

(11)

EP 2 362 120 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:
Corrected version no 1 (W1 B1)
Corrections, see
Claims EN 5

(51) Int Cl.:
F16J 15/06 (2006.01) **F16J 15/14 (2006.01)**

(48) Corrigendum issued on:
10.07.2013 Bulletin 2013/28

(45) Date of publication and mention
of the grant of the patent:
24.04.2013 Bulletin 2013/17

(21) Application number: **11151438.6**

(22) Date of filing: **19.01.2011**

(54) Seal structure for engine

Abdichtstruktur für einen Motor
Structure de joint pour moteur

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

(30) Priority: **19.02.2010 JP 2010035155**

(43) Date of publication of application:
31.08.2011 Bulletin 2011/35

(73) Proprietor: **AISIN SEIKI KABUSHIKI KAISHA**
Kariya-shi, Aichi 448-8650 (JP)

(72) Inventors:

- **Takahashi, Hideaki**
Kariya-shi Aichi 448-8650 (JP)
- **Oyamada, Yoichi**
Kariya-shi Aichi 448-8650 (JP)

(74) Representative: **Kramer - Barske - Schmidtchen et al**
Landsberger Strasse 300
80687 München (DE)

(56) References cited:
EP-A2- 1 235 008 **JP-A- 2004 068 672**
US-A1- 2006 202 432

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description**TECHNICAL FIELD**

[0001] This disclosure relates to a seal structure for an engine.

BACKGROUND DISCUSSION

[0002] A known method for assembling a cylinder block, a cylinder head, and a chain cover of an engine will be explained below.

[0003] The cylinder head is assembled on the cylinder block while a solid gasket (a plate-shaped gasket) serving as a first seal member is disposed or sandwiched between an upper joint surface of the cylinder block and a lower joint surface of the cylinder head. As a result, a clearance between the cylinder block and the cylinder head is closed.

[0004] Then, a liquid gasket (a liquid sealing agent) serving as a second seal member is applied to a lateral joint surface of the chain cover to thereby assemble the chain cover on the cylinder block and the cylinder head that are assembled on each other.

[0005] At this time, the liquid gasket applied to the lateral joint surface of the chain cover makes contact with a lateral joint surface of the cylinder block and a lateral joint surface of the cylinder head so as to close a clearance among the chain cover, the cylinder block, and the cylinder head. Accordingly, the cylinder block, the cylinder head, and the chain cover are assembled on each other while a sealing ability is secured.

[0006] At a time of an engine operation, however, wall portions of the cylinder block and the cylinder head are exposed to a combustion gas having a high temperature. Specifically, the cylinder head tends to be more heated than the cylinder block and thus tends to expand due to heat (i.e., a thermal expansion). Therefore, a relative displacement between the cylinder head and the cylinder block in a longitudinal direction of the engine may be generated, which leads to a clearance between the lateral joint surface of the chain cover and the lateral joint surface of the cylinder block at a joint portion among the cylinder block, the cylinder head, and the chain cover. At this time, the liquid gasket filled in the clearance among the cylinder block, the cylinder head, and the chain cover is affected by an excessive tensile deformation, which may lead to a deterioration of the sealing ability of the liquid gasket.

[0007] Further, at the time of the engine operation, depending on a material of the cylinder head or the cylinder block, a shape of the solid gasket, and the like, the degree of the thermal expansion of the cylinder head and that of the cylinder block may vary. Therefore, an end surface of the chain cover facing the lateral joint surface of the cylinder head and/or the lateral joint surface of the cylinder block is positioned away therefrom. Then, a clearance may be formed between the lower joint surface of

the cylinder head and the upper joint surface of the cylinder block at the joint portion among the cylinder block, the cylinder head, and the chain cover. At this time, the liquid gasket with which the clearance is filled is affected by the excessive tensile deformation, which may lead to the deterioration of the sealing ability of the liquid gasket. EP 1 235 008 A2 discloses a gasket which is adapted for the use in sealing of a tri-face area where a cylinder block, cylinder head and timing-chain housing meet together and come into abutment against one another.

[0008] In order to solve the aforementioned issue, JP2005-188375A discloses a seal structure for an engine including a cut portion serving as a holding recess portion at which the liquid gasket is retained so that the cut portion is filled therewith. The cut portion is formed at a corner on an outer surface of the cylinder block at the joint portion among the cylinder block, the cylinder head, and the chain cover.

[0009] According to the seal structure disclosed in JP2005-188375A, the cylinder head is assembled on the cylinder block while the solid gasket is disposed or sandwiched between the upper joint surface of the cylinder block and the lower joint surface of the cylinder head. Then, the liquid gasket, of which an amount is slightly greater than a required amount for closing the clearance among the cylinder block, the cylinder head, and the chain cover, is applied to the lateral joint surface of the chain cover. The chain cover is then assembled on the cylinder block and the cylinder head, which are assembled on each other.

