(11) EP 2 328 235 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

01.06.2011 Bulletin 2011/22

(51) Int Cl.:

H01Q 9/04 (2006.01) H01Q 15/00 (2006.01) H01Q 9/28 (2006.01)

(21) Application number: 09252695.3

(22) Date of filing: 27.11.2009

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Designated Extension States:

AL BA RS

(71) Applicant: BAE Systems PLC London SW1Y 5AD (GB)

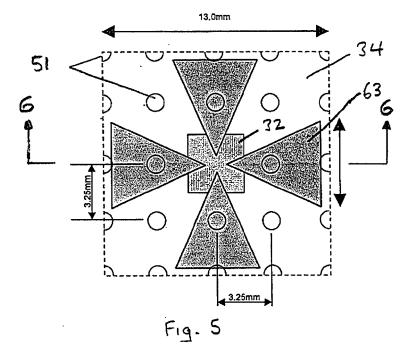
(72) Inventor: The designation of the inventor has not yet been filed

(74) Representative: BAE SYSTEMS plc

Group IP Department

P.O. Box 87

Warwick House Farnborough Aerospace Centre


Farnborough

Hampshire GU14 6YU (GB)

(54) Radar antenna

(57) A radar or other microwave antenna comprises at least one antenna element, a feed structure for the element extending to the antenna element substantially normally thereto through a dielectric substrate, and characterised in that the dielectric substrate is anisotropic

whereby to reduce unwanted common-mode currents in the feed structure. The anisotropy may be provided by elongate conductive elements distributed through the dielectric substrate and aligned with their longitudinal axes parallel to the feed structure.

=P 2 328 235 A1

40

Field of the Invention

[0001] This invention relates to radar and other microwave antennas. By "microwave antenna" we mean one having an operating frequency of at least 300MHz. The invention is particularly but not exclusively suitable for phased arrays.

1

[0002] Phased array antenna systems are well known in the antenna art. Such antennas generally comprise a plurality of radiating antennas that are individually controllable with regard to relative phase and amplitude. The antenna pattern of the array is selectively determined by the geometry of the individual antennas and the selected phase/amplitude relationships among the antennas. Typical radiating elements for such antenna systems may comprise dipoles, slots or any other suitable arrangement.

[0003] Microwave antennas include a wide variety of designs for various applications, such as satellite reception, remote broadcasting, or military communication. For low profile applications printed circuit antennas may be used.

Related Art

[0004] A schematic diagram of a low profile, highly coupled dipole array is illustrated in Figure 1. This particular array comprises a periodic arrangement of dipoles each having a span (periodicity) of around 10mm. The target bandwidth of the antenna array is approximately 2 GHz to 18 GHz. Such antennas are more attractive for use in a low profile antenna than antennas using Vivaldi elements, for example, which are much taller for a similar range of frequencies.

[0005] Such a dipole array usually forms part of a layered structure, including a dielectric substrate upon which the dipole array is printed and dielectric spacer material separating the dipole array from a ground plane. Further dielectric layers may also be included to improve the performance at wide scan angles.

[0006] However, there is a problem with using such a highly coupled dipole array for applications requiring a low profile antenna. Such antennas have a so-called "vertical" feed structure to connect the elements of the dipole array to a driving circuit which extends through the ground plane. By "vertical" is meant substantially normal or perpendicular to the plane of the dipole array.

[0007] A problem arises with feeding a planar array of dipoles, for example, because the vertical feed structure will support unwanted currents. In a scanned array, these unwanted currents are present even when using a balanced feed structure such as twin wire transmission line. These currents are excited at the frequencies and range of scan angles over which the antenna will work effectively.

[0008] In order to avoid the problem of such unwanted

common-mode currents due to the feed structure it would be possible to feed an array of dipoles using an optical fibre feeding an active device. However, this solution would be expensive and largely constrained to receive-only applications due to the limited transmit power. Furthermore whilst an optical feed structure might be possible at lower frequencies which mean larger dipole structures due to larger wavelengths this will become less feasible for smaller dipole structures such as those working around 10 GHz.

[0009] It is desirable to produce a phased array antenna having high bandwidth and high scan range whilst also having a low profile and being light in weight. Of course, it is also desirable to produce such antenna at as low a cost as possible.

[0010] Our co-pending patent application, published as WO 2009/047553, seeks to provide one solution to this problem of unwanted common-mode currents by at least partially surrounding each feed structure with a ferrite element to suppress the unwanted currents over the feed structure. The present invention offers an alternative approach.

