FIELD OF THE INVENTION
[0001] This invention relates to non-toxic, zinc peroxide-containing, IR tracer compositions
and to IR tracer projectiles containing such compositions which, when fired, generate
a dim visibility IR trace.
BACKGROUND OF THE INVENTION
[0002] The art is replete with patents which are directed to tracer compositions, incendiary
compositions and pyrotechnic compositions. Among such prior art patents are the following:
[0003] US Patent No. 5,811,724, patented Sep 22, 1998, INFRARED TRACER FOR AMMUNITION and assigned to Primex Technologies Inc. Those patented
composition included both strontium and barium. However, such IR tracer compositions
suffer from the defect that barium is a toxic element.
[0004] US Patent No. 5,661,257, patented Aug 26, 1997, MULTISPECTRAL COVERT TARGET MARKER. Such patented target marker included a near-IR
emitting photodiode which was encased in a hardened polymeric molding material. Those
patented target markers suffered from the defect that they were not easily amenable
to be incorporated into an IR projectile.
[0005] US Patent No. 5,587,552, patented Dec 24, 1996, INFRARED ILLUMINATING COMPOSITION, and assigned to Thiokol Corporation. Those patented
compositions included cesium nitrate and rubidium nitrate as IR generators. However,
those compositions suffered from the defects that such nitrates were uncommon, and
hence that the compositions were not amenable to commercial production, and also that
cesium and rubidium are believed to be toxic and suspected carcinogens.
[0006] US Patent No. 5,472,536, patented Dec 5, 1995, TRACER MIXTURE FOR USE WITH LASER HARDENED OPTICS, and assigned to the US Secretary
of the Army. Those patented compositions included metallic magnesium as well as strontium
nitrate, sodium nitrate and barium therein. However, such IR tracer compositions suffer
from the defects that barium is a toxic element and that sodium emits yellow light.
[0007] US Patent No. 4,979, 999, patented Dec 18, 1990, TRACER COMPOSITION AND METHOD OF PRODUCING SAME, and assigned to The Minister of
National Defence, Canada. Those patented compositions included metallic magnesium
and strontium nitrate. Thus, those patented composition suffered from the defect that
metallic magnesium emitted an excessive amount of visible light.
[0009] US Patent No. 4,094,711, patented Jun 13, 1978, TRACER AND COMPOSITION, and assigned to Ford Aerospace & Communications Corporation.
Those patented composition included metallic magnesium. Thus, those patented compositions
suffered from the defect that they emitted visible light due to the presence of metallic
magnesium.
[0010] US Patent No 2,899,291, patented Aug 11, 1959, by R. H. Hieskell COMPOSITION FOR TRACER UNIT. Those patented compositions included metallic magnesium,
and barium and antimony sulfides. Thus, those patented compositions suffered from
the defects that the presence of barium and antimony rendered the composition toxic
and the presence of metallic magnesium resulted in the emission of visible light.
[0011] US Patent No. 4,719,856, patented Jan 19, 1988, PYROTECHNIC DEVICE, and assigned to Pains-Wessex Limited. Those patented compositions
included metallic titanium. Those patented compositions suffered from the defects
that they generated excessive heat and also emitted visible light due to the presence
of metallic titanium.
[0012] US Patent No. 3,983,816, patented Oct 5, 1976, COMPOSITIONS FOR PRODUCING FLICKERING SIGNALS and assigned to Thiokol Corporation.
Those patented compositions included metallic magnesium and/or aluminum, and barium
nitrate or sodium nitrate. Such patented compositions suffered from the defects that
they were toxic due to the presence of barium, emitted white light due to the presence
of metallic magnesium and/or aluminum and emitted yellow light due to the presence
of sodium.
[0013] US Patent No. 4,881,464, patented Nov 21, 1989, SIGNAL OR RESCUE FLARE OF VARIOUS LUMINOSITY, and assigned to the US Secretary of
the Army. Such patented compositions included metallic magnesium or metallic aluminum.
Those patented compositions suffered from the defect that they produced visible light
due to the presence of metallic magnesium or metallic aluminum.