[0010] At this time, the liquid gasket applied to the lateral joint surface of the chain cover makes contact with the lateral joint surface of the cylinder block and the lateral joint surface of the cylinder head to thereby close the clearance among the cylinder block, the cylinder head, and the chain cover. At the same time, the excess liquid gasket from the clearance among the cylinder block, the cylinder head, and the chain cover is pushed to the cut portion formed at the cylinder block.

[0011] When the engine is in operation, even in a case where the clearance is generated between the lateral joint surface of the chain cover and the lateral joint surface of the cylinder block or between the lower joint surface of the cylinder head and the upper joint surface of the cylinder block, the liquid gasket, with which the cut portion is filled, flows to be filled in such clearance. Therefore, the sealing ability of the liquid gasket is maintained.

[0012] However, the assembly of the chain cover on the cylinder block and the cylinder head that are assembled on each other after the application of the liquid gasket only to the lateral joint surface of the chain cover may not achieve a secure filling of the liquid gasket at the cut portion.

[0013] In addition, because the cut portion is formed at the outer surface of the cylinder block, it may be difficult to determine whether the cut portion is practically sufficiently filled with the liquid gasket.

[0014] A need thus exists for a seal structure for an

engine that securely retains a liquid gasket at a joint portion so that the joint portion is filled with the liquid gasket.

SUMMARY

[0015] According to an aspect of this disclosure, a seal structure for an engine includes a cylinder block, a cylinder head assembled via a first seal member on the cylinder block, a chain cover assembled via a second seal member on the cylinder block and the cylinder head that are assembled on each other, and a holding recess portion formed at an outer surface of a joint portion among the cylinder block, the cylinder head, and the chain cover, the holding recess portion retaining a liquid gasket and being filled therewith.

[0016] According to the aforementioned disclosure, the cylinder block is assembled on the cylinder head via the first seal member and thereafter the chain cover is assembled on the cylinder block and the cylinder head, which are assembled on each other, via the second seal member. After the cylinder block, the cylinder head, and the chain cover are assembled, the liquid gasket is filled within the holding recess portion. Accordingly, the liquid gasket is securely applied to the joint portion so that the joint portion is sufficiently filled with the liquid gasket.

[0017] In addition, at a time when the liquid gasket is applied to the holding recess portion, the liquid gasket is appropriately retained at the holding recess portion and is prevented from leaking from the holding recess portion. Further, because an application range of the liquid gasket is easily observed, the application operation may be simply conducted and a completion of the application of the liquid gasket at the holding recess portion is confirmable. As necessary, the liquid gasket may be again applied to the holding recess portion.

[0018] Surfaces forming the holding recess portion are continuously formed while surrounding the joint portion.

[0019] Accordingly, even in a case where the sealing ability between the chain cover and the cylinder block, between the cylinder head and the cylinder block, or the like at the joint portion is deteriorated when the engine is in operation, the complete sealing of the liquid gasket, filled within the holding recess portion, at the surrounding of the joint portion improves the sealing effectiveness at the joint portion.

[0020] The liquid gasket that is filled in the holding recess portion is filled in a clearance formed between the cylinder block and the cylinder head, a clearance formed between the cylinder block and the chain cover, and a clearance formed between the cylinder head and the chain cover.

[0021] Accordingly, the liquid gasket is securely applied to the joint portion among the cylinder block, the cylinder head, and the chain cover so that the joint portion is sufficiently filled with the liquid gasket.

[0022] The holding recess portion is constituted by a bank portion that protrudes from outer surfaces of the cylinder block, the cylinder head, and the chain cover

and that surrounds the joint portion.

[0023] Accordingly, because the holding recess portion is obtained by the bank portion that protrudes from the outer surfaces of the cylinder block, the cylinder head, and the chain cover, a seal portion achieved by the liquid gasket is formed at the respective outer surfaces of the cylinder block, the cylinder head, and the chain cover while facing areas of projecting portions formed at the cylinder block, the cylinder head, and the chain cover are secured.

[0024] The bank portion is continuously formed.

[0025] Accordingly, even when the liquid gasket is pushed to be filled in the clearance at the joint portion by a scraper, or the like, for example, the liquid gasket is prevented from leaking to an outside of the bank portion. As a result, the liquid gasket is tightly filled within the bank portion, thereby further enhancing the sealing ability of the joint portion.

[0026] At this time, a state where the bank portion is continuously formed includes not only a case where the bank portion is entirely continuously formed but also a case where the bank portion is formed in a divided manner while having a small clearance through which the liquid gasket does not leak.

[0027] A top surface of the bank portion is formed on an identical flat plane.

