TECHNICAL FIELD
[0001] A heat exchanger assembly, and more specifically, a heat exchanger assembly including
louvered air fins for transferring heat between a refrigerant and a stream of air.
BACKGROUND OF THE INVENTION
[0002] A vast number of heat transfer applications, e.g. residential HVAC, electronics,
etc., operate under very low thermal heat transfer potential. In other words, the
temperature difference between the refrigerant and the stream of air entering the
heat exchanger is not great. Additionally, the size and power of the fan propelling
the stream of air through a heat exchanger is often limited by a number of constraints,
e.g. power usage, noise, space, etc. For example, in a laptop computer, the size of
the fan must be minimized to fit within the space constraints of the casing, and the
power of the fan must be minimized to avoid draining the battery or producing undesirable
noise. In these applications, the performance of the air fins in transferring heat
between the refrigerant and the stream of air is critical. Air fins generally include
louvers to increase heat transfer, but those louvers also create an undesirable pressure
drop in the stream of air.
[0003] U.S. Patent Application Publication No. 2008/0121385, to In Chuil Kim (hereinafter referred to as Kim '385) shows a heat exchanger assembly for transferring
heat between a refrigerant and a stream of air. Kim '385 includes first and second
manifolds spaced from one another. A plurality of tubes extend in spaced relationship
with one another between the first and second manifolds for conveying the refrigerant
between the first and second manifolds. A plurality of fins are disposed between adjacent
tubes for transferring heat between the tubes and the stream of air. Each of the fins
has a front edge and a back edge and presents a plurality of legs extending transversely
between the adjacent tubes. Each of the legs of the fins defines a plurality of front
long louvers disposed between the front and back edges for conveying the stream of
air through the legs of the air fins with each of the long louvers having a long louver
height and a long louver length.
[0004] The document
EP 1164345 A1 discloses all the technical features of the preamble of claim 1.
SUMMARY OF THE INVENTION
[0005] The invention is about a heat exchanger assembly for transferring heat between a
refrigerant and a stream of air, comprising a first manifold, a second manifold spaced
from said first manifold, a plurality of tubes extending in spaced relationship with
one another between said first and second manifolds for conveying the refrigerant
between said first and second manifolds, a plurality of fins disposed between adjacent
ones of said tubes for transferring heat between the refrigerant in said tubes and
the stream of air, each of said fins having a front edge and a back edge and including
a plurality of legs extending transversely between said adjacent tubes, each of said
legs of said fins defining a plurality of front long louvers disposed between said
front and back edges for conveying the stream of air through said legs of said air
fins with each of said long louvers having a long louver height and a long louver
length; and each of said legs of said fins defining a plurality of main spoilers disposed
between said front long louvers and said back edges for inducing turbulence in the
stream of air with each of said main spoilers having a spoiler height in the range
of 50 to 90 percent of said long louver height and each of said main spoilers having
a spoiler length in the range of 10 to 35 percent of said long louver length.The main
spoilers are micro-louvers.The legs of said air fins presents a plurality of front
spoilers disposed between said front edge and said front long louvers for inducing
turbulence in the stream of air. Each of said front spoilers extends outwardly from
said legs and has a triangular shape and, each of said legs of said air fins defines
a plurality of back spoilers disposed adjacent to said back edge and a plurality of
back long louvers disposed between said micro-louvers and said back spoilers. Also,
each of said legs of said fins has a fin height and said long louver height is in
the range of 50 to 90 percent of said fin height.The long louver length is in the
range of 0.7 to 1.5 mm.The spoiler length is in the range of 0.15 to 0.4 mm. Each
of said front long louvers extends diagonally outwardly from said legs of said fins.
