
Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
2

36
0

91
8

A
1

��&��
���������
(11) EP 2 360 918 A1

(12) EUROPEAN PATENT APPLICATION

(43) Date of publication:
24.08.2011 Bulletin 2011/34

(21) Application number: 10196221.5

(22) Date of filing: 21.12.2010

(51) Int Cl.:
H04N 7/16 (2011.01) H04L 9/08 (2006.01)

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME

(30) Priority: 26.01.2010 EP 10151677

(71) Applicant: IRDETO B.V.
2132 LS Hoofddorp (NL)

(72) Inventors:
• Benedetti, Ettore

2132 LS, Hoofddorp (NL)
• Van Foreest, Arnoud Evert

2132 LS, Hoofddorp (NL)

(74) Representative: van Looijengoed, Ferry Antoin
Theodorus et al
De Vries & Metman
Overschiestraat 180
1062 XK Amsterdam (NL)

(54) Computational efficiently obtaining a control word in a receiver using transformations

(57) The invention provides a receiver, a smartcard
and a conditional access system for securely obtaining

a control word using an entitlement transform tree,
wherein intermediate results are cached to improve com-
putational efficiency.

EP 2 360 918 A1

2

5

10

15

20

25

30

35

40

45

50

55

Description

FIELD OF THE INVENTION

[0001] The present invention relates to a receiver, a smartcard, a conditional access system and a method for com-
putational efficiently obtaining a control word using transformation functions.

BACKGROUND

[0002] Conditional Access systems, such as Pay-TV systems, are known that use software tamper resistance to
protect key storage and entitlement processing steps in a digital TV receiver.
[0003] Software tamper resistance technology uses basic primitives to obscure software code transformations. Ex-
amples of basic primitives are "Apply", "Remove" and "Condition". Fig. 1A, Fig. 1B and Fig. 1C show block diagrams of
an apply primitive A, a remove primitive R and a condition primitive C, respectively. The apply primitive typically uses a
function A(D, S) =As (D) =DTS to transforms a data element D according to a parameter seed S. The remove primitive
typically uses a function R(DTS, S) =Rs (DTS) =D to reverse the transformation of a data element D based on a seed S.
The conditional primitive typically uses a function C(D1,D2)=CD1(D2)=DCS, wherein the output is a correlation of the two
inputs.
[0004] The seed S can be constructed from a mixture of multiple data elements. This makes it difficult to extract the
individual data elements from the seed. The parameter mixing functions are typically denoted as f(A,B)=<A,B>. The
function result <A,B> is called the compound of A and B. Hereinafter, seeds and compounds are both referred to as
"seeds".
[0005] The primitives are typically combined when implementing key management functions in a Conditional Access
system. The combination of primitives results in a new function wherein the individual primitives are no longer identifiable.
Known examples of combinations of primitives are a combination of remove and apply primitives and a secure correlation
of compounds.
[0006] Fig. 1D shows an instance of a combination of remove and apply primitives. The transformation uses a compound
<P,S> in a combined remove and apply operation. The function RpAs modifies the input data by replacing a transformation
using the seed P with a transformation using the seed S, i.e. DataTP is transformed into DataTS.
[0007] Fig. 1E shows an instance of a secure correlation of compounds. It is typically used for conditional entitlement
processing and comprises a combination of the basic primitives apply, remove and condition. The conditional function
can be combined with remove and apply blocks RpAs of Fig. 1D to perform a secure correlation of compounds.
[0008] A method and a receiver for conditional entitlement processing and obtaining a control word CW is described
in related European patent application no. 09155007.9, which is hereby incorporated by reference into this application.
[0009] Fig.2 shows an example of a split key delivery as described in EP09155007.9. In Fig.2 a CW is generated from
three subkeys CW1, CW2 and CW3. The subkeys CW1, CW2 and CW3 are distributed under protection of seeds P, G
and U, respectively. Hereto CW1 is distributed in a mathematically transformed form in transformation space P, CW2 is
distributed in a mathematically transformed form in transformation space G and CW3 is distributed in a mathematically
transformed form in transformation space U.
[0010] Fig.3 shows an example of CW processing in a receiver as described in EP09155007.9. In Fig.3 the CW is
generated from subkeys and a membership check is performed. The processing is divided in two basic parts: a secure
computation environment and a generic processing environment. Functional modules in the generic processing envi-
ronment and the secure computation environment form an entitlement transform tree for transforming an input trans-
formed CW, e.g. CWDTP, into a CW encrypted using a receiver specific key, e.g. {CW}CSSK. The generic processing
environment deals with the external interfaces such as storage, data communication and user interaction. The secured
computation environment deals with the processing of keys and/or seeds.
[0011] An ECM Delivery Path is used for the reception of entitlement control messages (ECM) from a head-end system.
The ECM comprises an encrypted or transformed CW. An EMM Delivery Path is used for the reception of entitlement
management messages (EMM) from the head-end system. The EMM comprises keys or seeds for decrypting or trans-
forming the encrypted or transformed CW.
[0012] The software tamper resistance primitives in the secure computation environment have inputs and outputs that
are not useful to an attacker if intercepted. The remove operation on the transformed control word CWDTP requires value
P, which is received in a compound <P, G1>, thus tied with G1. G1 is distributed in a compound <G1, U1>, thus tied with
U1. After the two Remove/Apply operations RPAG1 and RG1AU1, the obtained transformed control word CWDTU1, is input
to a TDES Encryption Whitebox module for the generation of an encrypted CW that can be processed by the receiver.
The resulting CW is encrypted using a receiver specific key such as a chip set session key CSSK. The CSSK is typically
provided in one of the entitlement messages. The CSSK, U1 and U2 values are typically provided to the TDES Encryption
Whitebox as a compound <CSSK, U1, U2>.

EP 2 360 918 A1

3

5

10

15

20

25

30

35

40

45

50

55

[0013] The conditional entitlement processing of Fig.3 uses a secure correlation function RG2CvectorAU2 to implement
a group membership check. A result of the correlation computation is a Control Word Difference Key CWDK in trans-
formation space U2, i.e. CWDKCTU2. CWDKCTU2 and CWDTU1 are subkeys used in the calculation of the CW in the
TDES Encryption Whitebox.
[0014] Subkeys, such as CW1, CW2 and CW3 of Fig.2 and CWDKCTU2 and CWDTU1 of Fig. 3, may have different life
spans. As an example CW1 may change on a regular basis such as every 10 seconds, CW2 may change on a sporadic
basis measured in days and CW3 may change very seldom measured in months.
[0015] Known software tamper resistant conditional entitlement processing technologies for the obtainment of CWs
from transformed subkeys do not take into account the different life spans of subkeys. As a consequence all intermediate
operations in the conditional entitlement processing are always performed in order to obtain the CW. The execution of
each intermediate operation is expensive in terms of processor cycles.
[0016] There is a need to reduce the number of computations in software tamper resistant conditional entitlement
processing technologies, especially in devices wherein processing capabilities are limited, while not adversely affecting
the tamper resistance of the implementation.