[0011] In one aspect the invention provides a radar or other microwave antenna comprising at least one antenna element, a feed structure for the element extending to the antenna element substantially normally thereto through a dielectric substrate, and characterised in that the dielectric substrate is anisotropic thereby to reduce unwanted common-mode currents in the feed structure.

[0012] The invention also provides an antenna array (which may be a phased array) having a number of antenna elements as set forth above. The following optional features may be included in the antenna element or the array, as appropriate.

[0013] The dielectric substrate may selectively present an impedance to electric fields polarised in a first direction, parallel to the feed structure, which is relatively high compared to an impedance presented to electric fields polarised orthogonally to that first direction.

[0014] The dielectric substrate may comprise elongate electrically conductive elements having their longitudinal axes generally aligned in the first direction, and being distributed through the dielectric substrate.

[0015] Thus in another aspect the invention provides a radar or other microwave antenna comprising at least one antenna element disposed in an antenna substrate, a feed structure for the element extending to the element substantially normally thereto through a dielectric substrate, and characterised by an array of discrete elongate elements distributed through the dielectric substrate, the elements being spaced from the feed structure and disposed with their longitudinal axes aligned in a first direction that is parallel to the feed structure.

[0016] The elongate elements may present relatively high impedance to electric fields polarised in that first direction.

[0017] The antenna elements may be spaced apart in at least one direction, the spacing of the elongate ele-

40

ments in that at least one direction being regular from element to element and being a sub-multiple of the dimension (periodicity) of the antenna elements in that at least one direction.

[0018] Thus the antennas may be spaced apart in two orthogonal directions, the spacing of the elongate elements in each of the two orthogonal directions being a sub-multiple of the dimension (periodicity) of the antenna elements in each of those two orthogonal directions.

[0019] The said spacing of the elongate elements may be one half to one eighth and preferably one fourth of the respective dimension of the antenna elements.

[0020] The elongate elements may be spaced apart by a distance several times less, for example 4 to 16 times less, preferably 8 times less than the shortest wavelength of signals which the antenna is designed to transmit or receive.

[0021] The antenna elements may comprise pairs of dipoles, one of which dipoles is aligned in a second direction, the other of which is aligned orthogonally to the first and second directions.

[0022] The elongate elements may extend only partially through the thickness of the dielectric substrate normal to the antenna element.

[0023] The dielectric material may extend from the antenna element to a ground plane disposed substantially parallel to said antenna element, the elongate elements having ends spaced from at least one of the substrate and the ground plane.

[0024] The length of the elongate elements may be between 50% and 90% of the distance between the antenna element and the ground plane, and preferably about 70%. The elongate elements may be rod-like.

[0025] The elongate elements may be circular in section and have a length to diameter ratio in the range of between 5 and 15 to 1 and preferably 7 to 1.

[0026] The elongate elements in operation may couple capacitively to the ground plane.

[0027] The elongate elements may be made of copper or aluminium or other electrically conducting materials.. [0028] The dielectric substrate may be of a material of relatively low dielectric constant, preferably chosen from amongst low density foam materials such as closed-cell polyurethane foam..

[0029] The invention will now be described merely by way of example with reference to the accompanying drawings, wherein:

Figure 1 is an illustration of one example of a highly coupled dipole array for use in a phased array antenna:

Figure 2 is a second example of a highly coupled dipole array for use in a phased array antenna;

Figure 3 is an illustration of an antenna element showing various layers in an antenna structure.

Figure 4a is an illustration of balanced currents in a feed structure;

Figure 4b is an example of an unbalanced current in a feed structure, and

Figures 5 and 6 are an illustration of an embodiment of the present inventions, Figure 6 being a section on line 6-6 of Figure 5.

Detailed Description

[0030] Figure 1 illustrates schematically a highly coupled dipole array 11 comprising a substantially planar periodic arrangement of antenna elements 12. Each antenna element 12 comprises four conducting arms 13 which form two orthogonal dipole antennas and provide dual polarisation. T-shaped elements 14 at the end of each arm 13 increase the series capacitance between adjacent antenna elements 12 in order to improve the antenna bandwidth. Each conducting arm has a feed portion 15 located at the centre of the antenna element 12 for receiving an electrical signal. A dielectric substrate for supporting the dipole array 11 (as is conventional in printed circuit antennas) is not shown.