[0014] US Patent No. 3,986,907, patented Oct 19,1976, ILLUMINATING FLARE COMPOSITION CONTAINING TETRANITROCARBAZOLE, and assigned to Thiokol
Corporation. Such patented compositions included metallic magnesium granules. Those
patented compositions suffered from the defect that they produced visible light due
to the presence of metallic magnesium granules.
[0015] US Patent No. 3,503,814, patented Mar 31, 1970, PYROTECHNIC DEVICE CONTAINING NICKEL AND ALUMINUM and assigned to the US Secretary
of the Navy. Such patented compositions contained metallic magnesium as well as bismuth
oxide. Those patented compositions suffered from the defects that they generated excessive
heat, produced visible light due to the presence of metallic magnesium.
SUMMARY OF THE INVENTION
AIMS OF THE INVENTION
[0016] Tracer projectiles provide a reliable means of determining whether projectiles impact
on the desired target or whether adjustments in aim are necessary. One problem with
the use of conventional tracer projectiles is that they emit visible light, which
thereby makes the source of the tracer ammunition discernable to the enemy.
[0017] Accordingly it is an object of a first aspect of the present invention to provide
improved IR tracer projectiles in which visible emissions are suppressed, whereby
camouflage is optimized and an enemy cannot visually locate the source of the tracer
projectile or the line of fire in order to direct a counter-attack toward that location.
[0018] An object of a second aspect of the present invention is to provide improved IR tracer
projectiles which generate an IR trace which is substantially-completely IR radiation.
[0019] It is an object of a third aspect of the present invention to provide improved IR
tracer projectiles which generate an IR trace which is substantially-completely IR
radiation, and which has an appropriate burning rate so that it can be observed by
the users at a longer distance down range.
[0020] It is an object of a fourth aspect of the present invention to provide improved IR
tracer projectiles which generate an IR trace which is substantially-completely IR
radiation, and which has a lower energetic output to minimize the risk of fire propagation
in bushes and wooded areas where the projectile lands.
[0021] It is an object of a fifth aspect of the present invention to provide improved IR
tracer projectiles which generate an IR trace which is substantially-completely IR
radiation, and which has a controlled IR emission at any particular point to avoid
very high intensity visible light emissions which could temporarily blind an observer
using an infrared detection system.
[0022] It is an object of a sixth aspect of the present invention to provide improved IR
tracer compositions which have a uniform granularity to facilitate the controlled
production of the IR tracer projectiles which generate an IR trace which is substantially-completely
IR radiation.
[0023] It is an object of a seventh aspect of the present invention to provide improved
IR tracer compositions which do not significantly degrade with time under extreme
environmental conditions when stored at about 5 to 20°C, and thus which provides IR
tracer projectiles which generate an IR trace which is substantially-completely IR
radiation.
[0024] It is an object of an eighth aspect of the present invention to provide improved
IR tracer compositions which do not contain heavy metals, e.g., barium nor any other
toxic elements, and which is combined with a non-toxic igniter composition, to provide
environmentally-friendly IR tracer compositions which are non-toxic, to provide IR
tracer projectiles which generate an IR trace which is substantially-completely IR
radiation.
[0025] It is an object of a ninth aspect of the present invention to provide improved IR
tracer compositions which are formulated using a selected solvent for mixing the ingredients,
in order to facilitate the manufacturing process by providing the IR tracer composition
with uniform granularity and improved flowability so that the IR tracer charge weight
compressed into IR tracer projectiles which generate an IR trace which is substantially-completely
IR radiation, could be better controlled.
STATEMENTS OF INVENTION
[0026] A broad aspect of the present invention provides a non-toxic substantially-metallic-metal-free,
zinc peroxide-containing, IR tracer composition comprising: from about 26 to about
30% by weight, or from about 65 to about 80% by weight, of zinc peroxide peroxide;
from about 40 to about 47% by weight of potassium nitrate; from about 10 to about
25% by weight of a non-metallic fuel which consists of sodium salicylate; from about
5 to about 26% by weight of a retardant which consists of either iron carbonate or
magnesium carbonate or calcium carbonate; from about 5 to about 10% by weight of at
least one binder which is either calcium resinate, or a synthetic resin binder which
consists of a copolymer of hexafluoropropylene and vinylidene fluoride, or from about
5 to about 7.5% by weight of cellulose acetate butyrate; wherein the total percentage
of the ingredients add up to 100%.