SUMMARY OF THE INVENTION

[0017] It is an object of the invention to provide an improved software tamper resistant conditional entitlement process-
ing technology for the obtainment of CWs, wherein computational efficiency is increased.
[0018] According to an aspect of the invention a receiver is proposed for securely obtaining a control word. The receiver
comprises a first memory configured for storing a transform function. The transform function is configured to receive a
transformed control word and a seed and to migrate the transformed control word from an input transform space to an
output transform space. Hereby the transform function obtains the control word using a mathematical transformation
under control of the seed. The receiver further comprises a cache memory and a cache control module. The cache
control module is configured to intercept the transformed control word and the seed. The cache control module is further
configured to search in the cache memory for the control word matching the transform function, the transformed control
word (x) and the seed (y). The cache control module is further configured to, if the control word is found in the cache
memory, provide the control word to an output of the transform function thereby bypassing the transform function. The
cache control module is further configured to, if the control word is not found in the cache memory, provide the control
word and the seed to the transform function, obtain the control word from the transform function and store the control
word associatively with the transform function, the transformed control word (x) and the seed (y) in the cache memory.
[0019] According to an aspect of the invention a method is proposed for securely obtaining a control word in a receiver.
The receiver comprises a first memory configured for storing a transform function. The method comprises the step of
receiving a transformed control word and a seed. The method further comprises the step of intercepting in a cache
control module the transformed control word and the seed. The method further comprises the step of searching in a
cache memory for the control word matching the transform function, the transformed control word and the seed. The
method further comprises the step of, if the control word is found in the cache memory, providing the control word to an
output of the transform function thereby bypassing the transform function. The method further comprises the steps of,
if the control word is not found in the cache memory, providing the control word and the seed to the transform function,
migrating in the transform function the transformed control word from an input transform space to an output transform
space to obtain the control word using a mathematical transformation under control of the seed, and storing the control
word associatively with the transform function, the transformed control word and the seed in the cache memory.
[0020] Thus, the control word in the output transform space is not computed by the transform function if the expected
result is, based on the input to the transform function, available in the cache memory. Hereby the computational efficiency
in obtaining the control word is increased.
[0021] The output transform space may be a cleartext transform space, resulting in the control word being in cleartext.
The resulting cleartext control word may be encrypted after being obtained. The output transform space may be any
other transform space, requiring a further transformation of the control word to obtain the control word in the cleartext
transform space.
[0022] The embodiments of claims 2 and 10 advantageously enable subsequent transformations in a sequence of
transform functions and/or combining of transformed subkeys in a tree of transform functions, wherein intermediate
results are cached for computational efficiency.
[0023] The embodiment of claim 3 advantageously enables the end result of the computations, i.e. the clear text
control word or the encrypted control word, to be used in the receiver for descrambling content.
[0024] The embodiment of claim 4 advantageously enables obfuscation of computer code and functional behaviour
of the transform functions, making it more difficult to obtain information about the control word during the mathematical
transformations. Advantageously, the cached intermediate results can be stored in conventional non-obfuscated memory,
making the cache memory easier and cheaper to implement.

EP 2 360 918 A1

4

5

10

15

20

25

30

35

40

45

50

55

[0025] The embodiment of claim 5 advantageously enables caching functionality with only a single cache control
module in the generic computation environment.
[0026] The embodiment of claim 6 advantageously enables the cache control functionality to be implemented in the
secure computation environment, leaving only the cache memory part of the caching in the generic computation envi-
ronment. This results in less modifications of the generic computation environment for implementing the caching func-
tionality.
[0027] The embodiment of claim 7 advantageously enables the caching functionality in conditional access systems
using smartcards for the obtainment of control words.
[0028] The embodiment of claim 8 advantageously enables sharing of the smartcard in a network, wherein intermediate
results can be cached in each receiver.
[0029] According to an aspect of the invention a smartcard is proposed for use in a receiver having one or more of
the above described features. The smartcard comprises a first memory in a secure computation environment. The first
memory is configured for storing a transform function. The transform function is configured to receive a transformed
control word and a seed and to migrate the transformed control word from an input transform space to an output transform
space. Hereby the transform function obtains a control word using a mathematical transformation under control of the
seed. The transform function comprises a cache control module. The cache control module is configured to intercept
the transformed control word and the seed. The cache control module is further configured to search in a cache memory
of the receiver for the control word matching the transform function, the transformed control word (x) and the seed. The
cache control module is further configured to, if the control word is found in the cache memory, provide the control word
to an output of the transform function thereby bypassing the transform function. The cache control module is further
configured to, if the control word is not found in the cache memory, provide the control word and the seed to the transform
function, obtain the control word from the transform function and store the control word associatively with the transform
function, the transformed control word and the seed in the cache memory.
[0030] Thus, caching functionality is enabled in conditional access systems using smartcards for the obtainment of
control words. The control word in the output transform space is not computed by the transform function if the expected
result is, based on the input to the transform function, available in the cache memory. Hereby the computational efficiency
in obtaining the control word in the smartcard is increased.
[0031] The smartcard is typically implemented having a traditional form factor. Any other computing device imple-
menting smartcard technology may be used as a smartcard instead, such as e.g. a PC running smartcard emulation
software.
[0032] According to an aspect of the invention a conditional access system is proposed. The conditional access system
comprises a head-end system and one or more receivers having one or more of the above described features. The
head-end system is configured to transmit an entitlement control message and an entitlement management message
to the receiver. The entitlement control message comprises the transformed control word. The entitlement management
message comprises one or more seeds.
[0033] Thus, caching functionality is enabled in conditional access systems, wherein a transformed control word is
provided by a head-end system to a receiver for transforming the transformed control word from an input transform
space to an output transform space. The control word in the output transform space is not computed by the transform
function if the expected result is, based on the input to the transform function, available in the cache memory. Hereby
the computational efficiency in obtaining the control word is increased.
[0034] Hereinafter, embodiments of the invention will be described in further detail. It should be appreciated, however,
that these embodiments may not be construed as limiting the scope of protection for the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0035] Aspects of the invention will be explained in greater detail by reference to exemplary embodiments shown in
the drawings, in which:

Fig. 1A shows a prior art block diagram of an apply primitive as used in software tamper resistance technology;
Fig. 1B shows a prior art block diagram of a remove primitive as used in software tamper resistance technology;
Fig. 1C shows a prior art block diagram of a condition primitive as used in software tamper resistance technology;
Fig. 1D shows a prior art block diagram of a combination of remove and apply primitives as used in software tamper
resistance technology;
Fig. 1E shows a prior art block diagram of a secure correlation of compounds as used in software tamper resistance
technology;
Fig.2 shows a prior art simplified split key delivery process;
Fig.3 shows a prior art split key delivery process in a receiver;
Fig.4 shows a transform function of an exemplary embodiment of the invention;

EP 2 360 918 A1

5

5

10

15

20

25

30

35

40

45

50

55

Fig.5 shows a transform function with caching of an exemplary embodiment of the invention;
Fig.6 shows a transform function with caching of an exemplary embodiment of the invention;
Fig.7 shows a sequence of two transform functions of an exemplary embodiment of the invention;
Fig.8 shows a sequence of two transform functions with caching of an exemplary embodiment of the invention;
Fig.9 shows a split key delivery process with caching in a receiver of an exemplary embodiment of the invention;
Fig.10 shows a receiver and a smartcard of an exemplary embodiment of the invention;
Fig. 11 shows two receivers sharing a smartcard of an exemplary embodiment of the invention;
Fig. 12 shows two receivers sharing a smartcard via a network of an exemplary embodiment of the invention;
Fig.13 shows a conditional access system of an exemplary embodiment of the invention;
Fig.14 shows the steps of a method for obtaining a control word in a receiver of an exemplary embodiment of the
invention;
Fig.15 shows a diagram clarifying transformation functions and encryption in general terms;
Fig. 16A shows a block diagram of a function performing a mathematical transformation;
Fig. 16B shows a block diagram of a function performing a mathematical transformation under control of a seed;
Fig.17A shows a block diagram of an apply primitive;
Fig. 17B shows a block diagram of a remove primitive;
Fig. 17C shows a block diagram of a condition primitive;
Fig. 17D shows a block diagram of a combination of a remove and an apply primitive;
Fig. 17E shows a block diagram of a secure correlation of compounds; and
Fig.18 shows an illustrative example of a receiver applying transformation operations to obtain a control word.

DETAILED DESCRIPTION OF THE DRAWINGS

[0036] Caching is a known optimization technology in computer science that allows previously used data, in whatever
form, to be stored and reused instead of being recomputed. As caches cannot be infinite in size, cached data is typically
kept or discarded based on a usage pattern algorithm, such as e.g. a least recently used (LRU) algorithm, a most recently
used (MRU) algorithm or a least-frequently used (LFU) algorithm.
[0037] A prior art example of an implementation of an entitlement transform tree is shown in Fig.3. The invention
enables caching of intermediate results in the entitlement transform tree, thereby increasing the computational efficiency.
Caching functionality is created such that it can be implemented in the generic computation environment without affecting
the tamper resistance of the conditional entitlement processing.
[0038] An intermediate value in the entitlement transform tree, e.g. CWDKCTu2 shown in Fig.3, can be considered as
non-sensitive data as it is only useful in the context of the sequence of functions and seeds in the entitlement transform
tree. As a result, intermediate values can be stored in the generic computation environment for the purpose of caching,
without degrading security.
[0039] Typically, intermediate data values that remain constant between two consecutive generations of frequently
changing subkey are cached. It will be understood that caching is not limited to intermediate values for frequently changing
subkeys and that intermediate values for less frequently changing subkeys can be cached as well. In case all intermediate
values are unchanged between two consecutive generations of the CW itself, it is possible to have the resulting CW
cached. In the latter case, typically the CW is cached in encrypted form, such as {CW}CSSK.
[0040] Caching functionality is implemented by storing one or more of the intermediate values and/or end-result value
together with an associated caching reference. Typically, the caching reference comprises input values, such as a
transformed CW, a seed and/or a compound, and an indication of or reference to the function to which the input values
are input for the calculation of the intermediate or end-result value.
[0041] The computation of the CW in the entitlement transform tree consists of a sequence of transform functions. A
known example without caching is shown in Fig.3. Transform functions, such as shown in Figs. 1A-1E, are not stateful
and typically conditional in that a semantically correct output value can be produced only when the inputs are correct.
[0042] Schematically each transform function can be represented as shown in Fig.4. Fig.4 shows transform function
F that has two inputs a and b and that generates one output c. Inputs a and/or b and output c are protected by a
mathematical transformation, enabling the data values x,y and z to be processed and stored in a untrusted domain such
as a generic computation environment of a receiver.
[0043] Fig.5 shows a transformation function F with added caching functionality of an exemplary embodiment of the
invention. In the embodiment of Fig.5 a cache control is added to the transformation function F. The cache transmits
the input data values x and y to the inputs a and b, respectively, of the transform function F. The function F generates
an output comprising the value z. Since the function is not stateful, the same set of input values x and y are always
processed by transformation function F into the same output value z. The output z is stored in the cache to optimize
later calculations of the same operation. The module implementing the transformation function has a cache control
function that activates function F only when the resulting output value z for a given combination of inputs x and y is not

EP 2 360 918 A1

6

5

10

15

20

25

30

35

40

45

50

55

available in the cache. If the output value z for the given combination x and y is cached, then the cache provides the
output value z to the output c directly.
[0044] Fig.6 shows a transformation function F with added caching functionality of an exemplary embodiment of the
invention. In the embodiment of Fig.6 a cache control is added to the cache. The cache control transmits the input data
values x and y to the inputs a and b, respectively, of the transform function F. The function F generates an output
comprising the value z. Since the function is not stateful, the same set of input values x and y are always processed by
transformation function F into the same output value z. The output z is stored in the cache to optimize later calculations
of the same operation. The cache has a cache control function that activates function F only when the resulting output
value z for a given combination of inputs x and y is not available in the cache. If the output value z for the given combination
x and y is cached, then the cache provides the output value z to the output c directly.
[0045] In the examples of Fig.5 and Fig.6 the cache links function output values z with a set of function input parameter
values x,y. Hereto a simple URL-style string may be used as a caching reference. Alternatively any other known data
structure may be used to implement a caching reference. An example of a caching reference string is "Fc?Fa=x&Fb=y",
describing the calculation of the result ’Fc’ from transform function ’F’ using the value ’x’ for input ’Fa’ and the value ’y’
for the input ’Fb’. The caching reference "Fc?Fa=x&Fb=y" is stored in the cache along with the associated the function
result ’z’.
[0046] As an example, the following table shows the cache entries as stored in the cache memory after the calculation
of "F(x,y)=z" and "F(u,v) =w".