[0031] Figure 2 illustrates schematically a second example of a highly coupled dipole array 21 comprising a substantially planar periodic arrangement of antenna elements 22 supported by a thin dielectric substrate (not shown in Figure 2). Each antenna element 22 comprises four substantially identical conducting arms 23 which form two orthogonal dipole antennas and provide dual polarisation. Parallel line coupling elements 24 which are provided on the opposite side of the thin dielectric substrate to that of the dipole elements serve to increase the series capacitance between adjacent antenna elements 22 in order to improve the antenna bandwidth. A section Z-Z of the antenna array is shown in Figure 2 (with the thickness of the arms 23 and the coupling element 24 greatly exaggerated) to illustrate a side view of a coupling element 24.

[0032] It will be appreciated that the arrangement shown in Figure 2 is not as convenient as the arrangement shown in Figure 1 if it is desired to produce a dipole array spanning more than one substrate section as a coupling element 24 would have to span two substrate sections

[0033] Figure 3 is a perspective view of an antenna element 22 shown in Figure 2 illustrating the layers which were used in an antenna simulation. The antenna element 22 includes a feed structure 32 comprising a coaxial cable feeding each conducting arm 23 (a conducting arm from each of four adjacent antenna elements are also shown). A spacer layer 34 of a dielectric material separates the layer of conducting arms 23 from a ground plane layer (not shown). A relatively thin dielectric substrate layer 36 supports the conducting arms 23 and coupling elements 24.

35

45

[0034] Because the substrate layer 36 has a dielectric constant of 2.2 and air has a dielectric constant of approximately 1, further dielectric layers - a first dielectric layer 38 and a second dielectric layer 40 - are provided to cover the layer of conducting arms 23 to smooth the differences in the dielectric properties between the substrate 36 and air and to improve the scan angle of an antenna array 21 made up of a periodic structure of the antenna elements 22. In this example, a first dielectric layer 38 having a dielectric constant of 2.0 supports a second dielectric layer 40 having a dielectric constant of 1.33 between the substrate layer 36 and air. In this description the feed structure is sometimes referred to as a vertical feed structure, although it will be appreciated that an antenna array 21 may be in any orientation when in use.

[0035] The effective scanning angle of a phased array antenna is limited by the voltage standing wave ratio (VSWR) achieved in the feed structure when phases are applied to the antenna elements in order to scan in the plane of the electric field (the E plane) and the plane of the magnetic field (the H plane) which are orthogonal to one another. Predictions of the VSWR performance can be generated using conventional antenna modelling software.

[0036] Ideally the VSWR should be below 2:1 but a ratio of 2.5:1 can be tolerated for very wide bandwidth and scan angle operation.

[0037] Excessive VSWR can arise due to unwanted currents in the feed structure 32. Figures 4a and 4b show conductive arms 23 fed by a feed structure 32, each conductive arm 23 being fed by a coaxial cable 50. Figure 4a illustrates, by means of arrows, balanced currents in the feed structure. Figure 4b on the other hand shows undesirable unbalanced or common mode currents which if not suppressed will cause noise in signals received by the conductive arms 23.

[0038] In a preferred embodiment of the invention, shown in Figures 5 and 6, the undesirable common mode currents are suppressed by concentrating the horizontally propagating vertically-polarised electric fields which produce them into an array of conductive rods distributed through the dielectric material of spacer layer 34 surrounding and spaced apart from the feed structures 32. The dimensions of the rods are chosen to cause the currents to dissipate rather than travel in the feed structure. Furthermore, the spacing and distribution of the rods is chosen so as to appear homogeneous to signals at the operational wavelengths for the antenna.

[0039] Referring to Figures 5 and 6 (in which previously described items are labelled with the same reference numerals), an antenna element structure 60 is shown in which conducting elements 63 of an antenna element 62 are in this embodiment triangular in shape so as to increase the series capacitance between the conducting elements 63 of adjacent antenna elements 62. The dielectric layers 38 and 40 of Figure 3 are present also in this structure 60, although not shown. The feed structure

32 is located at the centre of the antenna element structure 60 in a manner already described with reference to Figures 1 and 3.

[0040] The feed structure 32 and the conducting elements 63 in this example are set at a pitch of 13mm in both the x and y directions in the substrate layer 36. Thus, the periodicity of antenna elements in an array antenna comprising a periodic arrangement of the square antenna elements 62 is 13mm. The substrate layer 36 is positioned 10.4mm above a base substrate 46 which includes a strip-line ground plane.

