
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

32
5

82
8

A
1

��&��
�
��
����
(11) EP 2 325 828 A1

(12) EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:
25.05.2011 Bulletin 2011/21

(21) Application number: 09809899.9

(22) Date of filing: 25.08.2009

(51) Int Cl.:
G09C 1/00 (2006.01)

(86) International application number:
PCT/JP2009/064783

(87) International publication number:
WO 2010/024248 (04.03.2010 Gazette 2010/09)

(84) Designated Contracting States:
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR
HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL
PT RO SE SI SK SM TR
Designated Extension States:
AL BA RS

(30) Priority: 25.08.2008 JP 2008214811

(71) Applicant: Sony Corporation
Tokyo 108-0075 (JP)

(72) Inventors:
• SHIRAI Taizo

Tokyo 108-0075 (JP)

• SHIBUTANI Kyoji
Tokyo 108-0075 (JP)

• MORIAI Shiho
Tokyo 108-0075 (JP)

• AKISHITA Toru
Tokyo 108-0075 (JP)

• IWATA Tetsu
Nagoya-shi
Aichi 464-8601 (JP)

(74) Representative: Haines, Miles John L.S.
D Young & Co LLP
120 Holborn
London EC1N 2DY (GB)

(54) DATA CONVERSION DEVICE, DATA CONVERSION METHOD, AND PROGRAM

(57) A construction with an improved compression-
function execution section is achieved. A data conversion
process with use of a plurality of compression-function
execution sections and through a plurality of process se-
quences in which divided data blocks constituting mes-
sage data are processed in parallel is executed. Each of
the plurality of compression-function execution sections
performs a process with use of a message scheduling
section which receives a corresponding divided data
block of the message data to perform a message sched-
uling process, and a process with use of a chaining var-
iable processing section which receives both of an output
from the message scheduling section and an intermedi-
ate value as an output from a preceding processing sec-
tion to generate output data whose number of bits is same
as that of the intermediate value through compression of
received data. The plurality of compression-function ex-
ecution sections, respectively performing parallel
processing commonly use one or both of the message
scheduling section and the chaining variable processing
section, and allow a single message scheduling section
or a single chaining variable processing section to be
utilized. Downsizing of a hardware configuration and sim-
plification of processing steps are achieved by such a
construction.

EP 2 325 828 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

TECHNICAL FIELD

[0001] The present invention relates to a data convert-
er, a data conversion method and a program. More spe-
cifically, the present invention relates to a data converter,
a data conversion method and a program performing a
hash value generation process on, for example, input
message data.

BACKGROUND ART

[0002] In a data conversion process such as an en-
cryption process, a hash function executing a hashing
process on input data is frequently used. The hash func-
tion is a function for computing a fixed-length com-
pressed value (a digest) from a supplied message.
Known hash functions include MD5 with a 128-bit output
value, SHA-1 with a 160-bit output value, SHA-256 with
a 256-bit output value and the like.
[0003] For example, based on a request to increase
analysis resistance, the hash function needs the follow-
ing resistances.
Preimage resistance
2nd preimage resistance
Collision resistance
[0004] These resistances will be briefly described be-
low.
In a hash function generating y=h(x) as an output where
an input is x and the hash function is h, the preimage
resistance corresponds to difficulty of computing the in-
put x such that h(x)=y for the output y.
The 2nd preimage resistance corresponds to difficulty of
finding another input value x’ satisfying h(x’)=h(x) in the
case where one input value x is known.
The collision resistance corresponds to difficulty of find-
ing two different input values x and x’ satisfying h(x’)=h(x).
It is considered that the higher these resistances are, the
higher security properties the hash function has.
[0005] In previously used hash functions, vulnerability
of the above-described resistances is discovered by re-
cent developments in analysis methods. For example, it
has become clear that in MD5, SHA-1 or the like which
has been frequently used as a hash function, the collision
resistance does not satisfy a large number of system
request levels. Moreover, as an existing hash function,
SHA-256 with a relatively long output length is included;
however, concerns about security properties remain, be-
cause SHA-256 follows the design principle of SHA-1,
and a hash function with higher security properties based
on other design principle is thereby desired.

DISCLOSURE OF THE INVENTION

[0006] The present invention is made to solve the
above-described issue, and it is an object of the invention
to provide a data converter, a data conversion method

and a program achieving a hash function with high se-
curity properties and high processing efficiency.
[0007] A first aspect of the invention provides a data
converter including a data conversion section which re-
ceives message data to generate a hash value, the data
conversion section being configured to execute a data
conversion process with use of a plurality of compres-
sion-function execution sections and through a plurality
of respective process sequences in which a plurality of
divided data blocks constituting the message data are
processed in parallel, in which each of the plurality of
compression-function execution sections is configured
to perform: a process with use of a message scheduling
section which receives a corresponding divided data
block of the message data to perform a message sched-
uling process; and a process with use of a chaining var-
iable processing section which receives both of an output
from the message scheduling section and an intermedi-
ate value as an output from a preceding processing sec-
tion to generate output data whose number of bits is same
as that of the intermediate value through compression of
received data, and the plurality of compression-function
execution sections, respectively performing parallel
processing in the plurality of process sequences, are con-
figured to commonly use one or both of the message
scheduling section and the chaining variable processing
section, and to allow a single message scheduling sec-
tion or a single chaining variable processing section to
be utilized.
[0008] Moreover, in an embodiment of the data con-
verter of the invention, the plurality of compression-func-
tion execution sections, respectively performing parallel
processing in the plurality of process sequences, include
a single common message scheduling section which is
commonly used by the plurality of compression-function
execution sections, the common message scheduling
section is configured to receive the divided data blocks
constituting the message data, to generate output data
through performing the message scheduling process on
the divided data blocks, and to output the generated out-
put data to a plurality of chaining variable processing sec-
tions, and each of the plurality of chaining variable
processing sections are configured to execute processes
in parallel, in each of which the corresponding chaining
variable processing section receives both of an output
from the common message scheduling section and an
intermediate value as an output from a preceding com-
pression-function executing section to perform a com-
pression thereof, thereby to generate output data whose
number of bits is same as that of the intermediate value.
[0009] Further, in an embodiment of the data converter
of the invention, the plurality of compression-function ex-
ecution sections, respectively performing parallel
processing in the plurality of process sequences, include
a single common chaining variable processing section
which is commonly used by the plurality of compression-
function execution sections, a plurality of message
scheduling sections provided in each of the plurality of

1 2

EP 2 325 828 A1

3

5

10

15

20

25

30

35

40

45

50

55

compression-function execution sections performing
parallel processing are configured to receive the same
divided data block of the message data, to generate out-
put data through message scheduling processes, and to
output the generated output data to the common chaining
variable processing section, and the common chaining
variable processing section is configured to receive both
of outputs of the plurality of message scheduling sections
and an intermediate value as an output from a preceding
compression-function execution section to perform a
compression thereof, thereby to generate output data
whose number of bits is same as that of the intermediate
value.
[0010] Moreover, in an embodiment of the data con-
verter of the invention, the plurality of message schedul-
ing sections provided in each of the plurality of compres-
sion-function execution sections performing parallel
processing are configured to receive the same divided
data block of the message data, to generate output data
through message scheduling processes, and to output
an exclusive-OR operation of the generated output data
to the common chaining variable processing section.
[0011] Further, in an embodiment of the data converter
of the invention, the message scheduling section is con-
figured of a transposition-function executing section with
intermediate output, which repeatedly executes a trans-
position process to output an intermediate value which
is a result of each of the transposition processes, and
the chaining variable processing section is configured to
have a transposition-function executing section with ad-
ditional input, which repeatedly executes a transposition
process with use of the intermediate value as an addi-
tional input outputted from the transposition-function ex-
ecuting section with intermediate output.
[0012] Moreover, in an embodiment of the data con-
verter of the invention, the chaining variable processing
section is configured to utilize an XOR result as input
data for the transposition process in a following state, the
NOR result being a logical value of an exclusive-OR op-
eration between the intermediate value outputted from
the transposition-function executing section with inter-
mediate output and a result of a transposition process in
a preceding stage.
[0013] Further in an embodiment of the data converter
of the invention, each of the transposition processes ex-
ecuted by the transposition-function executing sections
includes a nonlinear conversion process performed on a
part or a whole of input data and a swap process which
is a data interchanging process.
[0014] Moreover, in an embodiment of the data con-
verter of the invention, the nonlinear conversion process
is a process including an exclusive-OR operation using
a constant, a nonlinear conversion, and a linear conver-
sion using a linear conversion matrix.
[0015] Further in an embodiment of the data converter
of the invention, a linear conversion process performed
in each of the transposition processes executed by the
transposition-function executing sections is a process

executed according to a DSM (Diffusion Switching Mech-
anism) with use of a plurality of different matrices.
[0016] Moreover, in an embodiment of the data con-
verter of the invention, the transposition processes exe-
cuted by the transposition-function executing sections
are configured to perform data processes with use of a
plurality of constants groups different from one another,
respectively, and the plurality of constants groups differ-
ent from one another, which are generated through data
conversion processes performed on a fundamental
group, are used in the transposition processes, respec-
tively, the fundamental group being defined as a con-
stants group to be used in one transposition process.
[0017] Further, in an embodiment of the data converter
of the invention, the constants group to be utilized as the
fundamental group is configured of a plurality of con-
stants generated through application of a conversion rule
to a plurality of initial values S and T which are different
from each other, and the conversion rule is configured
to include an update process performed on the initial val-
ues, the update process being represented by the follow-
ing expression;

where a≠b.
[0018] Moreover, in an embodiment of the data con-
verter of the invention, the data conversion process per-
formed on the fundamental group is a process which al-
lows a bit rotation operation on each of constants con-
stituting the fundamental group, or a process which al-
lows a logical operation between each of constants con-
stituting the fundamental group and predetermined mask
data.
[0019] Further, in an embodiment of the data converter
of the invention, the data conversion section is configured
to perform a reduction process which allows an ultimately
outputted hash value to be reduced in number of bits,
and the number of bits to be reduced, in output bits of
each of a plurality of output-data series which constitute
an output of the data conversion section, is calculated
according to a predetermined expression for calculation,
and then the reduction process is executed according to
a result of the calculation.
[0020] Moreover, in an embodiment of the data con-
verter of the invention, the data conversion section further
includes a scramble-process section executing a data
scramble process on input data, the plurality of compres-
sion-function execution sections are configured as multi-
stage compression sections which are allowed to receive
all divided data blocks of the message data, some of the
multi-stage compression sections are configured to re-
ceive both of an output of the scramble-process section
and the divided data blocks of the message data to ex-
ecute the data compression process based on data re-

3 4

EP 2 325 828 A1

4

5

10

15

20

25

30

35

40

45

50

55

ceived, some of the multi-stage compression sections
are configured to receive both of an output of preceding-
stage compression section and the divided data blocks
of the message data to execute the data compression
process based on data received, and a compression sec-
tion located in a final stage of the multi-stage compres-
sion sections is configured to output a hash value of the
message data.
[0021] Moreover, a second aspect of the invention pro-
vides a data conversion method being a data conversion
process method executed by a data converter, the data
conversion method including: a data conversion step of
receiving message data to generate a hash value by a
data conversion section, the data conversion step being
a step of executing a data conversion process with use
of a plurality of compression-function execution sections
and through a plurality of respective process sequences
in which a plurality of divided data blocks constituting the
message data are processed in parallel, in which each
of the plurality of compression-function execution sec-
tions perform: a process with use of a message sched-
uling section which receives a corresponding divided da-
ta block of the message data to perform a message
scheduling process; and a process with use of a chaining
variable processing section which receives both of an
output from the message scheduling section and an in-
termediate value as an output from a preceding process-
ing section to generate output data whose number of bits
is same as that of the intermediate value through com-
pression of received data, and the plurality of compres-
sion-function execution sections, respectively perform-
ing parallel processing in the plurality of process se-
quences, commonly use one or both of the message
scheduling section and the chaining variable processing
section, and perform a process with use of a single mes-
sage scheduling section or a single chaining variable
processing section.
[0022] Further, a third aspect of the invention provides
a program executing a data conversion process in a data
converter, the program including: a data conversion step
of receiving message data to generate a hash value by
a data conversion section, the data conversion step being
a step of executing a data conversion process with use
of a plurality of compression-function execution sections
and through a plurality of process sequences in which a
plurality of divided data blocks constituting the message
data are processed in parallel, in which the program al-
lows each of the plurality of compression-function exe-
cution sections to execute: a process with use of a mes-
sage scheduling section which receives a corresponding
divided data block of the message data to perform a mes-
sage scheduling process; and a process with use of a
chaining variable processing section which receives both
of an output from the message scheduling section and
an intermediate value as an output from a preceding
processing section to generate output data whose
number of bits is same as that of the intermediate value
through compression of received data, and the program

allows the plurality of compression-function execution
sections, respectively performing parallel processing in
the plurality of process sequences, to commonly use one
or both of the message scheduling section and the chain-
ing variable processing section, and to perform a process
with use of a single message scheduling section or a
single chaining variable processing section.
[0023] In addition, the program of the present invention
is, for example, a program allowed to be provided to a
general-purpose system capable of executing various
program codes by a storage medium or a communication
medium in a computer-readable format. The program is
provided in a computer-readable format; therefore, a
process according to the program is implemented on a
computer system.
[0024] Further objects, features, or advantages of the
present invention will become apparent from the follow-
ing description of an exemplary embodiment of the
present invention or more detailed description based on
the accompanying drawings. In addition, in this descrip-
tion, "system" refers to a logical set configuration of a
plurality of devices regardless of whether the individual
constituent devices are contained in one enclosure.
[0025] An exemplary embodiment of the invention has
a construction in which a data conversion process with
use of a plurality of compression-function execution sec-
tions and through a plurality of process sequences in
which divided data blocks constituting message data are
processed in parallel is executed. Each of the plurality of
compression-function execution sections performs a
process with use of a message scheduling section which
receives a corresponding divided data block of the mes-
sage data to perform a message scheduling process,
and a process with use of a chaining variable processing
section which receives both of an output from the mes-
sage scheduling sections and an intermediate value as
an output from a preceding processing section to gener-
ate output data whose number of bits is same as that of
the intermediate value through compression of received
data. The plurality of compression-function execution
sections, respectively performing parallel processing in
the plurality of process sequences, are configured to
commonly use one or both of the message scheduling
section and the chaining variable processing section, and
to allow a single message scheduling section or a single
chaining variable processing section to be utilized. Down-
sizing of a hardware configuration and simplification of
processing steps are achieved by such a construction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026]

[FIG. 1 FIG. 1 is an illustration describing a compres-
sion function (f) as a data compression section.
[FIG. 2] FIG. 2 is an illustration describing an MD
(Merkle-Damgard) construction with message pad-
ding which is a typical domain extension method.

