that the operator is notified of the failure to restart
the measurement.
[0099] Next, the processing operation of the sample processing apparatus is described. The
following processing operation, which is controlled by the information processing
device 3, is carried out through data communicated between the measurement device
2 and the information processing device 3.
[0100] Fig. 10 is a flowchart illustrating steps of a sample suctioning processing according
to the present embodiment. In the processing flow described below, the transport position
of the sample rack L is known from the output of the rack transverse feed mechanism
rotary encoder unit 222 and the output of the rack detector 235.
[0101] In the present embodiment, when the operator inputs a measurement start command via
the information processing device 3, the measurement device 2 starts its measuring
operation. When the CPU 201 of the measurement device 2 receives a measurement start
signal from the information processing device 3 (S1: YES), the CPU 201 transports
the sample rack L from the rack set region A to the pre-read position (S2). At the
pre-read position, the barcode reader 51 performs the pre-read of the barcode label
BL2 of the sample rack L and the barcode label BL1 of the sample container T held
in the sample rack L (S3).
[0102] The sample rack L, for which the barcode pre-read at the pre-read position is completed,
is transported to the sample suctioning position 52 or 53 (S4). When the sample container
T is positioned at the sample suctioning position 52 or 53, the barcode reader 51
performs the post-read of the barcode label BL1 affixed to the sample container T
(S5). The sample of the barcode-read sample container T is suctioned by the sample
dispensing unit 21 or 22 at the sample suctioning position 52 or 53 (S6).
[0103] After the samples in all of the sample containers T held in the sample rack L are
suctioned (S7: YES), the sample rack L is transported to the rack placement region
C (S8), and the sample suctioning processing for the sample rack L ends. Unless the
samples in all of the sample containers T held in the sample rack L are suctioned
(S7: NO), steps S4 to S6 are repeatedly carried out until the samples in all of the
sample containers T held in the sample rack L are suctioned.
[0104] In the case where there is a subsequent sample rack L that follows the sample rack
L currently positioned at the sample suctioning position 52 or 53, the processing
steps in S2 and after S2 start for the subsequent sample rack L. In this case, the
barcode reader 51 is moved in the X-axis positive and negative directions to post-read
the preceding sample rack L with a higher priority but pre-read the subsequent sample
rack L as well.
[0105] Figs. 11A and 11B are flowcharts illustrating processing steps of a transport suspension
and restart processing carried out by the measurement device 2 and the information
processing device 3.
[0106] In the present embodiment, when the operator presses the measurement suspending button
441 illustrated in Fig. 9 to transmit the suspension command signal from the information
processing device 3 to the measurement device 2, the transport operation of the sample
rack is suspended. Having detected the occurrence of a predetermined transport automatic
suspension event, more specifically, cuvette shortage detected by the cuvette storage
quantity detector 234, filled-up waste solution tank detected by the liquid quantity
detector 233, washing solution shortage detected by the liquid quantity detector 233,
reagent shortage detected by the reagent residual quantity detector 232, or rack placement
region C filled with sample racks L detected by the sensor C2 of the rack detector
235, the transport operation of the sample rack is suspended.
[0107] Referring to Fig. 11A, when the CPU 301 of the information processing device 3 receives
a signal indicating the detection of any of the transport automatic suspension events
(automatic suspension signal) from the measurement device 2 (S11: YES), the CPU 301
makes the display unit 320 of the information processing device 3 display thereon
that the measuring operation was suspended (S14). When the operator presses the measurement
suspending button 441 (S12: YES), the CPU 301 of the information processing device
3 transmits a suspension command signal to the measurement device 2 (S13). Then, the
CPU 301 makes the display unit 320 of the information processing device 3 display
thereon that the measurement was suspended (S14).
[0108] Fig. 12 is a diagram illustrating an example of the measurement suspension message
displayed on the display unit 320 of the information processing device 3; wherein
"the operation will automatically restart; please wait" is displayed. The message
to be displayed may be "it is unnecessary to transport the sample rack; the transport
of the sample rack will automatically start again when the measurement restarts".
The operator can accordingly know it is unnecessary to reset the sample rack L in
the rack set region A.
[0109] Referring to Fig. 11B, when the CPU 201 of the measurement device 2 detects any of
the transport automatic suspension events (S21: YES), the CPU 201 transmits the automatic
suspension signal to the information processing device 3 (S22), and stops the sample
rack L by executing a "sample rack stop processing" (S23). When the CPU 201 of the
measurement device 2 receives the suspension command signal from the information processing
device 3 (S24: YES), the CPU 201 stops the sample rack L by executing a "sample rack
stop processing" (S23). The "sample rack stop processing" will be described later
with reference to Fig. 16.
[0110] Referring to Fig. 11A, when the operator commands to restart the measuring operation
by the measurement device 2 via the information processing device 3 (S15: YES), the
CPU 301 of the information processing device 3 transmits a measurement restart command
signal to the measurement device 2 (S16), and ends the processing.
[0111] Referring to Fig. 11B, when the CPU 201 of the measurement device 2 receives the
measurement restart command signal from the information processing device 3 (S25:
YES), the CPU 201 restarts the transport operation of the sample rack L by executing
a "transport restart processing" (S26), and then ends the processing steps. The "transport
restart processing" will be described later with reference to Fig. 17.
[0112] In the case where the sample rack L is possibly positionally shifted during the time
when the transport operation of the sample rack L temporarily stops and then restarts,
it may be determined during this period of time whether or not the sample rack L is
positionally shifted.
[0113] Figs. 13 is a modified flowchart illustrating processing steps of suspending and
restarting the transport of the sample rack L by the CPU 201 of the measurement device
2. Only the processing steps which are different to the flow of the processing steps
illustrated in Fig. 11A are described below.
[0114] In S31, the position of the sample rack L on the transport region B stopped by the
"sample rack stop processing" is stored. More specifically, the rotational speed detected
from the rotary encoder B44 of the rack transverse feed mechanism B2 which transports
the sample rack L is stored in the RAM 303 or the hard disc 304 of the information
processing device 3.