[0041] The spacer layer 34 consists of material of a relatively low dielectric constant (for example polyurethane foam, which has a dielectric constant approximating to that of free space, or other low density foam) in which are distributed an array of parallel, vertical, substantially equally spaced elongate rods 51 of for example copper or aluminium alloy or other electrically conducting material. The rods 51 are set at a pitch of 3.25mm in the x and y directions, one quarter the (13mm) pitch of the antenna elements 62. The antenna array is designed for use at a maximum frequency of 11.5GHz, equivalent to a wavelength of 26mm. The pitch of the conductive rods 51 is thus one eighth of a wavelength and that of the antenna elements is one half of the wavelength of the highest frequency signals for which the antenna is designed.

[0042] In this example the rods are 7.2mm long and are of circular section with a diameter of 1.0mm. Their length to diameter ratio is thus 7.2:1. The rods 51 are suspended in the dielectric material 34 so that the lower end of each rod 51 is 0.7mm from the ground plane and the upper end is 2.5mm from the underside of the substrate layer 36. The lower end of the rod 51 is capacitively coupled to the ground plane due to its proximity thereto and acts in combination with the inductance of the rod 51 to form a tuned circuit that dissipates the energy in the unwanted electric fields. Due to the relatively large gap between the top of the rods 51 and the antenna elements 62 there is negligible coupling between them.

[0043] The elongate shape of the rods 51 and their parallel vertical orientation between the conducting elements 63 and the ground plane layer 46 results in the dielectric layer 34 having different properties in the z direction (normal to the conducting elements 63) compared to its properties in the x and y directions. This enables the vertically polarised fields inducing undesirable common-mode currents to be suppressed whilst having little effect on the horizontally polarised fields associated with the induced currents in the conducting elements 63 of the antenna elements 62 which are necessary for transmission and reception.

[0044] To facilitate manufacture, the spacer layer comprises upper and lower portions 52, 54, shown in Figure 6, each with an array of blind holes to receive the rods 51. The rods are placed in the lower portion 54 and then the upper portion 52 is placed on top and bonded to the lower portion 54, or vice versa.

10

15

20

30

35

40

45

50

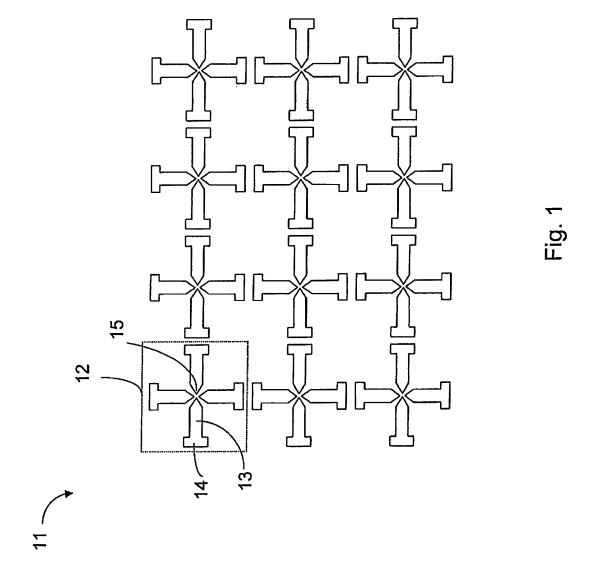
[0045] It will be appreciated that various alterations, modifications, and/or additions may be introduced into the constructions, arrangements and dimensions of parts described above without departing from the scope of the present invention as defined in the appended claims.

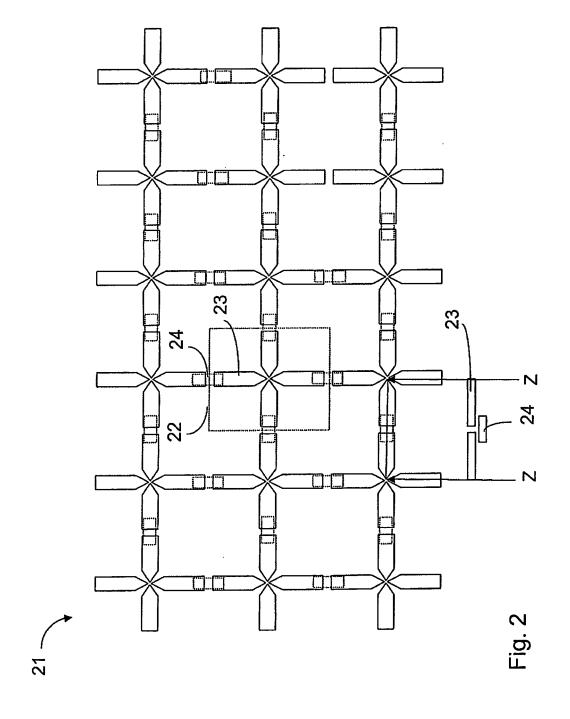
[0046] Although the invention has been discussed specifically referring to coaxial cables, other vertical feed structures, for example strip line or any other electrical conductor feeding an antenna array in parallel may benefit from the invention.