5 6

EP 2 325 828 A1

5

5

10

15

20

25

30

35

40

45

50

55

[FIG. 3] FIG. 3 is an illustration describing a cascad-
ing hash construction achieving a hash value with a
large output bit size with use of a compression func-
tion with a small output bit size.
[FIG. 4] FIG. 4 is an illustration describing a construc-
tion of a compression section (a compression func-
tion) with enhanced security properties.
[FIG. 5] FIG. 5 is an illustration describing a hash
function construction example in which compression
function units 50 illustrated in FIG. 4 are connected
as the MD constructions.
[FIG. 6] FIG. 6 is an illustration describing a hash
function construction example as a modification ex-
ample of a construction illustrated in FIG. 5 using
compression function units 55 in which the order of
a scrambling function F and compression functions
f1 and f2 in each compression function is changed.
[FIG. 7] FIG. 7 is an illustration describing a construc-
tion example configured by removing the scrambling
function F in a final compression function unit from
a construction illustrated in FIG. 6
[FIG. 8] FIG. 8 is an illustration describing a construc-
tion example in which the scrambling function F is
set to be inserted every two compression function
processes.
[FIG. 9] FIG. 9 is an illustration describing a construc-
tion example of a generalized hash function execu-
tion section in which the scrambling function F are
set to be inserted every number k of compression
functions.
[FIG. 10] FIG. 10 is an illustration describing a con-
struction example achieving the scrambling function
F with use of two compression functions.
[FIG. 11] FIG. 11 is an illustration describing a gen-
eralized construction example of a hash function with
a number m of compression functions in a sequence,
where m is an integer of 2 or larger.
[FIG. 12] FIG. 12 is an illustration describing a con-
struction example of a scrambling function F with an
mb-bit input/output.
[FIG. 13] FIG. 13 is an illustration describing an in-
ternal construction example of a compression func-
tion f.
[FIG. 14] FIG. 14 is an illustration describing a con-
struction example in which a compression function
configured of a message scheduling section (MS
section) and a chaining variable (CV) processing
section is provided for a hash function with the MD
construction.
[FIG. 15] FIG. 15 is an illustration describing a con-
struction example of a hash function in which the
message scheduling section is commonly used.
[FIG. 16] FIG. 16 is an illustration describing a con-
struction example of a compression function extend-
ing an input message size in a compression function.
[FIG. 17] FIG. 17 is an illustration describing a con-
struction example of a compression function having
a construction in which a message scheduling sec-

tion is divided into two parts.
[FIG. 18] FIG. 18 is an illustration describing a con-
struction example of a compression function having
a construction in which a message scheduling sec-
tion is divided into two parts and an Exclusive-OR
operation (XOR) section is included.
[FIG. 19] FIG. 19 is an illustration describing a con-
struction example of a compression function set to
respond to an na-bit input by generalizing the con-
struction of the compression function illustrated in
FIG. 17.
[FIG. 20] FIG. 20 is an illustration describing a con-
struction example of a compression function set to
respond to an na-bit input by generalizing the con-
struction of the compression function illustrated in
FIG. 18.
[FIG. 21] FIG. 21 is an illustration describing an ex-
ample of a transposition function with an additional
input.
[FIG. 22] FIG. 22 is an illustration describing an ex-
ample of a transposition function with an intermedi-
ate output.
[FIG. 23] FIG. 23 is an illustration describing a con-
struction example of a compression function using
an existing transposition function.
[FIG.24] FIG. 24 is an illustration describing a con-
struction example of a compression function in which
the size of data applied to the compression function
is extended.
[FIG. 25] FIG. 25 is an illustration describing a con-
struction example of a compression function in which
an input bit length is extended to 3 a bits.
[FIG. 26] FIG. 26 is an illustration describing a con-
struction example of a compression function in which
an input bit length is extended to 3a bits.
[FIG. 27] FIG. 27 is an illustration describing a con-
struction example in which two compression func-
tions in a sequence commonly use a message
scheduling section.
[FIG. 28] FIG. 28 is an illustration describing a con-
struction example of a compression function in which
the size of data applied to the compression function
is extended.
[FIG. 29] FIG. 29 is an illustration describing a con-
struction example of a scrambling function F config-
ured of a combination of two transposition functions
with an intermediate output and two transposition
functions with an additional input.
[FIG. 30] FIG. 30 is an illustration describing a spe-
cific construction example of a transposition function
allowed to be used as an internal transposition.
[FIG. 31] FIG. 31 is an illustration describing an ex-
ample of an internal construction of a nonlinear con-
version section configured in an internal transposi-
tion section (a transposition function).
[FIG. 32] FIG. 32 is an illustration describing a con-
struction example of repeated rounds of an internal
transposition section set so as to use a plurality of

7 8

EP 2 325 828 A1

6

5

10

15

20

25

30

35

40

45

50

55

different matrices as a linear conversion matrix. [M]
used in the nonlinear conversion section of the in-
ternal transposition section (transposition function).
[FIG. 33] FIG. 33 is an illustration describing a con-
struction example of repeated rounds of an internal
transposition section set so as to use a plurality of
different matrices as the linear conversion matrix [M].
[FIG. 34] FIG. 34 is an illustration describing a tech-
nique of generating constants CiJ(2), Cij(3),.., Cij(m)
for a total transposition.
[FIG. 35] FIG. 35 is an illustration describing an ex-
ample of a technique of reducing the output bit length
of a hash function.
[FIG. 36] FIG. 36 is an illustration describing an ex-
ample of a technique of reducing the output bit length
of a hash function.
[FIG. 37] FIG. 37 is an illustration of a configuration
example of an IC module as a data converter exe-
cuting processes according to the invention.

BEST MODE(S) FOR CARRYING OUT THE INVEN-
TION

[0027] A data converter, a data conversion method and
a program of the present invention will be described in
detail below referring to the accompanying drawings.
[0028] Description will be given in the following order.

1. Domain extension method
2. Novel domain extension method for extending out-
put size
3. Method of improving processing efficiency of novel
domain extension method
4. Method of achieving scrambling function F
5. Generalization of domain extension method
6. Generalization of construction of scrambling func-
tion F
7. Use of different compression functions
8. Efficient method of achieving internal process of
compression function
9. Method of extending input message length
10. Method of achieving hash function using repeat-
ed transposition in CV processing section and MS
section
11. Method of extending size of MS section
12. Method of extending size of CV processing sec-
tion
13. Method of extending sizes of CV processing sec-
tion and MS section
14. Method of constructing scrambling function F for
domain extension method
15. Method of achieving transposition process with
high diffusion capability
16. Method of generating transposition function with
highly independent output
17. Process of generating constant applied to trans-
position function
18. Method of generating constant for a plurality of

total transpositions
19. Technique of reducing output value of hash func-
tion
20. Configuration example of data converter

[1. Domain extension method]

[0029] As described above, it is desirable for a hash
function execution section to have the above-described
various resistances, that is, preimage resistance, 2nd
preimage resistance and collision resistance.
[0030] Note that a data converter of the invention in-
cludes various function execution sections such as a
hash function execution section and a compression-func-
tion execution section which will be described below. In
the following description, a term "function" simply ex-
pressed herein is executed in a function execution sec-
tion executing each function in the data converter of the
invention. Note that the function execution section is
achieved with use of hardware or software, or both of
them.
[0031] A hash function uses a compression function
for computing a fixed-length compressed value (a digest)
from an applied message. When a hashing section con-
figured of hardware or software executing the hash func-
tion is constructed, it is necessary for the hashing section
to have a construction with consideration given to the
above-described various resistances. The construction
of the hashing section is allowed to be broadly divided
into two following hierarchical levels:

(1) a domain extension section as a first hierarchical
level, and
(2) an internal construction of a compression function
as a second hierarchical level.

[0032] A domain is a maximum allowable bit size (input
size) as an input value of the hash function. One com-
pression-function execution section performs a process
of converting a fixed-length input value into a fixed-length
output value; however, in general, one compression-
function execution section has a small maximum allow-
able input bit size, and is not allowed to process an input
value with a large bit size; therefore, the domain is ex-
tended by connecting a plurality of compression functions
so that a message input with an arbitrary length is han-
dled. Hashing on input data with a long bit length is al-
lowed by such a process. Such a process is performed
as a domain extension process.
[0033] The levels of the above-described resistances
depend on a domain extension construction as the first
hierarchical level or the internal construction of the com-
pression function as the second hierarchical level.
[0034] First, a novel scheme of the former, i.e., the
domain extension process will be described below. The
compression function is a function for converting a bit
string as an input value into a shorter bit string than an
input bit length. FIG. 1 illustrates a compression function

9 10

EP 2 325 828 A1

7

5

10

15

20

25

30

35

40

45

50

55

(f) as a compression section.
[0035] A compression function 10 illustrated in FIG. 1
is a function for receiving an input value X with a bits and
an initial value Y with b bits, that is, a+b bits in total to
generate an output Z with b bits. A maximum allowable
bit size as the input value of the compression function is
called domain (input size). A long input message is not
allowed to be handled by one compression function 10
only; therefore, compression functions are appropriately
connected to extend the domain (input size), so that an
input message size is allowed to be extended. In other
words, the input of data with a long bit length is allowed.
[0036] FIG. 2 illustrates an MD (Merkle-Damgard) con-
struction with message padding which is a typical domain
extension method. Note that the construction is de-
scribed in, for example, R. Merkle, "One way hash func-
tions and des." in Proceedings of Crypto’89 (G. Brassard,
ed.), no.435 in LNCS, pp.428-446, Springer-Verlag,
1989 and 1. Damgard, "A design principle for hash func-
tions." in Proceedings of Crypto’89 (G. Brassard, ed.),
no.435 in LNCS, pp.417-427, Springer-Verlag, 1989.
[0037] As illustrated in FIG. 2, the MD construction is
a construction allowing an input size to be extended by
arranging compression functions (f) in series. An input
message is corrected by padding, which is performed as
a bit data adding process for bit length adjustment, to be
a value with an integral multiple of a bits which is a mes-
sage input section size of the compression function. M0,
M1, M2, ..., Mn-2, Mn-1|Padding are a-bit blocks into which
an input message subjected to padding is divided.
[Mn-1|Padding] is data with an input bit size of a bits by
adding padding data as an additional bit block to data
[Mn-1] as a final block of the input message.
[0038] To generate a digest of a message, in the MD
construction, an operation in which a predetermined in-
itial value IV with b bits and a first division message M0
are applied to and compressed in a compression function
11 to generate a value with b bits as an intermediate
value, and then the intermediate value and a following
message are applied to and compressed in a compres-
sion function 12 is repeated with use of a plurality of com-
pression functions to ultimately obtain a hash value (H).
The intermediate value at this time is called chaining var-
iable.
[0039] It is known that as long as each compression
function has collision resistance, the MD construction is
allowed to show that the whole hash function has collision
resistance, and the MD construction is frequently used
for actual hash functions. Typical hash functions using
the MD construction include MD5 and SHA-1.

[2. Novel domain extension method for extending output
size]

[0040] In the above-described construction, the case
of a b-bit output is described, and now, a construction of
a hash function generating a hash value with a long bit
length of 2b bits will be considered below.

[0041] In the case where the above-described MD con-
struction is used as it is, it is necessary to prepare a com-
pression function with a 2b-bit output. However, in gen-
eral, it is difficult to newly construct a compression func-
tion with a large-sized output and high security proper-
ties. It is necessary to design a novel compression func-
tion and evaluate security properties of the compression
function, and the larger the output size is, the more diffi-
cult it is to design and evaluate the compression function.
Therefore, it is desirable to construct a hash function with
a 2b-bit output with use of compression functions with a
b-bit output which have been already evaluated.
[0042] As a related-art technique of achieving a hash
value with a large output bit size with use of compression
functions with a small output bit size, a cascading hash
construction is known. The cascading hash construction
will be described referring to FIG. 3.
[0043] The cascading hash construction is a construc-
tion allowed to generate a hash value with a large output
size with use of two compression functions arranged in
parallel. As illustrated in FIG. 3, the cascading hash con-
struction is constructed by simply arranging two com-
pression functions f1 and f2 in parallel. A hash function
with a 2b-bit output is allowed to be constructed by the
construction.
[0044] However, the security properties of the hash
function executing output of 2b bits by arranging such
two compression functions with a b-bit output do not
reach a desired level for a hash function with an output
size of 2b bits. It is known that the hash function has
security properties approximately equal to a hash func-
tion with an output size of b bits. This is described in, for
example, A. Joux, "Multicollisions in iterated hash func-
tions.application to cascaded constructions." in Proceed-
ings of Crypto’04 (M.Franklin, ed.), no. 3152 in LNCS, p.
306-316, Springer-Verlag, 2004.
[0045] Next, a construction of a compression section
(a compression function) with enhanced security prop-
erties according to an exemplary embodiment of the in-
vention will be described below referring to FIG. 4. FIG.
4 illustrates a compression function unit 50 which is a
compression section with an a-bit input and a 2b-bit out-
put. The compression function unit 50 illustrated in FIG.
4 includes compression functions f1 and f2 which are two
independent data compression sections with an a+b-bit
input and a b-bit output and a scrambling function F as
a data scrambling section with a 2b-bit input/output. In
other words, the compression function unit 50 includes
one scrambling function F and a sequence of two com-
pression functions f1 and f2.
[0046] The compression function unit 50 receives a-
bit data [X] and 2b-bit data [Y] as inputs, that is, an input
of 2b+a bits in total. In the input, the 2b-bit data [Y] passes
through the scrambling function F with a 2b-bit input/out-
put and is scrambled. Next, a 2b-bit output from the
scrambling function F is divided into b-bit data blocks,
and one of the b-bit data blocks and the a-bit data X which
is the other input of the compression function unit 50 are

11 12

EP 2 325 828 A1

8

5

10

15

20

25

30

35

40

45

50

55

processed by the compression function f1 in the unit. The
other b-bit data block and the a-bit data X are simultane-
ously processed by the compression function f2 in the
unit. Finally, 2b bits generated by combining outputs of
f1 and f2 are an output of the compression function 50.
Note that the scrambling function F is a function for
scrambling received 2b-bit data and outputting the 2b-bit
data, and is a different compression function from the
two compression functions f1 and f2.
[0047] FIG. 5 illustrates a hash function construction
example in which the compression function units 50 il-
lustrated in FIG. 4 are connected as the MD constructions
for domain extension allowing an input with a long bit
length to be processed. A data converter illustrated in
FIG. 5 includes a data conversion section configured of
the MD construction. The construction illustrated in FIG.
5 is a construction configured of a data conversion sec-
tion including a number n of the compression function
units 50 described referring to FIG. 4. In other words, the
data converter is a data converter as a hash function
execution section configured of the number n of com-
pression function units 50 including one scrambling func-
tion F with a 2b-bit input/output and a sequence of two
compression functions f1 and f2 with an a+b-bit input and
a b-bit output.
[0048] In the hash function illustrated in FIG. 5, the
compression function units 50-0 to 50-(n-1) are used as
a sequence of n stages, and a 2b-bit hash value (H1|H2)
is generated from the compression function. unit 50-(n-
1) in a final stage.
[0049] The compression function unit 50-0 in a first
stage receives a first a-bit input M0 of bit inputs M0 to
Mn-1 and two b-bit initial values IV1 and IV2, and the com-
pression functions f1 and f2 generates b-bit outputs, re-
spectively, that is, an output of 2b bits in total. The com-
pression function unit in a following stage receives 2b
bits applied from the compression functions f1 and f2 in
the compression function unit in a preceding stage and
a bits which are constituent bits of each of M0 to Mn-1, to
generate an output of 2b bits. The same process is re-
peatedly executed in the compression function units in
later stages, and the compression function unit in a final
stage receives an output of 2b bits applied from the com-
pression function unit in a preceding stage and a bits
from Mn-1 and padding data to generate b-bit outputs H1
and H2, that is, a hash value (H1|H2) with 2b bits in total.
[0050] If the compression functions f1 and f2 and the
scrambling function F configuring the compression func-
tion unit 50 satisfy a property called random oracle, it is
shown that this construction has sufficient security prop-
erties. The random oracle is a function generating a ran-
dom number therein when an input is applied thereto,
and generating a random number generated in the past
again when an input which has been applied before is
applied thereto. In practice, the construction is achieved
by designing a function for computing an output by a de-
cisive procedure not needing random number generation
approximating a behavior of the random oracle and trans-

posing a function to the designed function. A part having
easily evaluated security properties and light load proc-
ess is allowed to be used in the compression function by
the construction; therefore, a hash function which is eas-
ily designed and has high efficiency is achievable.
[0051] In the exemplary embodiment, a scramble proc-
ess is executed at least at fixed intervals in a compression
process round configured of a plurality of rounds, so a
data converter generating a hash value with enhanced
analysis resistance and high security properties is
achieved.
[0052] Moreover, as a modification example of the con-
struction illustrated in FIG. 5, as illustrated in FIG. 6, also
in the case where compression function units 55 in which
the order of the scrambling function F and the compres-
sion functions f1 and f2 is changed are used, the con-
struction is allowed to be used as a hash function having
the same effects.
[0053] Moreover, as a modification example of the con-
structions illustrated in FIGs. 5 and 6, as illustrated in
FIG. 7, even a construction formed by removing the
scrambling function F in the final stage from the construc-
tion illustrated in FIG. 6 is allowed to be used as a hash
function having the same effects in security properties.
As this construction is obtained by redefining outputs of
a first scrambling function F as IV1 and IV2 in the con-
struction illustrated in FIG. 5, the same is derived.
[0054] Thus, a hash function with a 2b-bit output and
high security properties is allowed to be constructed with
compression functions with a smaller b-bit output and the
scrambling function F without constructing a compres-
sion function for 2b-bit output only.
[0055] Moreover, in the constructions illustrated in
FIGs. 5, 6 and 7, the number of output bits of each of the
compression functions f1 and f2 in the compression func-
tion unit is b bits, and the intermediate values, that is, the
chaining variables in the internal compression functions
f1 and f2 is equal to each other.
[0056] However, it is not necessary for the bit sizes of
the chaining variables (CVs) of the internal compression
functions f1 and f2 to be equal to each other. For example,
a total chaining variable (CV) may have b+c bits by setting
the internal compression function f1 and the internal com-
pression function f2 to generate a b-bit chaining variable
(CV) and a c-bit chaining variable (CV), respectively.
Even in such a construction, the compression function
unit is achievable by the construction of a smaller func-
tion, so a compression function for a small bit size with
confirmed security properties is applicable as an internal
compression function.