[0027] Other embodiments and aspects of the invention comprise the following substantially-metallic-metal-free,
zinc peroxide-containing, IR tracer compositions:
[0028] From about 26 to about 30% by weight zinc peroxide; from about 40 to about 45% by
weight of potassium nitrate; from about 20 to about 25% by weight of iron carbonate;
and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the
total percentage of the ingredients add up to 100%;
[0029] About 30% by weight zinc peroxide; about 42.5% by weight of potassium nitrate; about
20% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate butyrate,
wherein the total percentage of the ingredients add up to 100%;
[0030] From about 65 to about 70% by weight of zinc peroxide; from about 20 to about 25%
by weight of sodium salicylate; and from about 8 to about 10% by weight of calcium
resinate, wherein the total percentage of the ingredients add up to 100%;
[0031] About 65% by weight of zinc peroxide; about 25% by weight of sodium salicylate; and
about 10% by weight of calcium resinate; wherein the total percentage of the ingredients
add up to 100%;
[0032] From about 26 to about 28 % by weight of zinc peroxide; from about 40 to about 45%
by weight of potassium nitrate; from about 22 to about 26% by weight of iron carbonate;
and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the
total percentage of the ingredients add up to 100%;
[0033] About 26% by weight of zinc peroxide; about 42.5% by weight of potassium nitrate;
about 24% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate
butyrate, wherein the total percentage of the ingredients add up to 100%;
[0034] From about 26 to about 30% by weight of zinc peroxide; from about 42 to about 47%
by weight of potassium nitrate; from about 15 to about 25% by weight of iron carbonate;
and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the
total percentage of the ingredients add up to 100%;
[0035] About 28% by weight of zinc peroxide; about 44.5% by weight of potassium nitrate;
about 20% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate
butyrate; wherein the total percentage of the ingredients add up to 100%;
[0036] From about 26 to about 30% by weight of zinc peroxide; from about 40 to about 45%
by weight of potassium nitrate; from about 15 to about 25% by weight of iron carbonate;
and from about 5 to about 7.5% by weight of cellulose acetate butyrate; wherein the
total percentage of the ingredients add up to 100%;
[0037] About 28% by weight of zinc peroxide; about 44.5% by weight of potassium nitrate;
about 20% by weight of iron carbonate; and about 7.5% by weight of cellulose acetate
butyrate; wherein the total percentage of the ingredients add up to 100%;
[0038] From about 26 to about 30% by weight of zinc peroxide; from about 42 to about 47%
by weight of potassium nitrate; from about 15 to about 25% by weight of magnesium
carbonate; and from about 5 to about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of the ingredients add up to 100%;
[0039] About 28% by weight of zinc peroxide; about 44.5% by weight of potassium nitrate;
about 20% by weight of magnesium carbonate; and about 7.5% by weight of cellulose
acetate butyrate; wherein the total percentage of the ingredients add up to 100%;
[0040] From about 70 to about 80% by weight of zinc peroxide; from about 15 to about 20%
by weight of sodium salicylate; and from about 5 to about 10% by weight of calcium
resinate; wherein the total percentage of the ingredients add up to 100%;
[0041] About 75% by weight of zinc peroxide; about 17.5% by weight of sodium salicylate;
and about 7.5% by weight of calcium resinate; wherein the total percentage of the
ingredients add up to 100%;
[0042] From about 70 to about 80% by weight of zinc peroxide; from about 10 to about 20%
by weight of sodium salicylate; and from about 5 to about 12% by weight of calcium
resinate; wherein the total percentage of the ingredients add up to 100%;
[0043] About 75% by weight of zinc peroxide; about 15% by weight of sodium salicylate; and
about 10% by weight of calcium resinate; wherein the total percentage of the ingredients
add up to 100%.
[0044] The present invention, in another aspect, provides an IR tracer projectile comprising
a hollow cylindrical shell made of a suitable metallic material, and having a conical
nose; a conventional heavy filler disposed in the hollow conical nose; the non-toxic,
metallic-metal-free, zinc peroxide-containing, infrared tracer composition as disclosed
hereinabove in its generic, sub-generic and specific aspects, compressed immediately
against the filler; a conventional ignition material compressed against said compressed
tracer composition; and a metal disc capping the hollow shell.