[0028] Because the top surface is formed on the identical flat plane, the liquid gasket is easily pushed to the clearance at the joint portion by positioning a scraper, or the like at the top surface of the bank portion to slide thereon to thereby level the liquid gasket to the height of the top surface of the bank portion. Further, the bank portion includes not only a function to retain the liquid gasket but also a guiding function to apply the liquid gasket, to take off the excess liquid gasket, and the like so that a predetermined amount of the liquid gasket is filled within the bank portion. Furthermore, the first seal member may not be damaged when the liquid gasket is applied or taken off relative to the bank portion.

[0029] The bank portion includes a semicircular bank piece and two quarter-circular bank pieces, the semicircular bank piece being formed at the chain cover, the two quarter-circular bank pieces being formed at the cylinder block and the cylinder head respectively, the semicircular bank piece and the two quarter-circular bank pieces surrounding the joint portion.

[0030] Accordingly, a seal portion achieved by the liquid gasket is formed at the respective outer surfaces of the cylinder block, the cylinder head, and the chain cover while facing areas of the semicircular bank piece and the two quarter-circular bank pieces formed at the chain cover, the cylinder head, and the cylinder block respectively are secured. In addition, the holding recess portion is achieved by a simple structure.

[0031] The seal structure for the engine further includes a cutting portion formed at the chain cover and having a V-shape in a cross section and chamfer portions formed at the cylinder block and the cylinder head re-

spectively and each having a triangular shape, the cutting portion and the chamfer portions constituting the holding recess portion.

[0032] Accordingly, a seal portion achieved by the liquid gasket is formed at the respective outer surfaces of the cylinder block, the cylinder head, and the chain cover while facing areas of the cutting portion and the chamfer portions formed at the chain cover, the cylinder head, and the cylinder block respectively are secured. In addition, the holding recess portion is achieved by a simple structure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] The foregoing and additional features and characteristics of this disclosure will become more apparent from the following detailed description considered with the reference to the accompanying drawings, wherein:

[0034] Fig. 1 is a perspective view illustrating a main portion of an engine according to a first embodiment disclosed here;

[0035] Fig. 2 is a side view of a bank portion in which a liquid gasket is filled according to the first embodiment;

[0036] Figs. 3A, 3B, and 3C are perspective views illustrating a process for assembling the engine according to the first embodiment;

Fig. 3D is a sectional view further illustrating the process for assembling the engine according to Figs. 3A, 3B, and 3C;

[0037] Figs. 4A, 4B and 4C are perspective views illustrating a process for assembling the engine according to a second embodiment; and

Fig. 4D is a sectional view further illustrating the process for assembling the engine according to Figs. 4A, 4B, and 4C.

DETAILED DESCRIPTION

[0038] [First embodiment]

A seal structure for an engine according to a first embodiment will be explained with reference to the attached drawings.

[0039] As illustrated in Fig. 1, an engine (an internal combustion engine) E includes a cylinder head 1, a cylinder block 2, and a chain cover 3. A cylinder head cover 4 is mounted at an upper side of the cylinder head 1 and the chain cover 3. An oil pan 5 is mounted at a lower side of the cylinder block 2 and the chain cover 3.

[0040] The chain cover 3 includes a connection flange 6 having a predetermined thickness so as to be connected to the cylinder head 1 and the cylinder block 2. Fitting bolt seats 6a are formed at the connection flange 6. As illustrated in Fig. 2, the cylinder head 1 includes a lateral joint surface 1b, facing the chain cover 3, where a bolt hole facing one of the fitting bolt seats 6a is formed. In addition, the cylinder block 2 includes a lateral joint surface 2b, facing the chain cover 3, where a bolt hole facing another of the fitting bolt seats 6a is formed.

[0041] Each of the cylinder head 1, the cylinder block 2, and the chain cover 3 is formed by a metallic die-casting product. The cylinder head 1 and the chain cover 3 may be made of aluminum alloy having a light weight and a high heat conductivity. The cylinder block 2 may be made of casting iron having a high strength and a high abrasion resistance. At this time, however, the casting iron has a heavy weight and a low heat conductivity. Thus, in order to achieve the light weight and improve

the heat conductivity while maintaining the strength and the abrasion resistance, a cylinder portion of the cylinder block 2 may be constituted by a sleeve made of casting iron while the other portion of the cylinder block 2 may be made of aluminum alloy. Alternatively, the cylinder block 2 may be made of aluminum alloy and a plating process or a plasma coating may be conducted on the cylinder portion of the cylinder block 2.

[0042] As illustrated in Figs. 1 to 3, the seal structure for the engine according to the present embodiment includes a first joint portion 7 where the cylinder head 1 is connected to an upper portion of the cylinder block 2 via a solid gasket 7a serving as an example of a first seal member, and a second joint portion 8 where the chain cover 3 is connected to respective side portions of the cylinder block 2 and the cylinder head 1 via a liquid gasket 8a such as an FIPG (Formed In Place Gasket) serving as an example of a second seal member.

