(19)

(12)

CORRECTED EUROPEAN PATENT APPLICATION

(15) Correction information:

Corrected version no 1 (W1 A2)

Corrections, see

Bibliography INID code(s) 71

(48) Corrigendum issued on:

16.11.2011 Bulletin 2011/46

(43) Date of publication:

06.04.2011 Bulletin 2011/14

(21) Application number: 10184915.6

(22) Date of filing: 07.09.2000

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:

07111040.7 / 1 830 514 00119558.5 / 1 083 700

(27) Previously filed application:

07.09.2000 EP 07111040

- (71) Applicants:
 - Certicom Corp.
 Mississauga, Ontario L4W 0B5 (CA)
 - Pitney Bowes Inc.
 Stamford, CT 06926-0700 (US)
- (72) Inventors:
 - Pintsov, Leon
 West Hartford, CT 06117 (US)
 - Ryan, Rick Oxford, CT 06478 (US)

(51) Int Cl.: **H04L** 9/32^(2006.01)

Singer, Ari

Solon, OH 44139 (US)

- Vanstone, Scott Alexander
 Mississauga Ontario L4W 5L1 (CA)
- Gallant, Robert
 Mississauga Ontario L4W 5L1 (CA)
- Lambert, Robert J Cambridge Ontario N3C 3N3 (CA)
- (74) Representative: Finnie, Peter John et al Gill Jennings & Every LLP The Broadgate Tower 20 Primrose Street London EC2A 2ES (GB)

Remarks:

- •This application was filed on 30-09-2010 as a divisional application to the application mentioned under INID code 62.
- •Claims filed after the date of filing of the application (Rule 68(4) EPC).

(54) Hybrid digital signature scheme

(57) A signature scheme is provided in which a message is divided in to a first portion which is hidden and is recovered during verification, and a second portion which is visible and is required as input to the verification algorithm. A first signature component is generated by encrypting the first portion alone. An intermediate component is formed by combining the first component and the visible portion and cryptographically hashing them. A second signature component is then formed using the intermediate component and the signature comprises the first and second components with the visible portion. A

verification of the signature combines a first component derived only from the hidden portion of the message with the visible portion and produces a hash of the combination. The computed hash is used together with publicly available information to generate a bit string corresponding to the hidden portion. If the required redundancy is present the signature is accepted and the message reconstructed from the recovered bit string and the visible portion.

