

(11) EP 2 347 874 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

27.07.2011 Patentblatt 2011/30

(51) Int Cl.:

B27N 1/02 (2006.01)

(21) Anmeldenummer: 10000663.4

(22) Anmeldetag: 22.01.2010

(84) Benannte Vertragsstaaten:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

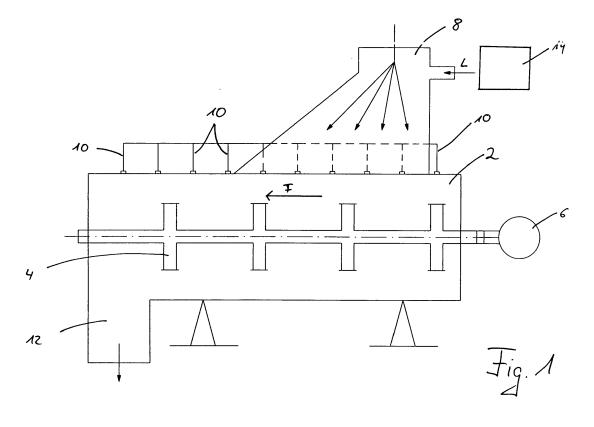
Benannte Erstreckungsstaaten:

AL BA RS

(71) Anmelder: Kronotec AG 6006 Luzern (CH)

(72) Erfinder:

• Die Erfinder haben auf ihre Nennung verzichtet.


(74) Vertreter: Stornebel, Kai et al Gramm, Lins & Partner GbR Theodor-Heuss-Strasse 1 38122 Braunschweig (DE)

Bemerkungen:

Geänderte Patentansprüche gemäss Regel 137(2) EPÜ.

(54) Verfahren und Vorrichtung zum Vermischen eines Partikelgemisches mit einem Klebstoff

- (57) Ein Verfahren zum Vermischen eines Gemisches aus Partikeln unterschiedlicher Größe aus Holzwerkstoff mit einem Klebstoff, das die folgenden Schritte umfasst:
- (a) Zuführen der Partikel unterschiedlicher Größe in einem Strom in eine Mischvorrichtung (2),
- (b) Beleimen der Partikel unterschiedlicher Größe mit ei-
- nem Klebstoff, wobei die Menge des Klebstoffs auf die Größe des jeweiligen Partikels abgestimmt ist,
- (c) Vermischen der beleimten Partikel unterschiedlicher Größe.
- (d) Abführen der vermischten beleimten Partikel unterschiedlicher Größe in einem Strom aus der Mischvorrichtung (2).

20

30

35

40

Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zum Vermischen eines Gemisches aus Partikeln unterschiedlicher Größe aus Holzwerkstoff mit einem Klebstoff.

1

[0002] Die Erfindung betrifft zudem eine Vorrichtung zum Vermischen eines Partikelgemisches aus Partikeln unterschiedlicher Größe mit einem Klebstoff mit einer Mischeinrichtung, einer Partikeleinbringvorrichtung zum Einbringen der Partikel unterschiedlicher Größe in die Mischvorrichtung und einer Klebstoffeinbringvorrich-

[0003] Bei der Herstellung von Holzwerkstoffen wird Holz je nach gewünschter Anwendung zerkleinert und mittels eines Klebstoffs in einem Heißpressverfahren, beispielsweise zu einer MDF- oder HDF-, Span- oder OSB-Platte, verbunden. Dazu müssen die Späne oder Fasern mit dem Klebstoff beschichtet werden. Es können auch Partikel, die nicht aus Holz bestehen, beispielsweise Kunststoffpartikel, beigemischt werden.

[0004] Dabei ist die Einsatzmenge an Klebstoff eine der kritischen Prozess- und damit Kostengrößen und bedarf daher permanenter Optimierung.

[0005] Herkömmlicherweise werden die zu beleimenden Partikel auf einer Seite durch eine Partikeleinbringvorrichtung in eine Mischeinrichtung eingebracht. Mit Hilfe so genannter Mischwerkzeuge durchlaufen die eingebrachten Partikel die Mischeinrichtung bis zu einer Partikelaustragsvorrichtung, wo sie die Mischeinrichtung wieder verlassen. Entlang dieses Weges wird innerhalb der Mischeinrichtung über eine Klebstoffeinbringvorrichtung an verschiedenen Stellen Klebstoff, beispielsweise über Düsen, in die Mischeinrichtung eingebracht.

[0006] Hierbei ist es grundsätzlich möglich, verschiedene Schichten der herzustellenden Holzwerkstoffplatten in separaten Mischeinrichtungen einzeln mit einem Klebstoff zu versehen. So ist es beispielsweise üblich, die Deckschicht einer Spanplatte aus feineren Spänen herzustellen als die Mittelschicht, um sowohl die Oberflächenoptik als auch die Oberflächenrauheit der dann fertigen Platte zu verbessern.

[0007] Selbst in diesem Fall wird jedoch ein Partikelstrom mit dem Klebstrom vermischt, der nicht aus Partikeln einer einheitlichen Größe besteht. Der Partikelstrom hat innerhalb einer gewissen Bandbreite eine charakteristische Größenverteilung, die sich nachteilig auf die Beleimung der einzelnen Partikel auswirkt.