[0043] At the first joint portion 7, the cylinder head 1 is connected to the cylinder block 2 by means of a bolt while the solid gasket 7a is sandwiched between a lower joint surface 1a having a flat shape and formed at the cylinder head 1 and an upper joint surface 2a having a flat shape and formed at the cylinder block 2.

[0044] At the second joint portion 8, the cylinder head 1 and the cylinder block 2 are connected to the chain cover 3 by means of bolts inserted into the respective fitting bolt seats 6a formed at the connection flange 6 while the liquid gasket 8a is sandwiched among a lateral joint surface 3a having a flat shape and formed at the connection flange 6 of the chain cover 3, the lateral joint surface 1b having a flat shape and formed at the cylinder head 1, and the lateral joint surface 2b having a flat shape and formed at the cylinder block 2.

[0045] When the engine E is in operation (i.e., the engine operation), wall portions of the cylinder head 1, and the like are exposed to a combustion gas having a high temperature. Specifically, the cylinder head 1 tends to be heated more than the cylinder block 2 and tends to expand due to heat. Thus, a relative displacement may occur between the cylinder head 1 and the cylinder block 2 in a longitudinal direction of the engine E, which may lead to a clearance between the lateral joint surface 3a of the chain cover 3 and the lateral joint surface 2b of the cylinder block 2 at a joint portion 11 where the cylinder block 2, the cylinder head 1, and the chain cover 3 face one another. At this time, the liquid gasket 8a filled in the clearance is affected by an excessive tensile deformation, thereby deteriorating a sealing ability of the liquid

gasket 8a.

[0046] The joint portion 11 among the cylinder block 2, the cylinder head 1, and the chain cover 3 is formed at a portion where the first joint portion 7 and the second joint portion 8 face each other. As illustrated in Figs. 1 to 3, an annular-shaped bank portion 12 is formed at outer surfaces of the cylinder block 2, the cylinder head 1, and the chain cover 3 while projecting in a direction substantially perpendicular thereto so as to obtain a holding recess portion A where a liquid gasket 13 is filled and retained. The bank portion 12 surrounds the joint portion 11 so as to form into a circular shape in a plan view as illustrated in Fig. 2 about substantially a center of the joint portion 11.

[0047] Specifically, as illustrated in Fig. 3A, the bank portion 12 includes a left bank piece 12a having a semicircular shape and serving as a semicircular bank piece, an upper-right bank piece 12b having a quarter-circular shape and serving as a quarter-circular bank piece, and a lower-right bank piece 12c having a quarter-circular shape and serving as the quarter-circular bank piece. The left bank piece 12a is formed at the outer surface of the chain cover 3. The upper-right bank piece 12b is formed at a corner on the outer surface of the cylinder head 1. The lower-right bank piece 12c is formed at a corner on the outer surface of the cylinder block 2.

[0048] Each of the lateral joint surface 3a of the chain cover 3, the lower joint surface 1 a and the lateral joint surface 1 b of the cylinder head 1, the upper joint surface 2a and the lateral joint surface 2b of the cylinder block 2 is formed to have a flat shape, i.e., formed on an identical flat plane. Accordingly, as illustrated in Fig. 2, a clearance d1, which is defined between the lateral joint surface 3a of the chain cover 3 and the lateral joint surface 1 b of the cylinder head 1, is also formed between the left bank piece 12a and the upper-right bank piece 12b. In addition, a clearance d2, which is defined between the lateral joint surface 3a of the chain cover 3 and the lateral joint surface 2b of the cylinder block 2, is also formed between the left bank piece 12a and the lower-right bank piece 12c. Further, a clearance d3, which is defined between the lower joint surface 1a of the cylinder head 1 and the upper joint surface 2a of the cylinder block 2, is also formed between the upper-right bank piece 12b and the lower-right bank piece 12c.

[0049] As mentioned above, a possible clearance may be formed between each of the adjacent left, upper-right, and lower-right bank pieces 12a, 12b, and 12c. However, such clearance is extremely small and therefore the adjacent left, upper-right, and lower-right bank pieces 12a, 12b, and 12c are practically continuously formed in a circumferential direction thereof.