[0115] When the measurement restart is commanded (S25: YES), the current rotational speed
of the rotary encoder B44 of the rack transverse feed mechanism B2 is detected (S32),
and the rotational speed stored in S31 is read out (S33). When these two rotational
speeds are compared to each other and determined that the rack transverse feed mechanism
B2 is positionally shifted (S34: YES), the rack transverse feed mechanism B2 is returned
to its position based on the rotational speed stored in S31 (S35).
[0116] Accordingly, in the case where the rack transverse feed mechanism B2 is positionally
shifted immediately after the sample rack L was stopped, the rack transverse feed
mechanism B2 can be returned to its proper position before the "transport restart
processing" restarts the transport operation of the sample rack L. As a result, the
transport operation of the sample rack L can smoothly restart.
[0117] Fig. 14A and Fig. 14B respectively illustrate a transport operation control list
of a preceding rack and a transport operation control list of a subsequent rack. Of
the two sample racks L currently transported in the transport region B, the sample
rack L disposed downstream (X-axis positive direction) is the preceding rack, and
the sample rack L disposed upstream (X-axis negative direction) is the subsequent
rack.
[0118] The transport operation control list includes items of, for example, rack position,
holding position, sample barcode read state, measurement mode, and suctioning state
as illustrated in Figs. 14A and 14B. The transport operation control list is stored
in the RAM 203 or hard disc 204 of the measurement device 2. According to the transport
operation control list, the transport operation of the pre-read sample rack L is controlled.
[0119] The item of "measurement mode" in the transport operation control list is obtained
from a job list described later based on information of the barcode label BL2 of the
sample rack L pre-read at the pre-read position. The job list retains therein measurement
order information including respective sample measurement modes, measurement state
information, and measurement results. The job list is updated when the sample container
T newly measured is registered in the job list (hereinafter, referred to as "order-register"),
when the measurement starts, and when the measurement result is obtained. As illustrated
in Fig. 15, the measurement mode stored in the job list is linked to the rack number
and the holding position of the sample container T (rack number - position). When
the barcode label BL2 of the sample rack L is read at the pre-read position, the measurement
mode linked to the holding position relevant to the rack number corresponding to the
read barcode label BL2 is transcribed from the job list in the item of "measurement
mode" of the subsequent rack. The item of "suctioning state" in the transport operation
control list is updated from "unfinished" to "finished" when the sample is suctioned
in S6 of Fig. 10.
[0120] Referring to Fig. 14A, it is known from the item of "rack position" that the preceding
rack is at the sample suctioning position 52. It is known from the item of "sample
barcode read state" that the pre-read by the barcode reader 51 has already been done
for all of the holding positions. It is known from the item of "measurement mode"
that standard measurement is performed for the sample containers T at the holding
positions 1 to 4 and 7 to 10, and trace-level measurement is performed for the sample
containers T at the holding positions 5 and 6. It is known from the item of "suctioning
state" that the sample suctioning is already finished for the sample containers T
at the holding positions 1 to 5, but the sample suctioning is still unfinished for
the sample containers T at the holding positions 6 to 10.
[0121] Referring to Fig. 14B, it is known from the item of "rack position" that the subsequent
rack is positioned at the pre-read position. It is known from the item of "sample
barcode read state" that the pre-read by the barcode reader 51 has already been finished
for the holding positions 1 to 5, but the pre-read by the barcode reader 51 is still
unfinished for the holding positions 6 to 10. It is known from the item of "measurement
mode" that standard measurement is performed for the sample containers T at the holding
positions 1 to 3, 6 and 9 in the subsequent rack, and trace-level measurement is performed
for the sample containers T at the retaining positions 4, 5, 7, 8 and 10 in the subsequent
rack. It is known from the item of "suctioning state" that the sample suctioning is
finished for none of the retaining positions.
[0122] When the preceding rack is transported to the rack placement region C and the subsequent
rack at the pre-read position is positioned at the sample suctioning position 52 or
53, the transport operation control list of the preceding rack is overwritten with
the transport operation control list of the subsequent rack, and the transport operation
control list of the subsequent rack is initialized. When the next sample rack L is
positioned at the pre-read position, the transport operation control list for the
sample rack L subsequent thereto is created.
[0123] Fig. 15 is a diagram illustrating the job list.
[0124] As illustrated in the figure, the job list retains therein information such as measurement
state, measurement order information, and measurement result of the sample container
T which was order-registered. The job list is stored in the hard disc 304 of the information
processing apparatus 3.
[0125] The job list includes items of, for example, state, rack number - position, sample
number, measurement mode, date, time, and PT% (measurement result). The sample measurement
state is written in the item of "state". For the sample just order-registered but
not yet measured, the item of "state" shows "pending". When the sample rack L is ejected
as described later, the item shows "error". When the sample measurement is terminated,
the item of "state" becomes blank. The item of "rack number - position" shows a number
affixed to the sample rack L for discrimination and a holding position of the sample
container T. Each of the rack numbers is linked to information of the barcode label
BL2 of the sample rack L. The item of "sample number" shows a number affixed to the
sample container T for discrimination. Each of the "sample numbers" is linked to information
of the barcode label BL1 of the sample container T. The items of "date" and "time"
show a date and a time point when the sample is fetched into the measurement device
2. When the measuring operation is normally terminated, its measurement result is
written in the item of "PT%". In the case where the measuring operation is not normally
terminated, "***.*" (mask) is written in the item of "PT%". "PT%" is an example of
possible measurement items, and the job list includes other measurement items.
[0126] Fig. 16 is a flowchart illustrating processing steps of the "sample rack stop processing"
in the suspension and restart processing illustrated in Fig. 11B.
[0127] At the time of occurrence of a transport suspension event, when the samples in all
of the sample containers T in one sample rack L have been suctioned and there is another
sample rack L currently transported to the rack placement region C (S101: YES), the
sample rack L is transported to the rack placement region C (S102).
[0128] When the sample of any sample rack L is currently suctioned at the sample suctioning
position 52 or 53 (S103: YES), the arm of the sample dispensing unit 21 or 22 is ascended.
When the ascent of the arm of the sample dispensing unit 21 or 22 is completed (S104:
YES), the sample rack L is transported to the transport suspending position illustrated
in Fig. 4 to stop there (S105). The sensor B55 detects that the sample rack L was
transported to the transport suspending position.