[3. Method of improving processing efficiency of novel
domain extension method]

[0057] Next, a construction example of a hash function
with improved processing efficiency of the domain exten-
sion method described referring to FIGs. 5 and 6 will be
described referring to FIG. 8. FIG. 8 is a hash function

13 14

EP 2 325 828 A1

9

5

10

15

20

25

30

35

40

45

50

55

construction example in which the scrambling function F
is inserted every two compression function processes.
[0058] A compression function unit 60 is configured of
the scrambling function F, a sequence of two internal
compression functions f1 and f3 and a sequence of two
internal compression functions f2 and f4. The four internal
compression functions included in the compression func-
tion unit 60 are different and independent compression
functions. In other words, four compression functions in-
cluded in a region sandwiched between two scrambling
functions F are independent compression functions.
[0059] The compression function unit 60 in a first stage
receives two b-bit initial values IV1 and IV2, and the
scrambling function F scrambles the received 2b-bit data
to apply b bits to each of the compression functions f1
and f2. The compression functions f1 and f2 receive a
first a-bit input M0 of bit inputs M0 to Mn-1 and an output
of b bits from the scrambling function F to generate b-bit
outputs, and then apply the b-bit outputs to the compres-
sion functions f3 and f4 in a following sequence, respec-
tively.
[0060] The compression functions f3 and f4 receive an
a-bit input M1 of the bit inputs M0 to Mn-1 and the b-bit
outputs from the compression functions f1 and f2 in the
preceding sequence, respectively, to generate b-bit out-
puts and then apply the b-bit outputs to the scrambling
function F of the compression function unit in a following
stage.
[0061] The compression function unit in a following
stage receives 2b bits applied from the compression
functions of the compression function unit in a preceding
stage and 2a bits which are constituent bits of M0 to Mn-1
to generate an output of 2b bits. The same process is
repeatedly executed in the compression function units in
later stages, and the compression function unit in a final
stage receives 2b bits applied from the compression
function unit in a preceding stage, a bits of Mn-2, and a
bits of Mn-1 and padding data, and generates b-bit outputs
H1 and H2, that is, a hash value (H1|H2) with 2b bits in
total.
[0062] In the construction, compared to the construc-
tion illustrated in FIG. 5, the number of calls for the scram-
bling function F at the time of processing a message with
the same length is reduced, so processing efficiency is
improved. More specifically, in the construction illustrat-
ed in FIG. 5, two scrambling functions F and four com-
pression functions are necessary to process two a-bit
messages, and in a scheme illustrated in FIG. 8, the mes-
sages are processed by only one scrambling function F
and four compression functions, so one scrambling func-
tion F is allowed to be removed, thereby achieving higher
processing efficiency.
[0063] A construction illustrated in FIG. 8 is set to re-
peatedly execute the scrambling function F and two se-
quences of compression functions. A construction in
which the number of scrambling functions is further re-
duced and the scrambling function F is inserted every
three or more sequences of compression functions may

be applied. A construction example of a generalized hash
function execution section in which the scrambling func-
tion F is inserted every k compression functions is illus-
trated in FIG. 9. In the construction illustrated in FIG. 9,
a compression function unit 70 includes one scrambling
function F with a 2b-bit input/output and a number k of
sequences each including two compression functions
with an a+b-bit input and a b-bit output.
[0064] The compression function unit 70 in a first stage
receives two b-bit initial values IV1 and IV2, and the
scrambling function F scrambles received 2b-bit data to
generate an output of b bits to each of the compression
functions f1 and f2 in one sequence. The compression
functions f1 and f2 receive a first a-bit input M0 of bit
inputs M0 to Mn-1 and an output of b bits from the scram-
bling function F to generate b-bit outputs, and then apply
the b-bit outputs to the compression functions f3 and f4
in a following sequence, respectively.
[0065] The compression functions f3 and f4 receive an
a-bit input M1 of the bit inputs M0 to Mn-1 and the b-bit
outputs from the compression functions f1 and f2 in the
preceding sequence, respectively, to generate b-bit out-
puts and then apply the b-bit outputs to compression
functions in a following sequence, respectively. A proc-
ess in which an output from each compression function
in a preceding sequence and a bits configuring each of
bit inputs M0 to Mn-1 are applied to each compression
function in a following sequence and the compression
functions each generate a b-bit output is repeated k
times, and outputs from two compression functions in a
k-th sequence are applied to the scrambling function F
of a following compression function unit 71.
[0066] The process by the compression function unit
71 is the same as the process by the compression func-
tion unit 70. However, bit data of the latter half of the bit
inputs M0 to Mn-1 and padding data are applied to the
compression function unit 71. The two compression func-
tions in a final sequence of the compression function unit
71 generate b-bit outputs H1 and H2, respectively, that
is, a hash value (H1|H2) with 2b bits in total.
[0067] Note that the scrambling function F is inserted
at intervals which is determined according to an output
length of 2b bits of a hash value within a range of not
impairing security properties. For example, in the case
of b=256, the value k is 8. The larger the value k is, the
more the processing efficiency is improved.
[0068] The construction illustrated in FIG. 9 is a con-
struction in which the scrambling function F receives an
initial value, and sequences each including two compres-
sion functions are followed by the scrambling function F
as in the case of the construction illustrated in FIG. 5, but
a compression function unit in which two compression
functions in a sequence described referring to FIG. 6 or
the like receive an initial value, and a plurality of sequenc-
es each including two compression functions are execut-
ed, and then the scrambling function F is executed in the
end may be used.

15 16

EP 2 325 828 A1

10

5

10

15

20

25

30

35

40

45

50

55

[4. Method of achieving scrambling function F]

[0069] The scrambling function F is a function for
scrambling input bits to generate data whose number of
bits is same as the input bits. A specific construction for
achieving the scrambling function will be described below
referring to FIG. 10. FIG. 10 is a construction in which
the scrambling function F is achieved with use of two
compression functions.
[0070] A scrambling function F80 illustrated in FIG. 10
(1) is an example in which the scrambling function F80
with a 2b-bit input/output is achieved with use of two con-
version sections 81 and 82 with a b-bit input and an a-
bit output and two compression functions 83 and 84 with
an a+b-bit input and b-bit output. Two divided b-bit data
blocks to be applied to the scrambling function F80 are
supplied as b-bit inputs for the compression functions 83
and 84, respectively.
[0071] Moreover, the two b-bit data blocks are simul-
taneously applied to the conversion sections 81 and 82,
respectively, to be converted into a-bit data, and then the
a-bit data are supplied as a-bit input data for the com-
pression functions 83 and 84, respectively. It is only nec-
essary for the conversion sections 81 and 82 to perform
a simple process for adjusting a bit length, and, for ex-
ample, the conversion sections 81 and 82 are achievable
with a simple logical operation such as extension by du-
plicating bits or XOR.
[0072] The conversion sections 81 and 82 are prefer-
ably set to satisfy the following condition. More specifi-
cally, the convention sections 81 and 82 are set so that
all 2b bits of an input for the scrambling function F80 have
an influence on inputs of a+b bits for the compression
functions 83 and 84. The scrambling function F is allowed
to be constructed by the construction illustrated in FIG.
10, and as a result, the scrambling function F is achiev-
able by only a process corresponding to two compression
functions.
[0073] A scrambling function F85 illustrated in FIG. 10
(2) is an example in which inputs for the conversion sec-
tions 86 and 87 each have 2b bits. In the case where, for
example, a>b, the conversion sections 86 and 87 are
constructed with a function for connecting two b-bit data
and then reducing the number of bits to generate a bits
by a simple operation such as XOR. The conversion sec-
tions 86 and 87 are preferably set to satisfy the following
condition. More specifically, the conversion sections 86
and 87 are set so that all 2b bits of an input for the scram-
bling function F85 have an influence on inputs of a+b bits
for the compression functions 88 and 89. Also in this con-
struction, the scrambling function F is achievable by only
a process corresponding to two compression functions.
[0074] The constructions of the scrambling functions
F illustrated in FIG. 10 are allowed to be used as the
scrambling function F in the constructions of the hash
functions referring to FIGs. 5 to 9. When such construc-
tions are used, the scrambling function F is achievable
by reusing compression functions originally provided for

the compression function units illustrated in FIGs. 5 to 9.
Sharing of such a component is effective in a reduction
in gate scale at the time of hardware implementation, and
downsizing of a device and cost reduction are allowed.

[5. Generalization of domain extension method]

[0075] The hash function with the MD construction de-
scribed referring to FIGs. 5 to 9 has a construction in
which an output from one scrambling function F is applied
to a sequence including two compression functions, or a
construction in which outputs from a sequence including
two compression functions are applied to one scrambling
function F. In other words, the hash function is set to use
a sequence including two compression functions.
[0076] The number of compression functions in a se-
quence is not limited to two, and a construction in which
three or more compression functions are included in a
sequence may be used. A generalized construction ex-
ample of a hash function with a number m of compression
functions in a sequence where m is an integer of 2 or
larger is illustrated in FIG. 11.
[0077] The construction in FIG. 11 is based on the con-
struction illustrated in FIG. 9, and includes the number
m of compression functions in a sequence instead of two
compression functions. A compression function unit 90
includes the scrambling function F with an mb-bit input/
output and a plurality of sequences each including the
number m of compression functions. The number m of
compression functions f1 to fm in a first sequence receive
b bits from bit data of mb bits from an F-function and a
first a-bit input M0 of bit inputs M0 to Mn-1 to generate
outputs of b bits and apply the outputs of b bits to com-
pression functions in a following sequence, respectively.
The number m of compression functions in a k-th se-
quence receive outputs from the compression functions
in a preceding sequence, respectively, and a bits of the
bit inputs M0 to Mn-1 to generate outputs of b bits. After
a process by the compression functions in the k-th se-
quence, an output of mb bits from the compression func-
tions in a final sequence of the compression function unit
90 is applied to the scrambling function F of a following
compression function unit.
[0078] Outputs H1 to Hm of b bits from the number m
of compression functions in a final sequence of the com-
pression function unit 91 in a final stage, that is, 2mb bits
in total are generated as a hash value (H1|H2|···|Hm). The
obtained hash values H1, H2, ..., Hm have mb bits at max-
imum. A hash function with an output with a longer length
is easily achieved by this technique.

[6. Generalization of construction of scrambling function
F]

[0079] Next, a generalized construction of the scram-
bling function F will be described below. A specific con-
struction of the scrambling function F is described above
referring to FIG. 10. The scrambling function F described

17 18

EP 2 325 828 A1

11

5

10

15

20

25

30

35

40

45

50

55

referring to FIG. 10 has a construction using a sequence
including two compression functions.
[0080] A construction example of a scrambling func-
tion F with an mb-bit input/output formed by generalizing
the scrambling function F described referring to FIG. 10
is illustrated in FIG. 12. A scrambling function F100 illus-
trated in FIG. 12 is configured of a sequence including a
number m of compression functions f1 to fm with a c-bit
input and a b-bit output and a number m of conversion
sections arranged in front of the compression functions
f1 to fm, respectively.
[0081] In the example illustrated in FIG. 12, m kinds of
different and independent compression functions f1 to
fm each have an input size of c bits. All of mb bits are
temporarily applied to each of the conversion sections
so that an influence of all input bits is exerted on the
compression functions f1 to fm, and an input size is re-
duced so as to correspond to the input size of each of
the compression functions. In the conversion sections,
c-bit outputs are generated from the mb-bit input by, for
example, exclusive OR (XOR) or a bit size extension
process.
[0082] A condition necessary for the conversion sec-
tions is that all of mb bits which are input bits for the
scrambling function F100 exert an influence on any bit
of the c-bit outputs. This condition is achievable by a sim-
ple operation. For example, in the case of c=mb, each of
the conversion sections may connect inputs without
change and generate the connected inputs.

[7. Use of different compression functions]

[0083] In the above description, in the compression
function unit including a plurality of compression func-
tions f1, f2, ..., fm which are divided into a plurality of
sequences, the compression functions f1 to fm in the
compression function unit have different constructions.
This construction objectively shows highest security
properties, and even if a single compression function is
used, the security properties are not impaired immedi-
ately. In some cases, a construction in which a single
compression function is repeatedly used has a merit in
implementation; therefore, as a different embodiment, a
construction in which all compression functions are the
same may be used. Likewise, a construction in which
compression functions of a fewer kinds instead of the
same kind are repeatedly used may be applied.

[8. Efficient method of achieving internal process of com-
pression function]

[0084] A specific construction example of a compres-
sion function fi provided for the compression function
units described above will be described below. An inter-
nal construction example of a compression function f is
illustrated in FIG. 13. FIG. 13 is a construction example
of the compression function f1 which is allowed to be
used as the compression function fi provided for the com-

pression function units described referring to FIGs. 5 to
12 and also as a constituent element of the scrambling
function F.
[0085] As illustrated in FIG. 13, a compression function
120 includes a message scheduling section (MS section)
121 and a chaining variable (CV) processing section 122.
In a+b bits which are applied to the compression function
120, a bits as [X] are applied to the message scheduling
section (MS section) 121, and the remaining b bits as [Y]
are applied to the chaining variable (CV) processing sec-
tion 122,
[0086] The message scheduling section (MS section)
121 generates a c-bit output and applies the c-bit output
to the chaining variable (CV) processing section 122 by
a message scheduling process based on the a-bit input.
The chaining variable (CV) processing section 122 re-
ceives an input of b bits for the compression function 120
and an input of c bits applied from the message sched-
uling section (MS section) 121, that is, b+c bits to gen-
erate a b-bit output [Z] as an output from the compression
function 120.
[0087] FIG. 14 illustrates a construction example in
which the compression function illustrated in FIG. 13, that
is, a compression function configured of the message
scheduling section (MS section) and the chaining varia-
ble (CV) processing section is provided for a hash func-
tion with the MD construction described above referring
to FIG. 5.
[0088] A compression function unit 130 illustrated in
FIG. 14 is configured of the scrambling function F and a
sequence of two compression functions f1 and f2 as in
the case described above referring to FIG. 5. Each of the
compression functions f1 and f2 has the construction de-
scribed referring to FIG. 13. In other words, each of the
compression functions f1 and f2 is a compression func-
tion configured of the message scheduling section (MS
section) and the chaining variable (CV) processing sec-
tion.
[0089] In the example illustrated in FIG. 14, the mes-
sage scheduling sections (MS sections) in two kinds of
compression functions f1 and f2 are represented by MS
1 and MS2, respectively, and the chaining variable (CV)
processing sections are represented by CV1 and CV2,
respectively. The hash function is achievable by this con-
struction. A construction achieving a further improvement
in processing efficiency will be described below.
[0090] In each of compression function units 130-0 to
130-(n-1) illustrated in FIG. 14, a message Mi is simul-
taneously applied to the message scheduling sections
MS1 and MS2 in the two compression functions. There-
fore, when two compression functions arranged one
above the other commonly use the message scheduling
section, processes are allowed to be reduced.
[0091] FIG. 15 illustrates a construction example of a
hash function in which the message scheduling section
is commonly used. There is provided a compression
function 142 in which the chaining variable (CV) process-
ing sections CV1 and CV2 commonly use one message

19 20

EP 2 325 828 A1

12

5

10

15

20

25

30

35

40

45

50

55

scheduling section (MS section) 141 instead of the mes-
sage scheduling sections in two compression functions,
which are arranged one above the other and included in
each of the compression function units 130-0 to 130-(n-
1). When the construction of the compression function
142 including one message scheduling section (MS sec-
tion) 141 is applied, it is only necessary to execute an
logical operation by the message scheduling section (MS
section) only once in one compression function unit 140,
and the number of necessary logical operations is al-
lowed to be reduced. For example, downsizing of a hard-
ware configuration and simplification of processing steps
are achieved.
[0092] The construction described referring to FIG. 15
in which a plurality of compression functions commonly
use the message scheduling section is applicable to the
above-described plurality of hash constructions. In other
words, the construction is applicable to the compression
function unit including a sequence of a plurality of com-
pression functions and the compression function in the
scrambling function F which are described referring to
FIGs. 5 to 12.