[0050] As illustrated in Figs. 3A, 3B, and 3C, the bank portion 12 includes a ring-shaped top surface 14, a cylindrical-shaped outer peripheral surface 15, and a cylindrical-shaped inner peripheral surface 16. The top surface 14 of the bank portion 12 is formed to have a flat shape, i.e., formed on an identical flat plane and is posi-

tioned as a whole, for example, in parallel to the outer surfaces of the cylinder block 2, the cylinder head 1, and the chain cover 3 in a vertical direction in Figs. 3A, 3B and 3C. Thus, the bank portion 12 is restrained from interfering with external components while being prevented from extremely protruding from the outer surfaces of the cylinder block 2, the cylinder head 1, and the chain cover 3. That is, a surface of the liquid gasket 13 filled in the bank portion 12 (the holding recess portion A) is coplanar with the top surface 14 of the bank portion 12. A circular-shaped application surface 17 is formed at an inner side of the bank portion 12 as illustrated in Fig. 3B so that the liquid gasket 13 is applied to the application surface 17. The application surface 17 and the inner peripheral surface 16 of the bank portion 12 constitute surfaces forming the holding recess portion A (i.e., forming surfaces of the holding recess portion A).

[0051] As illustrated in Fig. 3A, the cylinder block 2 and the cylinder head 1 are connected to each other by means of a bolt while the solid gasket 7a is sandwiched between the upper joint surface 2a of the cylinder block 2 and the lower joint surface 1 a of the cylinder head 1.

[0052] The liquid gasket 8a is applied to the lateral joint surface 3a of the chain cover 3 and then the cylinder block 2 and the cylinder head 1 are connected to the chain cover 3 by means of a bolt as illustrated in Fig. 3B.

[0053] At this time, the liquid gasket 8a applied to the lateral joint surface 3a of the chain cover 3 makes contact with the lateral joint surface 2b of the cylinder block 2 and the lateral joint surface 1 b of the cylinder head 1.

[0054] In the aforementioned case, however, a possible clearance may be formed between the chain cover 3 and the cylinder block 2, between the cylinder head 1 and the cylinder block 2, or the like at the joint portion 11 because of a machining accuracy, an assembling accuracy, or the like. Then, the sufficient filling of the liquid gasket 8a may not be achieved.

[0055] Therefore, after the cylinder block 2, the cylinder head 1, and the chain cover 3 are assembled on one another, an inner portion of the bank portion 12 is filled with the liquid gasket 13. Then, a scraper, or the like is applied to slide on the top surface 14 in the vertical direction in Figs. 3C and 3D. Accordingly, the liquid gasket 13 is filled in the clearance formed at the joint portion 11 so that the clearance is filled with the liquid gasket 13. Afterwards, the liquid gasket 13 filled within the inner portion of the bank portion 12 becomes solidified so that a button-shaped seal member is formed to surround the joint portion 11. As a result, even when the sealing ability of the joint portion 11 is deteriorated at the time of the engine operation, the button-shaped seal member that completely seals the surrounding of the joint portion 11 maintains the sealing effect of the joint portion 11.

[0056] [Second embodiment]

A second embodiment will be explained with reference to Figs. 4A, 4B, and 4C illustrating the holding recess portion having the different structure from that of the first embodiment. Only a difference of the second embodi-

ment from the first embodiment will be described and an explanation of the same structure as the first embodiment will be omitted.

[0057] A cut portion 21 having a four-sided pyramid shape and surrounding the joint portion 11 is formed over the outer surfaces of the cylinder head 1, the cylinder block 2, and the chain cover 3 so as to obtain the holding recess portion A where the liquid gasket 13 is filled and retained.

[0058] Specifically, a cutting portion 22 having a V-shape in a cross section that includes two inclination surfaces 22a and 22b each having a triangular shape is formed at the outer surface of the chain cover 3. In addition, an upper-right chamfer portion 23 serving as a chamfer portion and including an inclination surface 23a that has a triangular shape is formed at the corner on the outer surface of the cylinder head 1. Further, a lower-right chamfer portion 24 serving as the chamfer portion and including an inclination surface 24a that has a triangular shape is formed at the corner on the outer surface of the cylinder block 2. The inclination surfaces 22a, 22b, 23a, and 24a constitute side surfaces of the cut portion 21 formed into the four-sided pyramid shape. The inclination surfaces 22a, 22b, 23a and 24a also constitute application surfaces where the liquid gasket 13 is applied and surfaces forming the holding recess portion A (i.e., forming surfaces of the holding recess portion A). The cutting portion 22 and the chamfer portions 23 and 24 are continuously formed in a circumferential direction. A clearance may be defined between the adjacent cutting portion 22 and the chamfer portions 23 and 24. However, such clearance is extremely small.

[0059] As illustrated in Fig. 4A, the cylinder block 2 and the cylinder head 1 are connected and jointed to each other by means of a bolt while the solid gasket 7a is sandwiched between the upper joint surface 2a of the cylinder block 2 and the lower joint surface 1a of the cylinder head 1.