[0129] In the presence of any sample rack L between the pre-read position and the sample
suctioning position 52 or 53 (S106: YES) while there is no sample rack L currently
subject to the sample suctioning at the sample suctioning position 52 or 53, (S103:
NO), the sample rack L is transported to the transport suspending position to stop
there (S107). Thus, the sample rack L already pre-read and currently transported to
the sample suctioning position 52 or 53 is positioned at the transport suspending
position.
[0130] In the presence of the sample rack L currently pre-read at the pre-read position
(S108: YES), the sample rack L stays at the pre-read position until the currently
ongoing pre-read of the barcode of the sample container T or sample rack L is finished.
After the read of the barcode of the sample container T or the sample rack L currently
pre-read is finished (S109: YES), the sample rack L stops at the position (S110).
[0131] In presence of the sample rack L currently transported by the rack feed mechanism
A1 in the rack set region A or the sample rack L currently transported to the pre-read
position in the transport region B (S111: YES) while there is no sample rack L currently
pre-read at the pre-read position (S108: NO), the sample rack L is transported to
the pre-read position to stop there (S112). The sensor B52 detects that the sample
rack L has been transported to the pre-read position. Then, the "sample rack stop
processing" ends.
[0132] By the time when the transport operation restarts after the sample rack L is stopped
in S105, S107, S110, and S112, the engagement claws B32a of the rack transverse feed
mechanisms B2 illustrated in Fig. 5 remain engaged with the sample rack L. During
such stoppage period, the stepping motor B43 is continuously excited so that the sample
rack L can be prevented from positionally shifting. Accordingly, the transport operation
of the sample rack L can restart without any trouble.
[0133] Fig. 17 is a flowchart illustrating processing steps of the "transport restart processing"
in the suspension and restart processing illustrated in Fig. 11.
[0134] In S201, it is determined whether there is any sample rack L currently stopped on
the transport path B1 of the transport region B. In the presence of the sample rack
L currently stopped on the transport path B1 (S201: YES), it is determined whether
the sample rack L is at the transport suspending position (S202). In the absence of
the sample rack L currently stopped on the transport path B1 (S201: NO), the processing
steps end.
[0135] When determined that the sample rack L is at the transport suspending position (S202:
YES), it is then determined whether or not the sample rack L has any sample containers
T for which the sample suctioning is unfinished (S203). When determined that the sample
rack L is not at the transport suspending position (S202: NO), a processing step of
S206 is carried out.
[0136] When determined that the sample rack L has the sample container T for which the sample
suctioning is unfinished (S203: YES), the transport operation control list is referred,
and the sample rack L is transported to the sample suctioning position 52 or 53 depending
on whether the sample in the suctioning-unfinished sample container T is subject to
standard measurement or trace-level measurement according to the holding position
thereof (S204). When there is no sample container T for which the sample suctioning
is unfinished in the sample rack L (S203: NO), the sample rack L is transported to
the rack placement region C (S205). In this manner, S204 selectively suctions only
the sample container T for which the sample suctioning is unfinished, while skipping
the sample container T from which the sample has been suctioned.
[0137] In the presence of any sample rack L at the pre-read position (S206: YES), it is
determined whether there is any sample container T for which the barcode read by the
barcode reader 51 is unfinished (S207). When there is no sample rack L at the pre-read
position (S206: NO), the processing steps end.
[0138] In the presence of the sample container T for which the barcode read by the barcode
reader 51 is unfinished (S207: YES), the barcode of the read-unfinished sample container
T is read referring to the transport operation control list. In the case where the
barcode read for any sample rack L is unfinished, the barcode of the sample rack L
is similarly read. After the barcode read is finished, the sample rack L is transported
to the sample suctioning position 52 or 53 (S208). When there is no sample container
T for which the barcode read by the barcode reader 51 is unfinished (S207: NO), the
sample rack L is transported to the sample suctioning position 52 or 53 (S209). In
this manner, S208 reads only the read-unfinished barcode label, while skipping the
already read barcode label.
[0139] Then, the "transport restart processing" ends.
[0140] Fig. 18A is a flowchart illustrating processing steps for ejecting the sample rack
L carried out by the measurement device 2 and the information processing device 3.
[0141] In the present embodiment, when the operator presses the ejection button 431 illustrated
in Fig. 9 to transmit an ejection command signal from the information processing apparatus
3 to the measurement device 2, the sample rack currently transported is ejected into
the rack placement region C. The sample rack L currently transported is similarly
ejected into the rack placement region C when the occurrence of any of the following
predetermined automatic ejection events is detected, that is, when operational abnormality
of the sample dispensing units 21 and 22 and reagent dispensing units 23 to 25 is
detected, when pressure supply abnormality in the pneumatic source of the drive unit
237 of the measurement unit is detected, when operational abnormality of the tables
(reagent tables 11 and 12, cuvette table 15, and warming table 16) is detected, when
the main body cover 29 left open is detected by the sensor unit 236, and when temperature
abnormality of the warming table 16 is detected by the temperature detector 231.
[0142] Referring to Fig. 18A, when the CPU 301 of the information processing device 3 receives
a signal indicating the detection of any of the automatic ejection events (automatic
ejection signal) from the measurement device 2 (S41: YES), the CPU 301 makes the display
unit 320 of the information processing device 3 display thereon information indicating
the ejection of the sample rack L (S44). When the operator presses the sample rack
ejection button 431 (S42: YES), the CPU 301 of the information processing device 3
transmits an ejection command signal to the measurement device 2 (S43). Then, the
CPU 301 makes the display device 320 of the information display device 3 display thereon
information indicating the ejection of the sample rack L (S44), and ends the processing
steps.
[0143] Referring to Fig. 18B, when the CPU 201 of the measurement device 2 detects any of
the automatic ejection events (S51: YES), the CPU 201 transmits the automatic ejection
signal to the information processing device 3 (S52), and ejects the sample rack L
by executing a "sample rack ejection processing" (S53). When the CPU 201 of the measurement
device 2 receives the ejection command signal from the information processing device
3 (S54: YES), the CPU 201 ejects the sample rack L by executing the "sample rack ejection
processing" (S52). The "sample rack ejection processing" will be described with reference
to Fig. 19.
