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(54) Controller

(57) A controller is provided, operable to control a
system on the basis of measurement data received from
a plurality of sensors indicative of a state of the system,
with at least partial autonomy, but in environments in
which it is not possible to fully determine the state of the
system on the basis of such sensor measurement data.
The controller, comprises: a system model, defining at
least a set of probabilities for the dynamical evolution of
the system and corresponding measurement models for
the plurality of sensors of the system; a stochastic esti-

mator operable to receive measurement data from the
sensors and, with reference to the system model, to gen-
erate a plurality of samples each representative of the
state of the system; a rule set corresponding to the sys-
tem model, defining, for each of a plurality of possible
samples representing possible states of the system, in-
formation defining an action to be carried out in the sys-
tem; and an action selector, operable to receive an output
of the stochastic estimator and to select, with reference
to the rule set, information defining one or more corre-
sponding actions to be performed in the system.
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Description

[0001] This invention relates to the control of systems and in particular, but not exclusively, to optimised controllers
designed to operate with at least partial autonomy in environments in which it is not possible to fully determine the state
of the relevant system, defining the scope of that part of the environment to be controlled, on the basis of sensor
measurements.

Background

[0002] Optimal control of systems that are only partially observable, that is, where the state of the system may be only
partially determined through available measurements (observations) of the environment, continues to be an active area
of research. This so-called "partial observability" arises from such causes as (for example) sensor inaccuracy or more
significantly, the lack of an appropriate sensor for a state that is relevant to an action that the controller may initiate.
Such conditions are likely to occur, in particular, in relatively unstructured environments in which the system to be
controlled is a small part of a large scenario containing other equally autonomous entities that were not specifically
designed to match the capabilities of the controlled system. With an expected increasing use of robotic systems in all
walks of life (automated border surveillance, unmanned crop spraying in agriculture, mapping of intestinal tracts using
autonomous surveillance ’pills’, for example), such conditions are of increasing importance and there are many potential
applications for this technology.
[0003] A key requirement in controlling these systems is an ability to react reasonably to a very broad range of external
disturbances, using very limited sensor information, particularly where the disturbances are likely to be responsive to
an action of the controller. For example, in aerial crop spraying there might be a need to avoid bird-strike, but the action
of traversing the whole area of a crop to be sprayed will necessarily lead to birds taking flight from the crop: the birds
may not be visible on the crop but experience in the form of a model of bird behaviour might be used to define best
patterns of spraying to minimise the incidence of bird-strike.
[0004] An approach to addressing this realm of problem is provided by optimal control theory. The fundamental
equations providing a recursive solution to this general problem are the Hamilton Bellman equations, as described for
example by R E Bellman in "Dynamic Programming", Princeton University Press, (1957). These equations can be solved
exactly only in a restricted range of relatively simple control problems.
[0005] For linear systems in particular, where performance measures are quadratic and where any noise arising in
observations of the environment are assumed to be Gaussian in nature, Goodwin and Kwai Sang Sin (Adaptive Filtering,
Prediction and Control, Prentice Hall (1984)), for example, describe a method for controlling a system comprising esti-
mating the states of the system, on-line, using a Kalman filter and using these state estimates in a full state feedback
controller that has been designed separately from the state estimation process. This method involves an off-line solution
of a set of Riccatti equations very similar to those of the Kalman filter itself. While this process leads to an elegant solution
to the associated control problem, the assumptions that are needed to obtain the solution are rarely satisfied in a real
systems.
[0006] In more realistic situations it is not possible to invoke the ’separation principle’ that allows the controller and
state estimation to be separately solved for. Such a separation enables both the estimation and control to be expressed
compactly in terms of separate pre-computed gain factors. Without this separation, the optimal control depends on the
results of observations and not just on an instantaneous error estimate. Because of this intimate coupling the usual
approach to the design of controllers for such complex systems, characterised by nonlinear sensors and dynamics and
correspondingly non-Gaussian statistics, (for example as described by D. Karagiannis, R. Ortega, and A. Astolfi in
"Nonlinear adaptive stabilization via system immersion: control design and applications", Lecture Notes in Control and
Information Sciences, Springer-Verlag, Berlin, 311, pp. 1-21 (2005)) is to completely avoid state estimation and to directly
design a controller on the basis of an analysis of the dynamics of the controller system.
[0007] While this approach is sufficient for control, it does not provide for an interpretation of the control actions that
were taken. This is not a serious issue for a closed autonomous system, but if such a system is linked to collaborating
human operators undesirable behaviours can result simply because, without the system controller providing an expla-
nation for its robotic actions, the human collaborator can end up counteracting them. Pilot-induced oscillation is an
example of this phenomenon.
[0008] In the case of a linear system in which the states of the system can be defined by discrete values that are
directly observed, the optimal control problem is just that of the well-known ’travelling salesman’ problem that is NP
Complete, that is, the time taken to obtain a general solution is known to scale faster than any polynomial of the number
of states. Nonetheless, at least, in the case of an effectively finite horizon, a number of algorithms are known that enable
practical approximate solutions to be obtained in which the control algorithms are solved either off-line or iteratively
improved as control actions are taken. These methods are generally described within a framework of Markov Decision
Processes (MDPs) that comprise a Bayesian network model representing states and measurements of the system,
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augmented with control actions and performance measures. Within this model, a probabilistic link between a state and
a measurement is termed a measurement model and the links between the states at different times constitute a model
of the system dynamics. This dynamics is parameterised by the controller action and the performance of the system is
monitored by rewards that are (possibly stochastic variables) conditional on the states of the system. Given this prob-
abilistic structure, the benefits of particular control actions can be accumulated in a net return function. Choosing the
actions so as to optimise the net return in the long run provides the route to design of an optimal controller.
[0009] In the case of an MDP system with discrete-valued states, the Hamilton Bellman equation, referenced above,
is a matrix equation in the discrete state space and solutions for optimal control are obtained by iteration of this matrix
equation. The individual iterations involve matrix multiplication that is polynomial in the number of states, so that provided
a finite horizon can be assumed, a whole solution can be found approximately in polynomial time. In the textbook
"Reinforcement Learning - an Introduction", by Sutton R S, and Barto, A G., MIT Press, Cambridge Massachusetts,
(1998), Barto and Sutton describe a number of different methods for solving such discrete state decision problems.
[0010] In the general case where not all states are "well observed", that is, where it is not possible to determine all
the states of a system with certainty on the basis of observations, control problems need to be solved by means of what
is referred to as a Partially Observed Markov Decision Process (POMDP). In this case the MDP solution techniques
mentioned above are not practicable. Although the same MDP approach is equally valid when states are not well
observed, the resulting equations involve integrals over the probabilities of states rather than sums over the states
themselves. These equations are not exactly solvable and even the known approximate solutions (for example the
"Witness" algorithm) are not guaranteed to be polynomial.
[0011] The Witness algorithm, developed by Kaelbling et al. and described for example in Anthony R. Cassandra,
Leslie Pack Kaelbling, and Michael L. Littman, "Acting optimally in partially observable stochastic domains", Proceedings
of the Twelfth National Conference on Artificial Intelligence, Seattle, WA, (1994) is difficult to use in practice, if only
because its tractability is difficult to gauge, a priori. In this algorithm, the integral problem referred to above is converted
into a discrete problem by assuming the global benefit function to be piece-wise linear. This assumption is consistent
with the form of the fundamental Hamilton Bellman equation but this does not place a restriction on the number of linear
facets that might result in the solution. Here the solution time is polynomial in this number of facets, but since it is possible
for the number of facets to be indefinitely large, the solution may still be non-polynomial.
[0012] In practice, this might not be a serious limitation if the controller design is performed off-line, since it may be
possible to adjust the effective horizon of the solution so as to obtain a reasonable solution in a practicable time. However,
the method does have the undesirable feature that the number of facets and hence the computational time only emerge
as the solution process proceeds. This means that at best the approach is limited to off-line controller (decision-maker)
design.
[0013] The Witness algorithm approach does have the advantage that it addresses the issue of providing both optimal
control actions and optimal estimation of the system state, giving a rational for the actions. In contrast, recent work by
MacAllester and Singh ("Uncertainty in Artificial Intelligence", vol. 5, p 409 (1999) ) takes an approach analogous to that
of Karagiannis et al., referenced above, in conventional control and avoids the state estimation entirely by seeking control
solutions for the POMDP problem directly in terms of histories of measurements. As noted previously, such an approach
makes difficult the integration of multiple levels of control, particularly those involving interactions with human players.
[0014] Although partial observation leads to a problem for which there is no known approach providing a solution that
can be made arbitrarily accurate, there are many situations where the lack of complete observability has few conse-
quences and it is possible to obtain an approximate solution by solving the completely observed case and then looking
for a perturbation solution by considering fluctuations around this classical solution. For a continuous state space, this
is the Laplace approximation.
[0015] There have been recent attempts to extend this approach by allowing multiple classical paths. In particular, in
H.J. Kappen, "Path integrals and symmetry breaking for optimal control theory", arXiv: physics /0505066 4 (2005),
Kappen has addressed this extension by sampling over the system trajectories from the neighbourhoods of all the
classical optimal solution paths. In this approach the optimally controlled path is obtained by averaging over samples
of likely paths, with appropriate likelihood weightings. This approach loses the potential advantages of a recursive
formulation that would allow on-line optimisation and it also avoids the need to compute estimates of the states. While
the latter might be seen as an advantage, it is not if there is a need to ’understand’ the controlled actions of an autonomous
robotic system.