The first and second manifolds extend in spaced and parallel relationship with one
another.The first manifold defines a plurality of first tube slots spaced from one
another and said second manifold defines a plurality of second tube slots spaced from
one another and aligned with said first tube slots. Each of said tubes has a cross-section
presenting flat sides interconnected by a round front and a round back. The tubes
extend in spaced and parallel relationship with one another between said aligned first
and second tube slots of said first and second manifolds. Each of said tubes defines
a fluid passage for conveying the refrigerant between said manifolds. The main spoilers
are disposed in a staggered arrangement. The main spoilers are semi-cylindrical bumps
or triangular notches.The invention provides for such a heat exchanger assembly and
wherein each of the legs of the fins defines a plurality of main spoilers disposed
between the front long louvers and the back edges for inducing turbulence in the stream
of air with each of the main spoilers having a spoiler height in the range of 50 to
90 percent of the long louver height and each of the main spoilers having a spoiler
length in the range of 10 to 35 percent of the long louver length.
[0006] The potential for heat transfer between the refrigerant and the stream of air decreases
as the air flows downstream through the heat exchanger because the temperature difference
between the refrigerant and the stream of air is reduced. The long louvers have more
potential for heat transfer than the main spoilers because the long louvers turn and
induce turbulence to the stream of air, whereas the main spoilers function mainly
to induce turbulence in the air. Therefore, the long louvers are disposed upstream,
where the temperature difference between the stream of air and the refrigerant is
greatest, of the main spoilers. The upstream long louvers perform the majority of
the heat transfer between the stream of air and the refrigerant. Although long louvers
are very effective at transferring heat between the stream of air and the refrigerant,
they come at a cost. Namely, long louvers create a large pressure drop in the stream
of air flowing through the heat exchanger. Therefore, it is undesirable to have long
louvers extend the entire length of the air fin. The smaller main spoilers are disposed
downstream of the long louvers to induce turbulence in the stream of air to increase
the air's heat transfer potential without compromising the overall pressure drop of
the heat exchanger. This allows for a greater quantity of air to flow through the
upstream long louvers of the fins and improves the overall efficiency of the heat
exchanger assembly.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007] Other advantages of the present invention will be readily appreciated, as the same
becomes better understood by reference to the following detailed description when
considered in connection with the accompanying drawings wherein:
Figure 1 is a perspective view of a heat exchanger assembly;
Figure 2 is a perspective view, partially cut away with a fin with louvers and one
tube of a heat exchanger assembly, according to the invention;
Figure 3 is a front view, partially cut away of a fin, according to the invention;
Figures 4a is a cross-sectional view of the louvers and spoilers of the fins according
to the present invention, and figures 4b-4f disclose further alternatives not falling
within the scope of the present invention;
Figure 5 is a cross-sectional view showing the flow of air over the louvers and spoilers
according to Figure 4a; and
Figure 6 is a front view, partially cut away for an alternate embodiment of a fin
having micro-louvers disposed in a staggered arrangement.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0008] Referring to the Figures, wherein like numerals indicate corresponding parts throughout
the several views, a heat exchanger assembly 20 for transferring heat between a refrigerant
and a stream of air 22 is generally shown in Figure 1.
[0009] Referring to Figure 1, the heat exchanger assembly 20 includes a first manifold 24
and a second manifold 26 extending in spaced and parallel relationship with one another.
The first manifold 24 defines a plurality of first tube slots 28 being spaced from
one another. The second manifold 26 defines a plurality of second tube slots 30 being
spaced from each other and aligned with the first tube slots 28. A plurality of tubes
32 extend in spaced and parallel relationship to one another between the aligned first
and second tube slots 28, 30. Each of the tubes 32 has a cross-section defining flat
sides 34 interconnected by a round front 36 and a round back 38. Each of the tubes
32 defines a fluid passage 40 for conveying refrigerant between the manifolds 24,
26.
[0010] A plurality of fins 42, generally indicated, are disposed between adjacent ones of
the tubes 32 for transferring heat between the refrigerant in the fluid passages 40
of the tubes 32 and the stream of air 22. The fins 42 have a fin height HF. The fins
42 extend continuously between a front edge 44 adjacent to the round front 36 of the
tubes 32 and back edge 46 adjacent to the round back 38 of the tubes 32. In other
words, the front edge 44 of the fins 42 is upstream of the back edge 46 of the fins
42. Each of the fins 42 includes a plurality of legs 48 extending transversely between
the adjacent tubes 32. The fins 42 also include a plurality of end portions 50 engaging
the flat sides 34 of the adjacent tubes 32. Together, the legs 48 and end portions
50 of the fins 42 present a serpentine path extending between the first and second
manifolds 24, 26. In other words, adjacent legs 48 of the fins 42 are connected by
end portions 50 engaging opposite ones of the flat sides 34 of the adjacent tubes
32.