[0144] Fig. 19 is a flowchart illustrating processing steps of the "sample rack ejection
processing" in the ejection processing illustrated in Fig. 18A.
[0145] In S301, it is determined whether there is any sample rack L currently transported
from the transport region B to the rack placement region C after the sample suctioning
for their sample containers T is completed. When determined that such a sample rack
L is present (S301: YES), the sample rack L is transported to the rack placement region
C (S302). When determined that such a sample rack L is not present (S301: NO), the
processing proceeds to S303.
[0146] In S303, it is determined whether there is any sample rack L whose sample is currently
suctioned at the sample suctioning position 52 or 53. When determined that such a
sample rack L is present (S303: YES), the arm of the sample dispensing unit 21 or
22 is ascended (S304). When the ascent of the arm of the sample dispensing unit 21
or 22 is completed (S304: YES), the sample rack L whose sample was suctioned is transported
leftward (X-axis positive direction) along the transport region B to the rack placement
region C (S305). When determined that no sample rack L whose sample is currently suctioned
(S303: NO), the processing proceeds to S306.
[0147] In S306, it is determined whether there is any sample rack L positioned between the
pre-read position and the sample suctioning position 52 or 53 after the pre-read is
over. When determined that such a sample rack L is present (S306: YES), the sample
rack L is transported leftward (X-axis positive direction) along the transport region
B to the rack placement region C (S307). When determined that there is no sample rack
between the pre-read position and the sample suctioning position 52 or 53 (S306: NO),
the processing proceeds to S308.
[0148] In S308, it is determined whether there is any sample rack L currently pre-read.
When determined that there is the sample rack L currently pre-read (S308: YES), the
sample rack currently pre-read is transported leftward along the transport region
B to the rack placement region C before the pre-read is over (S309). When determined
that there is no sample rack L currently pre-read (S308: NO), the processing proceeds
to S310.
[0149] In S310, it is determined whether there is any sample rack L currently transported
on the transport region B toward the pre-read position. When determined that there
is such a sample rack L (S310: YES), the sample rack L is immediately transported
to the rack placement region C without the barcode read and sample suctioning (S311).
When determined that there is no such a sample rack L (S310: NO), the processing proceeds
to S312. By the time when the transport operation of the sample rack L starts toward
the pre-read position after the sample rack L is transported from the rack set region
A to the right end of the transport region B, it is determined as YES in S310.
[0150] In S312, it is determined whether there is any sample rack L currently transported
on the rack set region A toward the right end of the transport region B. When determined
that there is such a sample rack (S312: YES), the sample rack L is stopped at the
position (S313), and the "sample rack ejection processing" ends. When determined that
there is no such a sample rack L (S312: NO), the "sample rack ejection processing"
ends.
[0151] The item of "state" of the job list illustrated in Fig. 15 currently showing "pending"
is rendered blank for the sample container T whose sample was suctioned in all of
the sample containers T retained in the sample rack L forcibly ejected by the processing
described above. The item of "state" of the job list illustrated in Fig. 15 shows
"error", and "mask" is written in the item of measurement result for the sample container
T which was pre-read but forcibly ejected before its sample was suctioned.
[0152] Fig. 18C is a flowchart illustrating processing steps of a job list display processing.
[0153] When the operator commands to display the job list via the information processing
device 3 (S61: YES), a screen showing the job list is displayed on the display unit
320 of the information processing device 3 (S62).
[0154] According to the present embodiment, when the transport operation of the sample rack
L is suspended, the transport of the sample rack L is stopped by the "sample rack
stop processing" illustrated in Fig. 16. Then, the "transport restart processing"
illustrated in Fig. 17 is executed to restart the transport operation of the sample
rack L. Therefore, the operator does not have to return the sample rack L that stopped
on the transport path to its initial position (rack set region A) when the transport
operation of the sample rack L is suspended. Thus, the transport operation of the
sample rack L can restart with less burden on the operator.
[0155] According to the present embodiment, the engagement claws B32a of the rack transverse
feed mechanisms B2 are engaged with the recess La of the sample rack L during the
suspension of the transport operation. Therefore, the sample rack L can be prevented
from being displaced from the transport path B during the suspension of the transport
operation. The stepping motor B43 is continuously excited during the suspension of
the transport operation, which prevents the sample rack L from positionally shifting.
As a result, the transport operation of the sample rack L can restart without any
trouble.
[0156] When the position of the sample rack L is adjusted to return to the position when
the transport was stopped before the transport operation restarts as illustrated in
Fig. 13, the transport of the sample rack can smoothly restart regardless of any change
generated in the position of the sample rack L due to some factor during the suspension
of the transport operation.
[0157] According to the present embodiment, the sample rack L can be positioned in the area
covered with the front cover 55 when the transport operation is suspended. Therefore,
the operator can be prevented from accidentally coming into contact with the sample
rack L during the suspension of the transport operation.
[0158] According to the present embodiment, the sample rack L is moved to the predetermined
position (transport suspending position or pre-read position) and then stops there
when any of the transport suspension events occurs, and the transport operation of
the sample rack L restarts at the predetermined position. Accordingly, such a complicated
control of the apparatus that the sample rack L is once returned to its initial position
(rack set region A) before the transport operation restarts can be eliminated. As
a result, the transport operation can more readily restart.
[0159] According to the present embodiment, the pipette of the sample dispensing unit 21,
22 is removed from the sample container T when the transport operation is suspended
during the sample suctioning, and the sample rack L is then transported to the transport
suspending position. Accordingly, any contact possibly made by the pipette of the
sample dispensing unit 21, 22 with the sample container T and the sample rack L can
be avoided when the sample rack L is transported to the transport suspending position.
[0160] According to the present embodiment, after the transport operation restarts, the
sample is suctioned from the sample container T for which the sample suctioning is
unfinished, while the sample container T whose sample is already suctioned is skipped
based on the suctioning state of the transport operation control list. The transport
operation can restart with an improved efficiency.
[0161] According to the present embodiment, after the transport operation restarts, the
pre-read is performed for only the sample container T which has not been pre-read,
while the pre-read is skipped for the sample container T already pre-read, based on
the transport operation control list. Therefore, the sample rack L can be more speedily
transported to the sample suctioning position 52, 53.