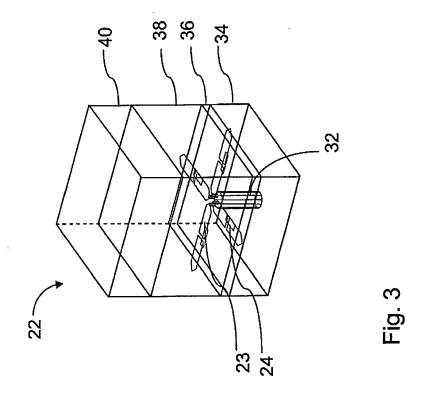
[0047] Although the invention has been described, using two dielectric layers 38, 40 between the antenna array and air, fewer, more or no dielectric layers may be used. Furthermore the portions 52, 54 of dielectric layer 34 may be of different materials.

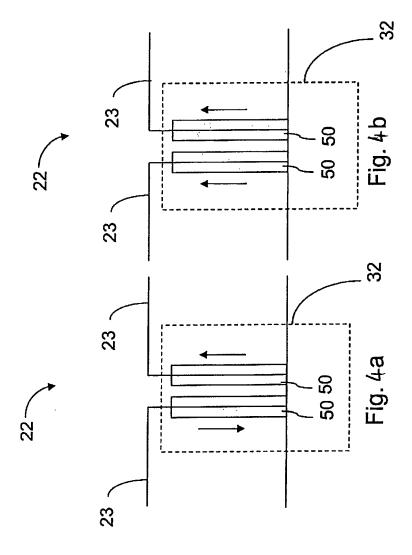
[0048] Although the invention has been described in the context of arrays of antennas having four conducting arms (elements), the invention may also benefit arrays of antenna elements having two conducting arms and may also benefit other types of antenna or antenna array structures where a parallel (or 'vertical') electrical feed structure is required.

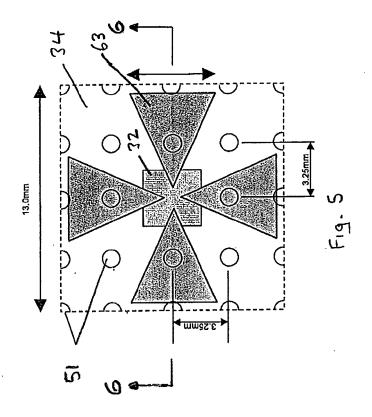
[0049] The dimensions and material properties described above relate to a specific example array antenna. However, variations are possible, according to the intended frequency range of operation of the antenna, which would be understood by a person of ordinary skill in the art and which fall within the scope of the present invention as defined in the claims.

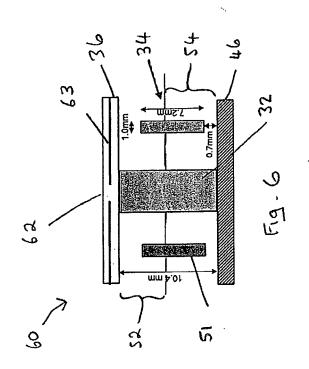

Claims


- A radar or other microwave antenna comprising at least one antenna element, a feed structure for the element extending to the antenna element substantially normally thereto through a dielectric substrate, and characterised in that the dielectric substrate is anisotropic thereby to reduce unwanted commonmode currents in the feed structure.
- 2. An antenna as in claim 1, wherein the dielectric substrate selectively presents an impedance to electric fields polarised in a first direction parallel to the feed structure which is relatively high compared to an impedance presented to electric fields polarised orthogonally to said first direction.
- 3. An antenna as in Claim 2, wherein the dielectric substrate comprises elongate electrically conductive elements having their longitudinal axes generally aligned in said first direction, and being distributed through the dielectric substrate.
- 4. A radar or other microwave antenna comprising at least one antenna element, a feed structure for the element extending to the element substantially normally thereto through a dielectric substrate, and


characterised by an array of discrete elongate elements distributed through the dielectric substrate, the elements being spaced apart from the feed structure and disposed with their longitudinal axes aligned in a first direction that is parallel to the feed structure.