[0011] In the configurations shown in Figures 4 a-f, each of the legs 48 of the fins 42
presents a plurality of front long louvers 52 disposed between the front and back
edges 44, 46. In addition to inducing turbulence in the stream of air 22, the front
long louvers 52 function to turn the stream of air 22. In other words, the front long
louvers 52 convey the stream of air 22 through the legs 48 of the air fins 42. This
keeps the stream of air 22 in the heat exchanger longer and gives the stream of air
22 more time to receive heat from or dispense heat to the refrigerant in the tubes
32, depending on the application of the heat exchanger assembly 20. The long louvers
52, 54 have a long louver height HL, which is preferably in the range of 60 to 90
percent of the fin height HF, and the long louvers 52, 54 have a long louver length
LL, which is preferably in the range of 0.7 to 1.5 mm.
[0012] In the configurations shown in Figures 4 a-f, each of the legs 48 of the fins 42
presents a plurality of main spoilers 56, disposed between the front long louvers
52 and the back edge 46, i.e. downstream of the front long louvers 52. The main spoilers
56, serve to interrupt the airflow and induce turbulence in the stream of air 22,
but do not substantially turn the air as the front long louvers 52 do. In other words,
although some air might be conveyed cross-stream between the legs 48 of the fins 42
through the main spoilers 56, the majority of the air is flows straight through the
heat exchanger assembly 20. Each of the main spoilers 56, has a spoiler height HS
in the range of 50 to 90 percent of the long louver height HL, and each of the main
spoilers 56 has a spoiler length LS in the range of 10 to 35 percent of the long louver
length LL. A small spoiler length LS compared to the long louver length LL keeps the
airflow blockage due to the main spoilers 56, small, thereby achieving good heat transfer
with a low pressure drop penalty.
[0013] As shown in Figures 4 a-f, each of the legs 48 of the fins 42 is symmetrical. In
other words, all of the embodiments include back long louvers 54 disposed between
the main spoilers 56 and the back edge 46 of the air fin 42. Additionally, some of
the embodiments include back spoilers 62 disposed between the back long louvers 54
and the back edge 46 of the air fin 42. The symmetry of the fins 42 is primarily for
manufacturing purposes because symmetrical fins 42 can be made less expensively than
non-symmetrical fins 42. It should be appreciated that the main spoilers 56 could
extend from the front long louvers 52 to the back edge 46, or the air fin 42 could
be flat between the main spoilers 56 and the back edge 46.
[0014] In the configuration shown in Figure 4a, each of the legs 48 of the fins 42 presents
a plurality of front spoilers 64 adjacent to the front edge 44 for interrupting the
flow and inducing turbulence in the stream of air 22. The delta-wing, or triangular,
shaped front spoilers 64 are best shown in Figures 2 and 3. The delta wings are disposed
over the entire fin height HF. The width and height of the delta-wings is comparable
to the spoiler length LS. The front spoilers 64 are most useful when used in a cold
environment. In cold environments, frost has a tendency of building up on the front
edge 44 of the fins 42 when there is large heat transfer rate between the air and
the refrigerant at that front edge 44. The frost can block the stream of air 22 from
flowing through the heat exchanger, which drastically reduces the efficiency of the
heat exchanger. The front spoilers 64 disposed upstream of the front long louvers
52 ensure that the maximum rate of heat transfer takes place slightly downstream of
the front edge 44 of the fins 42 to prevent the frost from building up on the front
edge 44 of the fins 42. Although the efficiency of the heat exchanger assembly 20
might be reduced in some operating conditions, i.e. in warm environments, heat exchanger
assemblies 20 having front spoilers 64 can be used in a wider variety of operating
conditions. The main spoilers 56 are micro-louvers 56.