[0162] The embodiment of the present invention has been described so far. The present invention,
however, is not necessarily limited to the embodiment, and the embodiment can be variously
modified.
[0163] According to the above embodiment, the sample rack L is transported to the predetermined
position (transport suspending position or pre-read position) and is then stopped
when any of the transport suspension events occurs. According to a comparative example
not forming part of the invention, the sample rack L may be stopped at its position
when the transport suspension event occurs. For example, when the sample rack L is
stopped at a position between the transport suspending position and the pre-read position
when the transport suspension event occurs, the sample rack L may be stopped at this
position. In this case, the sample rack L may be temporarily moved to the transport
suspending position or the pre-read position that can be accurately grasped by the
sensor to restart the transport operation of the sample rack L from this position.
Accordingly, the transport operation of the sample rack L can restart in a more simplified
control operation.
[0164] According to the above embodiment, the transport operation of the sample rack L restarts
when the operator commands to restart the measuring operation. However, the present
invention is not limited thereto. The transport operation of the sample rack L may
automatically restart as soon as it is detected that the transport automatic suspension
event (for example, cuvette shortage, reagent shortage) no longer exists.
[0165] According to the above embodiment, the sample processing apparatus 1 is a blood coagulation
analyzing apparatus, however, the present invention is not limited thereto. Other
examples of the sample processing apparatus 1 include: immunoassay apparatus for measuring
blood serums, a hemocyte counting apparatus for counting hemocytes in whole blood,
a urine analyzing apparatus for measuring urine, and an analyzing apparatus for analyzing
bone marrow fluid.
[0166] According to the above embodiment, the measurement unit 10 which measures a sample
is used as the sample processing unit. The sample processing unit may be a smear sample
production unit for producing a smear sample by smearing a sample on a glass slide.
[0167] According to the above embodiment, during the suspension of the transport operation
of the sample rack L, the engagement claws B32a of the rack transverse feed mechanisms
B2 are engaged with the sample rack L as illustrated in Fig. 5C and Fig. 5D, and the
stepping motor B43 is continuously excited to prevent any positional shift of the
sample rack L. In replacement thereto, there may be additionally provided a lock mechanism
for securing the sample rack L in a predetermined area of the transport region B when
the transport of the sample rack L is suspended.
[0168] According to the above embodiment, the sample is suctioned from the sample container
T positioned at the sample suctioning position 52 or 53 of the transport region B.
However, the present invention is not limited thereto. The sample container T may
be fetched into the measurement unit 10 from the sample rack L on the transport region
B to suction the sample from the sample container T fetched into the measurement unit
10.
1. Probenverarbeitungsvorrichtung, umfassend;
eine Probenverarbeitungseinheit (10) zur Entnahme einer Probe aus einem Probenbehälter,
der an einer Probenentnahmeposition positioniert ist, und Durchführen einer vorbestimmten
Verarbeitung der Probe durch Hinzufügen eines Reagenz;
eine Transporteinheit (50) zum Transportieren, in einer Transportoperation, eines
Probengestells, das den Probenbehälter hält, über die Probenentnahmeposition entlang
eines Transportpfads (B1); und
eine Transportsteuerung (200) zum Durchführen eines Anhalteprozesses, um die Transportoperation
des Probengestells durch die Transporteinheit (50) anzuhalten, nachdem ein Transportunterbrechungsereignis
während der Transportoperation eintritt, und zum Steuern der Transporteinheit (50),
um die Transportoperation von einer vorbestimmten Anhalteposition des Probengestells,
das dem Anhalteprozess zugeordnet ist, wieder zu beginnen;
wobei die Probenverarbeitungsvorrichtung weiter einen Detektor (232) zum Detektieren
eines Reagenzmangels umfasst, wenn eine Restmenge des durch die Probenverarbeitungseinheit
(10) verwendeten Reagenz kleiner als eine vorbestimmte Menge ist; und
das Transportunterbrechungsereignis ein Detektieren des Reagenzmangels durch den Detektor
einschließt,
dadurch gekennzeichnet, dass die Transporteinheit (50) einen Abdeckabschnitt (55) zum Abdecken eines Teils des
Transportpfads (B1) umfasst, dadurch, dass die vorbestimmte Anhalteposition eine Position
ist, die mit dem Abdeckabschnitt (55) abgedeckt ist, und
dadurch, dass die Transportsteuerung (200) dafür eingerichtet ist, den Anhalteprozess
durchzuführen, um den Transport des Probengestells anzuhalten, nachdem das Probengestell
zu der vorbestimmten Anhalteposition von einer Position transportiert worden ist,
in der das Probengestell positioniert war, als das Transportunterbrechungsereignis
eintrat.
2. Probenverarbeitungsvorrichtung nach Anspruch 1, wobei die Transporteinheit (50) eine
Eingriffseinheit (B3), die einen Eingriffsmechanismus (B32, B33) einschließt, der
mit dem Probengestell in Eingriff bringbar ist, und einen Eingriffsantrieb (B34) zum
Antreiben des Eingriffsmechanismus umfasst; und die Transportsteuerung (200) dafür
eingerichtet ist, den Eingriffsantrieb zu steuern, um den Eingriffsmechanismus (B32,
B33) in Eingriff mit dem Probengestell zu halten, bis die Transportsteuerung (200)
die Transportoperation wieder beginnt.
3. Probenverarbeitungsvorrichtung nach Anspruch 2, wobei
die Transporteinheit (50) einen Bewegungsmechanismus (B4) zum Bewegen der Eingriffseinheit
(B3), die den Eingriffsmechanismus (B32, B33) in Eingriff mit dem Probengestell einschließt,
in eine Richtung, in die das Probengestell transportiert wird, einen Motor (B43) zum
Betätigen des Bewegungsmechanismus (B4) und einen Motorantrieb (223) zum Antreiben
des Motors (B43) umfasst; und
die Transportsteuerung (200) dafür eingerichtet ist, den Eingriffsantrieb (B34) und
den Motorantrieb (223) zu steuern, um den Motor (B43) kontinuierlich anzuregen, während
der Eingriffsmechanismus (B32, B33) mit dem Probengestell in Eingriff gehalten wird,
bis die Transportsteuerung (200) die Transportoperation wieder beginnt.
4. Probenverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 3, wobei
die Probenverarbeitungseinheit (10) eine Pipette (21c, 22c) zum Ansaugen der Probe
aus dem Probenbehälter, der durch das Probengestell gehalten wird, umfasst;
die Transportsteuerung (200) dafür eingerichtet ist, die Transporteinheit (50) zu
steuern, um das Probengestell zu der Anhalteposition zu transportieren, nachdem die
Pipette (21c, 22c) aus dem Probenbehälter entfernt wurde, wenn das Transportunterbrechungsereignis
eingetreten ist, während die Pipette (21c, 22c) in den Probenbehälter eingeführt war.
5. Probenverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 4, wobei das Probengestell
eine Vielzahl von Probenbehältern hält;
die Probenverarbeitungsvorrichtung weiter einen Speicher (203, 204) umfasst, der dafür
eingerichtet ist, Informationen abzuspeichern, die einen jeweiligen Probenentnahmestatusfür
jeden der durch das Probengestell gehaltenen Probenbehälter angeben; und
die Transportsteuerung (200) dafür eingerichtet ist, eine Transportwiederbeginnoperation
durch die Transporteinheit (50) basierend auf dem in dem Speicher (203, 204) abgespeicherten
Probenentnahmestatus zu steuern.
6. Probenverarbeitungsvorrichtung nach Anspruch 5, wobei
die Transportsteuerung (200) dafür eingerichtet ist, die Transporteinheit (50) beim
Durchführen der Transportwiederbeginnoperation derart zu steuern, dass ein gegebener
der Probenbehälter, aus dem eine Probe nicht entnommen wurde, an der Probenentnahmeposition
positioniert wird, und ein weiterer der Probenbehälter, aus dem eine Probe entnommen
wurde, zu einer anderen Position als die Probenentnahmeposition transportiert wird,
wenn das Transportunterbrechungsereignis eintrat, während ein durch das Probengestell
gehaltener Probenbehälter an der Probenentnahmeposition positioniert war.
7. Probenverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 6, wobei das Probengestell
eine Vielzahl von Probenbehältern hält;
die Probenverarbeitungsvorrichtung weiter einen Identifikationsinformationenleser
(51) umfasst, der dafür eingerichtet ist, jeweilige Identifikationsinformationen für
jeden der durch das Probengestell gehaltenen Probenbehälter zu lesen, bevor das Probengestell
zu der Probenentnahmeposition transportiert wird; und
die Transportsteuerung (200) dafür eingerichtet ist, die Transporteinheit (50) zu
steuern, um beim Durchführen der Transportwiederbeginnoperation das Probengestell
zu der Probenentnahmeposition ohne Zurückführen des Probengestells zu einer Position,
wo die Identifikationsinformationen durch den Identifikationsinformationenleser (51)
gelesen werden, zu transportieren, wenn das Transportunterbrechungsereignis eingetreten
ist, nachdem das Lesen der Identifikationsinformationen für alle der durch das Probengestell
gehaltenen Probenbehälter abgeschlossen war.
8. Probenverarbeitungsvorrichtung nach Anspruch 7, wobei
die Transportsteuerung (200) dafür eingerichtet ist, die Transporteinheit (50) zu
steuern, um beim Durchführen der Transportwiederbeginnoperation das Probengestell
zu der Probenentnahmeposition zu transportieren, nachdem das Lesen der Identifikationsinformationen
für alle der durch das Probengestell gehaltenen Probenbehälter abgeschlossen wurde,
wenn das Lesen der Identifikationsinformationen für einen Teil der durch das Probengestell
gehaltenen Probenbehälter nicht abgeschlossen war, als das Transportunterbrechungsereignis
eingetreten ist.
9. Probenverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 8, wobei
die Transportsteuerung (200) dafür eingerichtet ist, Anhaltepositionsinformationen,
die die Anhalteposition angeben, und Wiederbeginnpositionsinformationen, die eine
Position angeben, an der das Probengestell positioniert ist, wenn die Transportoperation
des Probengestells wieder beginnt, zu erhalten und dafür eingerichtet ist, eine Transportwiederbeginnoperation
durch die Transporteinheit (50) basierend auf den Anhaltepositionsinformationen und
den Wiederbeginnpositionsinformationen zu steuern.
10. Probenverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 9, weiter umfassend
eine Benachrichtigungssektion (200), die dafür eingerichtet ist, eine Benachrichtigung
zu erzeugen, dass ein Bediener das gegenwärtig transportierte Probengestell nicht
bewegen sollte, wenn die Transportoperation durch die Transporteinheit (50) unterbrochen
worden ist.
11. Probenverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 10, weiter umfassend
mindestens eines von einem Detektor (234), der dafür eingerichtet ist, einen Küvettenmangel
zu detektieren, wenn eine Restmenge von durch die Probenverarbeitungseinheit (10)
verwendeten Küvetten kleiner als eine vorbestimmte Menge ist; einem Detektor (233),
der dafür eingerichtet ist, einen Spüllösungsmangel zu detektieren, wenn eine Restmenge
von einer durch die Probenverarbeitungseinheit (10) verwendeten Spüllösung kleiner
als eine vorbestimmte Menge ist; und einem Detektor (C2), der dafür eingerichtet ist,
eine gefüllte Gestellplatzierungsregion (C) der Transporteinheit (50) zu detektieren,
wenn mindestens eine vorbestimmte Anzahl von Probengestellen in einer Gestellplatzierungsregion
(C) der Transporteinheit (50) zurückgehalten werden, wobei
das Transportunterbrechungsereignis mindestens eines von der Detektierung des Küvettenmangels,
der Detektierung des Spüllösungsmangels und der Detektierung, dass die Gestellplatzierungsregion
voll ist, einschließt.
12. Probenverarbeitungsvorrichtung nach einem der Ansprüche 1 bis 11, weiter umfassend
eine Empfangssektion (441) zum Empfangen eines Befehls zum Unterbrechen der Transportoperation
durch die Transporteinheit (50), wobei
das Transportunterbrechungsereignis den Empfang des Unterbrechungsbefehls durch die
Empfangssektion (441) einschließt.
