(11) **EP 2 338 784 A1**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:

29.06.2011 Bulletin 2011/26

(51) Int Cl.:

B63B 23/58 (2006.01)

B63B 23/60 (2006.01)

(21) Application number: 10194819.8

(22) Date of filing: 14.12.2010

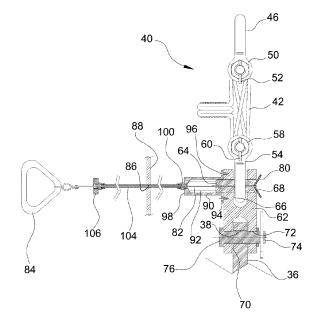
(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(30) Priority: 21.12.2009 IT TO20091014


(71) Applicant: **BG Safe S.r.l.** 57128 Livorno (IT)

- (72) Inventors:
 - Baronetto, Claudio I-57128, Livorno (IT)
 - Baronetto, Cristiano I-57128, Livorno (IT)
 - D'Arrigo, Angelo
 I-57016, Rosignano Marittimo (Livorno) (IT)
- (74) Representative: Rondano, Davide et al Corso Emilia 8 10152 Torino (IT)

(54) Lifeboat hoisting and lowering apparatus provided with a fall preventing device

(57)The hoisting/lowering apparatus comprises: a plurality of on-load anchoring devices (22) each comprising a support body (32) and a hook (30), a plurality of hoisting/lowering cables (20) each connected to a respective hook (30) via a main connection line (26, 28), and a plurality of fall preventing devices (40) each associated to a respective anchoring device (22). Each fall preventing device (40) comprises an auxiliary connection line (42, 46, 54, 62) between the respective hoisting/lowering cable (20) and the support body (32) of the respective anchoring device (22) separate from the main connection line (26, 28). The auxiliary connection line (42, 46, 54, 62) of each fall preventing device (40) comprises a quick-release safety pin (64) adapted to be removed to interrupt the connection between the respective hoisting/lowering cable (20) and the support body (32) of the respective anchoring device (22) via the auxiliary connection line (42, 46, 54, 62). Each fall preventing device (40) further comprises remote control means (82, 84) operatively associated to the safety pin (64) so as to allow it to be removed by the operator without requiring this latter to leave the lifeboat (10).

FIG 4

EP 2 338 784 A1

20

25

30

35

40

45

[0001] The present invention relates to an apparatus for hoisting and lowering a lifeboat, wherein the hoisting/ lowering apparatus comprises a pair of on-load anchoring devices intended to be fastened to the bow and to stem of the lifeboat, respectively, and wherein a fall preventing device is associated to each anchoring device and is arranged to prevent the lifeboat from falling in case of accidental release of the hook of the anchoring device. [0002] Hoisting/lowering apparatuses comprising capstans, cranes and cables are conventionally used for the hoisting and lowering of lifeboats. Two hoisting/lowering cables are required for each lifeboat and are each connected at its bottom end by means of a block to a respective hoisting/lowering chain comprising a hoisting/lowering link. The hoisting/lowering link of one of the two hoisting/lowering cables is coupled to a first anchoring device fastened to the bow of the lifeboat, while the hoisting/ lowering link of the other hoisting/lowering cable is coupled to a second anchoring device fastened to the stem of the lifeboat. Therefore, in order to allow the lifeboat to leave its normal place in case of a drill or in case of a real emergency, it must be disconnected from the support structure consisting of the two hoisting/lowering chains by release of the anchoring devices installed in the bow and in the stem of the lifeboat.

1

[0003] There are two main kinds of anchoring devices for lifeboats:

- the so-called off-load anchoring devices, which can be opened (released) only when they are not subject to any load; and
- the so-called on-load anchoring devices, which can be opened (released) even when they are subject to a load.

[0004] An off-load anchoring device requires that the lifeboat be completely in its floating operative state in order for a crew member be able to release by hand the hoisting/lowering link connected to the hoisting/lowering cable from the hook of the anchoring device fastened to the lifeboat.

[0005] An on-load anchoring device, which has become mandatory on the lifeboats of the new vessels since 1986, works mainly as an off-load device, in that when the lifeboat is in floating conditions the hoisting/lowering link connected to the hoisting/lowering cable can always be released by hand from the respective anchoring device fastened to the lifeboat. Therefore, also with this kind of anchoring device the standard procedure requires that release takes place when the lifeboat is completely in its floating operative state. The peculiarity of the on-load anchoring devices is however that they allow to release the lifeboat even when this latter is not immersed in the water, i.e. even when the anchoring devices of the lifeboat are subject to a load (the load being the sum of the lifeboat's own weight and of the total weight of the per-

sons accommodated inside the lifeboat). In this case, a remote control device operable by the operator from the inside of the lifeboat (for instance by means of a control cable connected to a control lever or handle, or even by means of a hydraulic control apparatus) is provided for release of the lifeboat and is arranged to bring about simultaneously the opening of both the anchoring devices of the lifeboat. This kind of anchoring device is advantageous especially in rough sea conditions, where it would be very difficult, as well as dangerous, for the operator to try to release by hand the hoisting/lowering links from the hooks of the anchoring devices in the bow and in the stem of the lifeboat while this latter is being shaken by the waves.

