(11) EP 2 308 412 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

13.04.2011 Bulletin 2011/15

(51) Int Cl.: **A61C** 8/00 (2006.01)

(21) Application number: 10009919.1

(22) Date of filing: 06.04.2004

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

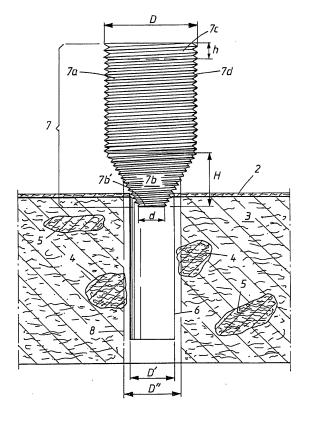
(30) Priority: 17.04.2003 SE 0301149

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 04726050.0 / 1 617 782

(71) Applicant: Nobel Biocare Services AG 8058 Zürich-Flughafen (CH)

(72) Inventor: Malo Carvalho, Paulo 1600 Lisboa (PT)

(74) Representative: Byström, Kurt Linus
Nobel Biocare AB
Box 5190
402 26 Göteborg (SE)


Remarks:

- •Claims filed after the date of receipt of the divisional application (Rule 68(4) EPC).
- •This application was filed on 20-09-2010 as a divisional application to the application mentioned under INID code 62.

(54) Fixture for anchoring in jaw bone

To anchor a fixture (7) in a jaw bone (1), the fixture is applied in a hole (6) which is substantially smaller than the diameter of the fixture. The fixture has a front portion (7b) which from the point of view of diameter grows very much narrower and which is arranged with both a cutting function and a threading function. The fixture is provided with a thread, with one, two or more thread turns extending down along the greatly narrowing portion while substantially maintaining their thread profile. One or more porous layers arranged on the thread turns can also be included. In this way the fixture can exploit the clamping effect from the soft parts (3) of the jaw bone and still effectively penetrate through any hard parts (4, 5) possibly present in the jaw bone, without these hard parts being pressed inward upon fixture application. An effective fusion of the fixture (7) in the jaw bone (1) is achieved with the aid of said porous outer layers (20).

20

30

40

50

Description

[0001] The present invention relates to an arrangement in the form of a fixture for effective anchoring even in a jaw bone with a combination of soft and hard bone portions (or inlays/grafts), which fixture can be applied in a hole having a diameter smaller than the diameter of the fixture in order to produce a clamping effect on the implant from the soft bone portion or portions.

[0002] It is already known to adapt implants individually to soft and hard bones. Various implants and methods have been proposed to meet the different requirements which arise in hard jaw bone and soft jaw bone situations, and two different implant types and implant characters have in principle been used for the two different bone types.

[0003] For example, in a fixture or implant exclusively for soft jaw bone, it is possible to use a slightly conical implant in accordance with Swedish patent 516 917 obtained by the same Applicant as is filing the present application. The implant is in this case provided with thread turns which permit excellent integration with the bone substance and prevent breaking-off of fine bone trabeculae when the fixture is being screwed into the bone.

[0004] However, there are clinical situations in which soft jaw bone may be present in combination with hard jaw bone portions or grafts with different degrees of hardness, which are located like islands amid the softer jaw bone. The present-day fixtures for soft bone which are applied in holes with a smaller diameter than the fixtures concerned have a limited ability to expand and penetrate the hard bone portions or equivalent in question, and instead have the result that the fixtures press the hard bone portions aside. In addition, the hard bone portions may interfere with the threading of the bone. All of this can result in unsatisfactory or defective fixture installations.

[0005] The object of the present invention is to solve this problem, inter alia, and it proposes a fixture arrangement which is suited both for exclusively soft jaw bone portions and also for soft jaw bone portions where there are also hard jaw bone parts or equivalent. The invention also goes further and proposes that the novel fixture structure will comprise additional means for promoting the firm attachment of the fixture in the jaw bone.

[0006] That which can principally be regarded as characterizing the novel fixture is that it comprises a front portion which from the point of view of diameter grows very much narrower and which is arranged with both a cutting function and a threading function and is thus able, upon contact with a hard bone portion or portions, to penetrate through these without causing any substantial tendency for displacement of the respective hard bone portion. A further characteristic is that the thread, which can have one, two or more thread turns, extends along the greater part of the outer surface of the fixture and also down along the greatly narrowing portion while substantially maintaining its thread profile.