[9. Method of extending input message length]

[0093] Next, a method of extending an input message
length in the compression function will be studied. A com-
pression function 150 illustrated in FIG. 16 is configured
of a message scheduling section (MS section) 151 and
a chaining variable (CV) processing section 152 as in the
case of the compression function 120 described referring
to FIG. 13. In the above-described compression function
120 illustrated in FIG. 13, a message input for the mes-
sage scheduling section (MS) section 121 has a bits. On
the other hand, the compression function 150 illustrated
in FIG. 16 includes the message scheduling section 151
responding to a 2a-bit input.
[0094] In general, a function responding to an a-bit in-
put and a function responding to a 2a-bit input are differ-
ent from each other, and it is necessary to evaluate them
based on different security evaluation criteria. Therefore,
if possible, it is desirable to construct a message sched-
uling section responding to a 2a-bit input by combining
functions responding to an a-bit input of which security
properties and performance have been already evaluat-
ed. Moreover, by doing so, another existing function re-
sponding to an a-bit input is allowed to be reused. A spe-
cific construction example of the function will be de-
scribed later, and a method of constructing a compres-
sion function responding to a 2a-bit input or a larger-bit
input with use of the function responding to an a-bit input
will be described now.
[0095] FIG. 17 illustrates a construction example of a
compression function 160 with a construction in which
the message scheduling section is divided into two parts.
A message input, i.e., 2a-bit data for the compression
function 160 is divided into two a-bit data blocks, and
then the message scheduling sections 161 and 162 per-

form a process of generating c-bit outputs from the a-bit
data blocks, respectively. The c-bit outputs from two mes-
sage scheduling sections 161 and 162 are supplied to
one chaining variable (CV) processing section 163.
[0096] The chaining variable (CV) processing section
163 receives the c-bit outputs from the two message
scheduling sections 161 and 162 and a b-bit input for the
compression function 160, and generates a b-bit output
[Z] as an output of the compression function. A merit of
the construction is that the compression function achiev-
ing a 2a-bit message input with use of functions (the mes-
sage scheduling sections) responding to an a-bit input
which has a shorter length than 2a bits is allowed to be
constructed.
[0097] A compression function 170 illustrated in FIG.
18 is a construction example of the compression function
170 witch a construction in which the message schedul-
ing section is divided into two parts as in the case of the
compression function 160 illustrated in FIG. 17. The com-
pression function 170 includes an exclusive-OR opera-
tion (XOR) section 174.
[0098] A message input, i.e., 2a-bit data for the com-
pression function 170 is divided into two a-bit data blocks,
and then message scheduling sections 171 and 172 per-
form a process of generating c-bit outputs from the a-bit
data blocks, respectively. The exclusive OR operation
(XOR) section 174 performs an exclusive-OR operation
between the c-bit outputs from the two message sched-
uling sections 171 and 172, and then a c-bit output is
applied to one chaining variable (CV) processing section
173.
[0099] The compression function 170 has a construc-
tion in which outputs from the two message scheduling
sections are temporarily processed by the exclusive-OR
operation section 174, and then the output is applied to
the chaining variable (CV) processing section 173. A
merit of this construction is that as the size of the message
received by the chaining variable (CV) processing sec-
tion 173 is not increased, an internal construction of the
changing variable (CV) processing section 173 is allowed
to be simplified. Note that the exclusive-OR operation
may be replaced with a modulo addition process.
[0100] FIG. 19 illustrates a construction example of a
compression function 210 set to respond to an na-bit in-
put by generalizing the construction of the compression
function 160 illustrated in FIG. 17. An na-bit message
applied to the compression function 210 is divided into a
number n of a-bit messages, and the a-bit messages are
independently processed by message scheduling sec-
tions (MS sections) 211-1 to 211-n, respectively, and the
message scheduling sections (MS sections) 211-1 to
211-n generate c-bit outputs, respectively.
[0101] The c-bit outputs from the message scheduling
sections (MS sections) 211-1 to 211-n are applied to a
chaining variable (CV) processing section 212. The
chaining variable (CV) processing section 212 receives
nc bits applied from a number n of message scheduling
sections (MS sections) 211-1 to 211-n and an b-bit input

21 22

EP 2 325 828 A1

13

5

10

15

20

25

30

35

40

45

50

55

for the compression function 210, and generates a b-bit
output [Z] as an output of the compression function.
[0102] This construction also has the same merit as
that described above referring to FIG. 17. In other words,
the compression function achieving an na-bit message
input with use of functions (the message scheduling sec-
tions) responding to an a-bit input which has a shorter
length than na bits is allowed to be constructed.
[0103] FIG. 20 illustrates a construction example of a
compression function 220 set to respond to an na-bit in-
put by generalizing the construction of the compression
function 170 illustrated in FIG. 18. An na-bit message
applied to the compression function 220 is divided into a
number n of a-bit messages, and the a-bit messages are
independently processed by message scheduling sec-
tions (MS sections) 221-1 to 221-n responding to an a-
bit input, respectively, and the message scheduling sec-
tions (MS sections) 221-1 to 221-n generate c-bit outputs,
respectively.
[0104] Exclusive-OR operation sections (XOR) 223-1
to 223-n perform an exclusive-OR operation between the
c-bit outputs from the message scheduling sections (MS
sections) 221-1 to 221-n, respectively, and then a c-bit
output is applied to one chaining variable (CV) process-
ing section 222. The chaining variable (CV) processing
section 222 receives an c-bit output from the exclusive-
OR operation section (XOR) 223-n and b bits as an input
for the compression function 220 to generate an b-bit
outputs [Z] as an output of the compression- function.
Also in this construction, the compression function
achieving an na-bit message input with use of functions
(the message scheduling sections) responding to an a-
bit input which has a shorter length than na bits is allowed
to be constructed. Note that a construction formed by
replacing the exclusive-OR operation section with a mod-
ulo addition processing section may be used.
[0105] Thus, the data converter according to the ex-
emplary embodiment of the invention includes a plurality
of processing sequences to which the divided data blocks
of the message data are applied simultaneously, and is
configured to execute a data conversion process with
use of a plurality of compression-function execution sec-
tions (f).
[0106] Each of the plurality of compression-function
execution sections (f) is configured to perform a process
with use of the message scheduling section (MS section),
which receives divided data blocks of the message data
to perform a message scheduling process on the data
blocks, and a process with use of the changing variable
(CV) processing section, which receives both of an output
from the message scheduling section (MS section) and
an intermediate value (a chaining variable) which is an
output from a preceding processing section to generate
output data whose number of bits is same as that of the
intermediate value through compression of received da-
ta.
[0107] The plurality of compression-function execution
sections, respectively performing parallel processing in

the plurality of process sequences, commonly use one
or both of the message scheduling section (MS section)
and the chaining variable (CV) processing section, and
perform a process with use of a single message sched-
uling section or a single chaining variable processing sec-
tion. Downsizing of a hardware configuration and simpli-
fication of processing steps are achieved by such a con-
struction.

[10. Method of achieving hash function using repeated
transposition in CV processing section and MS section]

[0108] As described above, the compression function
is achievable with use of the message scheduling section
(MS section) and the chaining variable (CV) processing
section as constituent elements. Specific construction
examples of the message scheduling section (MS sec-
tion) and the chaining variable (CV) processing section
will be described below.
[0109] A message scheduling section (MS section) or
a chaining variable (CV) processing section based on a
transposition function is generally known. For example,
SHA-1 or Whirlpool known as a hash function has a con-
struction based on the transposition function.
[0110] The transposition function applied to the mes-
sage scheduling section (MS section) or the chaining var-
iable (CV) processing section is preferably a transposi-
tion function with high scrambling capability.
[0111] A construction example of a transposition func-
tion with scrambling capability enhanced by repeatedly
using a relatively simple transposition function will be de-
scribed below. In the following description, a relatively
simple transposition repeated in the transposition func-
tion is called "internal transposition" and a transposition
thereby achieved is called "total transposition".
[0112] Note that the transposition function is a function
for generating an output value based on an input value
so that an input size and an output size are the same as
each other and one input value corresponds to one output
value. In addition, the transposition function has an in-
verse function because of its properties.
[0113] In the total transposition, data may be added to
intermediate data between two internal transposition
processes from outside or the intermediate data may be
applied to outside of the function. In the compression
function, with use of the intermediate data, input of data
or output of additional data may be applied to a part ex-
cept for an original input part and an original output part
of the total transposition. Data applied to the part except
for the original input part is called additional input and
the intermediate data applied to a part except for the orig-
inal output is called intermediate output.
[0114] A transposition function (transposition section)
310 illustrated in FIG. 21 is an example of a transposition
function with an additional input 311. Moreover, a trans-
position function (transposition section) 320 illustrated in
FIG. 22 is an example of a transposition function with an
intermediate output 321.

23 24

EP 2 325 828 A1

14

5

10

15

20

25

30

35

40

45

50

55

[0115] The transposition functions illustrated in FIGs.
21 and 22 are based on a total transposition responding
to an a-bit input/output. In the transposition functions,
internal transpositions 1 to k are sequentially applied.
The transposition function 310 illustrated in FIG. 21 has
a construction in which the additional input 311 is exclu-
sive-ORed with intermediate data which is an output val-
ue of an internal transposition to be applied to a following
internal transposition section or outside. In the transpo-
sition function 320 illustrated in FIG. 22, intermediate da-
ta which is an output value of an internal transposition is
applied to outside as an intermediate output 321. Here-
inafter, to discriminate a total transposition of this type
from a general total transposition, the transposition func-
tion of a type illustrated in FIG. 21 is called transposition
function with an additional input, and the transposition
function of a type illustrated in FIG. 22 is called transpo-
sition function with an intermediate output.
[0116] Note that the transposition function with an ad-
ditional input inherits the following intrinsic property of a
transposition.
* When an additional input is fixed, one input corresponds
to one output.
Moreover, the transposition function with an intermediate
output has the following property derived from a trans-
position function.
* One input corresponds to one intermediate output.
[0117] The compression function forming a hash func-
tion is configured of the message scheduling section (MS
section) and the chaining variable (CV) processing sec-
tion as described above referring to FIGs. 13 to 20. It has
been already known that the transposition function with
an additional input is used for the chaining variable (CV)
processing section, and the transposition function with
an intermediate output is used for the message sched-
uling section (MS section), and they are connected to
each other to construct the compression function (Whirl-
pool).
[0118] FIG. 23 illustrates a construction example of a
compression function 330 using the existing transposi-
tion function. The compression function 330 illustrated in
FIG. 23 has a construction in which a message sched-
uling section (MS section) 331 is provided as an a-bit
transposition function with an intermediate output, and
the intermediate output is connected to an additional in-
put of an a-bit transposition function with an additional
input used for a chaining variable (CV) processing sec-
tion 332.
[0119] In the construction illustrated in FIG. 23, to sim-
plify the description, the a-bit transposition functions are
used in both of the message scheduling section (MS sec-
tion) 331 and the chaining variable (CV) processing sec-
tion 332; however, the transposition sizes of the message
scheduling section (MS section) 331 and the chaining
variable (CV) processing section 332 are not necessarily
equal to each other. In the case where the lengths of the
message scheduling section (MS section) 331 and the
chaining variable (CV) processing section 332 are differ-

ent from each other, the lengths may be adjusted by ap-
propriately performing extension and compression oper-
ations. Moreover, unlike the case illustrated in FIG. 23,
all intermediate outputs are not necessarily connected
between the message scheduling section (MS section)
331 and the chaining variable (CV) processing section
332, and a process such as appropriately reducing the
intermediate outputs may be executed in consideration
of security properties or processing efficiency to select
intermediate data connected between the message
scheduling section (MS section) 331 and the chaining
variable (CV) processing section 332.