[0006] The on-load anchoring devices typically comprise a support body or housing, consisting of a pair of parallel plates firmly secured to the lifeboat, and a hook rotatably supported by the support body or housing to rotate between a closed position, in which the hook is coupled to the respective hoisting/lowering link, and an open position, in which the hook is released from the respective hoisting/lowering link. The hook is normally kept in the aforesaid closed position by means of a suitable locking mechanism, in order to prevent the anchoring device from opening automatically under load. In order to release the lifeboat it is therefore necessary first to deactivate the locking mechanisms associated to the two anchoring devices in the bow and in the stem, and this is done simultaneously for the two locking mechanisms by means of the aforesaid remote control device. Once the hooks of the two anchoring devices are no more locked by the respective locking mechanisms, they are free to rotate from the closed position to the open position as a result of the loads acting on them.

[0007] The on-load anchoring devices suffer however from the drawback that a possible fault or failure of the locking mechanism and/or of the associated remote control device, a possible mistake by the crew or a possible incorrect reset of the locking mechanism after a previous operation may cause early release of the anchoring device, resulting in the fall of the lifeboat. Even though a great part of the on-load anchoring devices which are currently on the market and are installed on the lifeboats have a design which is regarded as being instable, and hence not free from risks of early release, the on-load anchoring devices cover the vast majority of the lifeboats currently used in the field of shipping.

[0008] In order to make the on-load anchoring devices safer, fall preventing devices have thus been conceived which are associated each to a respective on-load anchoring device and prevent a possible accidental release of the hook from resulting in the disconnection of the anchoring device from the hoisting/lowering link of the respective hoisting/lowering cable and hence in the fall of the lifeboat.

[0009] A first type of fall preventing devices, which is disclosed for instance in GB2390638 and in US6920839, substantially provides for the use of a safety pin which is

20

25

35

40

45

inserted into a pair of through holes made in the two parallel plates of the support body of the on-load anchoring device and locks the hook in the closed position, thereby preventing it from accidentally opening. The safety pin must therefore be properly removed by a crew member to allow the anchoring device to be opened and hence the lifeboat to be released. However, this first type of fall preventing devices has the drawback that it requires to make holes in the support body of the anchoring device for insertion of the safety pin and that it cannot therefore be applied to anchoring devices already on the market, since these latter have been designed and approved without safety pins. The use of this first type of fall preventing devices requires therefore that the anchoring device provided with fall preventing device obtains the necessary approval from the authorized control boards, just as it was a new anchoring device, or alternatively that the anchoring device manufacturers authorize the users to modify the anchoring devices already present on the market and take on the responsibility for any damages resulting from these modifications.

[0010] A second type of fall preventing devices is disclosed for instance in US5078073 and provides for the use of a safety cable connected at its top end to the hoisting/lowering cable and at its bottom end to the support body of the anchoring device so as to provide an auxiliary connection line between the hoisting/lowering cable and the support body of the anchoring device which is separate from the main connection line which connects the hoisting/lowering cable to the hook of the anchoring device and acts in parallel to the main one. In normal operating conditions, the safety cable is not pulled and the load due to the lifeboat's own weight is transmitted to the hoisting/lowering cable via the main connection line. In case of accidental opening of the anchoring device, and hence of interruption of the connection of the anchoring device with the hoisting/lowering cable via the main connection line, the anchoring device, along with the lifeboat, remains connected to the hoisting/lowering cable by virtue of the safety cable of the auxiliary connection line, thereby preventing the lifeboat from falling. In order to release the lifeboat, the operator must previously disconnect the safety cable from the anchoring device, and to this end the bottom end of the safety cable is connected to the support body of the anchoring device by means of a shackle provided with a quick-release pin inserted into a through hole of an auxiliary hanging plate normally provided for in the on-load anchoring devices, the auxiliary hanging plate being fastened to the support body of the anchoring device. In order to disconnect the safety cable from the anchoring device, the pin must be removed from the respective hole in the auxiliary hanging plate, and this requires that the operator completely leaves the lifeboat, or at least leans out of the lifeboat through one of the hatches provided therein. The removal of the pin is not therefore a simple and safe operation, particularly in rough sea conditions or in unfavourable weather conditions.

[0011] The present invention aims therefore at providing a lifeboat hoisting/lowering apparatus comprising a pair of on-load anchoring devices fastened to the bow and to the stem of the lifeboat, respectively, and a pair of fall preventing devices associated each to a respective anchoring device, which has a reliable operation, which does not require modifications to the structure of the anchoring devices and which allows to the crew on board of the lifeboat to release the lifeboat in absolutely safe conditions.

[0012] This and other objects are fully achieved according to the present invention by virtue of a lifeboat hoisting/lowering apparatus having the features set forth in the characterizing part of the attached independent claim 1.

[0013] Further advantageous features of the present invention are set forth in the dependent claims, the subject-matter of which is to be intended as integral and integrating part of the following description.