13. Probengestelltransportierverfahren, umfassend:
in einer Transportoperation, Transportieren eines Probengestells, das einen Probenbehälter
hält, durch eine Transporteinheit, die einen Transportpfad zum Transportieren des
Probengestells umfasst;
Entnahme einer Probe aus dem Probenbehälter, der durch die Transporteinheit an einer
Probenentnahmeposition positioniert ist, und Durchführen einer vorbestimmten Verarbeitung
der entnommenen Probe durch Verwenden eines Reagenz;
Anhalten einer Transportoperation des Probengestells durch die Transporteinheit, wenn
ein Transportunterbrechungsereignis während der Transportoperation eintritt; und
Wiederbeginnen der Transportoperation durch die Transporteinheit von einer vorbestimmten
Anhalteposition des durch das Anhalten der Transportoperation angehaltenen Probengestells,
wobei das Transportunterbrechungsereignis eintritt, wenn eine Restmenge des Reagenz
kleiner als eine vorbestimmte Menge ist,
dadurch gekennzeichnet, dass die Transporteinheit einen Abdeckabschnitt zum Abdecken eines Teils des Transportpfads
umfasst, dadurch, dass die vorbestimmte Anhalteposition eine Position ist, die mit
dem Abdeckabschnitt abgedeckt ist, und
dadurch, dass das Anhalten durch Bewegen des Probengestells zu der vorbestimmten Anhalteposition
von einer Position, in der das Probengestell positioniert war, als das Transportunterbrechungsereignis
eingetreten ist, durchgeführt wird.
1. Appareil de traitement d'échantillon, comprenant :
une unité de traitement d'échantillon (10) pour obtenir un échantillon à partir d'un
récipient à échantillon positionné à une position d'obtention d'échantillon et réaliser
un traitement prédéterminé de l'échantillon en ajoutant un réactif ;
une unité de transport (50) pour transporter, dans une opération de transport, un
portoir d'échantillon contenant le récipient à échantillon via la position d'obtention
d'échantillon le long d'un trajet de transport (B1) ; et
un dispositif de commande de transport (200) pour réaliser un traitement d'arrêt pour
arrêter l'opération de transport du portoir d'échantillon par l'unité de transport
(50) après la survenue d'un événement de suspension de transport pendant l'opération
de transport, et pour commander l'unité de transport (50) pour redémarrer l'opération
de transport à partir d'une position d'arrêt prédéterminée du portoir d'échantillon
associée au traitement d'arrêt ;
dans lequel l'appareil de traitement d'échantillon comprend en outre un détecteur
(232) pour détecter un déficit de réactif lorsqu'une quantité résiduelle du réactif
utilisé par l'unité de traitement d'échantillon (10) est inférieure à une quantité
prédéterminée et
l'événement de suspension de transport inclut la détection du déficit de réactif par
le détecteur,
caractérisé en ce que l'unité de transport (50) comprend une partie de couvercle (55) pour couvrir une
partie du trajet de transport (B1), en ce que la position d'arrêt prédéterminée est une position couverte par la partie de couvercle
(55), et
en ce que le dispositif de commande de transport (200) est configuré pour réaliser le traitement
d'arrêt pour arrêter le transport du portoir d'échantillon après que le portoir d'échantillon
est transporté jusqu'à la position d'arrêt prédéterminée à partir d'une position où
le portoir d'échantillon était positionné lorsque l'événement de suspension de transport
est survenu.
2. Appareil de traitement d'échantillon selon la revendication 1, dans lequel l'unité
de transport (50) comprend une unité de mise en prise (B3) incluant un mécanisme de
mise en prise (B32, B33) pouvant être mise en prise avec le portoir d'échantillon,
et un dispositif d'entraînement de mise en prise (B34) pour entraîner le mécanisme
de mise en prise ; et le dispositif de commande de transport (200) est configuré pour
commander le dispositif d'entraînement de mise en prise pour maintenir le mécanisme
de mise en prise (B32, B33) en prise avec le portoir d'échantillon jusqu'à ce que
le dispositif de commande de transport (200) redémarre l'opération de transport.
3. Appareil de traitement d'échantillon selon la revendication 2, dans lequel
l'unité de transport (50) comprend un mécanisme de déplacement (B4) pour déplacer
l'unité de mise en prise (B3) qui inclut le mécanisme de mise en prise (B32, B33)
en prise avec le portoir d'échantillon dans une direction où le portoir d'échantillon
est transporté, un moteur (B43) pour actionner le mécanisme de déplacement (B4), et
un dispositif d'entraînement de moteur (223) pour entraîner le moteur (B43) ; et
le dispositif de commande de transport (200) est configuré pour commander le dispositif
d'entraînement de mise en prise (B34) et le dispositif d'entraînement de moteur (223)
pour exciter le moteur (B43) en continu tandis que le mécanisme de mise en prise (B32,
B33) est maintenu en prise avec le portoir d'échantillon jusqu'à ce que le dispositif
de commande de transport (200) redémarre l'opération de transport.
4. Appareil de traitement d'échantillon selon l'une quelconque des revendications 1 à
3, dans lequel
l'unité de traitement d'échantillon (10) comprend une pipette (21c, 22c) pour aspirer
l'échantillon du récipient à échantillon contenu dans le portoir d'échantillon ;
le dispositif de commande de transport (200) est configuré pour commander l'unité
de transport (50) pour transporter le portoir d'échantillon jusqu'à la position d'arrêt
après que la pipette (21c, 22c) est retirée du récipient à échantillon, si l'événement
de suspension de transport est survenu tandis que la pipette (21c, 22c) était insérée
dans le récipient à échantillon.
5. Appareil de traitement d'échantillon selon l'une quelconque des revendications 1 à
4, dans lequel le portoir d'échantillon contient une pluralité de récipients à échantillon
;
l'appareil de traitement d'échantillon comprend en outre une mémoire (203, 204) configurée
pour stocker des informations indiquant un état d'obtention d'échantillon respectif
pour chacun des récipients à échantillon contenus dans le portoir d'échantillon ;
et
le dispositif de commande de transport (200) est configuré pour commander une opération
de redémarrage de transport par l'unité de transport (50) sur la base de l'état d'obtention
d'échantillon stocké dans la mémoire (203, 204).