[0047] A next time the function F is activated, the cache first determines if the result for the calculation has been
performed before. If there is a cache hit, the calculation is not carried out and the cached result is used instead.
[0048] Fig.7 shows an exemplary embodiment of the invention wherein a sequence of two transform functions produce
an output y. Each of the transform functions F and G operates similar to the function F described in Fig.4 and is provided
with caching functionality as described in Fig.5 or Fig.6.
[0049] In order to generate the output "Gc", the transform function G is activated with the value ’x’ for its input parameter
"Gb". The input parameter "Ga" is connected to the output of transform function "F(u,v)". The cache uses the result
parameter string "Fc?Fa=u&Fb=v" to search for an earlier calculation of this function call. If the cache finds a result for
this caching reference, the function ’F’ does not need to be activated and the cached value w is used instead. The cache
is then used to determine if the result of the calculation of "G(w,x)" is held in the cache. The cache now uses the caching
reference "Gc?Ga=w&Gb=x" to search for the result. If found, the function ’G’ does not need to be activated and the
cached result ’y’ is sent to the output of transform function ’G’. If the cache does not find a match, it activates the
calculation of "G(w,x)". After the calculation, the result ’y’ is returned to the cache and to the output "Gc". After these
operations, the following cache entries are stored in the cache memory.

[0050] The caching operation may be optimized by taking into account the structure of the transform tree and cache
the combined result of a series of transform functions as a single string. This reduces access to the cache memory. E.g.
in the example of Fig.7 using this optimization a single cache hit could produce the output value y instead of two cache
hits. Hereto the cache content of the example of Fig.7 is extended with the following entry in the cache table.

[0051] As shown in Fig. 5 and Fig.6, the cache control is implemented as a wrapper around a transform function or
around a cache memory. In both implementations the cache control is configured to conditionally activate a transform

Caching reference Value

"Fc?Fa=x&Fb=y" Z

"Fc?Fa=u&Fb=v" W

Parameter name Value

"Fc?Fa=x&Fb=y" z

"Fc?Fa=u&Fb=v" w

"Gc?Ga=w&Gb=x" y

Parameter name Value

"FGc?Fa=x&Fb=y&Gb=x" z

EP 2 360 918 A1

7

5

10

15

20

25

30

35

40

45

50

55

function module and provide the transform function with the relevant inputs.
[0052] Fig.8 shows an example of two transform functions F and G that are connected to a cache controller using a
bus structure. The cache controller is connected to all transform function modules via the bus. This enables data u, v,
w, x and y to be provided to the inputs Fa, Fb, Ga, Gb and outputs Fc, Gc, respectively, of the transform functions F
and G. The cache control interface is used to activate the transform function modules in case an output value is not
stored in the cache memory.
[0053] The cache controller of Fig.8 operates similar to the cache control showed in Fig.6. It will be understood that
a bus structure as shown in Fig.8 can also be used with cache control functionality in each transform function F and G,
similar to the operation of the cache control shown in Fig.5.
[0054] In addition to searching for cache entries and conditionally activating transform functions, the cache controller
is optionally configured to remove unused cache entries to manage the memory size of the cache. Hereto the cache
controller may use any known cache management technique to ensure that only the most relevant information is kept
in the cache.
[0055] Fig.9 shows an example of an entitlement transform tree implementation extended with caching optimization.
The transform functions in the entitlement transform tree of Fig.9 are similar to the transform functions of the entitlement
transform tree shown in Fig.3 and the same transform function sequence is used. In the example of Fig.9 all data in the
transform tree passes through the cache controller and a data interface indicated by "Data". The cache controller also
controls the activation of the transform function modules via a cache control interface.
[0056] Fig.9 shows two parts of a receiver: a secure computation environment and a generic processing environment.
The generic processing environment deals with external interfaces such as storage, data communication and user
interaction. The secured computation environment deals with processing of keys and/or seeds. The processing is typically
performed by one or more processors (not shown).
[0057] The ECM delivery path is used for the reception of entitlement control messages (ECM) from a head-end
system. The ECM comprises an encrypted or transformed CW. The EMM delivery path is used for the reception of
entitlement management messages (EMM) from the head-end system. The EMM comprises keys or seeds for decrypting
or transforming the encrypted or transformed CW. The ECM delivery path and the EMM delivery path are typically
implemented in an input module for receiving the ECMs and EMMs.
[0058] In the example of Fig.9 the generic computation environment contains the caching functionality, which is im-
plemented as a cache controller and a cache memory. Via the cache controller data flows from the ECM delivery path
and EMM delivery path to the cache memory and between the cache memory and the transform functions (RPAG1,
RG1AU1 and RG2CvectorAU2) and TDES encryption whitebox.
[0059] In this example the following aliases are used for the transform functions: F=RPAG1, G=RG1AU1 and
H=RG2CvectorAU2. F has to inputs Fa and Fb and an output Fc, G has two inputs Ga and Gb and an output Gc and H
has two inputs Ha and Hb and an output Hc. All inputs and outputs of F, G and H are connected to the cache controller
via the data bus.
[0060] Via the ECM delivery path a transformed control word in transformation space P, i.e. CWDTP, is received. Via
the EMM delivery path seeds <P, G1>, <G1, U1>, <G2, U2, n> and <CSSK, U1, U2> are received. Via the EMM delivery
path also a compound of a Control Word Difference Key CWDK in transformation space G2 and a vector, i.e. <CWDKTG2,
vector>, is received for a group membership check.
[0061] The cache controller searches the cache memory for a cached output value of transform function F matching
the input values being CWDTP for Fa and <P, G1> for Fb. If the cached output value is found, the cached value is provided
to Fc without invoking function F. If no output value is found, CWDTP is provided to Fa and <P, G1> is provided to Fb
via the data bus. Via the cache control interface an instruction is given from the cache controller to the transform function
F to generate the output value using the input data on Fa and Fb and to return the result via Fc and the data bus to the
cache controller. The result is stored in the cache memory, which now contains the following entry.