[0014] In short, the invention is based on the idea of providing a lifeboat hoisting/lowering apparatus, wherein a fall preventing device is associated to each anchoring device and is of the type comprising an auxiliary connection line between the hoisting/lowering cable and the support body of the anchoring device separate from the main connection line which connects the hoisting/lowering cable to the hook of the anchoring device, wherein the auxiliary connection line is arranged to act in parallel to the main one, wherein the auxiliary connection line is configured in such a manner that it does not transmit loads, in normal operating conditions, from the lifeboat to the hoisting/lowering cable, and wherein the auxiliary connection line comprises an elongated flexible transmission member connected at its bottom end to the support body of the anchoring device and at its top end to the hoisting/ lowering link, a quick-release safety pin normally interposed between the elongated flexible transmission member and the support body of the anchoring device so as to ensure the connection between the elongated flexible transmission member and the support body of the anchoring device, and remote control means operatively associated to the safety pin to remove the safety pin and thus disconnect the elongated flexible transmission member, and hence the hoisting/lowering link, from the support body of the anchoring device.

[0015] According to the present invention, the expression "elongated flexible transmission member" is to be intended as referring to any non-rigid elongated connection member, such as for instance a cable, a strap or a chain, which is able to transmit tension stresses and hence to ensure the connection of the lifeboat to the hoisting/lowering cable in case of accidental opening of the anchoring device.

[0016] By virtue of the use of the aforesaid remote control means, the operator can remove the safety pin while remaining inside the lifeboat, and hence without having to leave it completely or having to lean out of one of the hatches thereof to act by hand directly on the safety pin.

40

45

50

[0017] Preferably, said remote control means comprise a cable connected at the one end to the safety pin and at the opposite end to a handle or other control member operable by hand, the cable passing through an already existing hatch of the lifeboat or through a hole specifically made in a wall of the lifeboat in such a manner that the handle is located inside the lifeboat and is therefore easily operable by the operator.

[0018] According to a further advantageous aspect of the present invention, flexible stop means are provided at the end of the safety pin opposite to the one from which the control cable extends and are configured to offer a low resistance to the removal of the safety pin when this latter is pulled by the operator by means of the control cable.

[0019] The present invention also relates to a fall preventing device for a lifeboat hoisting/lowering apparatus as set forth in independent claim 1 and in the claims depending thereon.

[0020] Further features and advantages of the present invention will appear from the following detailed description, given purely by way of non-limiting example with reference to the appended drawings, in which:

Figure 1 is a side elevation view showing a lifeboat with an associated hoisting/lowering apparatus according to a preferred embodiment of the present invention;

Figures 2 and 3 are side elevation views showing on an enlarged scale an anchoring device of the lifeboat of Figure 1 along with the associated fall preventing device, in the normal operating condition (i.e. with the hook in the closed position) and in the condition of accidental opening of the hook, respectively;

Figures 4 to 6 are an axial section view, a side elevation view and a front elevation view, respectively, of the fall preventing device of Figures 2 and 3; and Figure 7 is an axial section view showing on an enlarged scale a safety pin of the fall preventing device of Figures 2 and 3.

[0021] With reference first to Figure 1, a lifeboat is generally indicated 10 and comprises in per-se-known manner a hull 12, having a bow 14 and a stem 16, and a driving cab 18. A hoisting/lowering apparatus is provided for hoisting and lowering the lifeboat 10 and comprises a pair of hoisting/lowering cables 20 releasably connected to a pair of on-load anchoring devices 22 firmly secured to the bow 14 and to the stem 16 of the lifeboat 10, respectively. As can be better seen in Figure 2, each hoisting/lowering cable 20 is connected at its bottom end through a block 24 to a respective hoisting/lowering chain 26 comprising a plurality of links, of which a bottom end link 28 (hereinafter referred to as suspension link) is coupled to a hook 30 of the respective anchoring device 22. [0022] Each anchoring device 22 comprises, in perse-known manner, a support body 32, which consists for instance of a pair of parallel plates and is firmly anchored

to the lifeboat 10, and the aforesaid hook 30, which is rotatably supported by the support body 32 to rotate between a closed position (Figure 2), in which the hook 30 is coupled to the suspension link 28 of the respective hoisting/lowering chain 26, and an open position (Figures 3), in which the hook 30 is released from the suspension link 28 of the respective hoisting/lowering chain 26. The hook 30 is normally kept in the aforesaid closed position by means of a special locking mechanism, which is of per-se-known type and is not shown, in order to prevent the anchoring device 22 from automatically opening under load. In order to allow the operator to deactivate the locking mechanism of each anchoring device 22, and thus allow the release from the respective hoisting/lowering chain 26, a main remote control device comprising for instance a control cable 34 (or, alternatively, a hydraulic control mechanism) is associated in per-seknown manner to each anchoring device 22. Moreover, an auxiliary hanging plate 36 having a through hole 38 (which can be seen only in Figure 4) is fastened in perse-known manner to the support body 32 of each anchoring device 22.