[0007] A further characteristic feature of the invention is that the fixture is specially adapted for holes with a considerably smaller diameter than the main diameter of the fixture. This is achieved by means of the greatly narrowing design of the tip, which facilitates entry even into underprepared areas.

[0008] The characteristics listed above permit, in comparison with existing products, improved application of the invention both in soft bone and also in soft bone with interspersed portions of hard bone.

[0009] According to a preferred embodiment, one or more porous outer layers are used which are arranged on the thread/thread turns and which ensure effective fusion of the fixture in the jaw bone.

[0010] Further characteristics of the invention are set out in the attached subclaims.

[0011] By means of the invention it is thus possible to satisfy the abovementioned requirements for a much effective fixture installation. Double or multiple threads can be obtained by proven techniques and a more prominent feature in this respect is that the double or multiple thread will extend downward along the greatly narrowing front portion whose cutting function can also be designed in a known manner. The front end can effectively enter and penetrate through hard areas of the jaw bone when the fixture is being screwed into the hole. The proposed porous layers can be formed in a known manner. For example, they can consist of oxide layers of the type included in the TiUnite® fixtures sold on the market by Nobel Biocare.

[0012] A presently proposed embodiment of a fixture having the features of the invention will be described below with reference to the attached drawings, in which:

- Figure 1 is a vertical cross section showing the fixture in association with a jaw bone having different degrees of hardness,
- Figure 2 is a side view showing an embodiment of the fixture,
- Figure 3 is a longitudinal section showing the fixture according to Figure 2,
- Figure 4 is an end view of Figure 2, showing the cutting edges arranged on the fixture,
- Figure 5 is another end view of the fixture according to Figure 2, showing the arrangement for application of screwing tools,
 - Figure 6 is a longitudinal section showing parts of a thread with double turns arranged on the fixture, and
 - Figure 7 is a vertical section showing parts of the thread structure on the fixture according to Figure 2.

15

20

[0013] In Figure 1, a jaw bone is indicated diagrammatically by 1. The jaw bone can comprise different portions of bone, a first layer of hard bone having been indicated by 2, and a second predominant layer of soft bone having been indicated by 3, and islands of harder bone indicated by 4, 5. A hole 6 has been arranged in a manner known per se in the jaw bone, and a fixture 7 is to be screwed into the hole. The fixture has a first part 7a which can be cylindrical or slightly conical.

[0014] The fixture also comprises a front portion 7b which narrows greatly toward its front end, from the point of view of its diameter. It also includes a collar-like attachment part 7c of substantially the same diameter D as the cylindrical part 7a. The front end surface 7b' on the front, greatly narrowing portion 7b has an end surface diameter d. In one embodiment, D has a value of ca. 4 mm, and d has a value of ca. 2 mm. The portion 7b has a height H which substantially corresponds to the diameter value d. The collar-shaped part 7c has a height h of ca. 1-3 mm. The configuration shown means that the fixture 7 can enter holes 6, 8 with different diameters D' and D" which are much smaller than the main diameter D of the fixture and can penetrate through the actual portion or portions of hard bone, for example the bone portion or the islands 4, 5. The arrangement means that the fixture can expand and also penetrate through hard bone portions and still cooperate with soft bone portions, for example the bone area 3, so that this applies clamping forces against the side surface 7d of the fixture.

[0015] In accordance with Figure 2, the fixture 7 is provided with an outer thread 11, preferably with two or more thread turns. Apart from the part 7c, the thread 11 extends along the remaining length L' of the fixture, i.e. also down along the portion 7b to its end 7b'. The total length of the implant is indicated by L. According to Figure 4, the fixture 7 is provided with four cutting edges 12, 13, 14 and 15. A distance between the outer margin of the edge 13 and the center line 16 of the fixture is indicated by A.

[0016] Figure 5 shows an arrangement for applying a turning or screwing tool (not shown). The arrangement has been symbolized by 17 and can be formed in a manner known per se, for which reason it will not be described in detail here.