Summary of the invention

[0016] From a first aspect, the present invention resides in a method for controlling a system that enables autonomous
operation of the system in an environment in which selected control actions have uncertain consequences, the method
comprising the steps of:
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(i) constructing an initial partially observed Markov decision process (POMDP) model representing the dynamics of
the system to be controlled, wherein the POMDP model comprises a representation of states of the system, a
measurement model, one or more control actions, and measures of benefit likely to arise from the selection of
particular control actions;

(ii) transforming the initial POMDP model into a subsidiary Markov decision process (MDP) model, comprising
generating a sample state space representation for the subsidiary model, and generating an initial probabilistic
system model and control rule set using said sample state representation; and

(iii) using observations of the system and of the environment by a plurality of sensors to update the control rule set
and the probabilistic system model of the subsidiary MDP based upon the observed effects of selected control
actions and with reference to said measures of benefit for the system.

[0017] A controller designed and operable according to the method in this first aspect of the present invention is
particularly suited to effecting optimal control of a system subject to uncertainty, that is, to one in which the sensor data
or other measurements of the system’s operating environment are insufficient to provide an accurate determination of
the state of the system (comprising either or both of the external environment and the autonomous system itself). The
controller is operable to execute preferred algorithms to determine control actions to be taken in the system on the basis
of imperfect observations of the environment, as represented at least in part by the sensor data. Preferably, there is a
pair of algorithms, the first for mapping observations onto control actions and the second for determining the structure
of the mapping function.
[0018] In a preferred embodiment, step (ii) of the method from this first aspect comprises:

identifying a set of state subspaces, with reference to the measurement model;

choosing a number of samples sufficient to represent uncertainties in each subspace and, by means of statistical
sampling and the application of a particle filter, generating a sample state space representation specific to a pre-
determined control problem;

calculating conditional sample-state transition probabilities by taking combinatorial products of the state transition
probabilities from the initial POMDP model, renormalised as required, and generating a dynamical model based
upon said sample state representation;

formulating one or more mean reward functions in terms of said sample state representation and combining said
one or more functions with said state space representation and said dynamical model to redefine the predetermined
control problem as an MDP subsidiary to the initial POMDP model; and

solving the subsidiary MDP using an MDP solution algorithm to obtain an initial optimal control solution for the
system, and tabulating this solution to thereby create the control rule set for the system.

[0019] A preferred implementation of step (iii) comprises:

constructing a recursive estimate of one or more states of the system given previous observations, and a corre-
sponding recursive estimate of a net return from the benefits of future control actions;

identifying, based on the current sample state and the control rule set, one or more control actions that, once taken,
impact the temporal evolution of the system states;

receiving an immediate reward, based upon a chosen one of said one or more control actions and the resulting
state of the system, that represents the benefit of the chosen action, and an expected net return, calculated from
the range of possible immediate rewards, representing an overall performance of the control system; and

iteratively updating the control rule set and the probabilistic system model on the basis of the observed measure-
ments, the received rewards, and the net return, to thereby refine the basis for future control actions in response
to changes in the system and its environment.

[0020] Advantageously, a controller according to preferred embodiments of the present invention provides, in particular,
a method for approximate solution of the Hamilton Bellman equations, referenced above, that would be applicable in a
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broader range of situations than merely a restricted range of simple control problems. The method is based on the
general ’Dynamic Programming’ approach to optimal control of Markovian systems. This is a general principle under-
pinning the optimal control concept but because of its complexity it is impractical to implement in real applications.
However, in preferred embodiments of the present invention, a new method is provided, based on this general principle,
that allows for its practical application. A key part of this new method is that of estimating the state of a system on the
basis of observations.
[0021] Preferably, a conventional statistical sampling approach is used to construct the necessary estimation filter
and the innovation of this invention lies in the use of these statistical samples in the construction of the controller.
[0022] From a second aspect, the present invention resides in a controller for controlling a system, operable according
to the method from the first aspect of the present invention, defined above, to enable autonomous operation of the
system in response to observations by a plurality of sensors in an environment in which selected control actions have
uncertain consequences, comprising:

a system model, defining a set of probabilities for the dynamical evolution of the system and corresponding meas-
urement models for said plurality of sensors;

a stochastic estimator operable to receive measurement data from said plurality of sensors and, with reference to
the system model, to generate a plurality of samples each representative of the state of the system; a rule set
corresponding to the system model, defining, for each of a plurality of statistical samples representing state prob-
abilities for the system, information defining an action to be carried out in the system; and

an action selector, operable to receive an output of the stochastic estimator and to select, with reference to the rule
set, information defining one or more corresponding actions to be performed in the system.

[0023] A controller according to preferred embodiments of the present invention may be used for both continuous and
discrete systems but it achieves a particularly efficient form for discrete automatic control and decision-making.
[0024] Preferred embodiments of the present invention are motivated by the needs of autonomous robotic systems
where it is envisaged that such autonomous systems will need to co-ordinate their actions with those of human partic-
ipants. Thus an advantageous feature of a controller according to the present invention is that of providing both control
and a consistent estimation of the system state so that the robotic behaviour of the controller can be understood by
human collaborators.
[0025] Potential applications of a controller according to preferred embodiments of the present invention range from
the control of autonomous vehicles to the control of security and financial systems, for example.
[0026] The following preferred features fall within the scope of preferred embodiments of the present invention:

1) the ’sample state representation’ comprises separate sample sets, each from partitions of the original state space,
and the rule set and action selector functions comprise separate rules and selectors for the separate partitions;

2) the rule set is organised in terms of clusters of sample states with the same actions (with the advantage that less
data need be tabulated) and the action selector operates on the clusters rather than the distinct sample states; and

3) the rule set is updated in the course of operation of the controller, by making use of the observed statistics of the
responses to the control actions, to either implicitly or explicitly update the system dynamics and thereby allow an
iterative adaptation of the control rules using the Hamilton Bellman equation, referenced above.

[0027] Preferred embodiments of the present invention will now be described in more detail, and by way of example
only, with reference to the accompanying drawings, of which:

Figure 1 is a diagrammatic representation of a controller, including its interface to a system to be controlled, according
to a first preferred embodiment of the present invention;

Figure 2 is a representation of a probabilistic model for a complete system to be controlled, in the form of a Bayesian
network; and

Figure 3 is a schematic representation of a design phase process for a controller according to preferred embodiments
of the present invention.
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Overview