GENERALIZED DESCRIPTION OF THE INVENTION
[0045] The present invention provides infrared-producing (hereinafter "IR"-producing) compositions
which are capable of producing a consistent IR output when provided in IR tracer projectiles
which are medium caliber, e.g., 0.50 caliber, long range accuracy ammunition (Match
grade) The IR output includes near IR and far IR bands (0.76 to 3.0 µm). The intensity
of the IR radiation depends on the specific wavelength of these bands.
[0046] Conventional pyrotechnic mixtures typically contain a finely-divided mixture of an
oxidizer and a fuel (metallic, non-metallic or organic fuel). The oxidizer, which
contains oxygen, is added to sustain combustion and the metallic atoms are responsible
for the characteristic color output. The fuel is added in order to sustain combustion
of the mixture and to provide heat energy.
[0047] Finely divided powdered fuel is very reactive with an oxidizing agent. Above a certain
temperature, namely, the ignition temperature, the oxidizer decomposes to release
oxygen, which then reacts quickly with the fuel in an exothermic reaction. An oxidizer
and a fuel alone, however, do not make practical compositions for the purpose of providing
suitable emissions. Each of a flame retardant and a binding agent is also incorporated
into the mixture.
[0048] The IR tracer compositions of aspects of the present invention possess unique requirements
not generally addressed by the prior art conventional tracer systems. While it is
not desired to be limited to any particular theory, it is believed that a hypothesis
concerning the formation of purely infrared emission without the presence of visible
light may be developed based on black body radiation theory. The requirement would
then be for the IR tracer to maximize output at a wavelength of 1 to 3 µm range.
[0049] The desired IR range is significantly below the flame temperature of present conventional
tracer and flame formulations. This knowledge, coupled with the understanding that
visible light output is normally the smallest proportion of energy radiation during
combustion, leads to the conclusion that an effective IR tracer according to aspects
of the present invention is based on a relatively cool burning tracer formulation.
[0050] Various chemical compositions were investigated to maximize the IR intensity while
also maximizing the duration of the IR trace and minimizing the generation of excessive
amounts of heat for each type of medium caliber projectiles. The compositions to be
described hereinafter burn cleanly and relatively coolly and emit relatively-small
(i.e., almost negligible) quantities of visible light in proportion to the infrared
radiation emitted.
[0051] The basic components of the IR tracer compositions of aspects of the present invention
are able to augment near-IR emissions when fired. This is accomplished by the addition
of an IR producing oxidizer and fuel. Thus, the IR tracer compositions of aspects
of the present invention include zinc peroxide as the oxidizer, an organic fuel, a
flame retardant, and a binder.
[0052] As noted above, the oxidizer is zinc peroxide. Peroxides of other transition metals,
e.g., titanium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, etc,
are not useful in the IR tracer composition of aspects of the invention. The peroxides
of such transition metals either provide inert compositions or provide compositions
which emit toxic effluents.
[0053] The preferred organic fuel is sodium salicylate (C
7H
5NaO
3). This organic fuel has a low melting point and generates a large amount of gases
during the combustion, which facilitates the removal of solid residues and soot inside
the tracer cavity of the projectile. Without obstruction, the trace can be seen at
a longer distances down range. Neither lithium salicylate nor potassium salicylate
would be suitable since they provide compositions which are too hygroscopic. Furthermore,
these compounds are not conveniently commercially available and so the compositions
cannot be easily industrialized.
[0054] Another component of the IR tracer compositions of aspects of the present invention
is potassium nitrate. The nitrates of other alkali metals are not useful in IR tracer
compositions of aspects of the present invention, since lithium nitrate produces a
composition which is too hygroscopic, while sodium nitrate emits a yellow color.
[0055] The preferred flame retardants in the IR tracer compositions of aspects of the present
invention are iron carbonate and magnesium carbonate although calcium carbonate would
also be useful. The presence of iron carbonate or magnesium carbonate or calcium carbonate
brings about a better control of the rate of burning and reduces substantially the
flash and output of visible light. The carbonates of other transition metals are not
suitable. For example, the carbonates of chromium and cobalt contaminate the atmosphere,
the carbonate of nickel has carcinogenic properties and the carbonate of zirconium
has excessive luminosity properties.