[0062] Next, the cache controller searches the cache memory for a cached output value of transform function G
matching the input values being the output value of F for Ga and <G1, U1> for Gb. If the cached output value is found,
the cached value is provided to Gc without invoking function G. If no output value is found, the output value of F, in this
example CWDTG1, is provided to Ga and <G1, U1> is provided to Gb via the data bus. Via the cache control interface
an instruction is given from the cache controller to the transform function G to generate the output value using the input
data on Ga and Gb and to return the result via Gc and the data bus to the cache controller. The result is stored in the
cache memory, which now contains the following entries.

Parameter name Value

"Fc?Fa=CWDTP&Fb=<P, G1>" CWDTG1

EP 2 360 918 A1

8

5

10

15

20

25

30

35

40

45

50

55

[0063] Alternatively or optionally the result after processing the inputs by transform functions F and G is stored in the
cache memory as a single entry, allowing the result of transform function G to be found in the cache memory in a single
step using the input values Fa=CWDTP, Fb=<P, G1> and Gb=<G1, U1>. The cache memory then contains e.g. the
following entries.

[0064] For the group membership check the cache controller searches the cache memory for a cached output value
of secure correlation function H matching the input values being <G2, U2, n> for Ha and <CWDKTG2, vector> for Hb. If
the cached output value is found, the cached value is provided to Hc without invoking function H. If no output value is
found, <G2, U2, n> is provided to Ha and <CWDKTG2, vector> is provided to Hb via the data bus. Via the cache control
interface an instruction is given from the cache controller to the secure correlation function H to generate the output
value using the input data on Ha and Hb and to return the result via Hc and the data bus to the cache controller. The
result is stored in the cache memory, which now contains the following entries.

[0065] In a last step the output data of Gc and Hc, i.e. CWDTU1 and CWDKCTU2, respectively, are provided together
with seed <CSSK, U1, U2> to the TDES Encryption Whitebox via the data bus for the generation of {CW}CSSK. The
resulting {CW}CSSK is typically not cached in the cache memory to prevent this data from being obtained in the generic
computation environment.
[0066] The implementation of the transform tree in the secure computation environment is not limited to the example
of Fig.9. There are typically two or more transform functions in a sequence of transform functions. The transform functions
can form an entitlement transform tree with one or more branches. Each transform function can be any known transform
function. Instead of the TDES encryption whitebox any other encryption function may be used for the generation of an
encrypted control word from a transformed control word. Alternatively, instead of the TDES encryption whitebox a remove
primitive may be used to generate a clear text control word from a transformed control word.
[0067] Caching may not be efficient for all steps in the transform sequence. For example, when a cache hit ratio is
expected to be low for a particular transform function, caching functionality can actually reduce overall processing
performance due to cache memory access prior to performing the transform function. To avoid such reduction of overall
processing performance, one or more transform function modules can be implemented without caching functionality,
resulting in its input values being processed by the transform function module for the generation of the output value
without searching for a cache hit.
[0068] In the example of Fig.9 the generic computation environment and the secure computation environment are
parts of a receiver. Alternatively, the secure computation environment is implemented in a smartcard and the generic
computation environment is implemented in a receiver.
[0069] Instead of a smartcard having a traditional form factor, any other computing device implementing smartcard
technology may be used as a smartcard, such as e.g. a PC running smartcard emulation software.
[0070] Fig.10 shows a simplified architecture containing a set-top box (STB) as a digital TV receiver and a smartcard