[0028] An overview of a controller according to preferred embodiments of the present invention and its interface to a
system to be controlled will now be described with reference to Figure 1.
[0029] Referring to Figure 1, a controller 100 is arranged to receive input from a number of sensors 105 which in turn
are arranged to monitor or measure various parameters representative of behaviour or operation of a system to be
controlled 110. An action selected by the controller 100 as a result of having received input from the sensors 105 is
notified to an action effector 115, for example in the form of a demand that is interpreted by the action effector 115 and
implemented by or under the control of the action effector 115 on the system 110.
[0030] The controller 100 comprises a probabilistic model 120 containing data representing the dynamics of the system
110 to be controlled, preferably in the form of a set of conditionally dependent transition probabilities. Simple examples
of such probabilistic system models 120 are provided in Annex A below. The controller 100 further comprises a control
rule set 125 that is populated during a design phase, to be described below, and which contains rules defining actions
that may be selected by an action selector 130 during operation of the controller 100. Rules stored in the control rule
set 125 are defined, preferably, on the basis of so-called "sample states" defined as being a set of samples from the
probability of the state of the system model 120, intended to provide a sufficiently accurate description of the system
110 to be controlled.
[0031] The controller 100 further comprises a stochastic estimator 135, the detailed operation of which will be described
in detail below, operable to receive, as input, data from the sensors 105 and on the basis of those data and of data
stored in the probabilistic system model 120 to output sample states to the action selector 130. The action selector 130,
on receiving a sample state from the stochastic estimator 135, interrogates the control rule set 125 and determines an
appropriate action, so generating a demand which is output to the action effector 115.
[0032] A particularly advantageous feature of the controller 100 according to preferred embodiments of the present
invention is the formulation of a control problem in terms of discrete states that are constructed as "sample states" to
be directly accessible by observation. In this way the control problem is converted into an equivalent (fully observed)
Markov Decision Process that may be solved by conventional means while simultaneously providing a direct link between
the best estimation of the state of the system and the selection of the best control action. Advantageously, this direct
link enables visibility of a rationale for actions initiated by the controller that will ease integration with humans, or other
entities operating in the same environment, of an autonomous system comprising such a controller according to preferred
embodiments of the present invention. This visibility is provided through sample-states that are an appropriate and
conventional output of the stochastic estimator 135. With the control rule set 125 based directly on the sample states,
the control and estimation use the same state representation, enabling efficient implementation of the controller 100.
Because these representative sample states are directly observable, there is the possibility of immediate feedback from
the observed consequences of the control process implemented by the controller 100. That is, following implementation
of any control action selected by the controller 100, the resulting (observed) state of the system 110 can be compared
with that expected on the basis of the predictions of an MDP ’sample-state’ dynamic model for the system 110. This
allows, in a preferred embodiment of the present invention, for the possibility of adaptive design of the controller or
decision-maker, whereby the dynamic model of the system 110, as represented at least in part by the probabilistic
system model 120, is updated on-line to reflect the observed dynamical behaviour of the system 110. Such adaptability
is likely to be particularly advantageous in autonomous decision-making where system models are not likely to be
sufficiently well known in advance to allow off-line design of the optimal decision function of a controller 100.
[0033] A difficulty inherent in systems that do not assume linear dynamics and Gaussian noise processes is a strong
coupling of the state estimation and controller design. In such a regime, the state estimation is difficult in its own right
and it is generally necessary to resort to some statistical sampling method to enable an approximate solution. The key
technical innovation in preferred embodiments of the present invention is to use these statistical samples of the state
probabilities, i.e. sample states, as an approximate ’sufficient statistic’ for the design of the action selector 130. The
sample state is the set of a sufficient number of statistical samples of the estimated state provided by the stochastic
estimator 135 and which are then the state signals output by the stochastic estimator 135 and used by the action selector
130 to select a relevant action according to the control rule set 125.
[0034] Statistical sampling methods that are used for state estimation as performed, preferably, by the stochastic
estimator 135 are frequently called ’Particle Filters’ and each sample (or particle) is essentially an unbiased sample from
a set of events that might have occurred in the environment in which the autonomous subsystem operates, given an
imperfect knowledge of the system provided by the available observation data, e.g. sensor data output by the sensors
105. Such a Particle Filter is effectively a multiple hypothesis estimator providing a best estimate of the state of a system
at any time, as a mean over the outcomes of the sample of hypotheses. More detailed information on particle filters is
provided in A Doucet, N de Freitas, N Gordon, Sequential Monte Carlo Methods in Practice, Springer-Verlag New York
(2001) and will not be described further in the present specification.
[0035] It would not be immediately obvious to a person of ordinary skill that such a multiple hypothesis description
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could be used to decide the appropriate control actions to take by a controller since only one control action can be taken,
no matter how diverse are the state hypotheses. Preferred embodiments of the present invention therefore consider the