[0017] Figure 3 shows the fixture 7 in longitudinal section, depicting the lines of the front portion 7b and of the double threads 11. The fixture has inner recesses 18 for said tightening arrangement 17 and for application of superstructures which are to be applied to the fixture after it has been installed in the jaw bone.

[0018] Figure 6 shows an example of the thread profile 19, for instance a thread with two thread turns. As the technique according to Swedish patent 516 917 can be used for producing the double thread in question, the arrangement will not be described in detail here, and instead reference is made to the patent in question.

[0019] Figure 7 shows the case where the thread arrangement 11 in accordance with the invention is provided with a porous layer symbolized by 20. The production

of porous layers of this kind has also been described in detail by the same Applicant as is filing the present invention, and for this reason reference is made to these patents. In one embodiment, the porous layer can constitute a magazine for a bone-growth-stimulating substance or agent 21. This too is known per se and is set out in the last-mentioned patent.

[0020] In one illustrative embodiment, the total length L of the implant can be ca. 9.25 mm, and the threaded length L' can be of the order of 7.75 mm.

[0021] Embodiments:

An arrangement in the form of a fixture (7) for effective anchoring even in a jaw bone (1) with a combination of soft and hard bone portions (or inlays) (2,3,4,5), which fixture can be applied in holes (6, 8) with diameters (D', D") which are substantially smaller than the diameter (D) of the fixture so as to produce a clamping effect (10) on the implant from the soft bone portion or portions, characterized by a front portion (7b) which from the point of view of diameter grows very much narrower and which is arranged with both a cutting function (12, 13, 14, 15) and a threading function (11) and is thus able, upon contact with a hard portion or portions, to penetrate through these without causing any substantial tendency for displacement of the respective hard bone portion, and a thread (11) which has one, two or more thread turns and extends along the greater part of the outer surface of the fixture and also down along the greatly narrowing portion (7b) while substantially maintaining its thread profile.

[0022] The greatly narrowing front portion (7b) may have a height (H) which is substantially equal to the diameter (d) of the end surface, e.g. ca. 2 mm.

[0023] The fixture (7) may be arranged without a stop flange at its rear parts (7c).

[0024] The fixture may be provided at its tip with a diameter (d) of ca. 2 mm.

[0025] The attachment part (7c) of the fixture for a tool and replacement component may be ca. 0-3 mm in the longitudinal direction of the fixture.

[0026] The greatly narrowing front portion (7b) may be arranged with a straight or slightly curved lateral surface. [0027] The greatly narrowing front portion may be designed to cooperate with and pass through holes (6, 8) of different diameters in the soft bone portion (3).

[0028] The arrangement may further comprise one or more porous outer layers (20) which are arranged on the threaded portion and which ensure more effective fusion of the fixture (7) in the jaw bone (1), the porous layer (20) consisting of or comprising an oxidation layer, for example TiUnite®.

[0029] The porous layer or porous layers may be provided with bone-growth-stimulating substance (21).

[0030] The cutting edges on the greatly narrowing portion may be two, three or four in number.

5

15

20

35

40

45

[0031] The invention is not limited to the abovementioned embodiment and instead can be modified within the scope of the attached patent claims.