[0023] A fall preventing device, which is generally indicated 40 and is arranged to prevent the lifeboat 10 from falling in case of accidental opening of the hook 30 of the anchoring device 22, is associated to each anchoring device 22. Each fall preventing device 40 comprises a hoisting/lowering strap 40 (or other elongated flexible connection member, such as for instance a cable or a chain) interposed between the respective hoisting/lowering cable 20 and the support body 32 of the respective anchoring device 22. The hoisting/lowering strap 42 is connected at its top end to a shackle 44 which connects the hoisting/lowering chain 26 to the block 24 (and which is therefore placed upstream of the suspension link 28) and at its bottom end to the support body 32 of the anchoring device 22 (more specifically, to the auxiliary hanging plate 36 secured to the support body 32), so as to provide an auxiliary connection line between the hoisting/lowering cable 20 and the support body 32 separate from the main connection line which connects the hoisting/lowering cable 20 to the hook 30 of the anchoring device 22 via the suspension link 28. The auxiliary connection line comprising the hoisting/lowering strap 42 is configured to act in parallel to the main connection line comprising the suspension link 28, whereby in case of disconnection between the hoisting/lowering cable and the support body as a result of an accidental opening of the hook of the anchoring device, the support body of the anchoring device, and hence the lifeboat firmly secured thereto, remains connected to the hoisting/lowering cable via the auxiliary connection line. In this way, even in case of accidental opening of the hook 30, the support body 32, and hence the lifeboat 10, remains connected to the hoisting/lowering cable 20 via the hoisting/lowering strap 42 of the fall preventing device 40.

[0024] More precisely, as better illustrated in Figures 4 to 6, the hoisting/lowering strap 42 is connected to the

40

shackle 44 by means of a further shackle 46 of per-seknown type, which is provided with a locking bolt 48, a nut 50 and a peg 52, whereby the ring-like portion of the shackle 46 is coupled to the shackle 44, whereas a loopshaped top end portion of the hoisting/lowering strap 42 is wound on the shank of the locking bolt 48. At its bottom end, the hoisting/lowering strap 42 is connected to the auxiliary hanging plate 36 of the support body 32 by means of a shackle 54 ofper-se-known type, provided with a locking bolt 56, a nut 58 and a peg 60, and a connection body 62. The shackle 54 is arranged in such a manner that a loop-shaped bottom end portion of the hoisting/lowering strap 42 is wound on the shank of its locking bolt 56, whereas its ring-like portion is coupled to the connection body 62 by means of a safety pin 64. The connection body 62 is a metal body of substantially cylindrical shape having a first diametral groove 66 which opens towards the upper face of the connection body 62 and receives the ring-like portion of the shackle 54, a first through hole 68 which extends along a diametral direction perpendicular to the first groove 66 and receives the safety pin 64, a second diametral groove 70, which opens towards the bottom face of the connection body 62, extending for instance parallel to the first groove 66, and receives the auxiliary hanging plate 36 of the support body 32, and a second through hole 72, which extends along a diametral direction perpendicular to the second groove 70 and receives a pin 74 which, passing through the through hole 38 of the auxiliary hanging plate 36 as well, connects this latter to the connection body 62 and then, via the shackle 54, to the hoisting/lowering strap 42. [0025] The shackles 44, 46 and 54 are made in the illustrated example as Ω -shaped shackles, but it is clear that shackles of different type, for instance U-shaped shackles, may be used either.

[0026] The length of the auxiliary connection line, which comprises in order from the top to the bottom the shackle 46, the hoisting/lowering strap 42, the shackle 54 and the connection body 62, is chosen in such a manner that it does not transmit loads, in normal operating conditions, from the lifeboat 10 to the hoisting/lowering cable 20. Just in case of accidental opening of the hook 30 of the anchoring device 22, the lifeboat 10 remains connected to the hoisting/lowering cable 20 only via the auxiliary connection line and therefore this latter is subject to a pulling force.

[0027] The pin 74 which connects the connection body 62 to the auxiliary hanging plate 36 has at the one end thereof (the left-hand end, according to the point of view of the observer of Figure 4) a head 76, whereas at the opposite end (the right-hand end, according to the point of view of the observer of Figure 4) is provided with a peg 78, in such a manner that the head 76 on the one side and the peg 78 on the other prevent the pin 74 from being removed from the respective holes 72 and 38 in either directions, as a result for instance of vibrations. On the other hand, the safety pin 64 is configured in such a manner that the operator inside the lifeboat 10 can easily and

quickly remove it from the connection body 62 to interrupt the auxiliary connection line and hence allow the release of the lifeboat. To this end, the safety pin 64 is provided at the one end thereof (the right-hand end, according to the point of view of the observer of Figure 4) with a flexible stop member 80 configured so as to offer a low resistance to the removal of the safety pin when this latter is subject to a pulling force directed towards the opposite end (directed leftwards, according to the point of view of the observer of Figure 4), whereas from the opposite end (the left-hand end, according to the point of view of the observer of Figure 4) of the safety pin 64 an auxiliary control cable 82 extends towards the driving cab 18 of the lifeboat 10, a control handle 84 being attached to the opposite end of the auxiliary control cable and allowing the operator to apply a pulling force onto the safety pin to remove it from the connection body 62 by overcoming the resistance of the flexible stop member 80. The auxiliary control cable 82 may be secured to the end of the safety pin 64 opposite to the one where the flexible stop member 80 is provided. Alternatively, as will be explained in detail further on, the flexible stop member 80 is advantageously used also to restrain the auxiliary control cable 82 to the safety pin 64. The auxiliary control cable 82 is passed through a through hole 86 provided in a wall 88 (non-carrying wall) of the structure of the lifeboat 10 so as to allow the operator to deactivate the fall preventing device 40 while remaining inside the lifeboat.