control actions to be a function of the sample state, namely the predetermined number of "particles" sampled, by the
stochastic estimator 135, from the probability of the states, as defined in the system model 120, rather than any particular
sample or the mean of possible samples. In this way, rather than considering the general case of the control actions
being functionals of the probability densities of the states, in preferred embodiments of the present an approximate
representation is provided as a function on the space of finite samples from the probabilities of the states. Just as in the
case of state estimation, it is appropriate to consider a fixed number of samples so that the mapping from sample-set
to control actions has fixed dimensionality. This immediately results in an attractive feature of an algorithm based on
this approach: the size of the computational problem is fixed only by the chosen number of particles to be used in the
description.
[0036] In particular, the execution speed of the algorithm is not dependent on the complexity of the system model or
on the degree of uncertainty of the states and this number of particles (statistical samples) can be chosen a priori in
order to provide a practicable execution speed.
[0037] In its basic form the invented algorithm involves a discrete state space description of the system. This description
comprises a measurement model and a model of the system dynamics, of the form needed in a conventional MDP or
POMDP algorithm.
[0038] The algorithm effects control of the system in order to maximise the mean expected return function along the
state space trajectory of the system as the sum of individual rewards accumulated as a function of the state and the
actions at each time step along the path in accord with the general Dynamic Programming approach for MDP systems.
[0039] In common with general POMDP and MPD algorithms, the algorithm implemented by a controller 100 according
to preferred embodiments of the present invention involves two phases. Firstly an optimal control function or rule set
125 is obtained as a function of what can be known of the state of the system. Secondly the optimal control is effected
by inferring the best information on the state of the system from measurement data and using the computed control
function to obtain the required control action.
[0040] Preferably, the optimal control rule is designed off-line in a design phase and incorporated as a ’look-up’ function
in the control rule set 125 that is used by the action selector 130 to provide the optimal decisions as measurements are
made by the stochastic estimator 135 as to the state of the system 110. However, in a preferred embodiment of the
present invention, for a more efficient implementation, a controller 100 initialised in this way may be sequentially updated
at the same time as it is exploited.
[0041] A particularly innovative feature of the algorithm implemented in a controller 100 according to the present
invention is the expressing of the knowledge of the current state of the system 110 in terms of some number (N) of
samples of the likely states of the system from the probabilities of these states obtained as a result of measurements
(the sensor data and any other observational inputs). Using this set of N "samples of likely states" or particles, a new,
subsidiary MDP is constructed where the sample sets are the approximate sufficient statistic for the problem and these
sample sets are taken as the ’states’ of this subsidiary MDP. Clearly, the number of samples is exponentially larger than
the original number of states but by limiting the number, N, this space can be limited to a practicable size. For example,
if there were originally 16 states, then there are 816 sample-states for N = 3. Here it should be noted that although it
would be reasonable to increase the number of samples with larger numbers of states, the choice of the number of
particles is more a matter of sufficiently exploring the likely variability of the system than exploring all possible states
and therefore it is reasonable to have the number of samples much less than the number of states.
[0042] In order to implement this MDP, it is necessary to define during the design phase for controller set-up a Sample-
State Markov Decision Process (SSMDP) representing the corresponding dynamics of the sample-states and the as-
sociated measurement models. These are obtained by conventional Bayesian statistical inference and conditioning on
the possible samples. This process is computationally demanding and preferably is performed off-line and need only
be done once. (See for example, A Doucet, N de Freitas, N Gordon, Sequential Monte Carlo Methods in Practice,
Springer-Verlag New York (2001).)
[0043] Having constructed this(SSMDP), the solution of the state estimation, the controller design and the implemen-
tation of the control can be effected using any MDP solution algorithm. Here it should be noted that MDP algorithms are
very much faster than POMDP algorithms and in particular example problems the algorithm according to preferred
embodiments of the present invention provides an approximately optimal controller solution indistinguishable from that
obtained using the ’Witness’ algorithm for POMDPs (referenced above) in less than a thousandth of the computational
time.
[0044] It should be noted that for a large number of states, the state estimation process itself might be implemented
by sampling so that the samples used in the state estimation would naturally be the same samples used in the control.
[0045] Given the conceptual simplicity of the approach used in the present invention, it is possible to imagine a number
of extensions of the algorithm. In particular, it might be extended to continuous state spaces by describing the probability
densities of the states in terms of Gaussian mixture models such that the state estimation problem becomes tractable
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as a Rao-Blackwellised Particle Filter in which samples are drawn from the discrete space used to generate the admixtures
of Gaussians
[0046] It is then appropriate to take a similar factorisation of the control actions into discrete demands and continuous
control actions to meet them. The discrete components limit the control problem to a set of mono-modal control problems
where continuous control actions can be solved for using traditional controller designs. The expected returns of these
continuous controllers then become the reward functions of the discrete control problem which can then be solved using
the sampling technique of the present invention.