[0008] Die Menge des Klebstoffes, mit dem ein einzelner Partikel beleimt wird, hängt von dessen Oberfläche ab. Zur Erreichung der wichtigen mechanischen Eigenschaften der späteren Holzwerkstoffplatten, wie beispielsweise die Querzugfestigkeit, Biegefestigkeit oder Abhebefestigkeit, werden insbesondere die großen Späne und Fasern benötigt. Da diese im Verhältnis zu ihrer Oberfläche jedoch ein deutlich größeres Volumen haben als kleine Partikel, wie beispielsweise Fasern oder Stäube, weist die spätere Holzwerkstoffplatte bzw. bereits ein aus den Partikel vor dem Verpressen aufgestreuter Kuchen an den Stellen, an denen sich die für die Stabilität wichtigen großen Partikel befinden, eine deutlich kleinere Klebstoffmenge auf als an den Stellen, an denen die zur Stabilität weniger beitragenden kleinen Partikel vorhanden sind. Aufgrund des Verhältnisses des Volumens der Partikel zu ihrer Oberfläche werden kleine Partikel mit vergleichsweise mehr Klebstoff beleimt als große. Dadurch werden die großen Partikel mit deutlich zu wenig Klebstoff beaufschlagt, insbesondere der Feinanteil und der Staub jedoch mit zu hohen Klebstoffmengen ver-

[0009] Der verwendete Klebstoff wird jedoch nicht nur ungünstig auf große und kleine Partikel verteilt, es wird auch insgesamt zu viel Klebstoff verwendet. Mit dem verwendeten Klebstoff wird also nicht ökonomisch umgegangen und die Eigenschaften der aus den so beleimten Partikeln verpressten Platten erreichen nie das technisch denkbare Optimum.

[0010] Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zum Vermischen eines Gemisches aus Partikeln unterschiedlicher Größe aus Holzwerkstoff mit einem Klebstoff so weiter zu entwickeln, dass eine bessere Verteilung des Klebstoffs auf den Partikeln unterschiedlicher Größe sichergestellt ist. [0011] Die Erfindung löst die gestellte Aufgabe durch ein gattungsgemäßes Verfahren, das die folgenden Schritte umfasst:

- (a) Zuführen der Partikel unterschiedlicher Größe in einem Strom in eine Mischvorrichtung,
- (b) Beleimen der Partikel unterschiedlicher Größe mit dem Klebstoff, wobei die Menge des Klebstoffs auf die Größe des jeweiligen Partikels abgestimmt
- (c) Vermischen der beleimten Partikel unterschiedlicher Größe
- (d) Abführen der vermischten beleimten Partikel unterschiedlicher Größe in einem Strom aus der Mischvorrichtung.

[0012] Dadurch, dass alle Partikel unabhängig von ihrer Größe in der gleichen Mischvorrichtung beleimt werden, wird der apparative Aufwand des Verfahrens deutlich reduziert. Dadurch, dass dennoch die auf die jeweiligen Partikel entfallende Klebstoffmenge von der Größe des Partikels abhängt, wird für eine optimale Verteilung des Klebstoffs gesorgt. Die beiden Schritte (b) und (c) können insbesondere auch gemeinsam erfolgen, indem die Partikel beispielsweise in der Mischvorrichtung untereinander vermischt werden, während Klebstoff in die Mischeinrichtung eingebracht wird. Dabei werden die Partikel unterschiedlicher Größe sowohl untereinander als auch mit dem Klebstoff vermischt und dadurch beleimt.

[0013] Vorzugsweise werden die Partikel unterschiedlicher Größe in Abhängigkeit von ihrer Größe unterschiedlich lange in der Mischvorrichtung beleimt. Insbesondere werden kleine Partikel weniger lange mit dem

15

20

Klebstoff vermischt als große Partikel. Durch die lange Verweildauer der großen Partikel in der Mischeinrichtung ist sichergestellt, dass diese ausreichend beleimt werden, um später bei einer aus den Partikeln verpressten Platte für ausreichende Stabilitätseigenschaft an zu sorgen. Gleichzeitig werden die kleineren Partikel, die für diese Stabilitätseigenschaften unwichtiger sind, in ihrer kürzeren Zeitspanne, die sie sich in der Mischeinrichtung befinden, weniger beleimt. Dadurch ergibt sich eine optimierte Beleimung und zwar ungefähr in der Art und Weise, als ob alle Partikelgrößen separat mit Klebstoff versehen worden wären. Dabei ist es möglich, eine gleichmäßige Beleimung aller Partikel oder einen von der Partikelgröße abhängigen Beleimungsfaktor zu erreichen und beispielsweise große Partikel stärker zu beleimen als kleine Partikel. Hieraus folgen wiederum deutlich verbesserte Platteneigenschaften bei gleichzeitig verringerter verwendeter Klebstoffmenge, da die mechanischtechnologisch wichtigen Partikel eine gute Verklebungsgüte aufweisen und nicht, wie in herkömmlichen Verfahren, deutlich zu wenig Klebstoff enthalten.

[0014] Die Partikel unterschiedlicher Größe werden beim Durchmischen in der Mischeinrichtung insbesondere von einer Partikeleinbringvorrichtung zu einer Partikelaustragsvorrichtung entlang eines Förderwegs gefördert. Vorteilhafterweise werden kleine Partikel in Förderrichtung hinter großen Partikeln in die Mischeinrichtung eingebracht. Insbesondere wird der Klebstoff entlang des gesamten Förderwegs in die Mischeinrichtung eingebracht. Auf diese Weise ist sichergestellt, dass kleine Partikel eine kürzere Strecke innerhalb der Mischeinrichtung entlang des Förderwegs zurücklegen müssen als größere Partikel. Wird der Klebstoff entlang des gesamten Förderwegs, beispielsweise über Düsen, eingebracht, passieren die kleinen Partikel durch die von ihnen zurückgelegte kürzere Strecke weniger dieser Düsen, sodass sie auch weniger Klebstoff aufnehmen können. Die großen Partikel, die den gesamten Förderweg innerhalb der Mischeinrichtung zurücklegen, kommen hingegen an allen Stellen, an denen Klebstoff in die Mischeinrichtung eingebracht wird vorbei, und können so optimal beleimt werden. Die Klebstoffmenge, die auf einem Teilstück des Förderweges aufgebracht wird, ist völlig frei einstellbar, wodurch auch größenabhängige Beleimungsfaktoren der Partikel erreicht werden können. Die Dichte der Partikel unterschiedlicher Größe liegt vorzugsweise zwischen 100 kg/m³ und 800 kg/m³.

[0015] Eine erfindungsgemäße Vorrichtung zum Vermischen eines Partikelgemisches aus Partikeln unterschiedlicher Größe mit einem Klebstoff ist eine gattungsgemäße Vorrichtung, die sich dadurch auszeichnet, dass eine Fraktioniereinrichtung vorgesehen ist, durch die im Betrieb der Vorrichtung die Partikel unterschiedlicher Größe unterschiedlich lange in der Mischeinrichtung verweilen.