- **5.** An antenna as in claim 4, wherein the elongate elements present a relatively high impedance to electric fields polarised in said first direction.
- **6.** An antenna as in any one of claims 3, 4 or 5, wherein the elongate elements are spaced apart by a distance that is several times less, for example 4 to 16 times less, preferably 8 times less than the shortest wavelength of signals that the antenna is designed to transmit or receive.
- 7. An antenna as in any one of the preceding claims, wherein the at least one antenna element comprises pairs of dipoles, one of which dipoles is aligned in a second direction, orthogonal to said first direction, the other of which is aligned orthogonally to said first and second directions.
- 25 8. An antenna as in claim 3 or claim 4 or any claim dependent therefrom, wherein the elongate elements extend only partially through the thickness of the dielectric substrate, normal to the antenna element.
 - 9. An antenna as in claim 8, wherein the dielectric substrate extends from the dipoles of the antenna element to a ground plane disposed substantially parallel to said dipoles, the dielectric substrate comprising a material of relatively low dielectric constant, preferably chosen from amongst low density polyurethane foams with low dielectric constant, and wherein the elongate elements have ends spaced from the ground plane such that, in operation, they couple capacitively to the ground plane.
 - **10.** An antenna as in claim 9, wherein the length of the elongate elements is between 50% and 90% of the distance between the dipoles and the ground plane, and preferably about 70%.
 - 11. An antenna as in claim 9 or claim 10, wherein the elongate elements are circular in section and have a length to diameter ratio in the range of 5 to 15 and preferably 7 to 1.
 - **12.** An antenna as in claim 3 or claim 5 or any claim dependent thereform, wherein the elongate elements are rod-like.
 - **13.** An antenna array comprising a plurality of antenna elements as in any preceding claim.


- 14. An array as in claim 13 when dependent from claim 3 or claim 4, or any claim dependent therefrom, wherein the antenna elements are regularly spaced apart in at least one direction, the spacing of the elongate elements in said at least one direction being regular from antenna element to antenna element and being a sub-multiple of the dimension of the antenna elements in said at least one direction.
- **15.** An array as in claim 14 wherein the antenna elements are regularly spaced apart in two orthogonal directions, the spacing of the elongate elements in each of said two orthogonal directions being one half to one eighth and preferably one fourth of the respective dimension of the antenna elements.



EUROPEAN SEARCH REPORT

Application Number EP 09 25 2695

, l	Citation of document with in	ndication, where appropriat	e, F	Relevant	CLASSIFICA ⁻	TION OF THE
Category	of relevant passa			o claim	APPLICATION	
Х	US 2008/136710 A1 (AL) 12 June 2008 (2 * paragraphs [0031]	008-06-12)	[FI] ET 1-	-15	INV. H01Q9/04 H01Q9/28 H01Q15/0	
A	WO 2009/047553 A1 (LEWIS GARETH MICHAE ROBERT IAN) 16 Apri * page 7, lines 11-	L [GB]; HENDERSO 1 2009 (2009-04	ON N	·15	110121370	
X	WO 02/087012 A1 (ER [SE]; REDVIK JONATA 31 October 2002 (20 * figure 4 *	N [SE])	AB L M 1,	.4		
X	EP 1 684 381 A1 (TO 26 July 2006 (2006- * paragraph [0014]		5]) 1,	.4		
x	WO 2006/036616 A2 ([US]; CONDON EDWARD L [US];) 6 April 20 * figure 3 *	B [US]; SMITH I			TECHNICAL SEARCHED	
X	US 2003/020655 A1 (ET AL MCKINZIE III 30 January 2003 (20 * abstract *	WILLIAM E [US]			H01Q	
		-/-				
	The present search report has l	been drawn up for all claim	s			
	Place of search	Date of completion	of the search	<u> </u>	Examiner	
	The Hague	12 May 20	010	Van	Dooren,	Gerry
X : parti Y : parti	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone coularly relevant if combined with anot ment of the same category	E∶ea aft her D∶do	eory or principle und rlier patent docume er the filing date ocument cited in the cument cited for oth	nt, but publis application		