Detailed description of preferred embodiments

[0047] Preferred embodiments of the present invention are directed to the problem of estimating the states of the
system 110 on the basis of relatively meagre sensor data (105) and using this knowledge to infer an optimal decision
path. Whatever the structure of the mathematical description, the result will simply be a mapping from sequences of
observations to possible actions. This might be constructed as a heuristic neural network function fitting problem. The
approach taken in preferred embodiments of the present invention is to represent the problem in a complete probability
space of underlying dynamical states, measurements, decisions and rewards and impose a causal model structure by
means of a Bayesian network expressing the joint probability of all these states in terms of a conditional probability
factorisation. This structure is shown in Figure 2.
[0048] Referring to Figure 2, a model structure is shown representing the relationships between separate variables
in the form of separate conditional probabilities associated with subsets of those variables. It is just such factorisation
that allows more complex models to be constructed from simpler component parts. The diagram in Figure 2 expresses
the joint probabilities of all the states of interest in the respective generic decision problem. All the variables pictured in
Figure 2 are vectors in the relevant phase spaces and specifically:

• The system states, st, are determined by a hidden Markov process such that the states at time ’t’ are influenced by
only the states at the previous time.

• Measurements, mt, are made of these system states and although the system states are the only stochastic variable
determining the measurements, there is no assumption that all states are measurable.

• Predetermined decisions, ut, are made that effect the temporal evolution of the system states. In general these are
defined in terms of prior probabilities of decisions at each time but in this exposition we consider only ’pure strategies’
without stochastic spread. (The approach can be readily extended to the case of mixed strategies.)

• The benefit of the decision action is given by an immediate reward, rt, that depends both on the resulting state and
the decision that resulted in the state being achieved.

• The total performance of the decision system is the net return, qt, and this is accumulated from the immediate local
rewards. It is this accumulation of rewards that enables a decision system to provide a decision strategy that gives
due weight to future rewards relative to the immediate benefits from actions.