[11. Method of extending size of MS section]

[0120] FIG. 24 illustrates a construction example of a
compression function in which a data size to be applied
to the compression function is extended. A compression
function 340 illustrated in FIG. 24 is a compression func-
tion in which an input bit length is extended to 3a bits.
The compression function 340 illustrated in FIG. 24 has
the same construction as that described above referring
to FIG. 18, and includes two message scheduling section
(MS sections) 341 and 342 and one chaining variable
(CV) processing section 343 receiving results of exclu-
sive-OR operations of outputs from the two message
scheduling sections (MS sections) 341 and 342.
[0121] Two message scheduling sections (MS sec-
tions) 341 and 342 each are configured of a transposition
function with an intermediate output. One chaining vari-
able (CV) processing section 343 is configured of a trans-
position function with an additional input.
[0122] The transposition function 340 illustrated in
FIG. 24 has a construction in which a 2a-bit input X is
divided into a-bit blocks and the a-bit blocks are applied
to two message scheduling sections (MS sections) 341
and 342, respectively, and intermediate outputs from the
two message scheduling sections (MS sections) 341 and
342 are applied to one chaining variable (CV) processing
section 343. When the transposition function with an ad-
ditional input and the transposition function with an inter-
mediate output are used in such a manner, an input
length is allowed to be increased easily.
[0123] Moreover, in the construction of the transposi-
tion function 340 illustrated in FIG. 24, two transposition
functions used as the message scheduling sections (MS
sections) are not allowed to be the same as each other,
because in the case where the transposition functions
are the same as each other, when the same a-bit data
block is applied to both of the transposition functions,
corresponding intermediate outputs are the same as
each other and a result of an exclusive-OR operation
(XOR) is cancelled. Therefore, it is necessary to prepare
different transposition functions for the message sched-
uling sections (MS sections). This is achievable by using
different constructions of internal transpositions.
[0124] The length of the input X is allowed to be ex-
tended to 3a bits or over by generalizing the construction

25 26

EP 2 325 828 A1

15

5

10

15

20

25

30

35

40

45

50

55

of the compression function illustrated in FIG. 24. For
example, this is achievable by adding the message
scheduling section (MS section).
[0125] In the construction illustrated in FIG. 24, a meth-
od of reducing a throughput to achieve speedup. In a
compression function with a multistage construction con-
figuring a hash function, for example, as described refer-
ring to FIGs. 4, 5 and the like, values to be applied to the
compression function are a message as data [X] and an
intermediate value as data Y, that is, a chaining variable
(CV).
[0126] At this time, the number of repetitions of a trans-
position for message processing is not necessarily equal
to the number of repetitions of a transposition for a chain-
ing variable (CV) sequence. For example, the case where
the number of repetitions of the transposition for mes-
sage processing is reduced by half within a range not
impairing security properties will be considered below.
[0127] FIG. 25 illustrates a compression function 350
in which the input bit length is extended to 3a bits as in
the case illustrated in FIG. 24. A 2a-bit input X for the
compression function 350 is divided into a-bit blocks, and
the a-bit blocks are applied to two message scheduling
sections (MS sections) 351 and 352, respectively, and
intermediate outputs of the two message scheduling sec-
tions (MS sections) 351 and 352 are applied to one chain-
ing variable (CV) processing section 353.
[0128] The number of repetitions of the internal trans-
position in each of the two message scheduling sections
(MS sections) 351 and 352 illustrated in FIG. 25 is set to
be equal to half the number of repetitions of the internal
transposition in the chaining variable (CV) processing
section 353.
[0129] In the message scheduling section (MS sec-
tion) 351, even-numbered transpositions are removed,
and in the message scheduling section (MS section) 352,
odd-numbered transpositions are removed; therefore,
the number of repetitions of the internal transposition in
each of the two message scheduling sections (MS sec-
tions) 351 and 352 are reduced by half. Operations nec-
essary for message processing are allowed to be re-
duced by half by this construction.
[0130] In the compression function 350 illustrated in
FIG. 25, compared to the construction of the compression
function 340 illustrated in FIG. 24, processes are re-
duced; therefore, an improvement in software processing
is expected. When functions are alternately removed in
the message scheduling sections (MS sections) 351 and
352, as a merit, the number of transpositions allowed to
be performed simultaneously at the time of hardware im-
plementation is allowed to be set to two to achieve
processing with a small circuit scale, that is, downsizing
of hardware is achievable.
[0131] Moreover, as in the case illustrated in FIG. 25,
a compression function 360 illustrated in FIG. 26 is a
compression function 360 in which the input bit length is
extended to 3a bits. A 2a-bit input X for the compression
function 360 is divided into a-bit blocks, and the a-bit

blocks are applied to two message scheduling sections
(MS sections) 361 and 362, respectively, and intermedi-
ate outputs of the two message scheduling sections (MS
sections) 361 and 362 are applied to one chaining vari-
able (CV) processing section 363.
[0132] The chaining variable (CV) processing section
363 in the compression function 360 illustrated in FIG.
26 has a construction in which one internal transposition
section 364 is added in front of the chaining variable (CV)
processing section 353 in the compression function 350
illustrated in FIG. 25, and the number of repetitions of
the internal transposition is increased by 1.
[0133] In the compression function 360 illustrated in
FIG. 26, one internal transposition is added in front of a
total transposition for the chaining variable (CV) process-
ing section 363. According to this change, the compres-
sion function 360 has a construction in which an input
value of the upper message scheduling section (MS sec-
tion) 361 is exclusive-ORed with an input value of the
chaining variable (CV) processing section 363.
[0134] As a characteristic of this construction, when
attention is given to one of the message scheduling sec-
tions (MS sections), intermediate data applied to the
chaining variable (CV) processing section 363 is applied
every two transposition functions of the chaining variable
(CV) processing section 363 without exception. By this
construction, influences of the message scheduling sec-
tions (MS sections) 361 and 362 arranged one above the
other are equally exerted on a sequence of the chaining
variable (CV) processing section 363 so as to achieve
balanced scrambling. As a result, there is a merit that
security evaluation is easier.

[12. Method of extending size of CV processing section]

[0135] A compression function 370 illustrated in FIG.
27 shows a construction in which two compression func-
tions forming a sequence described above referring to
FIG. 15 commonly use the message scheduling section.
When the domain extension method presented in FIG.
15 is applied to the case of b=a, the size of the chaining
variable (CV) processing section is extended.
[0136] In the compression function 370 illustrated in
FIG. 27, an input of a bits which are constituent bits of a
message [X] are applied to a message scheduling sec-
tion (MS section) 371, and inputs of a bits as two chaining
variables (CV) which are intermediate values are applied
to chaining variable (CV) processing sections 372 and
373, respectively.
[0137] The message scheduling section (MS section)
371 is configured of a transposition function with an in-
termediate output. Two chaining variable (CV) process-
ing sections 372 and 373 each are configured of a trans-
position function with an additional input. The intermedi-
ate output of the message scheduling section (MS sec-
tion) 371 is set as the additional inputs of two chaining
variable (CV) processing sections 372 and 373. The in-
termediate output of the message scheduling section

27 28

EP 2 325 828 A1

16

5

10

15

20

25

30

35

40

45

50

55

(MS section) 371 is excluve-ORed with an input or the
intermediate value in each of the two chaining variable
(CV) processing sections 372 and 373 to be applied to
an internal transposition section. Alternatively, the inter-
mediate input is used to generate an output value.

[13. Method of extending sizes of CV processing section
and MS section]

[0138] A compression function 380 illustrated in FIG.
28 is a modification example of the compression function
370 illustrated in FIG. 27, and is a construction example
of a compression function in which a data size to be ap-
plied to a compression function is extended by the same
technique as that of the compression function 340 de-
scribed above referring to FIG. 24. The compression
function 380 illustrated in FIG. 28 is a compression func-
tion in which the input bit length is extended to 3a bits.
The compression function 380 illustrated in FIG. 28 in-
cludes two message scheduling sections (MS sections)
381 and 382 and one chaining variable (CV) processing
section 383 and 384 receiving results of exclusive-OR
(XOR) operations of outputs of the two message sched-
uling sections (MS sections) 381 and 382.
[0139] The two message scheduling sections (MS sec-
tions) 381 and 382 each are configured of a transposition
function with an intermediate output. Two chaining vari-
able (CV) processing sections 383 and 384 each are con-
figured of a transposition function with an additional input.
The intermediate output of the message scheduling sec-
tion (MS section) 381 is provided as the additional input
of the chaining variable (CV) processing section 383. The
intermediate output of the message scheduling section
(MS section) 382 is provided as the additional input of
the chaining variable (CV) processing section 384. The
two chaining variable (CV) processing sections 383 and
384 uses the additional input to be exclusive-ORed with
an input or an intermediate value and then be applied to
an internal transposition section, or to generate an output
value.

[14. Method of constructing scrambling function F for do-
main extension method]

[0140] The scrambling function F may be configured
of a combination of a transposition function with an inter-
mediate output and a transposition function with an ad-
ditional input. FIG. 29 is a construction example of a
scrambling function F390 configured of a combination of
two transposition functions with an intermediate output
and two transposition function with an additional input.
[0141] The scrambling function F390 includes two
message scheduling sections (MS sections) 391 and 392
and one chaining variable (CV) processing section 393
and 394 receiving results of exclusive-OR operations
(XOR) of outputs from the two message scheduling sec-
tions (MS sections) 391 and 392.
[0142] The two message scheduling sections (MS sec-

tions) 391 and 392 each are configured of a transposition
function with an intermediate output. The two chaining
variable (CV) processing sections 393 and 394 each are
configured of a transposition function with an additional
input.
[0143] The intermediate output of the message sched-
uling section (MS section) 391 is provided as an addi-
tional input of the chaining variable (CV) processing sec-
tion 393. The intermediate output of the message sched-
uling section (MS section) 392 is provided as an addi-
tional input of the chaining variable (CV) processing sec-
tion 394. Two chaining variable (CV) processing sections
393 and 394 uses the additional input to be exclusive-
ORed with an input or an intermediate value and then be
applied to an internal transposition section, or to generate
an output value,
[0144] The scrambling function F390 receives 2a bits
as an input [Y] and generates a 2a-bit output [Z]. Note
that a transposition in the data converter of the invention
may have a construction in which some parts are re-
moved as in the case of the above-described construc-
tions in FIGs. 25 and 26.

[15. Method of achieving transposition process with high
diffusion capability]

[0145] A transposition function applied to the message
scheduling section (MS section) or the chaining variable
(CV) processing section is achievable by repeatedly ap-
plying an internal transposition as a relatively simple
transposition function as described above. When such a
relatively simple transposition function is repeatedly ap-
plied, a transposition function with enhanced scrambling
capability is allowed to be constructed.
[0146] A specific construction example of a transposi-
tion function applicable as an internal transposition will
be described below referring to FIG. 30. FIG. 30 is a
construction example of a transposition function as an
internal transposition used in a transposition function ex-
ecuting a total transposition for constructing a repeat type
transposition function with high scrambling capability.
The total transposition is configured by repeatedly and
sequentially applying the internal transposition. An inter-
nal transposition section (transposition function) 410 in
FIG. 30 has a construction in which a 256-bit input/output
transposition is performed.
[0147] 256-bit data applied to the internal transposition
section (transposition function) 410 are represented by
32-byte data. Each byte corresponds to one input data
line illustrated in the drawing.
[0148] First, data is divided into 4-byte (32-bit) data
blocks, that is, eight groups (G1 to G8) from the left. A
nonlinear conversion process is performed on data of 4
bytes included in odd-numbered groups (G1, G3, G5 and
G7) from the left in respective corresponding nonlinear
conversion sections 411.
[0149] When 4-byte (32-bit) data in each of the four
groups (G1, G3, G5 and G7) is generated from the non-

29 30

EP 2 325 828 A1

17

5

10

15

20

25

30

35

40

45

50

55

linear conversion section 411, an exclusive-OR (XOR)
operation section 412 executes an exclusive-OR opera-
tion of the 4-byte (32-bit) data with 4-byte data in a group
on the right side thereof to update the 4-byte (32-bit) data
in each of four even-numbered groups (G2, G4, G6 and
G8).
[0150] In other words, 4-byte (32-bit) data in each of
four even-numbered groups (G2, G4, G6 and G8) is up-
dated by the following processes:

an exclusive-OR operation between data of a result
of nonlinear conversion on 4-byte data in the group
(G1) and input data in the group (G2) is executed,
an exclusive-OR operation between data of a result
of nonlinear conversion on 4-byte data in the group
(G3) and input data in the group (G4) is executed,
an exclusive-OR operation between data of a result
of nonlinear conversion on 4-byte data in the group
(G5) and input data in the group (G6) is executed,
and
an exclusive-OR operation between data of a result
of nonlinear conversion on 4-byte data in the group
(G7) and input data in the group (G8) is executed.

[0151] Next, in an interchanging section 413, an inter-
changing process on each 1-byte data is performed. Four
groups (G1, G3, G5 and G7) including data generated
from the nonlinear conversion sections 411 are moved
so that a leftmost group is moved to the position of a
rightmost group and other groups are moved to positions
of groups on the immediate left thereof, respectively.
In other words, an interchanging process is executed in
the following manner to generate data:

the group (G1) is applied to the position of an output
group (Gout8),
the group (G3) is applied to the position of an output
group (Gout2),
the group (G5) is applied to the position of an output
group (Gout4), and
the group (G7) is applied to the position of an output
group (Gout6).

[0152] On the other hand, in the exclusive OR (OR)
operation section 412 performs an interchanging process
of dividing 4-byte (32-bit) data in each of four even-num-
bered groups (G2, G4, G6 and G8) updated by execution
of the exclusive-OR operation into 1-byte data blocks and
moving the 1-byte data blocks to different groups, re-
spectively.
[0153] The following interchanging process is per-
formed on 4-byte data in the group (G2). The 4-byte data
of Group (G2) is divided into 1-byte data blocks repre-
sented by A, B, C and D from a first 1-byte data block.
An interchanging process is executed in the following
manner to generate data:

the first 1-byte data block A in the group (G2) is gen-

erated as a first 1-byte data block in the output group
(Gout1),
a second 1-byte data block B in the group (G2) is
generated as a second 1-bytes data block in the out-
put group (Gout3),
a third 1-byte data block C in the group (G2) is gen-
erated as a third 1-byte data block in the output group
(Gout5), and
a fourth 1-bytes data block D in the group (G2) is
generated as a fourth 1-byte data block in the output
group (Gout7).

[0154] The following interchanging process is per-
formed on 4-byte data in the group (G4).
The 4-byte data of Group (G4) is divided into 1-byte data
blocks represented by E, F, G and H from a first 1-bytes
data block.
An interchanging process is executed in the following
manner to generate data:

the first 1-byte data block E in the group (G4) is gen-
erated as a first 1-byte data block in the output group
(Gout3),
a second 1-byte data block F in the group (G4) is
generated as a second 1-byte data block in the out-
put group (Gout5),
a third 1-byte data block G in the group (G4) is gen-
erated as a third 1-byte data block in the output group
(Gout7), and
a fourth 1-byte data block H in the group (G4) is gen-
erated as a fourth 1-byte data block in the output
group (Gout1).

[0155] The following interchanging process is per-
formed on 4-byte data of the group (G6).
The 4-byte data of Group (G6) is divided into 1-byte data
blocks represented by I, J, K and L from a first 1-byte
data block.
An interchanging process is executed in the following
manner to generate data:

the first 1-byte data block I in the group (G6) is gen-
erated as a first 1-byte data block in the output group
(Gout5),
a second 1-byte data block J in the group (G6) is
generated as a second 1-byte data block in the out-
put group (Gout7),
a third 1-byte data block K in the group (G6) is gen-
erated as a third 1-byte data block in the output group
(Gout1), and
a fourth 1-byte data block L in the group (G6) is gen-
erated as a fourth 1-byte data block in the output
group (Gout3).

[0156] The following interchanging process is per-
formed on 4-byte data of the group (G8).
The 4-byte data of Group (G8) is divided into 1-byte data
blocks represented by M, N, O and P from a first 1-byte

31 32

EP 2 325 828 A1

18

5

10

15

20

25

30

35

40

45

50

55

data block.
An interchanging process is executed in the following
manner to generate data:

the first 1-byte data block M in the group (G8) is gen-
erated as a first 1-byte data block in the output group
(Gout7),
a second 1-byte data block N in the group (G8) is
generated as a second 1-byte data block in the out-
put group (Gout1),
a third 1-byte data block O in the group (G8) is gen-
erated as a third 1-byte data block in the output group
(Gout3),and
a fourth 1-bye data block P in the group (G8) is gen-
erated as a fourth 1-byte data block in the output
group (Gout5).

[0157] Note that in an internal transposition section
(transposition function) in a following round, output
groups (Gout1, Gout3, Gout5 and Gout7) are applied to
nonlinear conversion.
[0158] Thus, when the interchanging process of inter-
changing inputs and outputs is executed, it is assured
that conversion processes of different kinds on each byte
data are executed in each round.
[0159] As illustrated in an output section of the internal
transposition section (transposition function) 410 in FIG.
30, 32 byte outputs are represented by x1 to x32, respec-
tively. For example, an intermediate output in a transpo-
sition function with an intermediate output illustrated in
FIG. 22 corresponds to these outputs. In other words,
the message scheduling section (MS section) in each of
the constructions of the compression function and the
scrambling function F described referring to FIGs. 23 to
27 is configured of a transposition function with an inter-
mediate output, and these outputs correspond to the in-
termediate output generated from the message sched-
uling section (MS section).
[0160] The intermediate output is applied as an addi-
tional input in a transposition function with an additional
input illustrated in FIG. 21. For example, the chaining
variable (CV) processing section in each of the construc-
tions of the compression function and the scrambling
function F described referring to FIGs. 23 to 27 is con-
figured of a transposition function with an additional input,
and 32 byte outputs x1 to x32 from the output section of
the internal transposition section (transposition function)
410 illustrated in FIG. 30 are applied as the additional
input of the chaining variable (CV) processing section.
[0161] Note that a large number of the constructions
of the internal transposition sections (transposition func-
tions) 410 illustrated in FIG. 30 are provided to the inside
of the compression function or the scrambling function F
as described referring to FIGS. 23 to 27. All output values
x1 to x32 of intermediate data generated by the internal
transposition section (transposition function) may be
used or only some of the output values x1 to x32 may be
used.