[0060] As illustrated in Fig. 4B, the cylinder block 2 and the cylinder head 1 are connected and jointed to the chain cover 3 by means of a bolt while the liquid gasket 8a is applied to the lateral joint surface 3a of the chain cover 3. At this time, the liquid gasket 8a applied to the lateral joint surface 3a of the chain cover 3 makes contact with the lateral joint surface 2b of the cylinder block 2 and the lateral joint surface 1b of the cylinder head 1.

[0061] After the cylinder block 2, the cylinder head 1, and the chain cover 3 are assembled on one another, an inner portion of the cut portion 21 is filled with the liquid gasket 13 as illustrated in Figs. 4C and 4D.

[0062] According to the aforementioned first and second embodiments, the first seal member corresponds to the solid gasket 7a and the second seal member corresponds to the liquid gasket 8a. Alternatively, the first seal member may correspond to the liquid gasket and the second seal member may correspond to the solid gasket. Alternatively, the first and second seal members may both correspond to the liquid gasket or the solid gasket.

Further, various types of liquid seal material may serve as the liquid seal member.

[0063] The adjacent left, upper-right, and lower-right bank pieces 12a, 12b, and 12c may have large clearances thereamong so that the left, upper-right, and lower-right bank pieces 12a, 12b, and 12c are discontinuously formed in a circumferential direction thereof. Accordingly, the adjacent left, upper-right, and lower-right bank pieces 12a, 12b, and 12c are prevented from interfering with one another. At this time, the application surface 17 of the bank portion 12 and respective inner surfaces of the left, upper-right and lower-right bank pieces 12a, 12b, and 12c constitute the forming surfaces of the holding recess portion A.

[0064] According to the first embodiment, the bank portion 12 having the annular shape is formed, in a projecting manner, over the outer surfaces of the cylinder block 2, the cylinder head 1, and the chain cover 3. At this time, the shape of the bank portion 12 is not limited to the annular shape and may be a polygon shape, or the like.

[0065] According to the second embodiment, the cut portion 21 having the four-sided pyramid shape is formed over the outer surfaces of the cylinder block 2, the cylinder head 1, and the chain cover 3. At this time, the shape of the cut portion 21 is not limited to the four-sided pyramid shape and may be a polygonal pyramid shape, a circular cone shape, a hemispherical shape, or the like.

[0066] According to the first embodiment, the top surface 14 of the bank portion 12 is formed to have the flat shape, i.e., formed on the identical flat plane and is positioned in parallel to the outer surfaces of the cylinder block 2, the cylinder head 1, and the chain cover 3 in the vertical direction in Figs. 3A, 3B and 3C. Alternatively, the top surface 14 may have a flat shape that inclines relative to the vertical direction so that the bank portion 12 protrudes greater from the outer surfaces of the cylinder block 2, the cylinder head 1, and the chain cover 3 in the downward direction.

[0067] The first and second embodiments are applicable to the seal structure for various types of engines including the cylinder block, the cylinder head assembled thereon via the first seal member, and the chain cover assembled via the second seal member on the cylinder block and the cylinder head that are assembled on each other.

Claims

1. A seal structure for an engine, comprising:

a cylinder block (2);
a cylinder head (1) assembled via a first seal member (7a) on the cylinder block (2);
a chain cover (3) assembled via a second seal member (8a) on the cylinder block (2) and the cylinder head (1) that are assembled on each other; and

a holding recess portion (A) formed at an outer surface of a joint portion (11) among the cylinder block (2), the cylinder head (1), and the chain cover (3), the holding recess portion (A) retaining a liquid gasket (13) and being filled therewith; **characterised in that**

surfaces forming the holding recess portion (A) are continuously formed while surrounding the joint portion (11); and **in that** the holding recess portion (A) is constituted by a bank portion (12) that protrudes from outer surfaces of the cylinder block (2), the cylinder head (1), and the chain cover (3) and that surrounds the joint portion (11).

2. The seal structure according to claim 1, wherein the liquid gasket (13) that is filled in the holding recess portion (A) is filled in a clearance (d3) formed between the cylinder block (2) and the cylinder head (1), a clearance (d2) formed between the cylinder block (2) and the chain cover (3), and a clearance (d1) formed between the cylinder head (1) and the chain cover (3).

3. The seal structure according to claim 1, wherein the bank portion (12) is continuously formed.

4. The seal structure according to claim 1, wherein a top surface (14) of the bank portion (12) is formed on an identical flat plane.

5. The seal structure according to claim 1, wherein the bank portion (12) includes a semicircular bank pieces (12a) and two quarter-circular bank pieces (12b, 12c), the semicircular bank piece (12a) being formed at the chain cover (3), the two quarter-circular bank pieces (12b, 12c) being formed at the cylinder block (2) and the cylinder head (1) respectively, the semicircular bank piece (12a) and the two quarter-circular bank pieces (12b, 12c) surrounding the joint portion (11).