[0016] Wie oben bereits dargelegt ist, wird durch die unterschiedlich lange Verweildauer der Partikel in der Mischeinrichtung eine optimierte Verteilung des Kleb-

stoffs zwischen großen und kleinen Partikeln gewährleistet

[0017] Innerhalb der Mischeinrichtung ist eine Fördereinrichtung vorgesehen, durch die die in der Partikeleinbringvorrichtung eingebrachten Partikel unterschiedlicher Größe zu einer Partikelaustragsvorrichtung entlang eines Förderwegs förderbar sind. Die Klebstoffeinbringvorrichtung ist insbesondere als entlang des Förderweges verteilte Einbringdüsen ausgebildet. Dadurch ist gewährleistet, dass entlang des gesamten Förderwegs eine gleichmäßige Menge Klebstoff in die Mischeinrichtung eingebracht wird. Alternativ kann die eingebrachte Klebstoffmenge auch entlang des Förderweges variieren.

[0018] Die Fraktioniereinrichtung ist vorzugsweise in oder in Verarbeitungsrichtung vor der Partikeleinbringvorrichtung angeordnet. Dadurch kann gewährleistet werden, dass Partikel verschiedener Größe an verschiedenen Stellen des Förderwegs in die Mischeinrichtung eingebracht werden. Dadurch, dass kleine Partikel in Förderrichtung später als große Partikel in die Mischeinrichtung eingebracht werden, durchlaufen sie nicht den gesamten Förderweg und passieren dementsprechend nicht alle Einbringdüsen der Klebstoffeinbringvorrichtung. Sie können somit weniger Klebstoff aufnehmen als die großen Partikel, die den gesamten Förderweg durchlaufen.

[0019] Die Fraktioniereinrichtung kann auch in Verarbeitungsrichtung nach der Partikeleinbringvorrichtung angeordnet sein. In diesem Fall gelangen die Partikel jeglicher Größe an derselben Stelle in die Mischeinrichtung. In diesem Fall ist die Fraktioniereinrichtung so ausgebildet, dass sie Partikeln verschiedener Größe unterschiedliche Geschwindigkeiten entlang des Förderwegs verleiht. Dadurch, dass in diesem Fall kleinere Partikel sich schneller entlang des Förderwegs bewegen, wird ebenfalls deren Verweilzeit in der Mischeinrichtung reduziert und somit sichergestellt, dass sie nicht zuviel Klebstoff aufnehmen können.

[0020] Vorzugsweise ist die Fraktioniereinrichtung ein Gebläse. Wird dieses Gebläse beispielsweise in der Partikeleinbringvorrichtung oder in Verarbeitungsrichtung davor angeordnet, wird ein seitlicher Luftstrom auf den Partikelstrom geleitet, der die Partikel anhand von Größe und Gewicht separiert, wie es beispielsweise bei einem klassischen Windsichtverfahren erfolgt. Hierbei werden die kleineren Partikel und der Staub stärker abgelenkt als große Partikel. Wird das Gebläse so angeordnet, dass der Luftstrom beispielsweise parallel zur Förderrichtung strömt, werden kleinere Partikel in Förderrichtung später der Mischeinrichtung zugeführt.

[0021] Das Gebläse kann jedoch auch innerhalb der Mischeinrichtung, in Verarbeitungsrichtung also nach der Partikeleinbringvorrichtung, angeordnet sein. Auch in diesem Fall wird ein seitlicher Luftstrom auf den Partikelstrom geleitet, der die Partikel vorzugsweise in Förderrichtung beschleunigt. Dabei werden kleinere und leichtere Partikel stärker beschleunigt als große Partikel.

10

15

20

40

Diese bewegen sich folglich schneller als große Partikel in Förderrichtung durch die Mischeinrichtung und nehmen somit weniger Klebstoff auf.

[0022] Die Fraktioniereinrichtung kann auch als drehbar gelagerte Bürste ausgebildet sein. Die drehbar gelagerte Bürste, die im Betrieb der Vorrichtung in Rotation versetzt wird, kann ebenfalls in Verarbeitungsrichtung vor oder hinter oder direkt in der Partikeleinbringvorrichtung angeordnet sein. Auch durch die rotierende Bürste werden die einzelnen Partikel vorzugsweise in Förderrichtung beschleunigt, wobei größere Partikel weniger stark beschleunigt werden, also weniger weit fliegen. Auch auf diese Weise kann sichergestellt werden, dass kleinere Partikel so in die Mischeinrichtung eingebracht werden, dass sie nicht mehr den gesamten Förderweg durchlaufen und somit weniger Klebstoff aufnehmen können. Durch eine innerhalb der Mischeinrichtung angeordnete Wurfvorrichtung, insbesondere eine rotierende Bürste, Trommel oder ähnliches wird wie beim Gebläse sichergestellt, dass die Partikel eine von ihrer Größe abhängige Geschwindigkeit in Förderrichtung bekommen.

[0023] Die Fraktioniereinrichtung weist vorzugsweise ein Sieb auf. Dieses Sieb hat insbesondere unterschiedlich große Öffnungen. Die Anordnung eines Siebs ist insbesondere dann von Vorteil, wenn die Fraktioniereinrichtung innerhalb oder in Verarbeitungsrichtung vor der Partikeleinbringvorrichtung angeordnet ist. Auf diese Weise kann gewährleistet werden, dass große Partikel, die versehendlich zu weit in Förderrichtung abgelenkt wurden, nicht mit den kleineren Partikeln in die Mischeinrichtung eingebracht werden, sondern entlang des vorzugsweise geneigt angeordneten Siebes zurückrutschen und an der für ihre Größe vorgesehenen Stelle in die Mischeinrichtung eingebracht werden. Auf diese Weise ist sichergestellt, dass tatsächlich alle Partikel einer gewissen Größe die für sie vorgesehene Strecke entlang des Förderwegs innerhalb der Mischeinrichtung zurücklegen.