[0049] From this description it is relatively straightforward to construct a recursive estimate of the states of the system
given previous measurements and a corresponding recursive estimate of a net return from future rewards. Assuming
discrete states, the recursive probability of the state at time t+1 given all the measurements up to that time is:

in the notation where capital letters denote sets of all previous states, e.g. Mt = {mτ : τ ≤ t}.
[0050] In a similar fashion a recursive equation for the net return, can be used to determine the mean return:

[0051] To achieve optimal performance the decisions, ut, need to be made which maximise this return. If this is done
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then the Hamilton-Bellman equation for the optimal decision making process, which for fully observed states (’m ≡ x’)
gives the usual equation for the optimal actions in a Markov Decision Process (MDP), is:

where v* is the maximum mean reward obtained for optimal future decisions and q* is the corresponding reward for
taking a particular decision and subsequently following optimal decisions. Maximising q* over these first decisions gives
v* and the optimal decision itself.
[0052] All this is true whether there is a fully observed Markov decision process or whether the measurements are
insufficient to provide complete knowledge of the system states. However, in the latter case, q*(st, ut) in equation (3)
does not provide very useful information since it would not be possible to know the value of st that should be used in
evaluating it.
[0053] For a partially observed Markov decision process (POMDP) where the available data does, at best, give only
a probability for the state values and the correspondingly observable net return is a function of the probability of the
states rather than of the states themselves:

where bt+1, defined by equation (1), is an implicit function of the state measurement mt+1 . This equation can be obtained
from equation (2) simply by taking the mean of the equation relative to the known probability of the states given by
equation (1). Equation (4) is then obtained by maximising net return over the possible decisions. It should be noted that
this is not the probability-weighted mean of equation (3) since the maximisation needs to be performed after the mean
is taken. Clearly the optimum decision can only be made on the basis of the available information.
[0054] Although, at first sight, this is formally identical to the case for an MDP, even for discrete states, the returns
are now functions of a continuous probability. Thus despite the formal similarity, solving equation (4) is very much harder
than the problem posed by equation (3). Nonetheless, a variety of known approaches have been used.

• For discrete states, Cassandra et al, in "Acting optimally in partially observable stochastic domains.", Proceedings
of the Twelfth National Conference on Artificial Intelligence, Seattle, WA, (1994), have proposed the so-called
Witness algorithm based on approximating v* as a piecewise linear function.

• For continuous states, Kappen H J, in "Path integrals and symmetry breaking for optimal control theory.", arXiv:
physics/0505066 4 (2005) takes a statistical physics approach based on a path integral formulation, obtaining the
return as a probability weighted sum of viable decision paths.

• In the present invention, a somewhat different approach has been taken, addressing the case of discrete states but
having an obvious extension to continuous states as well.

[0055] Equation (4) provides a complete description of optimal decision-making in the context of partially observed
Markovian systems. The result was obtained on the assumption of discrete system states but it remains formally correct
even for continuous states. It also reduces to the MDP case of equation (2) in the case where all the states are explicitly
observed. Moreover, the case where some states are fully observed but others are not, presents no particular difficulties.
[0056] Although equation (4) is conceptually simple, for anything other than simple low-dimensional problems, direct
iteration of equation (4) will converge too slowly to be useful. This can be seen by noting that the equation updates the
continuous function v* at a single point in the high dimensional space with as many dimensions as there were discrete
states. Thus it would generally take an indeterminately large number of iterations of equation (4), for the iteration to
converge. It is immediately clear that equation (4) is very far from being a recipe for finding a solution for an optimal
controller.
[0057] Previous methods have addressed the practical solution problem by representing the mean net value functions
q and v in some parametric form.
[0058] In the Witness algorithm, referenced above, these functions are represented by piecewise linear functions.
This is clearly an appropriate assumption. The reward function, ρ̂(bt,ut), is the probability weighted mean of the state-
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dependent rewards of equation (2) with the obvious consequence that the individual rewards are indeed linear functions
of the probability of the state. Thus, provided the iteration converges in a finite number of steps, the resulting value
functions will necessarily be piece-wise linear functions. This assumption is therefore equivalent to assuming that a
good approximate solution can be obtained using a finite horizon. In the conventional control literature, for example in
"Multi-valued Control Problems and Mixture Density Network.", IFAC International Conference on Intelligent Control
Systems and Signal Processing, ICONS 2003, Editor: A.E.Ruano, 2, pp 387-392 (2003), this same approximation is
often found to be justified.
[0059] The Witness algorithm has been implemented for simple models where it often provides good performance.
For more complex (higher dimensional) problems it can produce very slow performance in an unpredictable way. The
essence of this difficulty is that fact that although the linear assumption ensures a finite search for a solution the method
does not predetermine the number of linear facets needed to provide a solution. These are determined only in the course
of iteration and if there are a large number, then convergence will be slow.
[0060] As noted above, the approach taken in preferred embodiments of the present invention is somewhat different.
The essence of the decision problem is the issue of a joint state-estimation and decision-making. It is therefore appropriate
to consider an approach to the decision problem that is closely related to the practicable state estimation methods.
[0061] An essential feature of the problem-space is the potentially very large number of states with solutions that
nonetheless occupy only a very small part of that space. That is, the probability functions will be sparse with many
possible states having near zero probability. Despite this, it is not possible to reduce the dimensionality of the space
because as crucial information becomes available the relevant part of the probability space will change radically. For
example, in an airport security system, the sensing of explosives on a potential passenger will immediately change the
perception of the situation and the actions that need to be taken.
[0062] For the state estimation part of the problem, an appropriate approach is provided by statistical sampling. This
is the analogue of the Particle Filter used in problems with continuous states as described for example in "Sequential
Monte Carlo Methods in Practice", by A. Doucet, N. de Freitas and N. Gordon, Springer-Verlag, New York (2001). In
the Particle Filter, the infinite number of possible states corresponding to the continuous states is represented by a finite
set of samples of the states taken in proportion to their probability densities. In the case of discrete states exactly the
same approach can be used, taking similar unbiased samples from the discrete probability functions in proportion to the
probabilities.
[0063] In this discrete Particle Filter approach the state probability is represented by a finite set of N samples:

where Ut is the set of all actions, ut, at times at least as early as t.
[0064] Given the approximate state probability of equation (5), the calculation of subsequent probabilities (at times
greater than t) proceeds by sampling over the possible transition dynamics and importance weighting by the measurement
probabilities. The sampling over the dynamical update transition matrix, P(st+1 | st,ut), clearly expands the number of
samples in the updated state probability. If there were Ns samples taken of the dynamics then there are N x Ns particles
after updating. The final stage of the estimation update process is ’resampling’ whereby N samples are taken (with
replacement) from this expanded set. This is the standard particle filter approach, without invoking any measures (such
as residual resampling) to reduce the noise of the sample. The result is an approximation to the updated probability of
the states that has the same form as equation (5) and the update algebra closes. More detail is available with reference
to "Sequential Monte Carlo Methods in Practice.", by A. Doucet, N. de Freitas and N. Gordon, Springer-Verlag, New
York (2001).
[0065] Writing St = {si(Ut-1,Mt), ∀i ∈ {1,...,N}}as shorthand for the sample at time t, then St is a sufficient statistic for
approximate state probability of equation (5) in the sense that St contains all the information to allow the construction
of any statistic that could be obtained from the probability given in equation (5). Thus, without invoking any additional
approximation, in place of equation (4) can be written a representation of the optimal decision process that is consistent
with the representation of the state probability given by equation (5):
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[0066] Here P is the reward weighted by the approximate probability of equation (5) and Y is the associated best net
return. It is a relatively straightforward process to obtain an expression for the immediate reward:

[0067] The update matrix, Π(mt+1St+1 | St,ut), can also be constructed with a little thought from the basic state transition
matrix and the measurement probability. The essential steps are as follows. Note that, using Bayes theorem, for a given
measurement mt+1:

[0068] It is therefore a simple (if tedious) matter to construct the corresponding probability of a sample St+1:

[0069] The probability of the observation mt+1 is obtained trivially from the sample:

bringing the final result:

[0070] Constructed in this way, equation (6) is the Hamilton-Bellman equation for the optimal decision-maker for a
conventional ’fully observed’ MDP with observation probability and transition matrix given by equations (8) and (9)
respectively.
[0071] As a consequence of this transformation into an approximately equivalent MDP problem, the whole spectrum
of conventional solution techniques for the MDP problem is immediately available. In particular, the method described
above has been tested using the ’value iteration’ solution method as described for example by R.S. Sutton and A.G.
Barto, referenced above. This approach is the ideal for obtaining a full off-line solution that enables the decisions to be
tabulated purely as a function of state sample. However, that although this will provide a good base-line for a decision-
maker, it will almost certainly be advantageous to employ an on-line reinforcement learning stage that will update that
part of the sample space that is explored in a mission. Barto and Sutton, as referenced above, provide a wide variety
of such reinforcement learning approaches.
[0072] Note that any real mission will explore a very small fraction of a sample space and it is essential to start with
base-line decision tables.
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Design Phase

[0073] An overview of a design phase process that may be followed for the set-up of a controller 100 in respect of a
particular system and a particular control problem will now be described with reference to Figure 3 according to preferred
embodiments of the present invention. The design phase process is preferably operated as an off-line process prior to
on-line operation of the controller 100 and is designed to populate the probabilistic system model 120 and the control
rule set 125 in respect of a particular system 110 and control problem. In practice, the design phase process is compu-
tationally intensive.
[0074] Referring to Figure 3, the design phase process begins at STEP 300 with an original POMDP probabilistic
model of the complete system 110 to be controlled. At STEP 305, using the original POMDP model from STEP 300, the
state subspaces relative to the observation (measurement) model are identified and a sufficient number of particles is
chosen to represent the state uncertainties in each of these subspaces, resulting (310) in the generation of a sample-
state space for the particular control problem.
[0075] At STEP 315, using the original POMDP from STEP 300 and the sample-state space from 310, the objective
is to construct the conditional sample-state transition probabilities as (combinatorial) products of the original transition
probabilities that are renormalized as required. This results at 320 in a dynamical model for the sample-state represen-
tation - the probabilistic system model 120. The next step, STEP 325, is to use the original POMDP model (300), the
sample-state space (310) and the dynamical model (320) in an evaluation of the mean reward functions for the Sample-
State representation and incorporate this with the sample-state dynamics to obtain a new MDP problem description
(330). This new MDP problem description (330) is then used at STEP 335 to construct the Hamilton Bellman equation
associated with this MDP and to iteratively solve it to obtain the optimal control solution for the particular system 110
and so generate, at 340, a table of control actions indexed by the possible sample states. This table is the control rule
set 125.