6. A seal structure for an engine, comprising :

a cylinder block (2);
a cylinder head (1) assembled via a first seal member (7a) on the cylinder block (2);
a chain cover (3) assembled via a second seal member (8a) on the cylinder block (2) and the cylinder head (1) that are assembled on each other; and
a holding recess portion (A) formed at an outer surface of a joint portion (11) among the cylinder block (2), the cylinder head (1), and the chain cover (3), the holding recess portion (A) retaining a liquid gasket (13) and being filled therewith; **characterised by**

a cutting portion (22) formed at the chain cover (3) and having a V-shape in a cross section and chamfer portions (23, 24) formed at the cylinder block (2) and the cylinder head (1) respectively and each having a triangular shape, the cutting portion (22) and the chamfer portions (23, 24) constituting the holding recess portion (A).

7. The seal structure according to claim 6, wherein the liquid gasket (13) that is filled in the holding recess portion (A) is filled in a clearance (d3) formed between the cylinder block (2) and the cylinder head (1), a clearance (d2) formed between the cylinder block (2) and the chain cover (3), and a clearance (d1) formed between the cylinder head (1) and the chain cover (3).

Patentansprüche

1. Dichtungsstruktur für einen Motor, mit:

einem Zylinderblock (2);
einem Zylinderkopf (1), der über ein erstes Dichtungsbauteil (7a) an dem Zylinderblock (2) angebracht ist;
einer Kettenabdeckung (3), die über ein zweites Dichtungsbauteil (8a) an dem Zylinderblock (2) und dem Zylinderkopf (1), die aneinander angebracht sind, angebracht ist; und
einem Haltevertiefungsbereich (A), der an einer Außenfläche eines Verbindungsbereichs (11) zwischen dem Zylinderblock (2), dem Zylinderkopf (1) und der Kettenabdeckung (3) gebildet ist, wobei der Haltevertiefungsbereich (A) eine Flüssigdichtung (13) aufbewahrt und damit gefüllt ist; **dadurch gekennzeichnet, dass**
Flächen, die den Haltevertiefungsbereich (A) bilden, durchgehend gebildet sind, während sie den Verbindungsbereich (11) umgeben; und
der Haltevertiefungsbereich (A) von einem Wallbereich (12) dargestellt wird, der von Außenflächen des Zylinderblocks (2), des Zylinderkopfs (1) und der Kettenabdeckung (3) hervorsteht und den Verbindungsbereich (11) umgibt.

2. Dichtungsstruktur nach Anspruch 1, bei der die Flüssigdichtung (13), die in dem Haltevertiefungsbereich (A) eingefüllt ist, in einen Spalt (d3), der zwischen dem Zylinderblock (2) und dem Zylinderkopf (1) gebildet ist, einen Spalt (d2), der zwischen dem Zylinderblock (2) und der Kettenabdeckung (3) gebildet ist, und einen Spalt (d1), der zwischen Zylinderkopf (1) und der Kettenabdeckung (3) gebildet ist, eingefüllt ist.

3. Dichtungsstruktur nach Anspruch 1, bei der der Wallbereich (12) durchgehend gebildet ist.

4. Dichtungsstruktur nach Anspruch 1, bei der eine obere Fläche (14) des Wallbereichs (12) auf einer identischen flachen Ebene gebildet ist. 5

5. Dichtungsstruktur nach Anspruch 1, bei der der Wallbereich (12) ein halbkreisförmiges Wallteil (12a) und zwei viertelkreisförmige Wallteile (12b, 12c) aufweist, wobei das halbkreisförmige Wallteil (12a) an der Kettenabdeckung (3) gebildet ist, wobei die zwei viertelkreisförmigen Wallteile (12b, 12c) jeweils an dem Zylinderblock (2) und dem Zylinderkopf (1) gebildet sind, wobei das halbkreisförmige Wallteil (12a) und die zwei viertelkreisförmigen Wallteile (12b, 12c) den Verbindungsreich (11) umgeben. 10

6. Dichtungsstruktur für einen Motor, mit: 15

einem Zylinderblock (2);
einem Zylinderkopf (1), der über ein erstes Dichtungsbauteil (7a) an dem Zylinderblock (2) angebracht ist; 20
einer Kettenabdeckung (3), die über ein zweites Dichtungsbauteil (8a) an dem Zylinderblock (2) und dem Zylinderkopf (1), die aneinander angebracht sind, angebracht ist; und
einem Haltevertiefungsbereich (A), der an einer Außenfläche eines Verbindungsreichs (11) zwischen dem Zylinderblock (2), dem Zylinderkopf (1) und der Kettenabdeckung (3) gebildet ist, wobei der Haltevertiefungsbereich (A) eine Flüssigdichtung (13) aufbewahrt und damit gefüllt ist; **gekennzeichnet durch** 25
einen Schnittbereich (22), der an der Kettenabdeckung (3) gebildet ist und im Querschnitt eine V-Form aufweist, und Fasenbereiche (23, 24), die jeweils an dem Zylinderblock (2) und dem Zylinderkopf (1) gebildet sind und wobei jeder eine Dreiecksform aufweist, wobei der Schnittbereich (22) und die Fasenbereiche (23, 24) den Haltevertiefungsbereich (A) darstellen. 30