Parameter name Value

"Fc?Fa=CWDTP&Fb=<P, G1>" CWDTG1

"Gc?Ga=CWDTG1&Gb=<G1, U1>" CWDTU1

Parameter name Value

"Fc?Fa=CWDTP&Fb=<P, G1>" CWDTG1

"Gc?Ga=CWDTG1&Gb=<G1, U1>" CWDTU1

"FGc?Fa=CWDTP&Fb=<P, G1>&Gb=<G1, U1>" CWDTU1

Parameter name Value

"Fc?Fa=CWDTP&Fb=<P, G1>" CWDTG1

"Gc?Ga=CWDTG1&Gb=<G1, U1>" CWDTU1

"FGc?Fa=CWDTP&Fb=<P, G1>&Gb=<G1, U1>" CWDTU1

"Hc?Ha=<G2, U2, n>&Hb=<CWDKTG2, vector>" CWDKCTU2

EP 2 360 918 A1

9

5

10

15

20

25

30

35

40

45

50

55

that is communicatively connected to the STB, e.g. through insertion of the smartcard in the STB. EMMs and ECMs
received by the STB can be stored in an EMM/ECM storage before processing by the smartcard. The smartcard obtains
data from the ECMs and EMMs in any manner known per se, which data includes the input data for an entitlement
transform tree in the secure computation environment of the smartcard. Inputs to and outputs from transform functions
and/or secure correlation functions are stored in the cache in the STB.
[0071] It is possible to have two or more networked devices share a common smartcard. In the example of Fig.11 two
STBs each store ECMs and EMMs received from a headend system in encrypted form in a non-volatile memory indicated
by EMM/ECM storage. STABs without an inserted smartcard establish a secure connection to the smartcard via a
network and through the intermediary of the STB wherein the smartcard is inserted. The smartcard receives one or more
ECMs and related EMMs from the receiver and decrypts the ECMs and EMMs to obtain the input data for the transform
function modules in the secure computation environment of the smartcard. Output values of the transform functions are
transmitted via the secure connection to the STB for storage in a local cache of the STB.
[0072] An alternative to the example of Fig.11 is shown in Fig.12, wherein the smartcard is communicatively connected
to the network instead of inserted in one of the STBs, and wherein each STB accesses the smartcard via the network.
[0073] A STB typically has more storage space than a smartcard. Therefore, in the examples of Figs.10-12 the cache
memory is implemented in the STB. Alternatively it is possible to implement the cache memory in the smartcard.
[0074] Fig.13 shows a conditional access system of an exemplary embodiment of the invention. A head-end system
transmits ECMs and EMMs to one or more receivers via the distribution network. The ECM typically contains the trans-
formed control word, e.g. CWDTP of Fig.9, which is to be processed by the entitlement transform tree in the secure
computation environment of the receiver. The secure computation environment may be implemented in a smartcard
that is communicatively connected to the receiver. The EMM typically contains one or more seeds, e.g. <P, G1> and
<G1, U1> of Fig.9, used in the transformation of the transformed control word. Other data, such as group membership
check data, may be transmitted in the EMM as well. Multiple EMMs may be used for the transmission of the data.
[0075] In Fig.14 the steps performed by a receiver of an exemplary embodiment of the invention are schematically
shown. In step 101 the transformed control word and the seed are received. In step 102 the transformed control word
and the seed are intercepted in the cache control module. In step 103 the control word matching the transform function,
the transformed control word and the seed is searched in the cache memory. In step 104 the result of the search is
analysed. If the control word was found, it is provided to an output of the transform function in step 105 to thereby bypass
the transform function. If the control word was not found, it is provided to the transform function together with the seed
in step 106. In step 107 the transformed control word is migrated from an input transform space to an output transform
space to obtain the control word using a mathematical transformation under control of the seed. In step 108 the control
word is stored in the cache memory associatively with the transform function, the transformed control word and the seed.
Step 108 enables a cache hit in step 103 a next time the same transform function is called with the same input values.
[0076] As discussed above, data and software obfuscation techniques can make use of transformation functions to
obfuscate intermediate results. The concept of transformation functions, as used in this disclosure differs from encryption.
The differences are further clarified in general with reference to FIG.15 and the discussion that follows below.
[0077] Assume, there exists an input domain ID with a plurality of data elements in a non-transformed data space. An
encryption function E using some key is defined that is configured to accept the data elements of input domain ID as an
input to deliver a corresponding encrypted data element in an output domain OD. By applying a decryption function D,
the original data elements of input domain ID can be obtained by applying the decryption function D to the data elements
of output domain OD. In a non-secure environment (typically referred to as "white-box"), an adversary is assumed to
know input and output data elements and have access to internals of encryption function E during execution. Unless
extra precautions are taken in this environment, secrets (e.g., the key used in encryption/decryption functions) can be
derived easily by an adversary.
[0078] Additional security can be obtained in a non-secured environment by applying transformation functions to the
input domain ID and output domain OD, i.e. the transformation functions are input- and output operations. Transformation
function T1 maps data elements from the input domain ID to transformed data elements of transformed input domain
ID’ of a transformed data space. Similarly, transformation function T2 maps data elements from the output domain OD
to the transformed output domain OD’. Transformed encryption and decryption functions E’ and D’ can now be defined
between ID’ and OD’ using transformed keys. In case inverse transformations are to be performed, e.g. when results
are to be communicated to the non-transformed space, T1 and T2 are bijections.
[0079] Using transformation functions T1, T2, together with encryption techniques implies that, instead of inputting
data elements of input domain ID to encryption function E to obtain encrypted data elements of output domain OD,
transformed data elements of domain ID’ are inputted to transformed encryption function E’ by applying transformation
function T1. Transformed encryption function E’ combines the inverse transformation function T1

-1 and the transformation
function T2 in the encryption operation to protect the confidential information, such as the key. Then transformed encrypted
data elements of domain OD’ are obtained. Keys for encryption functions E or decryption function D cannot be retrieved
when analyzing input data and output data in the transformed data space. This ensures that, even when operating in a

EP 2 360 918 A1

10

5

10

15

20

25

30

35

40

45

50

55

non-secure environment, the keys are protected against adversaries. In particular, transformations enables systems to
never reveal any part of the key, or any value derived from it, in the clear in contiguous memory. In other words,
transformation obfuscates data by applying transformations and operating on the data in the transformed space. In some
embodiments, these transformation functions are randomly generated.
[0080] An advantage of using transformations to obfuscate data allows the input and output values of these transfor-
mations to be stored or cached in the generic (non-secure) computation environment, due to the characteristic that these
input and output values are useless to an adversary. In contrast, input and output values of non-transformed encryption
functions cannot be stored or cached in the generic computation environment. These values, such as encrypted and
decrypted/cleartext key pairs, should not be cached and stored in non-secure memory because they may be useful to
an adversary.
[0081] One of the transformation functions T1, T2 should be a non-trivial function. In case, T1 is a trivial function, the
input domains ID and ID’ are the same domain. In case, T2 is a trivial function, the output domains are the same domain.
[0082] The function F shown in Fig.16A is a mathematical operation that migrates data Z across two different transform
spaces identified by IN and OUT. The dimension of the output transform space OUT is at least as large as the input
transform space IN, and any data Z is represented (possibly not uniquely) in both input and output transform spaces as
X and Y respectively. The function F is designed such that it is difficult to run in reverse direction. Because no apparent
mapping between the input and output transform spaces exists and the dimension of transform spaces IN and OUT is
preferably significantly large, recreation of the function F is prevented. Moreover, the function F is implemented in such
a way that it is difficult to extract the data Z as it passes through the function, e.g. using white-box techniques and/or
other code obfuscation techniques.
[0083] With reference to Fig.16A, function F is e.g. defined as Y=F(X)=3*X+2. If the input transform space IN is a clear
text transform space, then X=(Z)IN=Z. After migration the following result is obtained: Y=(Z)OUT=3*X+2. To migrate Z
from the output transform space to the clear text transform space again, a reverse function F-1(Y)=(Y-2)/3 must be
available to obtain X as follows: F-1(Y)=(3*X+2-2)/3=X. In this example Z, X and Y are numbers that can be used to
transform using simple addition and subtraction mathematics. It is to be understood that Z, X and Y can be data in any
data format, including binary values, numbers, characters, words, and etcetera. The function F can be a more complex
function and suitable for operation on e.g. binary values, numbers, characters or words. In some embodiments, the
function F is chosen in a manner that is computationally efficient to implement on binary values.
[0084] The function F can be defined as a mathematical operation that can be seeded with an additional parameter
S, as shown in Fig.16B. The migration that the function F performs is typically defined by the seed S. This type of seeded
transform functions are used in relation to Typically, no information about the input space IN and output space OUT is
embedded into F. The function F is chosen such that manipulation of input data X or seed S yields an unpredictable
resulting data Y in the output transform space. The seed S does not need to be secured or stored in a secure environment
as the seed S is engineered in such a way that no information about transform space IN or OUT can be extracted.
[0085] With reference to Fig.16B, function F is e.g. defined as F(X,S)=X-7+S. If the input transform space IN is a clear
text transform space, then X=(Z)IN=Z. After migration the following result is thus obtained: Y=(Z)OUT=X-7+S=Z-7+S. If
e.g. a seed S is provided as data comprising the value of 5, then F(X,5)=X-7+5 and Y=(Z)OUT=X-7+5=Z-2. To migrate
Z from the output transform space to the clear text transform space again, a reverse function F-1(Y,S)=Y+7-S must be
available to obtain X as follows: F-1(Y,S)=(X-7+5)+7-S. If the seed S=5 is known, then Z can correctly be obtained as:
F-1(Y,5)=(X-7+5)+7-5=X=Z.
[0086] If the input transform space IN is not a clear text transform space, then function F typically first performs a
reverse transformation in the input transform space IN and next a transformation in the output transform space OUT.
Such function F is e.g. defined as F(X,S1,S2)=F2(F1