[0024] Die erfindungsgemäße Vorrichtung und das erfindungsgemäße Verfahren sorgen folglich für eine optimierte Verteilung der Menge an Klebstoff auf den einzelnen Partikeln verschiedener Größe und sind insbesondere geeignet für alle Arten von Holzzerkleinerungsprodukten, wie beispielsweise Fasern, Spänen oder Strands und damit auch zur Herstellung unterschiedlichster Holzwerkstoffe, wie MDF- oder HDF-, Span- oder OSB-Platten. Natürlich können auch Partikel mit einem Klebstoff versehen werden, die nicht aus Holz sondern beispielsweise aus einem Kunststoff bestehen. Auch Mischungen von Partikeln unterschiedlicher Materialien sind selbstverständlich denkbar.

[0025] Mit Hilfe einer Zeichnung werden nachfolgend verschiedene Ausführungsbeispiele einer erfindungsgemäßen Vorrichtung näher erläutert. Gleiche Bauteile sind dabei in allen Figuren mit gleichen Bezugszeichen versehen.

[0026] Es zeigen:

- Figur 1 eine schematische Darstellung eines ersten Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung;
- Figur 2 eine schematische Darstellung eines zweiten Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung;
 - Figur 3 eine schematische Darstellung eines dritten Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung und
 - **Figur 4** eine schematische Darstellung eines vierten Ausführungsbeispiels einer erfindungsgemäßen Vorrichtung.

[0027] Figur 1 zeigt eine schematische Darstellung einer Vorrichtung gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung.

[0028] In einer Mischeinrichtung 2 befindet sich eine Fördereinrichtung 4 mit einer Antriebseinheit 6. Durch die Fördereinrichtung 4 werden von oben durch eine Partikeleinbringvorrichtung 8 in die Mischeinrichtung 2 eingebrachte Partikel entlang der Förderrichtung F gefördert. Dabei werden sie von der Fördereinrichtung 4 durchmischt und von oben durch eine Klebstoffeinbringvorrichtung in Form von gleichmäßig entlang des Förderweges verteilten steuerbaren Beleimungsdüsen 10 mit Klebstoff beleimt. Die so beleimten Partikel verlassen die Mischeinrichtung 2 über eine Partikelaustragsvorrichtung 12. Die Beleimungsdüsen 10 können auch unregelmäßig verteilt oder auf unterschiedliche Sprühstärken eingestellt sein.

[0029] In der Partikeleinbringvorrichtung 8 ist eine Fraktioniereinrichtung 14 vorgesehen, die in Figur 1 nur als schematischer Kasten angedeutet ist. Die Fraktioniereinrichtung 14 ist in Figur 1 als Gebläse ausgebildet, das entlang der Luftstromrichtung L einen Luftstrom in die Partikeleinbringvorrichtung 8 einbläst. Die von oben in die Partikeleinbringvorrichtung 8 fallenden Partikel, werden von diesem Luftstrom in Luftstromrichtung L abgelenkt, was durch verschiedene Pfeile angedeutet wird. [0030] Dabei werden leichte Partikel in Figur 1 weiter nach links abgelenkt als schwere Partikel und fallen somit auch weiter links in die Mischeinrichtung 2. Die leichten Partikel fallen durch die sich trichterförmig erweiterte Partikeleinbringvorrichtung 8 hinter die in Förderrichtung F gesehen ersten Beleimungsdüsen 10. Durch die Fördereinrichtung 4 werden alle in die Mischeinrichtung 2 einfallenden Partikel entlang der Förderrichtung F in Richtung auf die Partikelaustragsvorrichtung 12 gefördert, wobei die leichten Partikel an weniger Beleimungsdüsen 10 vorbeigeführt werden. Daher können die leichten Partikel nur eine geringere Menge des Klebstoffs, das durch die Beleimungsdüsen 10 in die Mischeinrichtung 2 eingebracht wird, aufnehmen. Die schweren Partikel, die vom Luftstrom in die Luftstromrichtung L kaum oder gar nicht abgelenkt werden, passieren hingegen auf ihrem Weg zur Partikelaustragsvorrichtung 12 alle oder doch die meisten der vorgesehenen Beleimungsdüsen 10 und werden somit mit mehr Klebstoff versehen als die leichten Partikel.

[0031] Figur 2 zeigt ein zweites Ausführungsbeispiel der vorliegenden Erfindung.

[0032] Für gleiche Bauteile wurden die gleichen Bezugszeichen wie in Figur 1 verwendet. Auch hier werden die Partikel über eine Partikeleinbringvorrichtung 8 in eine Mischeinrichtung 2 eingebracht, in der sie durch eine Fördereinrichtung 4 entlang der Förderrichtung F in Richtung zur Partikelaustragsvorrichtung 12 gefördert werden, wobei sie an Beleimungsdüsen 10 vorbeigeführt werden, durch die Klebstoff in die Mischeinrichtung 2 eingebracht wird.

[0033] In Figur 2 ist am rechten Rand der Mischeinrichtung 2 eine Fraktioniereinrichtung 14 vorgesehen, die als Ventilator ausgebildet ist. Die Fraktioniereinrichtung 14 ist in Figur 2 folglich innerhalb der Mischeinrichtung 2 und somit in Verarbeitungsrichtung nach der Partikeleinbringvorrichtung 8 angeordnet.

[0034] Anders als in Figur 1 gelangen hier alle Partikel durch die Partikeleinbringvorrichtung 8 an der gleichen Stelle in die Mischeinrichtung 2. Sie werden von der durch die Fraktioniereinrichtung 14 entlang einer Luftstromrichtung L eingebrachten Luftströmung in Förderrichtung F abgelenkt. Auch hier werden die leichten Partikel stärker in Förderrichtung F beschleunigt, als die schweren Partikel. Dadurch ist gewährleistet, dass die leichten Partikel zumindest an den ersten Beleimungsdüsen 10 deutlich schneller vorbeifliegen als wenn sie nur von der Fördereinrichtung 4 in Förderrichtung F bewegt würden. Dadurch ist die Aufnahme von Klebstoff von diesen ersten Beleimungsdüsen 10 äußerst gering. Auch damit ist somit sichergestellt, dass die großen Partikel optimal mit Klebstoff benetzt werden, da sie an allen Beleimungsdüsen 10 mit der von der Fördereinrichtung 4 vorgegebenen Geschwindigkeit vorbeigeführt werden. Da sie, wie in Figur 1 auch, dabei von der Fördereinrichtung 4 durchmischt werden, ist eine allseitige homogene Beleimung aller Partikel mit Klebstoff gewährleistet.