[0162] For example, in the construction of the internal
transposition section (transposition function) 410 illus-
trated in FIG. 30, only output values x5 to x8, x13 to x16,
x21 to x24 and x29 to x32 from the nonlinear conversion
section 411 may be used as intermediate outputs. Alter-
natively, only output values x1 to x4, x9 to x12, x17 to
x20 and x25 to x28 to be applied to nonlinear conversion
sections in a following transposition function may be used
as intermediate values.
[0163] Next, an example of an internal construction of
the nonlinear conversion section 411 in the internal trans-
position section (transposition function) 410 described
referring to FIG. 30 will be described below referring to
FIG. 31. The nonlinear conversion section 411 is allowed
to be constructed as a transposition function receiving 4-
byte data and generating 4-byte data.
[0164] The nonlinear conversion section 411 illustrat-
ed in FIG. 31 receives 4-byte data. One line illustrated in
FIG. 31 corresponds to a 1-byte data block. In an exclu-
sive-OR (XOR) operation section 421, the received data
are exclusive-ORed with four constant values (con-
stants) C1, C2, C3 and C4 predetermined in the nonlinear
conversion sections 411, respectively. Note that four
nonlinear conversion sections 411 are included in the
internal transposition section (transposition function) 410
described referring to FIG. 30, and these four nonlinear
conversion sections have different constant values (con-
stants). A process of setting the constant values (con-
stants) will be described later.
[0165] Next, small nonlinear conversion sections 422
execute a 1-byte input/output nonlinear conversion proc-
ess on data exclusive-ORed with four constant values
(constants) C1, C2, C3 and C4, which are predetermined
in the nonlinear conversion sections 411, in exclusive-
OR (XOR) operation sections 421, respectively.
[0166] Outputs of the small nonlinear conversion sec-
tions 422 are applied to a linear conversion section 423,
and linear conversion is performed on the outputs to gen-
erate outputs. Note that the small nonlinear conversion
sections 422 described herein are sometimes called S-
boxes, and may be represented as conversion tables for
256 pieces of 1-byte data. Moreover, the linear conver-
sion section 423 is executed as a process of computing
output data by a conversion process with use of a linear
conversion matrix (M) on input data. The linear conver-
sion matrix (M) is also called diffusion matrix, and is
sometimes represented as a 4x4 matrix having elements
of GF(28).
[0167] In the transposition function, it is desirable to,
while exerting the influence of a certain data on as many
data as possible, prevent the total of nonzero elements
included in an input/output from reaching a low level
wherever possible. This is effective to improve analysis
resistance and eliminate vulnerability. More specifically,
this is a measure against a differential attack or a linear
attack.
[0168] As described referring to FIGs. 23 to 27, a large
number of the construction of the internal transposition

33 34

EP 2 325 828 A1

19

5

10

15

20

25

30

35

40

45

50

55

sections (transposition functions) 410 illustrated in FIG.
30 are provided for the compression function or the
scrambling function F. In other words, a process of re-
peating the international transposition section (transpo-
sition function) 410 illustrated in FIG. 30 a plurality of
rounds.
[0169] A large number of encryption algorithms have
a construction executing a round operation in which the
same transposition process is repeated a plurality of
rounds, and it is known that as a measure against vul-
nerability, it is effective to use a so-called DSM (Diffusion
Switching Mechanism) in which a plurality of different ma-
trices, for example, two matrices [M1] and [M2] are used
instead of one fixed matrix as the linear conversion matrix
[M] applied in every round. Note that an encryption algo-
rithm using the DSM is described in, for example, Japa-
nese Unexamined Patent Application Publication No.
2007-199156 of the applicant of the present invention.
[0170] It is considered that an effect of overcoming vul-
nerability by the DSM is also effective in a hash function.
In other words, when a plurality of different matrices are
used instead of one fixed matrix as the linear conversion
matrix [M] applied to all rounds, the hash function is more
indistinguishable from a random function, and difficulty
in various analysis processes is allowed to be enhanced.
[0171] FIG. 32 illustrates a construction example of re-
peated rounds of an internal transposition section set so
as to use a plurality of different matrices as the linear
conversion matrix [M] used in the nonlinear conversion
section 411 of the internal transposition section (trans-
position function) 410 illustrated in FIG. 30 which is plu-
rally provided for the compression function or the scram-
bling function F.
[0172] FIG. 32 is a simplified illustration of a combined
construction of two rounds of the internal transposition
section (transposition function) illustrated in FIG. 30
which is plurally provided for the compression function
or the scrambling function F. An internal transposition
section (transposition function) 440 has the same con-
struction as the internal transposition section (transposi-
tion function) 410 illustrated in FIG. 30. An internal trans-
position section (transposition function) 450 indicates a
round executing a following internal transposition. Each
input line corresponds to 4-byte data.
[0173] As in the case of the internal transposition sec-
tion (transposition function) 410 illustrated in FIG. 30, the
internal transposition section (transposition function) 440
includes a nonlinear conversion section 441, an exclu-
sive-OR operation (XOR) section 442 and an interchang-
ing section 443. The nonlinear conversion section 441
has a construction described referring to FIG. 31.
[0174] As described referring to FIG. 31, the nonlinear
conversion, section 441 includes exclusive-OR operation
sections, small nonlinear conversion sections and a lin-
ear conversion section. The linear conversion section ex-
ecutes a linear conversion process with use of the linear
conversion matrix M.
[0175] In FIG. 32, four nonlinear conversion process-

ing sections for 4-byte data provided as the nonlinear
conversion sections 441 are illustrated, and each have
a construction described referring to FIG. 31. In FIG. 32,
linear conversion matrices M used in the linear conver-
sion sections of the four nonlinear conversion sections
are represented by M1, M2, M3 and M4 from the left side,
respectively. The linear conversion matrices M1, M2, M3
and M4 are different from one another.
[0176] The internal transposition sections (transposi-
tion functions) 440 and 450 in the rounds have the same
construction. In other words, in both of the internal trans-
position sections (transposition functions) 440 and 450,
the linear conversion matrices M used in the linear con-
version sections of four nonlinear conversion sections
are M1, M2, M3 and M4 from the left side. Thus, the same
matrices are used in the same positions in the internal
transpositions.
[0177] It is understood from lines (heavy lines) con-
necting between the rounds illustrated in FIG. 32 that an
output of the nonlinear conversion in the internal trans-
position section (transposition function) 440 in an upper
round is exclusive-ORed with an output of one nonlinear
conversion of the transposition section (transposition
function) 450 in a lower round.
[0178] For example, an output (an output A in the draw-
ing) from a nonlinear conversion section 441a having the
linear conversion matrix M1 on the far left in the nonlinear
conversion section 441 of the internal transposition sec-
tion (transposition function) 440 in the upper round is
exclusive-ORed, in an exclusive-OR operation section
452, with an output (an output B in the drawing) from a
nonlinear conversion section 451d having the linear con-
version matrix M4 on the far right in the nonlinear con-
version section 451 of the internal transposition section
(transposition function) 450 in the lower round. An output
of the result is an output C illustrated in the drawing.
[0179] Each of outputs from four nonlinear conversion
sections of the nonlinear conversion section 441 in the
internal transposition section (transposition function) 440
in the upper round is exclusive-ORed with one of outputs
from four nonlinear conversion sections of the nonlinear
conversion section 451 in the internal transposition sec-
tion (transposition function) 450 in the lower round.
[0180] Combinations of outputs from the nonlinear
conversion sections 441 in the upper round and outputs
from the nonlinear conversion sections 451 in the lower
round which are exclusive-ORed are illustrated as follows
as combinations of the linear conversion matrices [M] in
each nonlinear conversion section.

(1) M1 and M4 (nonlinear conversion sections 441a
and 451d)
(2) M2 and M1 (nonlinear conversion sections 441b
and 451a)
(3) M3 and M2 (nonlinear conversion sections 441c
and 451b)
(4) M4 and M3 (nonlinear conversion sections 44 1
d and 451c)

35 36

EP 2 325 828 A1

20

5

10

15

20

25

30

35

40

45

50

55

[0181] When results of execution of the linear conver-
sion processes using different linear conversion matrices
interact with one another, a construction using the above-
described DSM (Diffusion Switching Mechanism) is
achievable so as to increase analysis resistance.
[0182] Note that a connection of two matrices is rep-
resented by a symbol "|", and when matrices set to in-
crease the branch numbers (to, for example, 3 or over)
are selected and used as the above-described matrix
pairs (1) to (4), i.e., M1|M4, M2|M1, M3|M2 and M4|M3,
analysis resistance is allowed to be further increased.
Alternatively, a construction in which the branch numbers
of matrices tM1-1|tM4-1, tM2-1|M1-1, tM3-1|tM2-1 and t

M4-1|tM3-1 which are obtained by aligning matrices ob-
tained by inverting inverse matrices thereof are 3 or over
is used.
[0183] Such a construction increasing the branch num-
bers is allowed to improve resistance to a differential at-
tack or a linear attack.
[0184] Thus, the linear conversion matrix provided for
the nonlinear conversion section in the internal transpo-
sition section (transposition function) executed as re-
peated round operations preferably has a construction
using different matrices with use of a DSM construction.
Moreover, matrices to be used are preferably set so that
the branch number of a combined matrix including a pair
of matrices interacting with each other is increased.
[0185] In the description referring to FIG. 32, four ma-
trices are used; however, the same condition for the
branch number may be satisfied with two matrices. For
example, as illustrated in FIG. 33, a construction in which
matrices are arranged so that the branch number of
M1|M2 is 3 or over, or the branch number of a
matrix tM1-1|tM2-1 obtained by aligning matrices which
are obtained by inverting inverse matrices is 3 or over
may be used.
[0186] In the construction illustrated in FIG. 33, com-
binations of outputs from the nonlinear conversion sec-
tions 441 in the upper round and outputs from the non-
linear conversion sections 451 in the lower round which
are exclusive-ORed are illustrated as follows as combi-
nations of the linear conversion matrices [M] in each non-
linear conversion section.

(1) M1 and M2 (nonlinear conversion sections 461a
and 471d)
(2) M2 and M1 (nonlinear conversion sections 461b
and 471a)
(3) M1 and M2 (nonlinear conversion sections 461c
and 471b)
(4) M2 and M1 (nonlinear conversion sections 461d
and 471c)

[0187] The construction illustrated in FIG. 33 is con-
sidered as a more preferable construction in terms of
implementation, because hardware circuits necessary
for matrices and a table size on a memory are allowed
to be reduced.

[0188] When results of execution of the linear conver-
sion processes using different linear conversion matrices
interact with one another, a construction using the above-
described DSM (Diffusion Switching Mechanism) is
achievable, and analysis resistance is allowed to be in-
creased.
[0189] A construction example of an internal transpo-
sition for achieving a total function with enhanced scram-
bling capability is described above. The above-described
process example is described as an example in which a
256-bit input is used; however, this is only an example,
and the data size may be variously set, and a construction
according to the data size may be provided. In this case,
the construction is set to perform a process according to
an input/output size of the small nonlinear conversion
section and the size of the linear conversion section.

[16. Method of generating transposition function with
highly independent output]

[0190] In the above-described process example, the
internal transposition process construction which is plu-
rally provided for the compression function or the scram-
bling function F is described as a process example in
which the internal transposition process construction il-
lustrated in FIG. 30 is used and is set to be repeated a
plurality of times. Analysis resistance is allowed to be
increased, for example, by constructing a linear conver-
sion process matrix in the nonlinear conversion section
of the internal transposition process in the above-de-
scribed manner.
[0191] In a construction needing a plurality of total
transposition functions, in some cases, analysis resist-
ance is increased by using a plurality of total transposi-
tions which act independently. In this case, there is a
method of achieving the construction by using different
internal transpositions included in the total transposi-
tions. The construction example will be described below.
[0192] To achieve a plurality of different total transpo-
sition processes, a technique of changing parts included
in the internal transpositions in the total transpositions is
effective. However, in terms of implementation efficiency
or ease of a security evaluation process, it is not neces-
sarily desirable to use a large number of different parts.
It is preferable to achieve various processes with use of
as few parts as possible.
[0193] As a construction for performing different inter-
nal transposition processes on total transpositions, re-
spectively, for example, the following construction is con-
sidered.

* Transpose constant values to be used (used in the
exclusive-OR operation section 421 in FIG. 31) with
different constant values from one total transposition
to another.
* S-boxes (the small nonlinear conversion sections
422 in FIG. 31) or linear conversion matrices (the
linear conversion section 423 in FIG. 31) which are

37 38

EP 2 325 828 A1

21

5

10

15

20

25

30

35

40

45

50

55

parts of the internal transposition process included
in the total transposition differ from one total trans-
position to another, and repeatedly use them to
achieve a total transposition.

[0194] Note that the constant values are constants
supplied to the exclusive-OR (XOR) operation section
421 of the nonlinear conversion section 411 of the internal
transposition section 410 described referring to FIGS. 30
and 31.
[0195] However, to thoroughly change the constant
values from one total transposition to another or change
the S-boxes or the matrices, the supply of different data
or different part constructions are necessary, so it is nec-
essary to increase circuits or a memory capacity. Such
an increase in circuits or the memory capacity causes
issues such as a demerit in implementation and an in-
crease in cost for security reevaluation.
[0196] Therefore, in the invention, the internal trans-
position process constructions for total transpositions are
set to be different from one another according to the fol-
lowing construction.

(a) In the case where a plurality of different small
nonlinear operations (S-boxes) (small nonlinear con-
version sections 422 in FIG. 31) are used, change
the small nonlinear operations (S-boxes) of the in-
ternal transpositions from one total transposition to
another.
(b) Set matrices used in a linear conversion section
(the linear conversion section 423 in FIG. 31) to a
plurality of different matrices generated from one ma-
trix, and set matrices of the internal transpositions
to matrices differing from one total transposition to
another. For example, a plurality of different matrices
are generated from one matrix by transposing rows
or columns.
(c) In the case where a plurality of kinds of matrices
are used as matrices used in the linear conversion
section (the linear conversion section 423 in FIG.
31), transpose the matrices of the internal transpo-
sition from one total transposition to another. (For
example, in the case where the above-described
DSM is used, change within a range not departing
from the conditions of the DSM)
(d) A combination of two or more of the above-de-
scribed constructions (a) to (c).

[0197] The transposition process construction in the
internal transposition process which is set to any of the
above-described constructions and is repeatedly execut-
ed is allowed to be efficiently changed. In other words,
different transposition processes are allowed to be exe-
cuted without increasing a circuit scale or a memory ca-
pacity.
[0198] In particular, different total transpositions are
efficiently achievable by a combination of the above-de-
scribed constructions (c) and (b). In other words, in the

case where two or more kinds of linear conversion ma-
trices are stored in a memory with use of the above-de-
scribed DSM construction, rows and columns of these
matrices are transposed to generate and use new matri-
ces as linear conversion matrices. In such a construction,
different linear conversion processes are allowed to be
performed efficiently based on fewer data.
[0199] In a construction using the DSM and including
a plurality of different linear conversion matrices, security
evaluation in the case where rows and columns of the
matrices are transposed is an issue, but it is known that
when a matrix having predetermined rules, for example,
a circulant matrix or a Hadamard-matrix is used, the use
of a matrix generated by transposing rows and columns
does not affect security evaluation. Therefore, it is con-
sidered that security evaluation is easy and the construc-
tion is an effective means for generating a different trans-
position function by a simple change.