[0056] A binder maintains the other particulate forms of constituents of the IR tracer compositions
of aspects of the present invention together. The binder increases the structural
integrity of the IR tracer composition to prevent any break up of the trace in flight.
It protects the composition from moisture and increases the flowability of the composition.
Suitable binders include cellulose acetate butyrate (CAB), calcium resinate, a vinyl
acetate resin or the fluoroelastomer known by the trade mark VITON A. Such binders
have the properties of acting as a fuel retardant, as a waterproofing agent, and/or
as an agent to reduce soot formation.
[0057] The IR tracer compositions of aspects of the present invention differ significantly
over conventional tracer compositions, especially conventional IR tracer compositions,
of the prior art in the absence of any metallic metal, e.g., boron.
BRIEF DESCRIPTION OF THE DRAWING
[0058] Embodiments of the present invention will be described, by way of example only, with
reference also to the attached Figure which is a one-half longitudinal cross-section
of a tracer projectile according to one embodiment of the present invention.
EXAMPLES
PREPARATION OF IR TRACER COMPOSITIONS
[0059] The IR tracer compositions were prepared by first dry mixing the powdered ingredients
to provide a dry intermediate composition. The binder was dissolved in a suitable
aprotic solvent, namely, methyl ethyl ketone. The so-formed binder solution was then
incorporated into the dry intermediate composition to provide a wet mixture. The wet
mixture so provided was transferred to a suitable mixer in order to obtain a substantially-completely
homogeneous mixture of all ingredients. The homogenous mixture so-formed was dried
in an oven at about 20-40°C until it was sufficiently dry for sieving. The dry mixture
was then sieved to break up agglomerated particles. The IR tracer composition was
thus provided as relatively small particles of random shape.
[0060] A series of IR tracer compositions according to aspects of the present invention
was prepared according to the proportion of ingredients as set forth in the following
Tables 1A and 1B.
TABLE 1A
INGREDIENT |
PERCENTAGE IN TEST NO |
TEST NO |
DT-48 |
DT-49 |
DT-50 |
DT-51 |
DT-52 |
ZINC PEROXIDE |
30 |
28 |
26 |
28 |
28 |
POTASSIUM NITRATE |
42.5 |
42.5 |
42.5 |
44.5 |
44.5 |
IRON CARBONATE |
20 |
22 |
24 |
20 |
0 |
CAB |
7.5 |
7.5 |
7.7 |
7.5 |
7.5 |
MAGNESIUM CARBONATE |
0 |
0 |
0 |
0 |
20 |
TABLE 1B
INGREDIENT |
PERCENTAGE IN TEST NO |
TEST NO |
DT-53 |
DT-54 |
DT-55 |
DT-56 |
ZINC PEROXIDE |
28 |
65 |
75 |
75 |
SODIUM SALICYLATE |
44.5 |
25 |
17.5 |
10 |
CALCIUM RESINATE |
20 |
10 |
7.5 |
10 |
CAB |
7.5 |
|
|
|
PREPARATION OF TEST PROJECTILES
[0061] Each of the above IR tracer compositions of aspects of the present invention was
compressed into a projectile body of a desired medium caliber. For the tests which
are to be described below, the caliber of the projectile body was 0.50 caliber. Thus,
as seen in the drawing, the tracer projectile 10 includes a hollow shell 12 of, preferably,
a copper alloy (90% Cu/10% Zn), whose hollow nose 14 is filled with a suitable heavy
filler 16. The IR tracer composition 18 is compressed immediately against the filler
16. A conventional ignition material 20 is compressed against the IR tracer composition
18. The IR tracer projectile 10 is capped by means of a brass closure disc 22.
TEST PROCEDURES
[0062] For these series of tests, each of the IR tracer compositions was inserted into 0.50
caliber tracer projectiles and fired. When such IR tracer projectile was fired, the
IR tracer composition inside the projectile body was ignited by hot gases emitted
by a propellant.