[0035] Figur 3 zeigt eine Vorrichtung gemäß einem dritten Ausführungsbeispiel der vorliegenden Erfindung. Wieder wurden für gleiche Bauteile die gleichen Bezugszeichen verwendet. In Figur 3 ist eine Fraktioniereinrichtung 14 wie in Figur 1 in Verarbeitungsrichtung vor der Mischeinrichtung 2 vorgesehen. Wie in Figur 2 besteht die Fraktioniereinrichtung 14 aus einem Ventilator, der über eine Ventilatorantriebseinheit 16 betrieben wird. Durch die Fraktioniereinrichtung 14 in Figur 3 wird entlang einer Luftstromrichtung L ein Luftstrom in eine Partikeleinbringvorrichtung 8 eingeblasen. Wie in Figur 1 werden die in die Partikeleinbringvorrichtung 8 eingeführten Partikel von diesem Luftstrom in Luftstromrichtung L abgelenkt. Dabei werden wieder die leichten Partikel stärker abgelenkt als die schweren. Innerhalb der Partikeleinbringvorrichtung 8 ist ein Sieb 18 angeordnet, durch das die abgelenkten Partikel hindurch müssen, um

in die Mischeinrichtung 2 zu gelangen. Dabei hat das Sieb 18 unterschiedlich große Sieböffnungen (nicht gezeigt). In Figur 3 weist das Sieb 18 nach links hin die kleineren Sieböffnungen und nach rechts die größeren Sieböffnungen auf. Durch den Luftstrom in Luftstromrichtung L werden die leichten Partikel stärker nach links abgelenkt und treffen dort auf den Teil des Siebs 18, der die kleineren Sieböffnungen hat. Die großen Partikel werden vom Luftstrom kaum oder gar nicht abgelenkt und treffen auf den rechten Teil des Siebs 18, der über die größeren Sieböffnungen verfügt.

[0036] Sollte nun durch unsauberes Einstreuen oder aufgrund von Stößen zwischen den einzelnen Partikeln ein relativ großes Partikel soweit nach links abgelenkt werden, dass es für die dort im Sieb 18 vorhandenen Sieböffnungen zu groß ist, rutscht er entlang des Siebes 18 nach unten und gelangt so auf den rechten Teil des Siebes 18, wo die Sieböffnungen groß genug sind. Dazu ist das Sieb 18 in Figur 3 geneigt angeordnet.

20 [0037] Wie in der Ausführungsform gemäß Figur 1 werden auch in der Ausführungsform Figur 3 folglich die kleinen Partikel weiter nach links in Richtung der Luftstromrichtung L abgelenkt und fallen somit auch weiter links in die Mischeinrichtung 2. Dort werden sie durch eine Fördereinrichtung 4 in Förderrichtung F weitergefördert und dabei an Beleimungsdüsen 10 vorbeigeführt. Dadurch, dass die kleinen Partikel an weniger Beleimungsdüsen 10 vorbeigeführt werden als die großen, ist auch hier eine optimierte Beleimung gewährleistet.

[0038] Die in Figur 4 gezeigte Vorrichtung gemäß einem vierten Ausführungsbeispiel der vorliegenden Erfindung unterscheidet sich von der in Figur 1 gezeigten Vorrichtung dadurch, dass die Fraktioniereinrichtung 14 nicht als Gebläse, sondern als rotierende Bürste, Trommel oder ähnliches ausgebildet ist. Die Drehrichtung ist durch den gebogenen Pfeil angedeutet.

[0039] Durch die in Pfeilrichtung rotierende Bürste der Fraktioniereinrichtung 14 werden die in die Partikeleinbringvorrichtung 8 eingebrachten Partikel nach links abgelenkt. Auch hier gilt, dass leichte Partikel weiter fliegen als schwere, sodass sie auch weiter links in die Mischeinrichtung 2 eingebracht werden und durch die Fördereinrichtung 4 an weniger Beleimungsdüsen 10 vorbeigeführt werden.

[0040] In allen in den Figuren 1 bis 4 gezeigten Ausführungsbeispiel ist somit sichergestellt, dass kleine Partikel weniger lange mit über die Beleimungsdüsen 10 eingebrachtem Klebstoff vermischt werden als die großen Partikel.

[0041] Durch erfindungsgemäße Vorrichtungen wird somit gewährleistet, dass der Beleimungsfaktor von Partikeln unterschiedlicher Größen von ihrer Größe abhängig gesteuert werden kann. Dazu ist nur noch eine Beleimungsvorrichtung nötig, wodurch Zeit, Platz und Kosten gespart werden.

Bezugszeichenliste

[0042]

- F Förderrichtung
- L Luftstromrichtung
- 2 Mischeinrichtung
- 4 Fördereinrichtung
- 6 Antriebseinheit
- 8 Partikeleinbringvorrichtung
- 10 Beleimungsdüsen
- 12 Partikelaustragsvorrichtung
- 14 Fraktioniereinrichtung
- 16 Ventilatorantriebseinheit
- 18 Sieb

Patentansprüche

- Verfahren zum Vermischen eines Gemisches aus Partikeln unterschiedlicher Größe aus Holzwerkstoff mit einem Klebstoff, das die folgenden Schritte umfasst:
 - (a) Zuführen der Partikel unterschiedlicher Größe in einem Strom in eine Mischvorrichtung (2),
 - (b) Beleimen der Partikel unterschiedlicher Größe mit einem Klebstoff, wobei die Menge des Klebstoffs auf die Größe des jeweiligen Partikels abgestimmt ist,
 - (c) Vermischen der beleimten Partikel unterschiedlicher Größe,
 - (d) Abführen der vermischten beleimten Partikel unterschiedlicher Größe in einem Strom aus der Mischvorrichtung (2).
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Partikel unterschiedlicher Größe in Abhängigkeit von ihrer Größe unterschiedlich lange in der Mischvorrichtung (2) beleimt werden.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Partikel unterschiedlicher Größe in der Mischeinrichtung (2) von einer Partikeleinbringvorrichtung (8) zu einer Partikelaustragsvorrichtung (12) entlang eines Förderwegs gefördert werden.