[17. Process of generating constant applied to transpo-
sition function]

[0200] As described above, as one technique of
changing the transposition process construction from
round to round, a technique of transposing the constants
([C] used in the exclusive-OR operation section 421 in
FIG. 31) to different constants every round or every two
or more rounds is effective.
[0201] However, a large memory capacity is neces-
sary to maintain constants corresponding to a large
number of rounds. A construction example in which a
large number of different constants are allowed to be
efficiently generated from a small number of constants
and be used in transposition functions will be described
below.
[0202] First, a constant necessary for the transposition
function is defined. Herein, 4 bytes is collectively called
1 word. For example, the internal transposition section
(transposition function) 410 illustrated in FIG. 30 includes
four nonlinear conversion sections, and each nonlinear
conversion section has a construction illustrated in FIG.
31. As illustrated in FIG. 31, four constants are used for
one nonlinear conversion section 411. Each constant is
used for an exclusive-OR operation with 1-byte input da-
ta, so one constant Cn is 1-byte data. One nonlinear con-
version section 411 uses four constants, so a 1-word
constant per nonlinear conversion is necessary.
[0203] The internal transposition section (transposi-
tion function) 410 illustrated in FIG. 30 includes four non-
linear conversion sections, so a 4-word constant is nec-
essary for one internal transposition process. In the case
where a total transposition is constructed by repeating
this basic transposition k times, a 4k-word constant in
total is necessary.
[0204] In a number k of internal transpositions, a j-th
constant value included in an i-th internal transposition
from an input side is represented by Ci,j. Therefore, con-
stants necessary for one total transposition are allowed

39 40

EP 2 325 828 A1

22

5

10

15

20

25

30

35

40

45

50

55

to be represented as follows.

(Examples of groups of constants necessary for one total
transposition)

[0205]

First internal transposition: C1,1, C1,2, C1,3, C1,4
Second internal transposition: C2,1, C2,2, C2,3, C2,4
Third internal transposition: C3,1, C3,2, C3,3, C3,4
Fourth internal transposition: C4,1, C4,2, C4,3, C4,4
:
k-1-th internal transposition: Ck-1,1, Ck-1,2, Ck-1,3,
Ck-1,4
k-th internal transposition: Ck,1, Ck,2, Ck,3, Ck,4

[0206] As a related art disclosing a technique of gen-
erating a constant, there is a technique described in, for
example, Japanese Unexamined Patent Application
Publication No. 2008-58827. In this related art, as a meth-
od of generating a 64-bit constant, values stored in a 8-
bit variable are used 8 times to generate the constant,
and a following constant is generated by performing an
x or x-1 times multiplication of the values in the variable
considered as elements of GF(28) to sequentially in-
crease kinds of data. Note that x used herein is a variable
x when an irreducible polynomial defining a finite field
GF(2n) to be used is represented by a polynominal f(x).
[0207] A method of generating some of constants
based on a series obtained by an x times multiplication
on data for generating a constant, and generating the
rest of the constants based on a series obtained by an
x-1 times multiplication x will be described below as a
constant generation process construction. A simple re-
lationship between constants is allowed to be locally dis-
turbed without increasing an effort to generate constants
by this method. As a result, randomness of constants is
allowed to be increased. This example will be described
with use of an example in which 64 bits corresponding
to two words are generated from one 16-bit value.
[0208] A constant generation process according to the
invention will be described compared to a constant gen-
eration process disclosed in the above-described related
art (Japanese Unexamined Patent Application Publica-
tion No. 2008-58827).
[0209] First, steps of generating constants in related
art will be described below. The steps of generating con-
stants in related art is as follows.

[1] Store initial values in a 16-bit variable S.
[2] Perform the following process on i=1...k.
(2.1) C1,1=(S xor Mask1)<<<Rot1|(S xor Mask2)
<<<Rot2
Ci,2=(S xor Mask3)<<<Rot3|(S xor Mask4)<<<Rot4
Ci,3=(S xor Mask5)<<<Rot5|(S xor Mask6)<<<Rot6
Ci,4=(S xor Mask7)<<<Rot7|(S xor Mask8)<<<Rot8
[2.2] S←S·x

[0210] Note that Mask and Rotn are constants sepa-
rately determined. Herein, a symbol "|" represents a con-
nection of bits. (A xor B) represents an exclusive-OR op-
eration (XOR) process of A and B.
[0211] In some cases, four constants (Ci,1 to Ci,4) gen-
erated in such a manner look like random numbers; how-
ever, the constants are changed only by a mask operation
and a rotation shift operation, so the constants have a
characteristic that even if S is any value, the constants
consistently maintain a relationship represented by a
specific linear operation. It is obvious from block encryp-
tion as an example that it is often insufficient to increase
randomness only by linear conversion, and it is desirable
for the constants to have as nonlinear a property as pos-
sible.
[0212] Next, a technique of generating constants ac-
cording to the invention by introducing a nonlinear rela-
tionship between constants without increasing imple-
mentation cost and reducing performance will be de-
scribed below.

[1] Store initial values in each of 16-bit variables S
and T.
[2] Perform the following process on i=1...k.
(2.1) Ci,1=(S xor Mask1)<<<Rot1|(S xor Mask2)
<<<Rot2
Ci,2=(S xor Mask3)<<<Rot3|(S xor Mask4)<<<Rot4
Ci,3=(T xor Mask5)<<<Rot5|(T xor Mask6)<<<Rot6
Ci,4=(T xor Mask7)<<<Rot7|(T xor Mask8)<<<Rot8
[2.2] S←S·x, T←T·x-1

[0213] When four constants (Ci,1 to Ci,4) are generated
with use of 16-bit variables S and T according to the
above-described process, a half of the four constants
included in each internal transposition belongs to an x-
times multiplication series and the other half belongs to
a x-1-times multiplication series.
[0214] By such a construction, a fixed linear relation-
ship between a constant generated from S and a constant
configured of T is not maintained, and an effect of im-
proving independence is obtained.
[0215] When the above-described constant genera-
tion process is generally described, the constant gener-
ation process is a process of updating initial values S and
T with use of values with different exponents such as Xa

and Xb. When a plurality of constants are generated with
use of such variables S and T, a half of the generated
constants belongs to an xa-times multiplication series
and the other half belongs to an xb-times multiplication
series.
[0216] Note that in addition to two series based on S
and T, when it is acceptable to increase the number of
the initial values, a construction of generating constants
with use of three or more series may be used.

41 42

EP 2 325 828 A1

23

5

10

15

20

25

30

35

40

45

50

55

[18. Method of generating constant for a plurality of total
transpositions]

[0217] The compression function includes a plurality
of total transpositions, and it is necessary to prepare a
group of constant values configured of a plurality of con-
stants for respective total transpositions. When the num-
bers of total transpositions is m, the total transpositions
are represented by P1, P2, ..., Pm, respectively. When
the above-described technique of generating a constant
is used, a method of changing a number m of groups of
initial values from one total transposition to another ac-
cording to the number m of total transpositions to gener-
ate constant values applied to internal transpositions in
the total transpositions is applicable. However, such a
technique is used, an effort to generate the constant val-
ues are increased by m times, so it is not efficient.
[0218] A technique of simplifying a process of gener-
ating constants groups for applying a plurality of total
transpositions will be described below. For example, in
the case where the number m of total transpositions are
included in the compression function, constants neces-
sary for a first total transposition are generated by the
above-described method of using a plurality of initial val-
ues S and T, and constants to be applied to second and
later total transpositions are generated by a simple op-
eration on the constants generated for the first total trans-
position.
[0219] In one data conversion process construction,
for example, a construction in which the number m of
total transpositions are provided for the compression
function, aj-th constant value (word) included in an i-th
internal transposition from an input side of an x-th total
transposition is represented by Ci,j(x). A constant Ci,j(1)
for the first total transposition is generated by the above-
described method of using a plurality of initial values S
and T.
[0220] At this time, constants Cij(2), Cij(3), .., Cij(m) for
second and later total transpositions are generated. A
technique of generating the constants Cij(2), Cij(3), .., Cij
(m) for the second and later total transpositions will be
described below referring to FIG. 34.
[0221] FIG. 34 illustrates, as the constants groups nec-
essary for the number m of total transpositions, a first
constants group 480 generated by the above-described
method of using a plurality of initial values S and T, and
a second constants group 481, a third constants group
482 and an m-th constants group 483 generated by a
conversion process on the first constants group 480.
[0222] All of the number m of total transpositions are
set to an example in which a number k of internal trans-
positions are included in each of the total transpositions
and four constant words are necessary for each of the
internal transpositions.
[0223] The second to m-th constants groups are gen-
erated by the conversion process on the first constants
group 480. A specific example of the conversion process
will be described below.

[0224] As the conversion process, any of the following
three kinds of conversion processes are applicable.

(Conversion process example 1)

[0225] A constant is generated as Ci,j(x)=Ci,j(1)<<<Rx
where a different rotation amount determined in each to-
tal transposition is Rx. Ci,j(1) is a constant as an element
of the first constants group 480 generated by the above-
described method of using a plurality of initial values S
and T. Moreover, x is the identifying number of a con-
stants group, and has a value of 2 to m.

(Conversion process example 2)

[0226] A constant is generated as Ci,j(x)=Ci,j(1) xor Mx
where a different mask value (word) determined in each
total transposition is Mx. Ci,j(1) is a constant as an ele-
ment of the first constants group 480 generated by the
above-described method of using a plurality of initial val-
ues S and T. Moreover, x is the indentifying number of a
constants group, and has a value of 2 to m.

(Conversion process example 3)

[0227] Method by a combination of the above-de-
scribed conversion process examples 1 and 2.
A constant is generated as Ci,j(x)=(Ci,j(1)<<<Rx) xor Mx
or Ci,j(x)=(Ci,j(1) xor Mx)<<<Rx. Ci,j(1) is a constant as
an element of the first constants group 480 generated by
the above-described method of using a plurality of initial
values S and T. Moreover, x is the indentifying number
of a constants group, and has a value of 2 to m.
[0228] A plurality of different constants groups are al-
lowed to be generated from one constants group with
use of any of the above-described conversion process
examples 1 to 3, and the constants groups are set as
constants applied to respective total transpositions.
[0229] Note that in the case of the above-described
conversion process example 1, it is assurable that unless
otherwise Ci,j(0) has a special bit pattern, an result of an
exclusive-OR operation between Ci,j(X) and Ci,j(y) for ar-
bitrary x and y is not 0; therefore, different total transpo-
sitions are allowed to be constructed. Moreover, also in
the case of the above-described conversion process ex-
ample 2, it is assurable that a result of the exclusive-OR
operation is not 0; therefore, the process example is also
suitable to generate different total transpositions.
[0230] In addition, the rotation amount and the mask
value indicated in the above-described conversion proc-
ess examples use values determined in each total trans-
position; however, in a construction in which a plurality
of values are provided for and used as the rotation
amount and the mask value to generate a plurality of
constant values necessary for one total transposition, the
same effects are expected.
[0231] When a group of constant values for a first trans-
position function is provided, by use of these schemes,

43 44

EP 2 325 828 A1

24

5

10

15

20

25

30

35

40

45

50

55

a group of constant values for a different transposition
function is allowed to be generated with small process
cost; therefore, a faster process is expected.
[0232] In particular, in the case where a program ex-
ecution function, that is, software is installed in the data
converter, a programming mode in which groups of con-
stant values for all total transpositions are dynamically
generated when necessary without being temporarily de-
compressed on a memory is applicable, so an improve-
ment in memory use efficiency is expected.
[0233] In the above-described examples, an example
in which a rotation operation is performed from one word
to another is described; however, the rotation operation
may be codified to be performed every two or more
words, and the same effects as those described above
are expected.

[19. Technique of reducing output value of hash function]

[0234] Next, an configuration example of a data con-
verter in which in a hash value generation process con-
struction, a function for generating an n-bit hash value is
prepared and the bit number of an output is reduced by
k bits so that an n-k-bit hash value is allowed to be gen-
erated will be described below.
[0235] For example, a hash function with a 256-bit out-
put is prepared, and the bit number of the output is re-
duced by 32 bits to generate a 224-bit hash function.
[0236] FIG. 35 illustrates the same construction as that
of the internal transposition section (transposition func-
tion) 410 illustrated in FIG. 30, and illustrates an internal
transposition process construction in a final stage of the
total transposition. Outputs y1 to y8 are outputs from the
total transposition and represent hash values as outputs
of the hash function. In FIG. 35, a 1-word (4-byte) data
line is simplified and illustrated as one data line. All of
the outputs y1 to y8 add up to an output of 4x8=32
bytes=256 bits.
[0237] To simplify description, a process of transpos-
ing data after an exclusive-OR operation is not performed
immediately before output. Moreover, data Xi to be eclu-
sive-ORed with a data series immediately before output
represents data which is fed forward and is configured
of a chaining variable or a message as an intermediate
value applied to the compression function.
[0238] A method of deleting data of k bits as deleted
data from data of n bits as an output to reduce the length
of output data is considered. It is necessary to select,
from output series y1 to y8 in the drawing, a data series
of which the bit length is to be reduced. As one method,
there is a scheme of reducing the bit length by k bits
sequentially from the left. In this case, the following issue
is considered. In the case where k bits exceeds the total
of the sizes of two data lines from the left, when output
data which is a result of reducing the length is checked,
a result of a nonlinear conversion process on the far left
has no influence on any bit of remaining outputs. This
indicates that a calculation on this part is unnecessary.

[0239] As techniques of not heavily reducing the length
of a specific data series for the sake of eliminating such
an unnecessary process, the following two process tech-
niques will be described below.

(Data length reduction technique 1)

[0240] The number of output-data series is m and the
number of bits to be reduced (the number of deleted bits)
is k. To divide k bits into m as uniformly as possible,
parameters a and b are calculated by the following math-
ematical expression.
[0241]

where 6k/m[indicates an integer part of (k/m).
Hereinafter 6k/m[is represented by f(k/m).

By the above expression, a and b are calculated, where
a+b=m.

[0242] The length of each of output data of a number
a of output series from the number m of series y1 to ym
obtained as outputs is reduced by f(k/m) bits. Moreover,
the length of each of output data of a number b of re-
maining output series is reduced by f(k/m)+1 bits. In other
words, as illustrated in FIG. 36, a process of reducing
the length of data is executed on each output series.
[0243] It is assurable that in the case where a trans-
position is used, all nonlinear conversion results have an
influence on any of outputs by deleting bits from each bit
strings rather than deleting continuous bit strings, so an
unnecessary process is not included in an output value
generation process.
[0244] In the above-described process of reducing the
bit length of an output, the process is performed on all
output-data series as targets to be subjected to data
length reduction, but the data length reduction process
may be executed only on some selected output series.
[0245] For example, in the internal transposition proc-
ess construction illustrated in FIG. 33, an output of the
same nonlinear conversion has an influence on every
two lines of output data from the left, so, for example,
only odd-numbered (or even-numbered) data series from
the left may be selected as targets to be subjected to
data length reduction. Even if such a process is per-
formed, the same effect of not including an unnecessary
process is expected, and an effort to perform the process
is allowed to be reduced by reducing the number of series
to be subjected to data length reduction. Note that this
series selection construction is applicable to the case

45 46

EP 2 325 828 A1

25

5

10

15

20

25

30

35

40

45

50

55

where a bit length to be reduced does not exceed n/2,
where the number of output series is n.

(Data length reduction technique 2)

[0246] The number of output-data series is m and the
number of bits to be reduced (the number of deleted bits)
is k. To divide k bits into m as uniformly as possible,
parameters a and b are calculated by the following math-
ematical expression.
[0247]

where 6k/m[indicates an integer part of (2k/m).
Hereinafter 6k/m[is represented by f(k/m).
[0248] By the above expression, a and b are calculat-
ed, where a+b=m/2.
The lengths of output data of a number a of output series
from a number m/2 of odd-numbered output series y1 y3,
y5, ..., y2m-1 of a number m of output series y1 to ym ob-
tained as outputs each are reduced by f(2k/m) bits. More-
over, the lengths of output data of a number b of remain-
ing output series from the number m/2 of odd-numbered
output series each are reduced by f(2k/m)+1 bits.
[0249] Thus, the data length reduction process may
be executed by selecting only some output series. In this
process example, an effort to perform the process is al-
lowed to be reduced by reducing the number of series to
be subjected to data length reduction.