[0028] In order to ensure that the pulling force applied onto the safety pin 64 is always directed along the axis of the safety pin, and hence does not cause this latter to jam inside the respective through hole 68 of the connection body 62, a guide structure 90 is fixed to the lateral surface of the connection body 62 next to the through hole 68 and has an inner cavity 92 which extends coaxially with the safety pin 64 and has a length and a crosssection such as to accommodate at least partially the safety pin 64 when this latter is removed from the respective through hole 68. At the end facing towards the connection body 62, the guide structure 90 forms a connection bracket 94 adapted to be fixed to the connection body 62 by means of screws 96, whereas at the opposite end the guide structure 90 forms an end wall 98 having a through hole 100 through which the auxiliary control cable 82 passes. Preferably, the guide structure 90 has at least one groove 102 on its lateral surface so as to allow the operator to inspect inside the guide structure and to check whether the safety pin 64 has been removed from the respective through hole 68, and hence whether the fall preventing device 40 has been deactivated.

[0029] According to the embodiment illustrated in Figures 4 to 6, the auxiliary control cable 82 is made as a steel cable and is inserted into a sheath 104 attached at the one end to the end wall 98 of the guide structure 90 and at the opposite end to a special support member 106 inside the driving cab 18 of the lifeboat 10.

[0030] According to an embodiment of the present invention, a handle 108 is attached to the safety pin 64, on

40

the same side as the auxiliary control cable 82, and is made for instance as a rod-like element extending perpendicularly to the axis of the safety pin 64. The handle 108 has on the one hand the function of preventing the safety pin 64 from being removed from the through hole 68 in the opposite direction to that of the pulling force applied onto the safety pin via the auxiliary control cable 82 and on the other the function of allowing the operator to remove, if required, the safety pin 64, acting on it by means of the handle, in case the auxiliary control cable 82 does not operate properly.

[0031] As already partially explained, with reference in particular to Figure 7, according to an embodiment of the present invention the flexible stop member 80 is restrained to the safety pin 64 by means of a loop 110 formed by the auxiliary control cable 82, the auxiliary control cable 82 being in this case inserted into an axial through hole 112 provided in the safety pin. Independently of the way of fixing to the safety pin 64, the fact that the stop member 80 is made as a flexible member allows the operator to remove easily and quickly the safety pin from the respective through hole 68 or to insert the safety pin into the through hole by simply applying a pulling force or a compression force, respectively, onto the safety pin. [0032] In the embodiment of Figure 7, in which the auxiliary control cable 82 is inserted into an axial through hole 112 of the safety pin 64, according to a further advantageous aspect of the present invention the handle 108 is attached to the safety pin 64 by screwing into a threaded through hole 114 which extends radially and hence intersects the axial through hole 112, thereby ensuring that the auxiliary control cable 82 is locked in the safety pin 64.

[0033] When the auxiliary connection line is subject to a load, i.e. in case of interruption of the main connection line due to early opening of the hook 30 of the anchoring device 22, the safety pin 64 cannot be removed from the respective through hole 68 because of the high resistance due to the friction between the cylindrical lateral surface of the safety pin 64 on the one hand and the inner surfaces of the through hole 68 and of the ring-like portion of the shackle 54 in contact with the safety pin 64 on the other hand. This helps to avoid accidental deactivation of the fall preventing device just in those cases where only the fall preventing device 40 ensures the connection of the lifeboat 10 to the hoisting/lowering cable 20.

[0034] As stated above, the auxiliary control cables 82 associated to each fall preventing device 40 are attached, at the end thereof opposite to the one attached to the respective safety pin 64, to a control handle 84 or to a similar hand control member. In this way, the operator wishing to release the lifeboat 10 from the hoisting/lowering cables 20 must operate both the control handles 84 in order to remove the safety pins 64 of both the fall preventing devices 40. According to a variant of embodiment, the auxiliary control cables 82 are both connected, at the end thereof opposite to the one attached to the respective safety pin 64, to a single lever or similar hand

control member (not shown), whereby the operator is able to operate simultaneously both the control cables 82 with a single command.

[0035] In view of the above description, the advantages offered by the hoisting/lowering apparatus provided with on-load anchoring devices and associated fall preventing devices according to the present invention are evident.

[0036] The use of fall preventing devices configured so as to provide auxiliary connection lines between the hoisting/lowering cables and the lifeboat minimizes the risk of accidents due to early opening of the anchoring devices by means of which the lifeboat is connected to the hoisting/lowering cables.