- 4. Verfahren nach einem der Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, dass kleine Partikel in Förderrichtung (F) hinter großen Partikeln in die Mischeinrichtung (2) eingebracht werden.
- 5. Verfahren nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Klebstoff entlang des Förderwegs in die Mischeinrichtung (2) eingebracht wird.
- Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der in die Mischeinrichtung (2) eingebrachte Klebstoff entlang des Förderweges variiert.
- Verfahren nach einem oder mehreren der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Dichte der Partikel zwischen 100 kg/m³ und 800 kg/m³ beträgt.
- Vorrichtung zum Vermischen eines Partikelgemisches aus Partikeln unterschiedlicher Größe mit einem Klebstoff, mit
 - a) einer Mischeinrichtung (2),
 - b) einer Partikeleinbringvorrichtung (8) zum Einbringen der Partikel unterschiedlicher Größe in die Mischvorrichtung (2),
 - c) einer Klebstoffeinbringvorrichtung (10),
 - dadurch gekennzeichnet, dass eine Fraktioniereinrichtung (14) vorgesehen ist, durch die im Betrieb der Vorrichtung die Partikel unterschiedlicher Größe unterschiedlich lange in der Mischeinrichtung verweilen.
- 9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass eine Fördereinrichtung (4) innerhalb der Mischeinrichtung (2) vorgesehen ist, durch die die eingebrachten Partikel unterschiedlicher Größe zu einer Partikelaustragsvorrichtung (12) entlang eines Förderwegs förderbar sind.
- 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Klebstoffeinbringvorrichtung als über den Förderweg verteilte Einbringdüsen 10 ausgebildet ist.
- 11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Fraktioniereinrichtung (14) in oder in Verarbeitungsrichtung vor der Partikeleinbringvorrichtung (8) angeordnet ist.
- 12. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Fraktioniereinrichtung (14) in Verarbeitungsrichtung nach der Partikeleinbringvorrichtung (8) angeordnet ist.
- 13. Vorrichtung nach einem der Ansprüche 8 bis 12, da-

6

•

10

15

20

25

35

,

45

50

55

40

durch gekennzeichnet, dass die Fraktioniereinrichtung (14) ein Gebläse ist.

- 14. Vorrichtung nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass die Fraktioniereinrichtung (14) eine Wurfvorrichtung, insbesondere eine drehbar gelagerte Bürste, Trommel oder ähnliches ist.
- **15.** Vorrichtung nach einem der Ansprüche 8 bis 14 **dadurch gekennzeichnet, dass** die Fraktioniereinrichtung (14) ein Sieb (18) aufweist, das unterschiedlich große Öffnungen hat.

Geänderte Patentansprüche gemäss Regel 137(2) EPÜ.

- Verfahren zum Vermischen eines Gemisches aus Partikeln unterschiedlicher Größe aus Holzwerkstoff mit einem Klebstoff, das die folgenden Schritte umfasst:
 - (a) Zuführen der Partikel unterschiedlicher Größe in einem Strom in eine Mischvorrichtung (2), (b) Beleimen der Partikel unterschiedlicher Größe mit einem Klebstoff, wobei die Menge des Klebstoffs auf die Größe des jeweiligen Partikels abgestimmt ist,
 - (c) Vermischen der beleimten Partikel unterschiedlicher Größe,
 - (d) Abführen der vermischten beleimten Partikel unterschiedlicher Größe in einem Strom aus der Mischvorrichtung (2),

wobei die Partikel unterschiedlicher Größe in der Mischvorrichtung (2) von einer Partikeleinbringvorrichtung (8) zu einer Partikelaustragsvorrichtung (12) entlang eines Förderwegs gefördert werden, dadurch gekennzeichnet, dass der in die Mischeinrichtung (2) eingebrachte Klebstoff entlang des Förderweges variiert.

- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Partikel unterschiedlicher Größe in Abhängigkeit von ihrer Größe unterschiedlich lange in der Mischvorrichtung (2) beleimt werden.
- **3.** Verfahren nach Anspruch 1 oder 2, **dadurch gekennzeichnet, dass** kleine Partikel in Förderrichtung (F) hinter großen Partikeln in die Mischeinrichtung (2) eingebracht werden.
- **4.** Verfahren nach einem oder mehreren der vorstehenden Ansprüche, **dadurch gekennzeichnet**, **dass** der Klebstoff entlang des Förderwegs in die Mischeinrichtung (2) eingebracht wird.

- **5.** Verfahren nach einem oder mehreren der vorstehenden Ansprüche, **dadurch gekennzeichnet, dass** die Dichte der Partikel zwischen 100 kg/m³ und 800 kg/m³ beträgt.
- **6.** Vorrichtung zum Vermischen eines Partikelgemisches aus Partikeln unterschiedlicher Größe mit einem Klebstoff, mit
 - a) einer Mischeinrichtung (2),
 - b) einer Partikeleinbringvorrichtung (8) zum Einbringen der Partikel unterschiedlicher Größe in die Mischvorrichtung (2),
 - c) einer Klebstoffeinbringvorrichtung (10),

wobei eine Fraktioniereinrichtung (14) vorgesehen ist, durch die im Betrieb der Vorrichtung die Partikel unterschiedlicher Größe unterschiedlich lange in der Mischeinrichtung verweilen und wobei eine Fördereinrichtung (4) innerhalb der Mischeinrichtung (2) vorgesehen ist, durch die die eingebrachten Partikel unterschiedlicher Größe zu einer Partikelaustragsvorrichtung (12) entlang eines Förderwegs förderbar sind, dadurch gekennzeichnet, dass eine Klebstoffmenge, die auf einem Teilstück des Förderweges aufbringbar ist, frei einstellbar und entlang des Förderwegs variierbar ist.