[0015] The configuration shown in Figure 4b, is not falling under the scope of the present
invention, but the delta-wing shaped front spoilers 64 are replaced with front micro-louvers
64, shaped similarly to the main spoilers 56, 58, 60. The front micro-louvers 64 function
similar to the delta-wing shaped front spoilers 64 in that they interrupt the airflow
and induce turbulence in the air, but leave the majority of the heat transfer to the
long louvers 52, 54 disposed between the micro-louvers 64 and the main spoilers 56,
58, 60, which are also shown as micro-louvers 56.
[0016] The configuration shown in Figure 4c, has front long louvers 52 disposed upstream
of the main spoilers 56, 58, 60, shown as micro-louvers 56. Because this configuration
does not have front spoilers 64, airflow is steered in the cross stream direction
by the front and back long louvers 52, 54. Airflow is mostly straight in the mid section.
[0017] The configuration shown in Figure 4d, shows the main spoilers 56, 58, 60 as being
micro-louvers 56. The micro-louvers 56 extend outwardly on both sides of the legs
48 of the fins 42.
[0018] The configuration shown in Figure 4e, shows the main spoilers 56, 58, 60 as being
semi-cylindrical bumps 58. The semi-cylindrical bumps 58 extend outwardly on both
sides of the legs 48 of the fins 42.
[0019] The configuration shown in Figure 4f, shows the main spoilers 56, 58, 60 as being
triangular notches 60. The triangular notches 60 extend outwardly from the leg 48
on opposite sides of the leg 48.
[0020] It should be appreciated that the main spoilers 56, 58, 60 may take any number of
shapes, not just those shown in Figures 4 a-f. The main spoilers 56, 58, 60 can be
disposed both upstream or downstream of at least one front long louver 52. Additionally,
each of the main spoilers 56, 58, 60 must have a spoiler height HS in the range of
50 to 90 percent of the long louver height HL, and each of the main spoilers 56, 58,
60 must have a spoiler length LS in the range of 10 to 35 percent of the long louver
length LL.
[0021] In applications where the maximum thermal potential for total heat dissipation is
small, it is paramount that total airflow through the heat exchanger assembly 20 be
high. With fan power and noise constraints, airflow can be high only when the overall
pressure drop of the heat exchanger is kept to a minimum. Having front spoilers 64,
as shown in Figures 4 a-c, allows the flow a better entrance condition into the core
of the heat exchanger with a low pressure drop but with some heat transfer enhancement
as compared to an un-louvered surface. In this fashion high pressure drop is expended
locally only where heat transfer potential is maximum without compromising the tendency
of frost to build up on the front edges 44 of the fins 42. The bulk of the heat transfer
between the refrigerant and the stream of air 22 occurs at the front long louvers
52. The rest of the fin 42 is utilized for pressure drop management with some heat
transfer augmentation through the main spoilers 56, 58, 60 downstream of the front
long louvers 52.
[0022] Figure 5 shows the stream of air 22 flowing through the heat exchanger assembly 20
of the present invention. As shown, the air flows straight between the legs 48 of
the fins 42 past the micro-louvers or the delta-wing shaped front spoilers 64. As
the stream of air 22 flows downstream between the legs 42, most of the air is turned
by the front long louvers 52 between the legs 42. The stream of air 22 then straightens
out as it passes the main spoilers 56. The back long louvers 54, which are optional
as explained above, turn the stream of air 22 again between the legs 42. The stream
of air 22 once again straightens out when it passes the delta-wing shaped back spoilers
62. Although not shown in Figure 5, it should be appreciated that each of the front
spoilers 64, front long louvers 52, main spoilers 56, back long louvers 54, and back
spoilers 62 induces turbulence into the stream of air 22. The micro-louver segment
can be disposed anywhere symmetrically or asymmetrically within the fins 42.
[0023] As shown in Figure 6, the micro-louvers 56 can alternately be disposed in a staggered
arrangement. The staggered arrangement can be easily manufactured and provide for
a large number of micro-louvers 56 with a smaller pressure drop penalty. Additionally,
the staggered micro-louvers 56 are disposed close to the end portions 50 of the fins
42, which have the a higher heat transfer potential than the middle of the fins 42.