[0063] Several important criteria for the IR trace, namely its stablility, its intensity,
whether any visible light was detected and if a spark occurred at the firing point
were evaluated as follows:
[0064] Three observers were stationed, one each, at the point of firing, at 250m down range
and at 400m down range. These observers noted each of the above criteria.
[0065] The visibility with night vision goggles was determined by the same observers at
the same three positions
[0066] The distinctness of the trace was noted at a barrier located 1000m down range. NATO
criteria is distinctness at 600m down range
[0067] The visibility with the naked eye of the tracer projectile was determined by the
same observers at the firing position along the trajectory path and perpendicular
to the trajectory path at 200m down range and at 400m down range from the firing position.
[0068] The calorific output of the tracer projectile was measured with a calorimeter.
[0069] The results are summarized as follows:
[0070] The IR trace was found to be visible from the firing position and could not be seen
with the naked eye by the observers placed at an angle with respect to the trajectory
of the IR tracer projectile.
[0071] The calorific output of the IR tracer composition measured with a calorimeter was
about 500 cal/g, which is about one third less than the calorific output generated
by conventional IR tracer compositions, (500 cal/g compared to 1200 cal/g for conventional
IR tracer compositions). The IR trace can, thus, be designated as a cold trace.
[0072] The IR intensity of the IR emission as measured with a spectrophotometer equipped
with IR filters at a wavelength of 760 nanometers was found to be about 1 to 4 watts/steradian
, and at a wavelength of 3,000 nanometers was found to be about 1.7 to 2.1 watts/steradian.
The IR tracer compositions of aspects of the present invention was found to have an
IR luminosity as measured with a spectrophotometer at a wavelength of 760 nanometers
of about 1 to 2 watts/steradian and an IR luminosity as measured with a spectrophotometer
at a wavelength of 3000 nanometers of about 1 to 4 watts/steradian.
[0073] For medium caliber, i.e., 0.50 caliber, IR tracer projectiles, the IR trace can be
seen up to 1000m compared to 600m for conventional 0.50 caliber tracer projectiles.
[0074] The medium caliber, i.e., 0.50 caliber, IR tracer projectiles of an aspect of the
present invention containing the IR tracer compositions of aspects of the present
invention have been found to increase the length of trace along the firing line by
up to about 120%.
[0075] It has been found that the IR tracer compositions of aspects of the present invention
produce relatively low burn rate materials so that the IR trace can be seen from the
firing point to a longer distance down range. The burn rate is adjustable for medium
caliber, i.e., 0.50 caliber, ammunition to meet or exceed NATO and specific user requirements.
Thus, particular burn rates can be adjusted, the ratio of IR radiation to visible
light can be optimized (i.e., substantially no visible light), and the general physical
and chemical properties can be carefully selected.
[0076] The medium caliber i.e., 0.50 caliber, IR tracer projectiles of aspects of the present
invention containing the IR tracer compositions of aspects of the present invention
have a relatively slow burning rate so that the IR tracer can be seen up to 1800m
compared to 1500m for conventional 0.50 caliber tracer projectiles.
[0077] The IR tracer compositions of aspects of the present invention do not degrade with
time, when properly stored at a temperature varying between 5°C and 20°C, with a relative
humidity which ranged between 50% and 70%. For example, the calorific heat of an IR
tracer projectile containing IR tracer compositions of aspects of the present invention
at the beginning of the storage period was about 675 cal/g and remained constant over
a minimum storage period of 6 months.
[0078] The IR tracer compositions of aspects of the present invention do not contain any
toxic elements
[0079] The IR tracer compositions of aspects of the present invention may easily be industrialized.