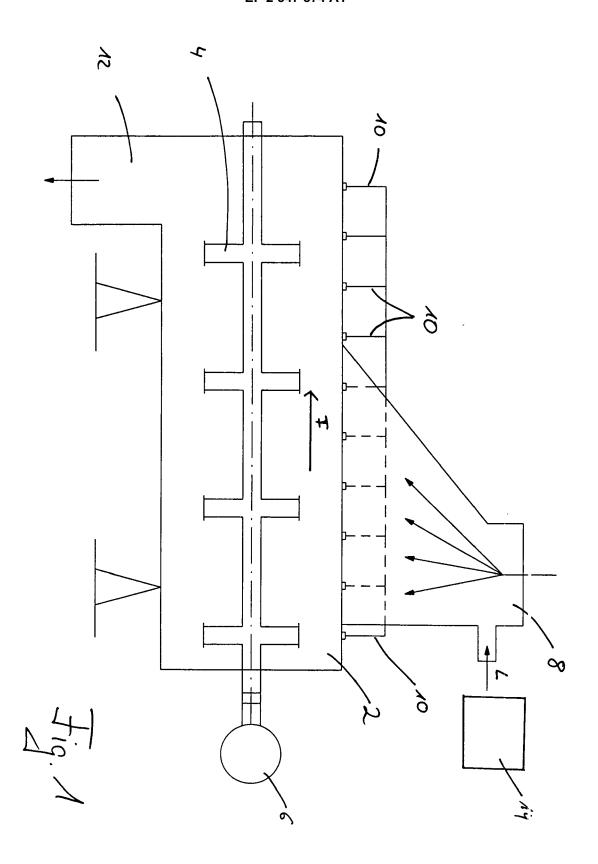
- 7. Vorrichtung nach Anspruch 6, **dadurch gekennzeichnet**, **dass** die Klebstoffeinbringvorrichtung als über den Förderweg verteilte Einbringdüsen 10 ausgebildet ist.
- **8.** Vorrichtung nach Anspruch 6 oder 7, **dadurch gekennzeichnet**, **dass** die Fraktioniereinrichtung (14) in oder in Verarbeitungsrichtung vor der Partikeleinbringvorrichtung (8) angeordnet ist.
- **9.** Vorrichtung nach Anspruch 6 oder 7, **dadurch gekennzeichnet, dass** die Fraktioniereinrichtung (14) in Verarbeitungsrichtung nach der Partikeleinbringvorrichtung (8) angeordnet ist.
- **10.** Vorrichtung nach einem der Ansprüche 6 bis 9, **dadurch gekennzeichnet, dass** die Fraktioniereinrichtung (14) ein Gebläse ist.
- **11.** Vorrichtung nach einem der Ansprüche 6 bis 9, dadurch gekennzeichnet, dass die Fraktioniereinrichtung (14) eine Wurfvorrichtung, insbesondere eine drehbar gelagerte Bürste, Trommel oder ähnliches ist.
- **12.** Vorrichtung nach einem der Ansprüche 6 bis 11, **dadurch gekennzeichnet, dass** die Fraktioniereinrichtung (14) ein Sieb (18) aufweist, das unterschiedlich große Öffnungen hat.