[20. Configuration example of data converter]

[0250] Finally, a configuration example of an IC mod-
ule 700 as a device executing processes according to
the above-described exemplary embodiment is illustrat-
ed in FIG. 37. The above-described processes are al-
lowed to be executed by, for example, a PC, an IC card,
a reader/writer, or any other information processing de-
vice. Moreover, each process is allowed to be executed
by a hardware circuit forming a logic circuit or a program,
or both of them. An example of executing the processes
is the IC module 700 illustrated in FIG. 37, and such an
IC module 700 is allowed to be incorporated in various
devices.
[0251] A CPU (central processing unit) 701 illustrated
in FIG. 37 is a processor for executing start and stop of
a data conversion process such as an encryption process
or a hashing process, control of data transmission/recep-
tion, data transfer between the components, and any oth-
er various programs. A memory 702 is configured of a
ROM (Read-Only-Memory) storing a program executed

by the CPU 701 or fixed data such as an operation pa-
rameter, a RAM (Random Access Memory) used as a
storage area or a work region for a program executed in
a process of the CPU 701 and a parameter changed as
necessary in a program process. Moreover, the memory
702 is allowed to be used as a storage area for key data
necessary for the data conversion process such as the
encryption process or the hashing process, a conversion
table (a transposition table) used in the data conversion
process, or data used in a conversion matrix. Note that
the data storage area is preferably configured as a mem-
ory having a tamper-resistant configuration.
[0252] A data conversion section 703 executes, for ex-
ample, the above-described various processes, that is,
a data conversion process responding to each function
such as a hash function, a compression function, a trans-
position function or a scrambling function, constant cal-
culation and an output data length reduction process. In
the execution of each function, linear conversion, non-
linear conversion, an exclusive-OR operation and the like
specified in the execution of each function are executed
according to a predetermined sequence. These process-
es are achieved by hardware or software, or a combina-
tion thereof.
[0253] Herein, an example in which the data conver-
sion section is an individual module is illustrated; how-
ever, for example, an encryption process or a hashing
process program is stored in an ROM, and the CPU 701
may read and execute a program stored in the ROM. The
CPU 701 may execute various processes such as exe-
cution of each function, constant calculation and the out-
put data length reduction process according to a pro-
gram.
[0254] A random-number generator 704 executes a
necessary random number generation process for gen-
eration of keys or parameters which are necessary for
the encryption process or the hashing process.
[0255] A transmitter/receiver 705 is a data communi-
cations processing section executing data communica-
tions with an external device, and executes data com-
munications with an IC module such as a reader/writer
and executes output of a cipher text generated in the IC
module or data input from an external device such as a
reader/writer.
[0256] The present invention has been described in
detail with respect to the specific exemplary embodiment.
However, it is obvious that persons skilled in the art may
make modifications or alterations to the exemplary em-
bodiment without departing from the scope of the present
invention. In other words, the present invention has been
disclosed in the form of illustrative example and is not to
be construed in a limited sense. The claims should be
referenced to determine the scope of the present inven-
tion.
[0257] Moreover, the processes described in the de-
scription may be executed by hardware or software, or
a combined configuration thereof. In the case where the
processes are executed by software, a program on which

47 48

EP 2 325 828 A1

26

5

10

15

20

25

30

35

40

45

50

55

a processing sequence is recorded is allowed to be in-
stalled into a memory in a computer incorporated in ded-
icated hardware and executed, or the program is allowed
to be installed onto a general-purpose computer capable
of executing various processes and executed. For exam-
ple, the program may be recorded in advance on a re-
cording medium. In addition of installing the program in
a computer from the recording medium, the program may
be received through a network such as a LAN (local area
network) or the Internet and be installed in a recording
medium such as a built-in hard disk.
[0258] In addition, various processes described in the
description not only may be executed in a time series
according to the description but also may be executed in
parallel or individually according to the processing per-
formance of a device executing the processes or when
necessary. Further, in this description, "system" refers to
a logical set configuration of a plurality of devices regard-
less of whether the individual constituent devices are
contained in one enclosure.

INDUSTRIAL APPLICABILITY

[0259] As described above, the exemplary embodi-
ment of the invention has a construction in which a data
conversion process with use of a plurality of compres-
sion-function execution sections and through a plurality
of respective process sequences in which a plurality of
divided data blocks configuring message data are proc-
essed in parallel is executed. Each of the plurality of com-
pression-function execution sections performs a process
with use of a message scheduling section, which re-
ceives a corresponding divided data block of the mes-
sage data to perform a message scheduling process,
and a process with use of a chaining variable processing
section, which receives both of an output from the mes-
sage scheduling section and an intermediate value as
an output from a preceding processing section to gener-
ate output data whose number of bits is same as that of
the intermediate value through compression of received
data. The plurality of compression-function execution
sections, respectively performing parallel processing in
the plurality of process sequences, commonly use one
or both of the message scheduling section and the chain-
ing variable processing section, and allow a single mes-
sage scheduling section or a single chaining variable
processing section to be utilized. Downsizing of a hard-
ware configuration and simplification of processing steps
are achieved by such a construction.

Claims

1. A data converter comprising:

a data conversion section which receives mes-
sage data to generate a hash value, the data
conversion section being configured to execute

a data conversion process with use of a plurality
of compression-function execution sections and
through a plurality of respective process se-
quences in which a plurality of divided data
blocks constituting the message data are proc-
essed in parallel,
wherein each of the plurality of compression-
function execution sections is configured to per-
form:

a process with use of a message scheduling
section which receives a corresponding di-
vided data block of the message data to per-
form a message scheduling process; and
a process with use of a chaining variable
processing section which receives both of
an output from the message scheduling
section and an intermediate value as an out-
put from a preceding processing section to
generate output data whose number of bits
is same as that of the intermediate value
through compression of received data, and
the plurality of compression-function execu-
tion sections, respectively performing par-
allel processing in the plurality of process
sequences, are configured to commonly
use one or both of the message scheduling
section and the chaining variable process-
ing section, and to allow a single message
scheduling section or a single chaining var-
iable processing section to be utilized.

2. The data converter according to claim 1, wherein
the plurality of compression-function execution sec-
tions, respectively performing parallel processing in
the plurality of process sequences, include a single
common message scheduling section which is com-
monly used by the plurality of compression-function
execution sections,
the common message scheduling section is config-
ured to receive the divided data blocks constituting
the message data, to generate output data through
performing the message scheduling process on the
divided data blocks, and to output the generated out-
put data to a plurality of chaining variable processing
sections, and
each of the plurality of chaining variable processing
sections are configured to execute processes in par-
allel, in each of which the corresponding chaining
variable processing section receives both of an out-
put from the common message scheduling section
and an intermediate value as an output from a pre-
ceding compression-function executing section to
perform a compression thereof, thereby to generate
output data whose number of bits is same as that of
the intermediate value.

3. The data converter according to claim 1, wherein

49 50

EP 2 325 828 A1

27

5

10

15

20

25

30

35

40

45

50

55

the plurality of compression-function execution sec-
tions, respectively performing parallel processing in
the plurality of process sequences, include a single
common chaining variable processing section which
is commonly used by the plurality of compression-
function execution sections,
a plurality of message scheduling sections provided
in each of the plurality of compression-function ex-
ecution sections performing parallel processing are
configured to receive the same divided data block of
the message data, to generate output data through
message scheduling processes, and to output the
generated output data to the common chaining var-
iable processing section, and
the common chaining variable processing section is
configured to receive both of outputs of the plurality
of message scheduling sections and an intermediate
value as an output from a preceding compression-
function execution section to perform a compression
thereof, thereby to generate output data whose
number of bits is same as that of the intermediate
value.

4. The data converter according to claim 3, wherein
the plurality of message scheduling sections provid-
ed in each of the plurality of compression-function
execution sections performing parallel processing
are configured to receive the same divided data
block of the message data, to generate output data
through message scheduling processes, and to out-
put an exclusive-OR operation of the generated out-
put data to the common chaining variable processing
section.

5. The data converter according to claim 1, wherein
the message scheduling section is configured of a
transposition-function executing section with inter-
mediate output, which repeatedly executes a trans-
position process to output an intermediate value
which is a result of each of the transposition proc-
esses, and
the chaining variable processing section is config-
ured to have a transposition-function executing sec-
tion with additional input, which repeatedly executes
a transposition process with use of the intermediate
value as an additional input outputted from the trans-
position-function executing section with intermedi-
ate output.

6. The data converter according to claim 5, wherein
the chaining variable processing section is config-
ured to utilize an XOR result as input data for the
transposition process in a following state, the XOR
result being a logical value of an exclusive-OR op-
eration between the intermediate value outputted
from the transposition-function executing section
with intermediate output and a result of a transposi-
tion process in a preceding stage.

7. The data converter according to claim 5, wherein
each of the transposition processes executed by the
transposition-function executing sections includes a
nonlinear conversion process performed on a part
or a whole of input data and a swap process which
is a data interchanging process.

8. The data converter according to claim 7, wherein
the nonlinear conversion process is a process in-
cluding an exclusive-OR operation using a constant,
a nonlinear conversion, and a linear conversion us-
ing a linear conversion matrix.

9. The data converter according to claim 7, wherein
a linear conversion process performed in each of the
transposition processes executed by the transposi-
tion-function executing sections is a process execut-
ed according to a DSM (Diffusion Switching Mech-
anism) with use of a plurality of different matrices.

10. The data converter according to claim 5, wherein
the transposition processes executed by the trans-
position-function executing sections are configured
to perform data processes with use of a plurality of
constants groups different from one another, respec-
tively, and
the plurality of constants groups different from one
another, which are generated through data conver-
sion processes performed on a fundamental group,
are used in the transposition processes, respective-
ly, the fundamental group being defined as a con-
stants group to be used in one transposition process.

11. The data converter according to claim 10, wherein
the constants group to be utilized as the fundamental
group is configured of a plurality of constants gen-
erated through application of a conversion rule to a
plurality of initial values S and T which are different
from each other, and
the conversion rule is configured to include an up-
date process performed on the initial values, the up-
date process being represented by the following ex-
pression;

where a≠b.

12. The data converter according to claim 10, wherein
the data conversion process performed on the fun-
damental group is a process which allows a bit rota-
tion operation on each of constants constituting the
fundamental group, or a process which allows a log-
ical operation between each of constants constitut-
ing the fundamental group and predetermined mask
data.

51 52

EP 2 325 828 A1

28

5

10

15

20

25

30

35

40

45

50

55

13. The data converter according to claim 1, wherein
the data conversion section is configured to perform
a reduction process which allows an ultimately out-
putted hash value to be reduced in number of bits,
and
the number of bits to be reduced, in output bits of
each of a plurality of output-data series which con-
stitute an output of the data conversion section, is
calculated according to a predetermined expression
for calculation, and then the reduction process is ex-
ecuted according to a result of the calculation.

14. The data converter according to claim 1, wherein
the data conversion section further includes a scram-
ble-process section executing a data scramble proc-
ess on input data,
the plurality of compression-function execution sec-
tions are configured as multi-stage compression
sections which are allowed to receive all divided data
blocks of the message data,
some of the multi-stage compression sections are
configured to receive both of an output of the scram-
ble-process section and the divided data blocks of
the message data to execute the data compression
process based on data received,
some of the multi-stage compression sections are
configured to receive both of an output of preceding-
stage compression section and the divided data
blocks of the message data to execute the data com-
pression process based on data received, and
a compression section located in a final stage of the
multi-stage compression sections is configured to
output a hash value of the message data.

15. A data conversion method being a data conversion
process method executed by a data converter, the
data conversion method comprising:

a data conversion step of receiving message da-
ta to generate a hash value by a data conversion
section, the data conversion step being a step
of executing a data conversion process with use
of a plurality of compression-function execution
sections and through a plurality of respective
process sequences in which a plurality of divided
data blocks constituting the message data are
processed in parallel,
wherein each of the plurality of compression-
function execution sections perform:

a process with use of a message scheduling
section which receives a corresponding di-
vided data block of the message data to per-
form a message scheduling process; and
a process with use of a chaining variable
processing section which receives both of
an output from the message scheduling
section and an intermediate value as an out-

put from a preceding processing section to
generate output data whose number of bits
is same as that of the intermediate value
through compression of received data, and
the plurality of compression-function execu-
tion sections, respectively performing par-
allel processing in the plurality of process
sequences, commonly use one or both of
the message scheduling section and the
chaining variable processing section, and
perform a process with use of a single mes-
sage scheduling section or a single chaining
variable processing section.

16. A program executing a data conversion process in
a data converter, the program comprising:

a data conversion step of receiving message da-
ta to generate a hash value by a data conversion
section, the data conversion step being a step
of executing a data conversion process with use
of a plurality of compression-function execution
sections and through a plurality of process se-
quences in which a plurality of divided data
blocks constituting the message data are proc-
essed in parallel,
wherein the program allows each of the plurality
of compression-function execution sections to
execute:

a process with use of a message scheduling
section which receives a corresponding di-
vided data block of the message data to per-
form a message scheduling process; and
a process with use of a chaining variable
processing section which receives both of
an output from the message scheduling
section and an intermediate value as an out-
put from a preceding processing section to
generate output data whose number of bits
is same as that of the intermediate value
through compression of received data, and
the program allows the plurality of compres-
sion-function execution sections, respec-
tively performing parallel processing in the
plurality of process sequences, to common-
ly use one or both of the message schedul-
ing section and the chaining variable
processing section, and to perform a proc-
ess with use of a single message scheduling
section or a single chaining variable
processing section.

53 54

EP 2 325 828 A1

29

EP 2 325 828 A1

30

EP 2 325 828 A1

31

EP 2 325 828 A1

32

EP 2 325 828 A1

33

EP 2 325 828 A1

34

EP 2 325 828 A1

35

EP 2 325 828 A1

36

EP 2 325 828 A1

37

EP 2 325 828 A1

38

EP 2 325 828 A1

39

EP 2 325 828 A1

40

EP 2 325 828 A1

41

EP 2 325 828 A1

42

EP 2 325 828 A1

43

EP 2 325 828 A1

44

EP 2 325 828 A1

45

EP 2 325 828 A1

46

EP 2 325 828 A1

47

EP 2 325 828 A1

48

EP 2 325 828 A1

49

EP 2 325 828 A1

50

EP 2 325 828 A1

51

EP 2 325 828 A1

52

EP 2 325 828 A1

53

EP 2 325 828 A1

54

EP 2 325 828 A1

55

EP 2 325 828 A1

56

EP 2 325 828 A1

57

EP 2 325 828 A1

58

EP 2 325 828 A1

59

EP 2 325 828 A1

60

EP 2 325 828 A1

61

EP 2 325 828 A1

62

EP 2 325 828 A1

63

EP 2 325 828 A1

64

EP 2 325 828 A1

65

EP 2 325 828 A1

66

EP 2 325 828 A1

67

EP 2 325 828 A1

68

EP 2 325 828 A1

69

EP 2 325 828 A1

70

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• JP 2007199156 A [0169] • JP 2008058827 A [0206] [0208]

Non-patent literature cited in the description

• One way hash functions and des. R. Merkle. Pro-
ceedings of Crypto’89. Springer-Verlag, 1989,
428-446 [0036]

• A design principle for hash functions. 1. Damgard.
Proceedings of Crypto’89. Springer-Verlag, 1989,
417-427 [0036]

• Multicollisions in iterated hash functions.application
to cascaded constructions. A. Joux. Proceedings of
Crypto’04. Springer-Verlag, 2004, 306-316 [0044]

	bibliography
	description
	claims
	drawings
	search report