[0080] Not all zinc peroxide-containing compositions satisfy the utility requirements as
set forth in the above tests. Thus, compositions having the ingredients/proportions
set forth in the following Tables 2A, 2B and 2C have been found not to be useful
TABLE 2A
INGREDIENT |
PERCENTAGE IN TEST NO |
TEST NO |
DT-02 |
DT-05 |
DT-13 |
DT-19 |
DT-20 |
DT-31 |
ZINC PEROXIDE |
40 |
50 |
50 |
34 |
49 |
48 |
POTASSIUM CHLORATE |
0 |
0 |
0 |
9 |
5 |
0 |
MAGNESIUM CARBONATE |
10 |
10 |
10 |
0 |
0 |
0 |
POLYISOBUTYLENE |
0 |
5 |
5 |
0 |
0 |
0 |
CALCIUM RESINATE |
10 |
0 |
0 |
0 |
0 |
0 |
STRONTIUM OXIDE |
40 |
0 |
0 |
0 |
0 |
0 |
POTASSIUM NITRATE |
0 |
25 |
25 |
0 |
24.5 |
24.5 |
METALLIC IRON |
0 |
10 |
0 |
0 |
0 |
0 |
SILICON |
0 |
0 |
10 |
0 |
0 |
0 |
BARIUM CHROMATE |
0 |
0 |
0 |
52 |
41 |
0 |
SILICON DIOXIDE |
0 |
0 |
0 |
5 |
0 |
0 |
IRON CARBONATE |
0 |
0 |
0 |
0 |
20 |
20 |
CAB |
0 |
0 |
0 |
0 |
0 |
7.5 |
TABLE 2B
INGREDIENT |
PERCENTAGE IN TEST NO. |
TEST NO |
DT-32 |
DT-33 |
DT-34 |
DT-35 |
DT-36 |
ZINC PEROXIDE |
48 |
48 |
50 |
40 |
40 |
POTASSIUM NITRATE |
24.5 |
24.5 |
26.5 |
40 |
40 |
IRON CARBONATE |
20 |
20 |
20 |
10 |
10 |
CAB |
0 |
0 |
0 |
0 |
10 |
CALCIUM RESINATE |
10 |
7.5 |
|
10 |
|
METALLIC IRON |
0 |
0 |
0 |
0 |
0 |
VITON A |
7.5 |
0 |
0 |
0 |
0 |
TEFLON |
0 |
0 |
1.5 |
0 |
0 |
NC |
0 |
0 |
2 |
0 |
0 |
TABLE 2C
INGREDIENT |
PERCENTAGE IN TEST NO |
TEST NO |
DT-40 |
DT-41 |
DT-42 |
DT-43 |
DT-44 |
DT-45 |
ZINC PEROXIDE |
41 |
32.5 |
37.75 |
34.75 |
46.25 |
50.75 |
POTASSIUM NITRATE |
41 |
50.75 |
36.25 |
34.75 |
27.75 |
32.5 |
IRON CARBONATE |
10.5 |
9.25 |
18.5 |
23 |
18.5 |
9.25 |
CAB |
7.5 |
7.5 |
7.5 |
7.5 |
7.5 |
7.5 |
SUMMARY
[0081] In summary, the present invention provides IR tracer compositions for the production
of IR projectiles for medium caliber, i.e., 0.50 caliber, ammunition. The IR tracer
compositions of aspects of the present invention are non-toxic. When incorporated
into medium caliber, i.e., 0.50 caliber, IR tracer projectiles and fired, they have
a lower calorific output than conventional compositions and they produce a cool IR
trace which is not visible to the naked eye, i.e., it is a dim trace. The rate of
burning is selectively controllable so that the IR trace can be seen at longer distance
from the firing position than conventional IR trace projectiles containing conventional
IR trace compositions.
[0082] The above-described embodiments of aspects of the invention are intended to be examples
of the present invention. Alterations, modifications and variations may be effected
to the particular embodiments by those of ordinary skill in the art, without departing
from the spirit and scope of the invention, which is defined solely by the claims
appended hereto
[0083] For the avoidance of doubt, the present application is directed to the subject-matter
defined in the following numbered paragraphs (referred to as "para"):
- 1. A non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition comprising:
from about 26 to about 30% by weight, or from about 65 to about 80% by weight of zinc
peroxide;
from about 40 to about 47% by weight of potassium nitrate;
from about 10 to about 25% by weight of a non-metallic fuel which consists of sodium
salicylate;
from about 5 to about 26% by weight of a retardant which is selected from the group
consisting of iron carbonate, magnesium carbonate and calcium carbonate;
from about 5 to about 10% by weight of at least one binder which is selected from
the group consisting of calcium resinate, and a synthetic resin binder which consists
of a copolymer of hexafluoropropylene and vinylidene fluoride, or from about 5 to
about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of the ingredients add up to 100%.