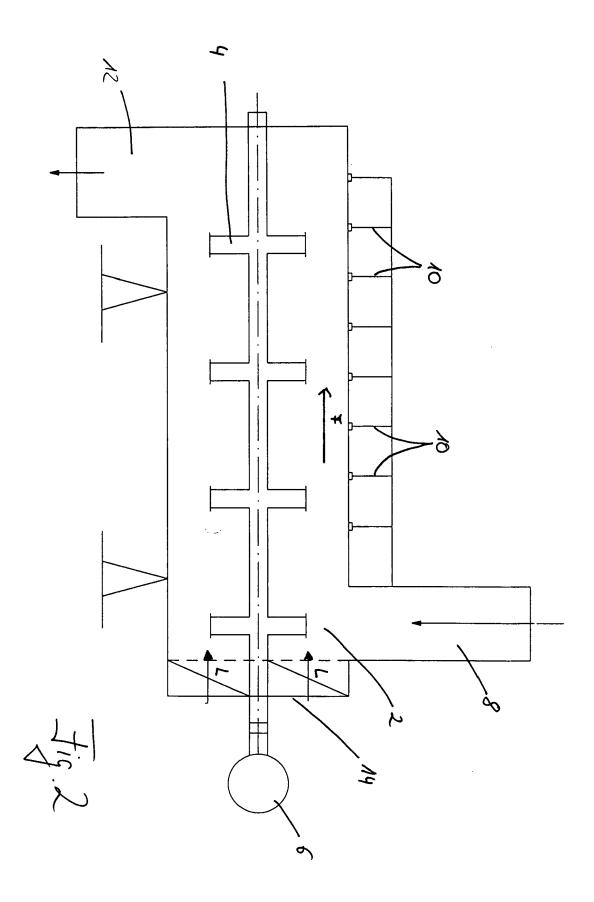
15

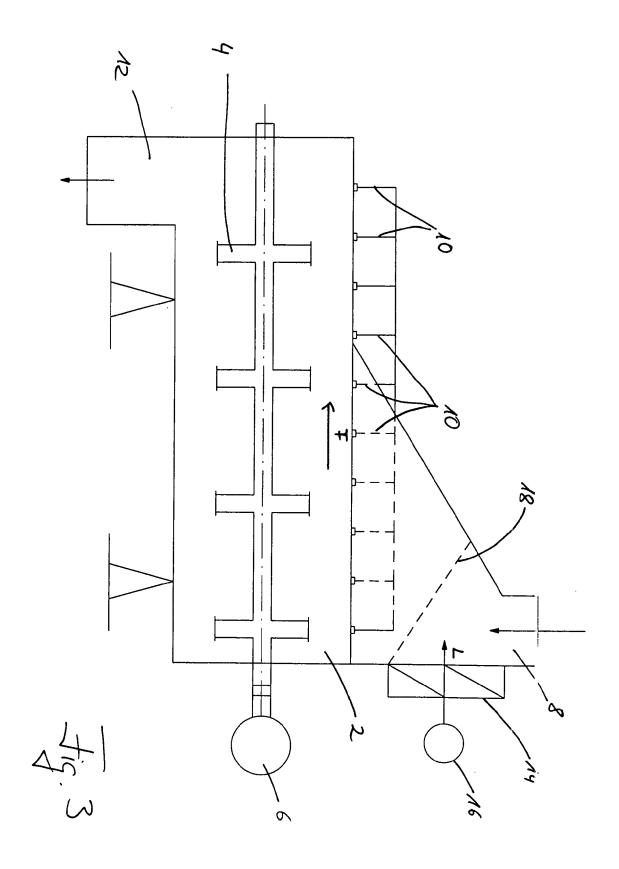
20

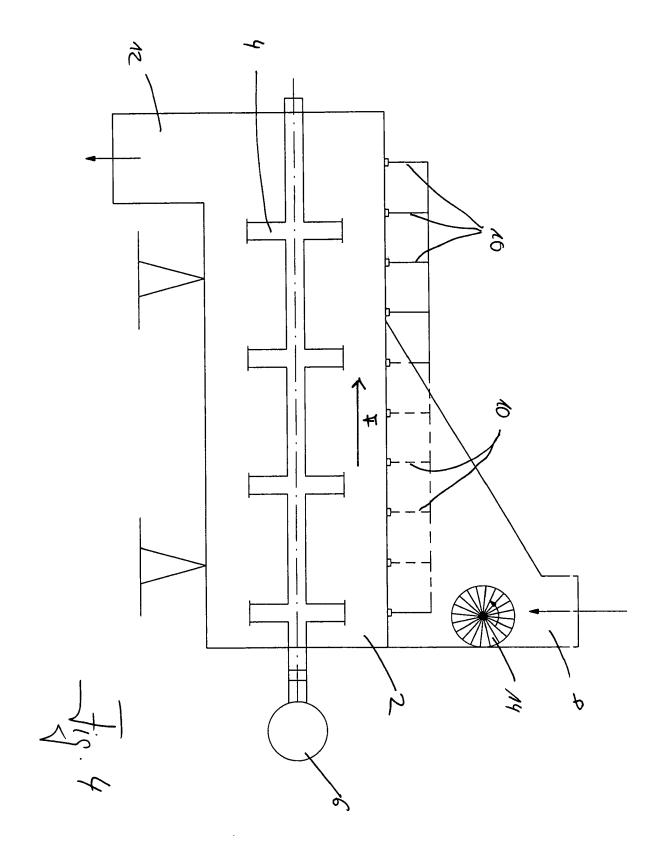
25

30


35


40


45


7

55

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 10 00 0663

Kategorie	Kennzeichnung des Dokum der maßgebliche	ents mit Angabe, soweit erforderlich, n Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (IPC)
X		1995-11-15) 1-21 * 22-28 *	1-10,12, 15	INV. B27N1/02
Х	DE 43 15 922 C1 (BA 24. November 1994 (* Zusammenfassung * * Spalte 1, Zeile 5 * Spalte 2, Zeilen	 EHRE & GRETEN [DE]) 1994-11-24) 2 - Spalte 2, Zeile 7 * 30-42; Abbildung 1 *	1-9,11, 12,14,15	
Х	DE 11 80 121 B (BAE 22. Oktober 1964 (1 * Spalte 1, Zeilen * Spalte 2, Zeilen * Spalte 4, Zeilen	964-10-22) 1-9,31-34 * 20-30 *	1-11,13,	
Х	US 3 343 814 A (HEI 26. September 1967 * Spalte 1, Zeilen * Spalte 2, Zeilen * Spalte 7, Zeile 3	(1967-09-26) 25-45 *	1-11,13,	RECHERCHIERTE SACHGEBIETE (IPC)
Α	DE 33 19 981 A1 (BA 6. Dezember 1984 (1	 EHRE & GRETEN [DE]) 984-12-06)	1-15	
Α	EP 0 805 008 A1 (CM 5. November 1997 (1		1-15	
Α	DE 15 28 238 A1 (DR 6. Mai 1970 (1970-0		1-15	
Α	DE 12 01 541 B (DRA 23. September 1965		1-15	
Der vo	rliegende Recherchenbericht wur	de für alle Patentansprüche erstellt		
Recherchenort Den Haag		Abschlußdatum der Recherche 12. Mai 2010		
X : von Y : von	ATEGORIE DER GENANNTEN DOKU besonderer Bedeutung allein betracht besonderer Bedeutung in Verbindung eren Veröffentlichung derselben Kateg nologischer Hintergrund	E : älteres Patentdok et nach dem Anmeld mit einer D : in der Anmeldung	tument, das jedoc ledatum veröffen gangeführtes Dok	tlicht worden ist kument

EPO FORM 1503 03.82 (P04C03)

A : technologischer Hintergrund O : nichtschriftliche Offenbarung P : Zwischenliteratur

[&]amp; : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 10 00 0663

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben.
Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

12-05-2010

angefü	Recherchenberich ührtes Patentdokun		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP	0681895	A1	15-11-1995	KEINE		
DE	4315922	C1	24-11-1994	KEINE		
DE	1180121	В	22-10-1964	KEINE		
US	3343814	Α	26-09-1967	KEINE		
DE	3319981	A1	06-12-1984	KEINE		
EP	0805008	A1	05-11-1997	CA IT TR	2204175 A1 MI960862 A1 9700331 A2	02-11-199 03-11-199 21-11-199
DE	1528238	A1	06-05-1970	KEINE		
DE	1201541	В	23-09-1965	KEINE		

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82