1. A heat exchanger assembly (20) for transferring heat between a refrigerant and a stream
of air, comprising:
a first manifold (24);
a second manifold (26) spaced from said first manifold (24);
a plurality of tubes (32) extending in spaced relationship with one another between
said first and second manifolds (24, 26) for conveying the refrigerant between said
first and second manifolds (24, 26);
a plurality of fins (42) disposed between adjacent ones of said tubes (32) for transferring
heat between the refrigerant in said tubes (32) and the stream of air;
each of said fins (42) having a front edge (44) and a back edge (46) and including
a plurality of legs (48) extending transversely between said adjacent tubes (32);
wherein each of said legs (48) of said fins (42) defining a plurality of front long
louvers (52) disposed between said front and back edges (44, 46) for conveying the
stream of air through said legs (48) of said air fins (42) with each of said long
louvers (52) having a long louver height (HL) and a long louver length (LL);
wherein each of said legs (48) of said fins (42) defining a plurality of main spoilers
(56) disposed between said front long louvers (52) and said back edges (44, 46) for
inducing turbulence in the stream of air with each of said main spoilers (56) having
a spoiler height (HS) in the range of 50 to 90 percent of said long louver height (HL) the heat exchanger assembly being characterized in that each of said main spoilers (56) has a spoiler length (LS) in the range of 10 to 35 percent of said long louver length (LL),
wherein said main spoilers (56) are micro-louvers, and in
that each of said legs (48) of said air fins (42) presents a plurality of front spoilers
(64) disposed between said front edge (44) and said front long louvers (52) for inducing
turbulence in the stream of air,
that each of said front spoilers (64) extends outwardly from said legs (48) and has
a delta-wing shape or a triangular shape, the front spoilers (64) being disposed over
the entire fin height (Hf), and wherein the width and height of said front spoilers
(64) is comparable to the spoiler lengths (LS).
2. The assembly (20) as set forth in claim 1 wherein each of said legs (48) of said air
fins (42) defines a plurality of back spoilers (62) disposed adjacent to said back
edge (46) and a plurality of back long louvers (54) disposed between said micro-louvers
and said back spoilers (62).
3. The assembly (20) as set forth in any of the preceding claims wherein each of said
legs (48) of said fins (42) has a fin height (HF) and said long louver height (HL) is in the range of 50 to 90 percent of said fin height (HF).
4. The assembly (20) as set forth in any of the preceding claims wherein said long louver
length (LL) is in the range of 0.7 to 1.5 mm.
5. The assembly (20) as set forth in any of the preceding claims wherein said spoiler
length (LS) is in the range of 0.15 to 0.4 mm.
6. The assembly (20) as set forth in any of the preceding claims wherein each of said
front long louvers (52) extends diagonally outwardly from said legs (48) of said fins
(42).
7. The assembly (20) as set forth in any of the preceding claims where said main spoilers
(56) are disposed in a staggered arrangement.
8. The assembly (20) as set forth in any of the preceding claims wherein said main spoilers
(56) are semi-cylindrical bumps.
9. The assembly (20) as set forth in any of claims 1 to 7 wherein said main spoilers
(56) are triangular notches.