-1(X,S1),S2), wherein F1
-1(X,S1)=X-2-S1 and F2(X,S2)=X-7+S2. After

migration the following result is thus obtained: Y=(Z)OUT=(X-2-S1)-7+S2=X-9-S1+S2, wherein X=(Z)IN.
[0087] Seeds S1 and S2 can be provided as two separate seeds to first perform F1

-1(X,S1) and next perform F2(X,
S2), or more preferably as a compound of seeds <S1,S2>. Generally, a compound of seeds is a mixture of multiple
seeds. From the mixture of multiple seeds the individual seeds are not derivable. A parameter mixing function for mixing
the seeds S1 and S2 is denoted as: f(S1,S2)=<S1,S2>. The function result <S1,S2> is called the compound of seeds S1
and S2. In the example above, if S1=5 and S2=7, then one compound is <S1, S2>=5-7=-2.
[0088] In the above examples Z, X, Y and S are numbers that can be used to transform using simple addition and
subtraction mathematics. It will be understood that Z, X, Y and S can be data in any data format, including binary values,
numbers, characters, words, and etcetera. The function F can be a more complex function and suitable for operation
on e.g. binary values, numbers, characters or words. Similar to Figs.1A-E, Figs.17A describes the basic primitives in
further detail.
[0089] In Fig.17A the function A(Data,S)=As(Data)=DataTS defines an apply primitive that transforms an input Data
into a transformed DataTS using an input seed S. In Fig.17B the function R(DataTS,S)=RS(DataTS) =Data defines a
remove primitive that reverses the transformation of an input DataTS using a seed S to obtain an output Data. The seed
S need to be identical for the two functions A() and R() to become the inverse of each other.

EP 2 360 918 A1

11

5

10

15

20

25

30

35

40

45

50

55

[0090] The original Data and its transformed variant DataTS are typically of a same size, i.e. represented by a same
number of bits, making it impossible to determine, based on its size, whether or not the Data is in a particular transformed
space.
[0091] In Fig. 17C the function C(Data1,Data2)=CData1(Data2)=DataC defines a conditional transformation wherein the
output DataC is a correlation of the two inputs Data1 and Data2. The condition primitive typically preserves the size of
the input data and output data, making it impossible to determine whether or not the Data is the result of a correlation.
[0092] Primitives such as the apply primitive, remove primitive and the condition primitive can be combined. The
combination produces a new operation wherein the individual primitives are invisible.
[0093] Fig.17D shows an example of a combination of a remove and an apply primitive. The transformation operation
uses a compound <P,S> as input to the combined remove and apply operation applied to input DataTP. The RPAS
function maps the input DataTP from input transform domain P to output transform domain S to obtain output DataTS.
All inputs and outputs of the combined remove and apply operation are either transformed or in the form of a compound.
The operation is applied to transformed data and produces transformed data. Thus the transformation operation takes
place in transformed domain spaces and reveals no individual parameters or untransformed data on any of the interfaces.
The function used to produce the compound <P,S> is preferably unique and linked to the implementation of the combined
apply and remove operation.
[0094] Fig.17E shows an example of a secured correlation operation on two input compounds <P, S, Q1> and <DataTP,
Q2>. The RPCQAS function combines a remove, condition and apply primitive to thereby create output DataCTS.
[0095] Fig.18 shows an illustrative example of a transformation path implemented in a receiver of a conditional access
receiver. The receiver is typically implemented at least partly as software or as a field-programmable gate array (FPGA)
program in a programmable array. The receiver comprises an unprotected, partially protected and/or secure memory
of a processor. The processor is configured to execute functions stored in the memory to migrate a secret data Z from
an input transform space IN to an output transform space OUT. The secret data Z cannot be extracted or intercepted
and thus cannot e.g. be illegally distributed to other receivers.
[0096] The receiver receives a control word CW as a globally transformed control word CWDT

P in an entitlement
control message ECM. The receiver migrates the CWD from the input transform space P into the final output transform
space CSSK of the receiver in three steps. The last migration step creates a transformed control word {CW}CSSK, which
is the control word CW in the output transform space of the cluster shared secret key (CSSK) that is unique to the receiver.
[0097] The receiver comprises a generic computation environment and a secure computation environment.
[0098] The generic computation environment comprises an ECM Delivery Path for receiving the ECM from the head-
end system. The generic computation environment further comprises an EMM Delivery Path for receiving an Entitlement
Management Messages (EMM) from the head-end system. The EMM comprises the seeds that are used to migrate
CWDT

P through the various transform spaces along the path of the transformation path. The seeds received in the EMM
are stored in a NVRAM memory of the generic computation environment. A first seed equals the compound <P,G1>. A
second seed equals the compound <G1,U1>. A third seed equals the compound <CSSK, U1>.
[0099] The secure computation environment comprises a sequence of transformation functions. A first function RpAG1
transforms CWDT

P from the input transform space P to the output transform space G1 using the compound <P,G1> as
seed input. Subsequently a second function RG1AU1 transforms CWDT

G1, i.e. the CW in the transform space G1, from
the input transform space G1 to the output transform space U1 using the compound <G1, U1>. Subsequently a third
function, in this example a TDES Whitebox Encryption function, transforms CWDT