EUROPEAN SEARCH REPORT

Application Number EP 09 25 2695

	DOCUMENTS CONSID	ERED TO BE RELEVANT		
Category	Citation of document with in of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
A	radiation from a li metamaterial slab w IEEE TRANSACTIONS O PROPAGATION, IEEE S PISCATAWAY, NJ, US DOI:10.1109/TAP.200	vith low permittivity" NANTENNAS AND SERVICE CENTER, LNKD- 16.869925, Narch 2006 (2006-03-01), 1001545341	1,4	
P	US 2005/195051 A1 ([US] MCKINZIE III W 8 September 2005 (2 * figure 4 *	/ILLIAM E [US])	1,4	
				TECHNICAL FIELDS
				SEARCHED (IPC)
	The present search report has	heen drawn un for all claims		
	Place of search	Date of completion of the search		Examiner
	The Hague	12 May 2010	Van	Dooren, Gerry
C	ATEGORY OF CITED DOCUMENTS	T : theory or principle		
Y : part docu	icularly relevant if taken alone icularly relevant if combined with anot iment of the same category	L : document cited for	the application rother reasons	
O:non	nological background -written disclosure mediate document	& : member of the sar document		corresponding

20, 00, 00, 00, 1, 1,00, 10

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 09 25 2695

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

12-05-2010

CA 2528439 A1 19-07 DK 1684381 T3 23-02 JP 2006203894 A 03-08 US 2007205945 A1 06-09 WO 2006036616 A2 06-04-2006 EP 1792365 A2 06-06 US 2006071859 A1 06-04 US 2003020655 A1 30-01-2003 WO 03012919 A1 13-02 US 2005195051 A1 08-09-2005 US 2008186111 A1 07-08 US 2006202784 A1 14-09 US 2007146102 A1 28-06	Patent document cited in search report		Publication date		Patent family member(s)		Publicati date
WO 02087012 A1 31-10-2002 NONE EP 1684381 A1 26-07-2006 AT 412261 T 15-11	US 2008136710	A1	12-06-2008	NONE			<u>'</u>
EP 1684381 A1 26-07-2006 AT 412261 T 15-11- CA 2528439 A1 19-07- DK 1684381 T3 23-02- JP 2006203894 A 03-08- US 2007205945 A1 06-09- WO 2006036616 A2 06-04-2006 EP 1792365 A2 06-06- US 2006071859 A1 06-04- US 2003020655 A1 30-01-2003 WO 03012919 A1 13-02- US 2005195051 A1 08-09-2005 US 2008186111 A1 07-08- US 2006202784 A1 14-09- US 2007146102 A1 28-06-	WO 2009047553	A1	16-04-2009	NONE			
CA 2528439 A1 19-07- DK 1684381 T3 23-02 JP 2006203894 A 03-08 US 2007205945 A1 06-09- WO 2006036616 A2 06-04-2006 EP 1792365 A2 06-06- US 2006071859 A1 06-04- US 2003020655 A1 30-01-2003 WO 03012919 A1 13-02- US 2005195051 A1 08-09-2005 US 2008186111 A1 07-08- US 2006202784 A1 14-09- US 2007146102 A1 28-06-	WO 02087012	A1	31-10-2002	NONE	:		
US 2006071859 A1 06-04 US 2003020655 A1 30-01-2003 W0 03012919 A1 13-02 US 2005195051 A1 08-09-2005 US 2008186111 A1 07-08 US 2006202784 A1 14-09 US 2007146102 A1 28-06	EP 1684381	A1	26-07-2006	CA DK JP	2528439 1684381 2006203894	A1 T3 A	15-11- 19-07- 23-02- 03-08- 06-09-
US 2005195051 A1 08-09-2005 US 2008186111 A1 07-08 US 2006202784 A1 14-09- US 2007146102 A1 28-06	WO 2006036616	A2	06-04-2006				06-06- 06-04-
US 2006202784 A1 14-09 US 2007146102 A1 28-06	US 2003020655	A1	30-01-2003	WO	03012919	A1	13-02-
	US 2005195051	A1	08-09-2005	US	2006202784 2007146102	A1 A1	07-08- 14-09- 28-06- 06-10-
e details about this annex : see Official Journal of the European Patent Office, No. 12/82							

EP 2 328 235 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

WO 2009047553 A [0010]