1. Wärmetauscheranordnung (20) zum Übertragen von Wärme zwischen einem Kältemittel und
einem Luftstrom, umfassend:
einen ersten Verteiler (24);
einen zweiten Verteiler (26), der von dem ersten besagten Verteiler (24) beabstandet
ist;
eine Vielzahl von Rohren (32), die sich in einem Abstand voneinander zwischen dem
besagten ersten und dem zweiten Verteiler (24, 26) erstrecken zum Fördern des Kühlmittels
zwischen dem besagten ersten und dem zweiten Verteiler (24, 26);
eine Vielzahl von Rippen (42), die zwischen benachbarten der besagten Rohre (32) angeordnet
sind, um Wärme zwischen dem Kältemittel in den Rohren (32) und dem Luftstrom zu übertragen;
wobei jede der besagten Rippen (42) eine Vorderkante (44) und eine Hinterkante (46)
aufweist und mehrere Schenkel (48) aufweist, die sich quer zwischen den besagten benachbarten
Rohren (32) erstrecken;
wobei jeder der besagten Schenkel (48) der besagten Rippen (42) eine Vielzahl von
vorderen langen Luftschlitzen (52) ausbildet, die zwischen den besagten vorderen und
hinteren Kanten (44, 46) angeordnet sind, um den Luftstrom durch die besagten Schenkel
(48) der besagten Luftrippen (42) zu transportieren, wobei jeder der besagten langen
Luftschlitze (52) eine lange Luftklappenhöhe (HL) und eine lange Luftklappenlänge (LL) aufweist;
wobei jeder der besagten Schenkel (48) der besagten Rippen (42) eine Vielzahl an Hauptspoilern
(56) ausbildet, die zwischen den besagten vorderen langen Schlitzen (52) und den besagten
hinteren Kanten (44, 46) angeordnet sind, um Turbulenzen in dem Luftstrom zu induzieren
wobei jeder der besagten Hauptspoiler (56) eine Spoilerhöhe (HS) im Bereich von 50 bis 90 Prozent der besagten langen Luftschlitzhöhe aufweist, wobei
die Wärmetauscheranordnung dadurch gekennzeichnet ist, dass jeder der besagten Hauptspoiler (56) eine Spoilerlänge (LS) in dem Bereich von 10 bis 35 Prozent der besagten langen Luftschlitzlänge (LL) aufweist, wobei die besagten Hauptspoiler (56) Mikroluftschlitze sind, und dass
jeder der besagten Schenkel (48) der besagten Luftrippen (42) eine Vielzahl von Frontspoilern
(64) aufweist, die zwischen der besagten Vorderkante (44) und den besagten vorderen
langen Luftschlitzen (52) angeordnet sind, um eine Turbulenz in dem Luftstrom zu induzieren,
dass jeder der besagten Frontspoiler (64) sich von den besagten Schenkeln (48) nach
außen erstreckt und eine Deltaflügelform oder Dreiecksform aufweist, wobei die Frontspoiler
(64) über der gesamten Rippenhöhe (Hf) angeordnet sind, und wobei die Breite und die
Höhe der besagten Frontspoiler (64) vergleichbar mit der Spoilerlänge (LS) ist.
2. Anordnung (20) nach Anspruch 1, wobei jeder der besagten Schenkel (48) der besagten
Luftrippen (42) eine Vielzahl von Hinterspoilern (62) ausbildet, die benachbart zu
der besagten Hinterkante (46) angeordnet sind und eine Vielzahl von hinteren lange
Luftschlitzen (54), die zwischen den besagten Mikroschlitzen und den besagten Rückenspoilern
(62) angeordnet sind.
3. Anordnung (20) nach einem der vorhergehenden Ansprüche, wobei jeder der besagten Schenkel
(48) der besagten Rippen (42) eine Rippenhöhe (HF) aufweist und die besagte lange Schlitzhöhe (HL) im Bereich von 50 bis 90 Prozent der besagte Rippenhöhe (HF) liegt.
4. Anordnung (20) nach einem der vorhergehenden Ansprüche, wobei die besagte lange Schlitzlänge
(LL) im Bereich von 0,7 bis 1,5 mm liegt.
5. Anordnung (20) nach einem der vorhergehenden Ansprüche, wobei die besagte Spoilerlänge
(LS) im Bereich von 0,15 bis 0,4 mm liegt.
6. Anordnung (20) nach einem der vorhergehenden Ansprüche, wobei jede der besagten vorderen
langen Schlitze (52) sich von den besagten Schenkeln (48) der besagten Rippen (42)
diagonal nach außen erstreckt.
7. Anordnung (20) nach einem der vorhergehenden Ansprüche, wobei die besagten Hauptspoiler
(56) in einer versetzten Anordnung angeordnet sind.
8. Anordnung (20) nach einem der vorhergehenden Ansprüche, wobei die besagten Hauptspoiler
(56) halbzylindrische Höcker sind.
9. Anordnung (20) nach einem der Ansprüche 1 bis 7, wobei die Hauptspoiler (56) dreieckige
Kerben sind.