[0037] The fall preventing devices forming part of the hoisting/lowering apparatus according the present invention are applicable to the hoisting/lowering chains and anchoring devices currently on the market and therefore do not require to replace the ones or the others, with resulting significant savings of money and time.

[0038] In case of need, the operator is able to deactivate the fall preventing devices easily, quickly and above all in absolutely safe conditions while remaining inside the lifeboat, without thereby having to open the hatches of the lifeboat and/or to work outside the same.

[0039] In the variant of embodiment in which the control cables associated to the fall preventing devices are operable by means of a single hand control member, a single operator can completely release the lifeboat.

[0040] The adoption of the guide structure which allows to orient correctly the end portion, on the side of the fall preventing device, of the control cable relative to the associated safety pin, along with the adoption of a flexible stop member attached to the safety pin on the opposite side with respect to the control cable, minimizes the risk that a pulling force on the control cable does not lead to removal of the safety pin from the respective through hole. In any case, the adoption of a handle attached to the safety pin allows to compensate efficiently for the case - which is however very unlikely - that the safety pin is not removed by means of the control cable.

[0041] Naturally, the principle of the invention remaining unchanged, the embodiments and manufacturing details may be widely varied with respect to those described and illustrated purely by way of non-limiting example, without thereby departing from the scope of the invention as defined in the appended claims.

[0042] For instance, the connection bodies of the fall preventing devices may have a shape different from the one described and illustrated in the present application, as they may be for instance made from two or more separate pieces.

[0043] The guide structures may also have a shape different from the one described and illustrated in the present application and be fixed to the lateral surfaces of the respective connection bodies by means of connection means different from the screw-type one previously described.

10

15

20

25

30

[0044] Each fall preventing device may be provided with an automatic or semi-automatic apparatus for causing the safety pin to get back into the respective through hole, said apparatus consisting for instance of one or more springs applying on the safety pin a force tending to urge it towards the inside of the respective through hole.

[0045] The flexible stop members of the safety pins may have a shape different from the one described and illustrated in the present application, even though they have the same function as the members described and illustrated in the present application.

[0046] Instead of the control cables associated each to a respective safety pin, there may be provided other remote control means (not necessarily or not only of mechanical type, but also of hydraulic or electric type) operable by an operator from the driving cab inside the lifeboat to remove the safety pins from the respective through holes and thus cause the deactivation of the fall preventing devices.

[0047] The safety pins may have a shape different from the one described and illustrated in the present application, as they may be for instance made from two or more separate pieces.

[0048] Each control cable may be axially restrained to the respective safety pin not at the end of the safety pin facing towards the opposite side with respect to the control cable, as in the embodiment described and illustrated in the present application, but towards the same side as the control cable.

Claims

vice (22),

1. Apparatus for hoisting/lowering a lifeboat (10), the hoisting/lowering apparatus comprising a plurality of on-load anchoring devices (22) each comprising a support body (32) arranged to be firmly secured to the lifeboat (10), and a hook (30) carried by the support body (32) so as to be movable between an open or release position and a closed or coupling position, a corresponding plurality of hoisting/lowering cables (20) each connected to the hook (30) of a respective anchoring device (22) via a respective main connection line (26, 28), and a corresponding plurality of fall preventing devices (40) each associated to a respective anchoring de-

wherein each fall preventing device (40) comprises an auxiliary connection line (42, 46, 54, 62) between the respective hoisting/lowering cable (20) and the support body (32) of the respective anchoring device (22) separate from the main connection line (26, 28), wherein the auxiliary connection line (42, 46, 54, 62) of each fall preventing device (40) is arranged to act in parallel to the associated main connection line (26, 28),

wherein the auxiliary connection line (42, 46, 54, 62)

of each fall preventing device (40) is configured in such a manner that in normal operating conditions, i.e. when the hook (30) is in the aforesaid closed or coupled position, it does not transmit loads from the lifeboat (10) to the respective hoisting/lowering cable (20), and

wherein the auxiliary connection line (42, 46, 54, 62) of each fall preventing device (40) comprises an elongated flexible connection member (42) connected at its bottom end to the support body (32) of the respective anchoring device (22) and at its top end to the respective hoisting/lowering cable (20), and a quick-release safety pin (64) interposed between the elongated flexible connection member (42) and the support body (32) of the respective anchoring device (22) so as to ensure that said elongated flexible connection member and said support body are normally connected to each other and to be removable to interrupt the connection between the respective hoisting/lowering cable (20) and the support body (32) of the respective anchoring device (22) via the auxiliary connection line (42, 46, 54, 62),

characterized in that it comprises, for each fall preventing device (40), remote control means (82, 84) operatively associated to the safety pin (64) of that fall preventing device (40) to remove the safety pin (64) and thus disconnect the elongated flexible connection member (42) of that fall preventing device (40) from the support body (32) of the respective anchoring device (30).