- 2. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 1, comprising:
from about 26 to about 30% by weight zinc peroxide;
from about 40 to about 45% by weight of potassium nitrate;
from about 20 to about 25% by weight of iron carbonate; and
from about 5 to about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 3. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 2, comprising:
about 30% by weight zinc peroxide;
about 42.5% by weight of potassium nitrate;
about 20% by weight of iron carbonate; and
about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 4. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 1, comprising:
from about 65 to about 70% by weight of zinc peroxide;
from about 20 to about 25% by weight of sodium salicylate; and
from about 8 to about 10% by weight of calcium resinate;
wherein the total percentage of said ingredients add up to 100%.
- 5. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 4, comprising:
about 65% by weight of zinc peroxide;
about 25% by weight of sodium salicylate; and
about 10% by weight of calcium resinate;
wherein the total percentage of said ingredients add up to 100%.
- 6. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para. 1, comprising:
from about 26 to about 28 % by weight of zinc peroxide;
from about 40 to about 45% by weight of potassium nitrate; from about 22 to about
26% by weight of iron carbonate; and
from about 5 to about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 7. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 6, comprising:
about 26% by weight of zinc peroxide;
about 42.5% by weight of potassium nitrate;
about 24% by weight of iron carbonate; and
about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 8. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 1, comprising:
from about 26 to about 30% by weight of zinc peroxide;
from about 42 to about 47% by weight of potassium nitrate;
from about 15 to about 25% by weight of iron carbonate; and
from about 5 to about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 9. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 8, comprising:
about 28% by weight of zinc peroxide;
about 44.5% by weight of potassium nitrate;
about 20% by weight of iron carbonate; and
about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 10. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 1, comprising:
from about 26 to about 30% by weight of zinc peroxide;
from about 40 to about 45% by weight of potassium nitrate;
form about 15 to about 25% by weight of iron carbonate; and
from about 5 to about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 11. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 10, comprising:
about 28% by weight of zinc peroxide;
about 44.5% by weight of potassium nitrate;
about 20% by weight of iron carbonate; and
about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 12. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 11, comprising:
from about 26 to about 30% by weight of zinc peroxide;
from about 42 to about 47% by weight of potassium nitrate;
from about 15 to about 25% by weight of magnesium carbonate; and
from about 5 to about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 13. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 12, comprising:
about 28% by weight of zinc peroxide;
about 44.5% by weight of potassium nitrate;
about 20% by weight of magnesium carbonate; and
about 7.5% by weight of cellulose acetate butyrate;
wherein the total percentage of said ingredients add up to 100%.
- 14. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 1, comprising:
from about 70 to about 80% by weight of zinc peroxide;
from about 15 to about 20% by weight of sodium salicylate; and
from about 5 to about 10% by weight of calcium resinate;
wherein the total percentage of said ingredients add up to 100%.
- 15. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 14, comprising:
about 75% by weight of zinc peroxide;
about 17.5% by weight of sodium salicylate; and
about 7.5% by weight of calcium resinate;
wherein the total percentage of said ingredients add up to 100%.
- 16. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 1, comprising:
from about 70 to about 80% by weight of zinc peroxide;
from about 10 to about 20% by weight of sodium salicylate; and
from about 5 to about 12% by weight of calcium resinate;
wherein the total percentage of said ingredients add up to 100%.
- 17. The non-toxic, substantially-metallic-metal-free, zinc peroxide-containing, infrared
tracer composition as claimed in para 16, comprising:
about 75% by weight of zinc peroxide;
about 15% by weight of sodium salicylate; and
about 10% by weight of calcium resinate; wherein the total percentage of said ingredients
add up to 100%.
- 18. An IR tracer projectile comprising:
a hollow cylindrical shell made of a suitable metallic material, and having a conical
nose;
a conventional heavy filler disposed in said hollow conical nose;
the non-toxic, substantially-metallic-metal-free, zinc peroxide-containing infrared
tracer composition as claimed in para 1 compressed immediately against said filler;
a conventional ignition material compressed against said compressed tracer composition;
and
a metal disc capping said hollow shell.