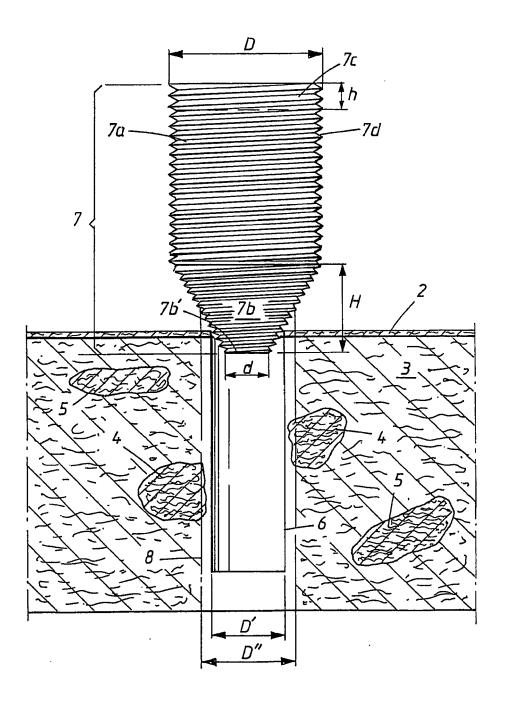
Claims

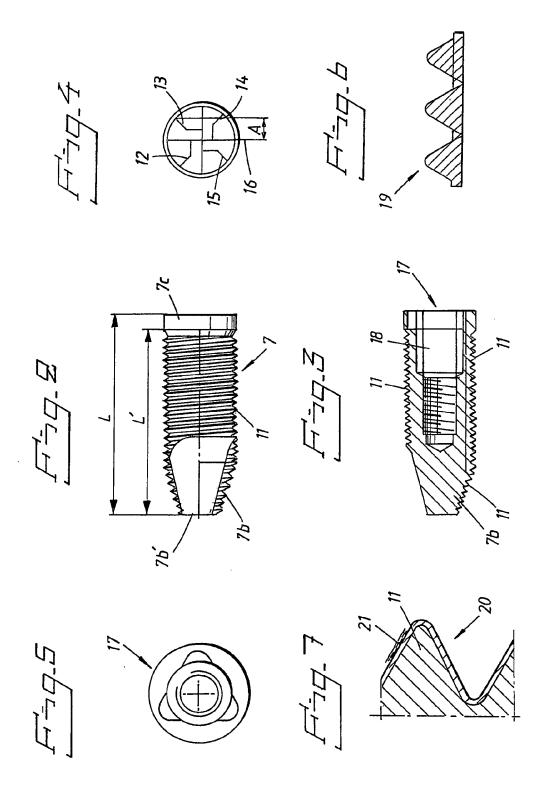
1. A fixture (7) for anchoring in a jaw bone (1) with a combination of soft and hard bone portions or inlays (2, 3, 4, 5), wherein the fixture is configured to be applied in holes (6,8) with diameters (D', D") which are substantially smaller than the diameter (D) of the fixture so as to produce a clamping effect (10) on the implant from the soft bone portion or portions, the fixture comprising:

a first cylindrical portion (7a) with diameter D, a second portion (7b) having a diameter D at a first end connected to the first cylindrical portion (7a) and narrowing to a diameter d at a second end, the second portion (7b) being arranged with both a cutting function (12,13, 14,15) and a threading function (11) configured to penetrate through a hard bone portion without causing substantial displacement of the respective hard bone portion, and a thread (11) which has at least one thread turn and extends along the greater part of the outer surface of the first cylindrical portion (7a) and second portion (7b) while substantially maintain-

2. The fixture of claim 1, wherein second portion (7b) has a height (H) which is substantially equal to the diameter (d) at the second end.

ing its thread profile.


- 3. The fixture of claim 1 or 2, wherein the fixture (7) is arranged without a stop flange at an attachment part (7c) of first cylindrical portion (7a).
- **4.** The fixture of claims 1, 2 or 3, wherein diameter (d) of the second end of second portion (7b) is approximately 2 mm.
- 5. The fixture as claimed in any of the preceding claims, wherein the attachment part (7c) of the fixture is configured to receive a tool.
- **6.** The fixture as claimed in any of the preceding claims, wherein the second portion (7b) is arranged with a straight or slightly curved lateral surface.
- 7. The fixture as claimed in any of the preceding claims, wherein the second portion (7b) is designed to cooperate with and pass through holes (6,8) of different diameters in the soft bone portion (3).
- 8. The fixture as claimed in any of the preceding claims,


further comprising one or more porous outer layers (20) which are arranged on the threaded portion and which ensure more effective fusion of the fixture (7) in the jaw bone (1), the porous layer (20) consisting of or comprising an oxidation layer, for example TiUnite®.

- **9.** The fixture as claimed in claim 8, wherein the porous layer or porous layers are provided with bonegrowth-stimulating substance (21).
- **10.** The fixture as claimed in any of the preceding claims, wherein the cutting edges on the second portion (7b) portion are two, three or four in number.

4

EP 2 308 412 A2

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• SE 516917 [0003] [0018]