1. Ensemble échangeur de chaleur (20) pour transférer de la chaleur entre un réfrigérant
et un courant d'air, comprenant :
un premier collecteur (24) ;
un second collecteur (26) espacé dudit premier collecteur (24) ;
une pluralité de tubes (32) s'étendant espacés l'un de l'autre entre lesdits premier
et second collecteurs (24, 26) pour acheminer le réfrigérant entre lesdits premier
et second collecteurs (24, 26) ;
une pluralité d'ailettes (42) disposées entre certains adjacents desdits tubes (32)
pour transférer de la chaleur entre les réfrigérants dans lesdits tubes (32) et le
courant d'air ;
chacune desdites ailettes (42) ayant un bord avant (44) et un bord arrière (46) et
comprenant une pluralité de jambes (48) s'étendant transversalement entre lesdits
tubes adjacents (32) ;
dans lequel chacune desdites jambes (48) desdites ailettes (42) définit une pluralité
de volets longs avant (52) disposés entre lesdits bords avant et arrière (44, 46)
pour acheminer le courant d'air à travers lesdites jambes (48) desdites ailettes d'aération
(42), chacun desdits volets longs (52) ayant une hauteur de volet longue (HL) et une longueur de volet longue (LL) ;
dans lequel chacune desdites jambes (48) desdites ailettes (42) définit une pluralité
de déflecteurs principaux (56) disposés entre lesdits volets avant longs (52) et lesdits
bords arrière (44, 46) pour induire une turbulence dans le courant d'air avec chacun
desdits déflecteurs principaux (56) ayant une hauteur de déflecteur (HS) dans la plage de 50 à 90 pour cent de ladite hauteur de volet longue (HL), l'ensemble échangeur de chaleur étant caractérisé en ce que chacun desdits déflecteurs principaux (56) a une longueur de déflecteur (LS) dans la plage de 10 à 35 pour cent de ladite longueur de volet longue (LL) et dans lequel lesdits déflecteurs principaux (56) sont des micro-volets et chacune
desdites jambes (48) desdites ailettes d'aération (42) présente une pluralité de déflecteurs
avant (64) disposés entre ledit bord avant (44) et lesdits volets avant longs (52)
pour induire une turbulence dans le courant d'air,
chacun desdits déflecteurs avant (64) s'étend vers l'extérieur desdites jambes (48)
et a une forme en aile delta ou une forme triangulaire, les déflecteurs avant (64)
étant disposés sur toute la hauteur (Hf) des ailettes et dans lequel la largeur et
la hauteur desdits déflecteurs avant (64) sont comparables aux longueurs (LS) des déflecteurs.
2. Ensemble (20) selon la revendication 1, dans lequel chacune desdites jambes (48) desdites
ailettes d'aération (42) définit une pluralité de déflecteurs arrière (62) disposés
adjacents audit bord arrière (46) et une pluralité de volets arrière longs (54) disposés
entre lesdits micro-volets et lesdits déflecteurs arrière (62).
3. Ensemble (20) selon l'une quelconque des revendications précédentes, dans lequel chacune
desdites jambes (48) desdites ailettes (42) a une hauteur d'ailette (HF) et ladite hauteur de volet longue (HL) se situe dans la plage de 50 à 90 pour cent de ladite hauteur d'ailette (HF).
4. Ensemble (20) selon l'une quelconque des revendications précédentes, dans lequel ladite
longueur de volet longue (LL) se situe dans la plage de 0,7 à 1,5 mm.
5. Ensemble (20) selon l'une quelconque des revendications précédentes, dans lequel ladite
longueur (LS) des déflecteurs se situe dans la plage de 0,15 à 0,4 mm.
6. Ensemble (20) selon l'une quelconque des revendications précédentes, dans lequel chacun
desdits volets avant longs (52) s'étend en diagonale vers l'extérieur desdites jambes
(48) desdites ailettes (42).
7. Ensemble (20) selon l'une quelconque des revendications précédentes, dans lequel lesdits
déflecteurs principaux (56) sont disposés dans un aménagement en quinconce.
8. Ensemble (20) selon l'une quelconque des revendications précédentes, dans lequel lesdits
déflecteurs principaux (56) sont des bosses semi-cylindriques.
9. Ensemble (20) selon l'une quelconque des revendications 1 à 7, dans lequel lesdits
déflecteurs principaux (56) sont des encoches triangulaires.