6. Appareil de traitement d'échantillon selon la revendication 5, dans lequel
le dispositif de commande de transport (200) est configuré pour commander l'unité
de transport (50), lors de la réalisation de l'opération de redémarrage de transport,
de sorte que l'un donné des récipients à échantillon, à partir duquel un échantillon
n'a pas été obtenu, est positionné à la position d'obtention d'échantillon, et un
autre des récipients à échantillon, à partir duquel un échantillon a été obtenu, est
transporté jusqu'à une position autre que la position d'obtention d'échantillon, si
l'événement de suspension de transport est survenu tandis qu'un récipient à échantillon
contenu dans le portoir d'échantillon était positionné à la position d'obtention d'échantillon.
7. Appareil de traitement d'échantillon selon l'une quelconque des revendications 1 à
6, dans lequel le portoir d'échantillon contient une pluralité de récipients à échantillon
;
l'appareil de traitement d'échantillon comprend en outre un lecteur d'informations
d'identification (51) configuré pour lire des informations d'identification respectives
pour chacun des récipients à échantillon contenus dans le portoir d'échantillon avant
que le portoir d'échantillon ne soit transporté jusqu'à la position d'obtention d'échantillon
; et
le dispositif de commande de transport (200) est configuré pour commander l'unité
de transport (50), lors de la réalisation de l'opération de redémarrage de transport,
pour transporter le portoir d'échantillon jusqu'à la position d'obtention d'échantillon
sans ramener le portoir d'échantillon à une position où les informations d'identification
sont lues par le lecteur d'informations d'identification (51), si l'événement de suspension
de transport est survenu après que la lecture des informations d'identification est
terminée pour tous les récipients à échantillon contenus dans le portoir d'échantillon.
8. Appareil de traitement d'échantillon selon la revendication 7, dans lequel
le dispositif de commande de transport (200) est configuré pour commander l'unité
de transport (50), lors de la réalisation de l'opération de redémarrage de transport,
pour transporter le portoir d'échantillon jusqu'à la position d'obtention d'échantillon
après que la lecture des informations d'identification a été terminée pour tous les
récipients à échantillon contenus dans le portoir d'échantillon, si la lecture des
informations d'identification n'était pas terminée pour une partie des récipients
à échantillon contenus dans le portoir d'échantillon lorsque l'événement de suspension
de transport est survenu.
9. Appareil de traitement d'échantillon selon l'une quelconque des revendications 1 à
8, dans lequel
le dispositif de commande de transport (200) est configuré pour obtenir des informations
de position d'arrêt indiquant les informations de position d'arrêt et de position
de redémarrage indiquant une position où le portoir d'échantillon est positionné lorsque
l'opération de transport du portoir d'échantillon redémarre, et est configuré pour
commander une opération de redémarrage de transport par l'unité de transport (50)
sur la base des informations de position d'arrêt et des informations de position de
redémarrage.
10. Appareil de traitement d'échantillon selon l'une quelconque des revendications 1 à
9, comprenant en outre
une section de notification (200) configurée pour générer une notification indiquant
qu'un opérateur ne doit pas déplacer le portoir d'échantillon en cours de transport
lorsque l'opération de transport par l'unité de transport (50) a été suspendue.
11. Appareil de traitement d'échantillon selon l'une quelconque des revendications 1 à
10, comprenant en outre
au moins l'un d'un détecteur (234) configuré pour détecter un déficit de cuvettes
lorsqu'une quantité résiduelle de cuvettes utilisées par l'unité de traitement d'échantillon
(10) est inférieure à une quantité prédéterminée ; un détecteur (233) configuré pour
détecter un déficit de solution de lavage lorsqu'une quantité résiduelle d'une solution
de lavage utilisée par l'unité de traitement d'échantillon (10) est inférieure à une
quantité prédéterminée ; et un détecteur (C2) configuré pour détecter une région de
placement de portoirs remplie (C) de l'unité de transport (50) lorsqu'au moins un
nombre prédéterminé de portoirs d'échantillon sont retenus dans la région de placement
de portoirs (C) de l'unité de transport (50), dans lequel
l'événement de suspension de transport inclut au moins l'une parmi la détection du
déficit de cuvettes, la détection du déficit de solution de lavage et la détection
du fait que la région de placement de portoirs soit pleine.
12. Appareil de traitement d'échantillon selon l'une quelconque des revendications 1 à
11, comprenant en outre
une section de réception (441) pour recevoir une commande pour suspendre l'opération
de transport par l'unité de transport (50), dans lequel
l'événement de suspension de transport inclut la réception de la commande de suspension
par la section de réception (441).
13. Procédé de transport de portoir d'échantillon comprenant :
lors d'une opération de transport, le transport d'un portoir d'échantillon contenant
un récipient à échantillon par une unité de transport qui comprend un trajet de transport
pour transporter le portoir d'échantillon ;
l'obtention d'un échantillon du récipient à échantillon positionné à une position
d'obtention d'échantillon par l'unité de transport et la réalisation d'un traitement
prédéterminé de l'échantillon obtenu en utilisant un réactif ;
l'arrêt d'une opération de transport du portoir d'échantillon par l'unité de transport
si un événement de suspension de transport survient lors de l'opération de transport
; et
le redémarrage de l'opération de transport par l'unité de transport à partir d'une
position d'arrêt prédéterminée du portoir d'échantillon arrêté par l'arrêt de l'opération
de transport,
dans lequel l'événement de suspension de transport survient lorsqu'une quantité résiduelle
du réactif est inférieure à une quantité prédéterminée,
caractérisé en ce que l'unité de transport comprend une partie de couvercle pour couvrir une partie du
trajet de transport, en ce que la position d'arrêt prédéterminée est une position couverte par la partie de couvercle,
et
en ce que l'arrêt est réalisé en déplaçant le portoir d'échantillon jusqu'à la position d'arrêt
prédéterminée à partir d'une position où le portoir d'échantillon était positionné
lorsque l'événement de suspension de transport est survenu.