U1, i.e. the CW in the transform space
U1, from the input transform space U1 to the output transform space CSSK. The resulting {CW}CSSK is the CW encrypted
under the CSSK key, which can be decrypted by the conditional access receiver using the CSSK that is pre-stored in a
secured memory of the receiver or securely derivable by the receiver.
[0100] It is to be understood that the transformation path in the receiver is not limited to the example shown in Fig.18
and may contain any number and any kind of transformation operations.
[0101] One embodiment of the disclosure may be implemented as a program product for use with a computer system.
The program(s) of the program product define functions of the embodiments (including the methods described herein)
and can be included on a variety of computer-readable non-transitory storage media. The computer-readable storage
media can be a non-transitory storage medium. Illustrative computer-readable and/or non-transitory storage media
include, but are not limited to: (i) non-writable storage media (e.g., read-only memory devices within a computer such
as CD-ROM disks readable by a CD-ROM drive, flash memory, ROM chips or any type of solid-state non-volatile
semiconductor memory) on which information is permanently stored; and (ii) writable storage media (e.g., floppy disks
within a diskette drive or hard-disk drive or any type of solid-state random-access semiconductor memory) on which
alterable information is stored. Moreover, the disclosure is not limited to the embodiments described above, which may
be varied within the scope of the accompanying claims without departing from the scope of the disclosure.
[0102] It is to be understood that any feature described in relation to any one embodiment may be used alone, or in
combination with other features described, and may also be used in combination with one or more features of any other
of the embodiments, or any combination of any other of the embodiments. Furthermore, equivalents and modifications

EP 2 360 918 A1

12

5

10

15

20

25

30

35

40

45

50

55

not described above may also be employed without departing from the scope of the invention, which is defined in the
accompanying claims.

Claims

1. A receiver for securely obtaining a control word, the receiver comprising a first memory configured for storing a
transform function (F) configured to receive a transformed control word (x) and a seed (y) and to migrate the
transformed control word (x) from an input transform space to an output transform space to obtain the control word
(z) using a mathematical transformation under control of the seed (y), the receiver further comprising a cache memory
and a cache control module, wherein the cache control module is configured to:

intercept the transformed control word (x) and the seed (y);
search in the cache memory for the control word (z) matching the transform function (F), the transformed control
word (x) and the seed (y);
if the control word (z) is found in the cache memory, provide the control word (z) to an output of the transform
function (F) thereby bypassing the transform function (F); and
if the control word (z) is not found in the cache memory, provide the control word (x) and the seed (y) to the
transform function (F), obtain the control word (z) from the transform function (F) and store the control word (z)
associatively with the transform function (F), the transformed control word (x) and the seed (y) in the cache
memory.

2. The receiver according to claim 1, wherein the first memory is configured for storing two or more transform functions
(F,G) forming a sequence of transform functions and/or a tree of transform functions, and wherein the cache control
module is linked to a data bus communicatively connecting the cache memory with one or more of the transform
functions (F,G).

3. The receiver according to claim 2, wherein a last transform function in the sequence of transform functions and/or
tree of transform functions is configured to generated the control word as a clear text control word or an encrypted
control word.

4. The receiver according to any one of the claims 1-3, comprising a secure computation environment comprising the
first memory, the receiver further comprising a generic computation environment comprising the cache memory.

5. The receiver according to claim 4, wherein the generic computation environment comprises the cache control module
and wherein the data bus communicatively connects the cache control module to inputs and the output of the one
or more of the transform functions (F,G).

6. The receiver according to claim 4, wherein each of the one or more of the transform functions comprises a cache
control module and wherein the data bus communicatively connects each cache control module to the cache memory.

7. The receiver according to any one of the claims 4-6, further comprising a smartcard, the smartcard possibly being
detachably connected to the receiver, and wherein the smartcard comprises the secure computation environment.

8. The receiver according to claim 7, wherein the receiver is communicatively linked to the smartcard via a network.

9. A smartcard for use in a receiver according to claim 7 or claim 8, the smartcard comprising a first memory in a
secure computation environment, the first memory being configured for storing a transform function (F) configured
to receive a transformed control word (x) and a seed (y) and to migrate the transformed control word (x) from an
input transform space to an output transform space to obtain a control word (z) using a mathematical transformation
under control of the seed (y), the transform function (F) comprising a cache control module configured to:

intercept the transformed control word (x) and the seed (y);
search in a cache memory of the receiver for the control word (z) matching the transform function (F), the
transformed control word (x) and the seed (y);
if the control word (z) is found in the cache memory, provide the control word (z) to an output of the transform
function (F) thereby bypassing the transform function (F); and
if the control word (z) is not found in the cache memory, provide the control word (x) and the seed (y) to the

EP 2 360 918 A1

13

5

10

15

20

25

30

35

40

45

50

55

transform function (F), obtain the control word (z) from the transform function (F) and store the control word (z)
associatively with the transform function (F), the transformed control word (x) and the seed (y) in the cache
memory.

10. The smartcard according to claim 9, wherein the first memory is configured for storing two or more transform functions
(F,G) forming a sequence of transform functions and/or a tree of transform functions, and wherein the cache control
module is linked to a data bus communicatively connecting the cache memory with one or more of the transform
functions (F,G).

11. A conditional access system comprising a head-end system and one or more receivers according to any one of the
claims 1-8, the head-end system being configured to transmit an entitlement control message comprising the trans-
formed control word (x) and an entitlement management message comprising one or more seeds (y) to the receiver.

12. A method for securely obtaining a control word in a receiver comprising a first memory configured for storing a
transform function (F), the method comprising the steps of:

receiving (101) a transformed control word (x) and a seed (y);
intercepting (102) in a cache control module the transformed control word (x) and the seed (y);
searching (103) in a cache memory for the control word (z) matching the transform function (F), the transformed
control word (x) and the seed (y);
if (104) the control word (z) is found in the cache memory, providing (105) the control word (z) to an output of
the transform function (F) thereby bypassing the transform function (F); and
if (104) the control word (z) is not found in the cache memory, providing (106) the control word (x) and the seed
(y) to the transform function (F), migrating (107) in the transform function (F) the transformed control word (x)
from an input transform space to an output transform space to obtain the control word (z) using a mathematical
transformation under control of the seed (y), and storing (108) the control word (z) associatively with the transform
function (F), the transformed control word (x) and the seed (y) in the cache memory.

EP 2 360 918 A1

14

EP 2 360 918 A1

15

EP 2 360 918 A1

16

EP 2 360 918 A1

17

EP 2 360 918 A1

18

EP 2 360 918 A1

19

EP 2 360 918 A1

20

EP 2 360 918 A1

21

EP 2 360 918 A1

22

EP 2 360 918 A1

23

EP 2 360 918 A1

24

EP 2 360 918 A1

25

EP 2 360 918 A1

26

EP 2 360 918 A1

27

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• EP 09155007 A [0008] [0009] [0010]

	bibliography
	description
	claims
	drawings
	search report