- 2. Hoisting/lowering apparatus according to claim 1, wherein the remote control means (82, 84) of each fall preventing device (22) comprise a control cable (82) connected at the one end to the safety pin (64) and at the opposite end to a first hand control member (84) operable by hand by the operator on board of the lifeboat (10).
- 40 3. Hoisting/lowering apparatus according to claim 2, wherein at the end of each safety pin (64) opposite to the one from which the respective control cable (82) extends, flexible stop means (80) are provided which are configured so as to offer a low resistance to the removal of the safety pin (64) when this latter is pulled by the operator by means of the respective control cable (82).
 - 4. Hoisting/lowering apparatus according to claim 3, wherein the flexible stop means (80) of each safety pin (64) are restrained to the safety pin (64) by means of a loop (110) formed by the respective control cable (82), the control cable (82) being inserted through an axial through hole (112) provided in the safety pin (64).
 - **5.** Hoisting/lowering apparatus according to any of the preceding claims, wherein a second hand control

50

55

member (108) is attached to each safety pin (64) and is operable by hand by the operator in case of non-operation of the remote control means (82).

- 6. Hoisting/lowering apparatus according to claims 4 and 5, wherein the second hand control member (108) of each safety pin (64) is a rod member extending perpendicularly to the axis of the safety pin (64) in such a manner as to prevent the safety pin (64) from being removed in the opposite direction to that of the pulling force applied on it through the respective control cable (82).
- 7. Hoisting/lowering apparatus according to any of the preceding claims, wherein the elongated flexible connection member (42) of each fall preventing device (40) is connected to the support body (32) of the respective anchoring device (22) through a shackle (54) and a connection body (62), the shackle (54) being connected to the connection body (62) by means of the safety pin (64).
- 8. Hoisting/lowering apparatus according to claim 7, wherein the shackle (54) comprises a ring-like body and a locking bolt (56) and is arranged in such a manner that a loop-like end portion of the elongated flexible connection member (42) is wound about the locking bolt (56), wherein the connection body (62) has a diametral groove (66) opening upwards and accommodating the ring-like body of the shackle (54), and wherein the safety pin (64) is received in a through hole (68) of the connection body (62) extending perpendicularly to the diametral groove (66).
- 9. Hoisting/lowering apparatus according to claim 2 and according to either claim 7 or claim 8, wherein the safety pin (64) is received in a diametral through hole (68) of the connection body (62) and wherein the fall preventing device (40) further comprises a guide structure (90) which is attached to the connection body (62) next to the diametral through hole (68) and is arranged to guide an end portion of the control cable (82) facing the anchoring device (22) so as to keep that end portion aligned with the respective safety pin (64).
- 10. Fall preventing device for a hoisting/lowering apparatus for a lifeboat as defined in any of the preceding claims.