An example application to a particular problem

[0076] The control problems most relevant to preferred embodiments of the present invention arise in a wide variety
of applications and for a broad range of operational requirements. These include the supervisory control of complex
industrial plants, the flying of a commercial or military aircraft by a human pilot or autonomous controller augmented by
subsidiary autopilots and the coordinated control of multiple robotic sensor platforms to track a target or to explore a
terrain. The central issue in these distributed control systems is the need for co-ordination of separate control actions
that are driven by a multitude of separate requirements.
[0077] As an example of such a situation, a supervisor in a nuclear power plant is required to maintain power output
and to ensure safety. If the automatic controller of the control rods is seen to be inserting more moderating control rods,
and reducing the power output, the optimal decision of the supervisory system to countermand the action or accept it
will depend on the reason for the action of the automatic controller. If the cause is a belief that the temperature of the
core is likely to rise because the coolant flow has failed then the supervisory action needs to be very different to the
contrary case when a failure of the temperature sensor is the cause of the automatic action.
[0078] In the case of a high performance manned aircraft or racing car in which the overall control is the product of
control outputs from a pilot or driver and associated outputs from some auto-pilot or traction control system, similar
conflicts arise. These conflicts can only be resolved if the (automated or human) drivers or pilots can understand the
causes for the preferred actions of the automatic system and adjust the their outputs on an understanding of how the
automatic system will respond. Without such situation awareness, the well-studied phenomenon, ’Pilot induced oscilla-
tion’ is known to occur
[0079] These examples are all essentially non-linear, resulting in control problems in which it is not possible to factorise
the problem into a set of smaller problems that can be solved independently. Thus, in the nuclear power station, it is
not possible to provide control that is based on the optimal supervisor and a separately designed optimal automatic
controller. This may not be too serious if most of the subsystems are intelligent humans but it is more difficult in the case
of multiple UGVs (unmanned ground vehicles) attempting to track a potential threat. If the threat may be behind a building
and the first of a pair of UGVs circles left-wise round the building then the best action of the second UGV will depend
on the reasons for this action and not just on the observation of the action itself. For example the first UGV might have
seen the threat seeking cover behind the building or this might just be the shortest route to another possible location of
the threat.
[0080] Because of the complexity of these high dimensional problems and the fact that provision of the estimates of
the states of the system, that represent the reasons for the control actions, cannot be separated from the control problem
itself, current best practice recommends direct solution of the control problem without solving for the rationale (the states
of the system). The present invention provides a method that provides a state estimation (rationale) for the control actions
and the control actions themselves, without any wasted effort in the sense that the state estimates are used directly in
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the selection of control actions.

Claims

1. A method for controlling a system that enables autonomous operation of the system in an environment in which
selected control actions have uncertain consequences, the method comprising the steps of:

(i) constructing an initial partially observed Markov decision process (POMDP) model representing the dynamics
of the system to be controlled, wherein the POMDP model comprises a representation of states of the system,
a measurement model, one or more control actions, and measures of benefit likely to arise from the selection
of particular control actions;
(ii) transforming the initial POMDP model into a subsidiary Markov decision process (MDP) model, comprising
generating a sample state space representation for the subsidiary model, and generating an initial probabilistic
system model and control rule set using said sample state representation; and
(iii) using observations of the system and of the environment by a plurality of sensors to update the control rule
set and the probabilistic system model of the subsidiary MDP based upon the observed effects of selected
control actions and with reference to said measures of benefit for the system.

2. The method according to claim 1, wherein step (ii) comprises:

identifying a set of state subspaces, with reference to the measurement model;
choosing a number of samples sufficient to represent uncertainties in each subspace and, by means of statistical
sampling and the application of a particle filter, generating a sample state space representation specific to a
predetermined control problem;
calculating conditional sample-state transition probabilities by taking combinatorial products of the state tran-
sition probabilities from the initial POMDP model, renormalised as required, and generating a dynamical model
based upon said sample state representation;
formulating one or more mean reward functions in terms of said sample state representation and combining
said one or more functions with said state space representation and said dynamical model to redefine the
predetermined control problem as an MDP subsidiary to the initial POMDP model; and
solving the subsidiary MDP using an MDP solution algorithm to obtain an initial optimal control solution for the
system, and tabulating this solution to thereby create the control rule set for the system.

3. The method according to claim 1 or claim 2, wherein step (iii) comprises:

constructing a recursive estimate of one or more states of the system given previous observations, and a
corresponding recursive estimate of a net return from the benefits of future control actions;
identifying, based on the current sample state and the control rule set, one or more control actions that, once
taken, impact the temporal evolution of the system states;
receiving an immediate reward, based upon a chosen one of said one or more control actions and the resulting
state of the system, that represents the benefit of the chosen action, and an expected net return, calculated
from the range of possible immediate rewards, representing an overall performance of the control system; and
iteratively updating the control rule set and the probabilistic system model on the basis of the observed meas-
urements, the received rewards, and the net return, to thereby refine the basis for future control actions in
response to changes in the system and its environment.

4. A controller for controlling a system, operable according to the method of any one of claims 1 to 3 to enable
autonomous operation of the system in response to observations by a plurality of sensors in an environment in
which selected control actions have uncertain consequences, comprising:

a system model, defining a set of probabilities for the dynamical evolution of the system and corresponding
measurement models for said plurality of sensors;
a stochastic estimator operable to receive measurement data from said plurality of sensors and, with reference
to the system model, to generate a plurality of samples each representative of the state of the system;
a rule set corresponding to the system model, defining, for each of a plurality of statistical samples representing
state probabilities for the system, information defining an action to be carried out in the system; and
an action selector, operable to receive an output of the stochastic estimator and to select, with reference to the
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rule set, information defining one or more corresponding actions to be performed in the system.

5. A computer program which, when loaded and executed on a computer, implements the method according to any
one of claims 1 to 3.
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