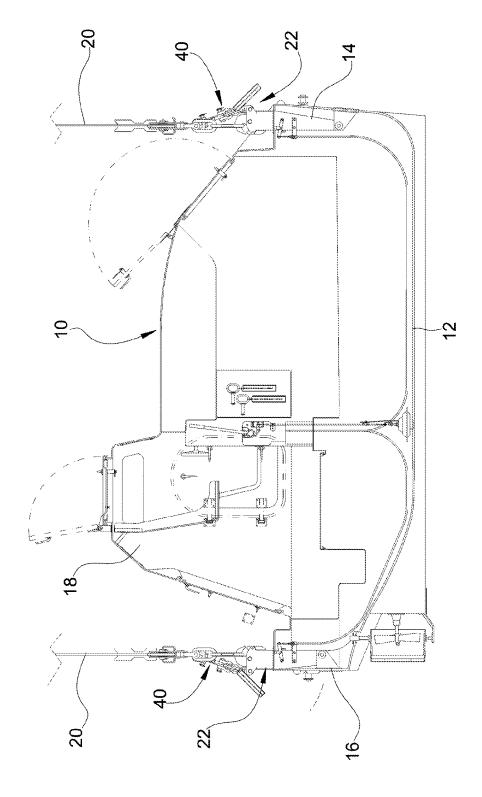
) 10 -

15

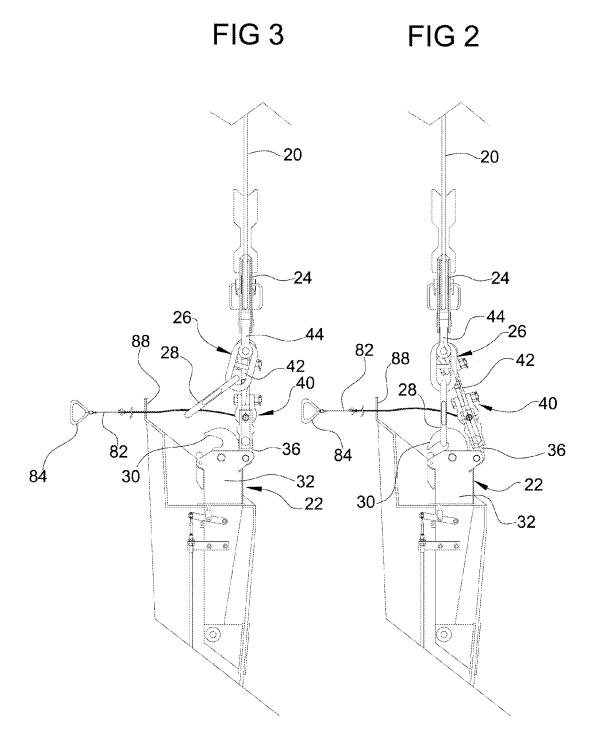
20

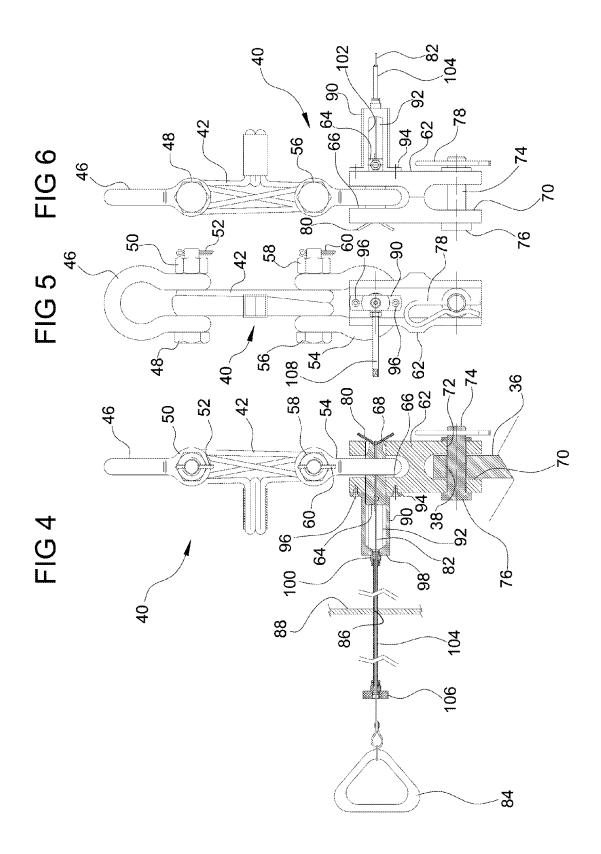
25

30

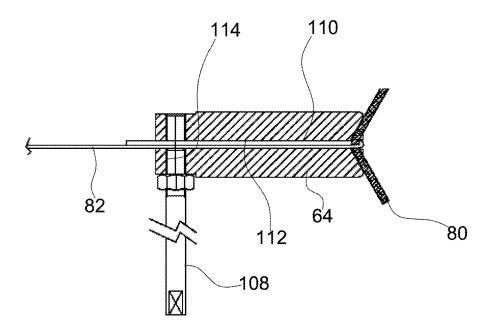

35

40


45


50

55



FIG,

FIG 7

EUROPEAN SEARCH REPORT

Application Number EP 10 19 4819

	DOCUMENTS CONSID	ERED TO BE RELEVANT]
Category	Citation of document with ir of relevant passa	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
A,D	7 January 1992 (199) - column 5, line 40;	1	INV. B63B23/58 B63B23/60
A,D	GB 2 390 638 A (DIA 14 January 2004 (20 * page 1, line 1 - figures 1-4 *	004-01-14)	1	
A	US 5 205 600 A (MOC 27 April 1993 (1993 * column 3, line 35 figures 1-6 *		1	
A	US 4 358 146 A (GOU 9 November 1982 (19 * column 2, line 32 figures 1-5 *		1	
А	GB 910 904 A (R F D VERNON EDWARDS) 21 November 1962 (1 * page 2, line 72 - figures 1-13 *		1	TECHNICAL FIELDS SEARCHED (IPC)
A	27 June 1950 (1950-	BERT MACCLUNEY WILLIAM) -06-27) B - column 4, line 61;	1	
A	10 March 2005 (2005	PELLEY DEAN M [CA]) -03-10) 38 - page 4, paragraph	1	
	The present search report has l	been drawn up for all claims		
	Place of search	Date of completion of the search	<u> </u>	Examiner
	Munich	31 March 2011	Ler	ndfers, Paul
X : parti Y : parti docu A : tech O : non	ATEGORY OF CITED DOCUMENTS cularly relevant if taken alone cularly relevant if combined with anoti ment of the same category nological background written disclosure mediate document	T : theory or principl E : earlier patent do after the filing dat her D : document cited i L : document cited for & : member of the sa document	cument, but publice n the application or other reasons	shed on, or

3

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 10 19 4819

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

31-03-2011

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 5078073	A	07-01-1992	NONE		
GB 2390638	Α	14-01-2004	NONE		
US 5205600	Α	27-04-1993	NONE		
US 4358146	Α	09-11-1982	NONE		
GB 910904	Α	21-11-1962	NONE		
US 2513245	Α	27-06-1950	NONE		
US 2005051079	A1	10-03-2005	NONE		

FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

EP 2 338 784 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- GB 2390638 A **[0009]**
- US 6920839 B [0009]

• US 5078073 A [0010]