7. Dichtungsstruktur nach Anspruch 6, bei der die Flüssigdichtung (13), die in dem Haltevertiefungsbereich (A) eingefüllt ist, in einen Spalt (d3), der zwischen dem Zylinderblock (2) und dem Zylinderkopf (1) gebildet ist, einen Spalt (d2), der zwischen dem Zylinderblock (2) und der Kettenabdeckung (3) gebildet ist, und einen Spalt (d1), der zwischen Zylinderkopf (1) und der Kettenabdeckung (3) gebildet ist, eingefüllt ist. 35

un couvre-chaîne (3) assemblé, par l'intermédiaire d'un deuxième élément de joint (8a), au bloc-cylindres (2) et à la culasse (1) qui sont assemblés l'un à l'autre; et
une partie creuse de maintien (A) formée sur une surface extérieure d'une partie de jonction (11) entre le bloc-cylindres (2), la culasse (1) et le couvre-chaîne (3), la partie creuse de maintien (A) retenant un joint liquide (13) et étant remplie par celui-ci, **caractérisée en ce que** des surfaces formant la partie creuse de maintien (A) sont formées de façon continue tout en entourant la partie de jonction (11); et **en ce que** la partie creuse de maintien (A) est constituée par une partie de rebord (12) qui fait saillie sur des surfaces extérieures du bloc-cylindres (2), de la culasse (1) et du couvre-chaîne (3) et qui entoure la partie de jonction (11). 40

2. Structure de joint selon la revendication 1, dans laquelle le joint liquide (13) qui est formé dans la partie creuse de maintien (A) est versé dans un jeu (d3) formé entre le bloc-cylindres (2) et la culasse (1), un jeu (d2) formé entre le bloc-cylindres (2) et le couvre-chaîne (3), et un jeu (d1) formé entre la culasse (1) et le couvre-chaîne (3). 45

3. Structure de joint selon la revendication 1, dans laquelle la partie de rebord (12) est formée de manière continue. 50

4. Structure de joint selon la revendication 1, dans laquelle une surface supérieure (14) de la partie de rebord (12) est formée sur un plan plat identique. 55

5. Structure de joint selon la revendication 1, dans laquelle la partie de rebord (12) comprend une pièce de rebord semi-circulaire (12a) et deux pièces de rebord en quart de cercle (12b, 12c), la pièce de rebord semi-circulaire (12a) étant formée sur le couvre-chaîne (3), les deux pièces de rebord en quart de cercle (12b, 12c) étant formées sur le bloc-cylindres (2) et sur la culasse (1) respectivement, la pièce de rebord semi-circulaire (12a) et les deux pièces de rebord en quart de cercle (12b, 12c) entourant la partie de jonction (11). 55

6. Structure de joint pour un moteur, comprenant un bloc-cylindres (2);
une culasse (1) assemblée au bloc-cylindres (2) par l'intermédiaire d'un premier élément de joint (7a);
un couvre-chaîne (3) assemblé, par l'intermédiaire d'un deuxième élément de joint (8a), au bloc-cylindres (2) et à la culasse (1), qui sont assemblés l'un à l'autre; et
une partie creuse de maintien (A) formée sur une surface extérieure d'une partie de jonction (11) entre le bloc-cylindres (2), la culasse (1) et le couvre-chaîne (3), la partie creuse de maintien (A) retenant un

Revendications

1. Structure de joint pour un moteur, comprenant un bloc-cylindres (2);
une culasse (1) assemblée au bloc-cylindres (2) par l'intermédiaire d'un premier élément de joint (7a);

joint liquide (13) et étant remplie par celui-ci,
caractérisée par une partie de coupe (22) formée
sur le couvre-chaîne (3) et présentant une forme en
V en section transversale, et des parties de chanfrein
(23, 24) formées sur le bloc-cylindres (2) et sur la 5
culasse (1) respectivement et présentant chacune
une forme triangulaire, la partie de coupe (22) et les
parties de chanfrein (23, 24) constituant la partie
creuse de maintien (A).

10

7. Structure de joint selon la revendication 6, dans laquelle le joint liquide (13) qui est formé dans la partie creuse de maintien (A) est versé dans un jeu (d3) formé entre le bloc-cylindres (2) et la culasse (1), un jeu (d2) formé entre le bloc-cylindres (2) et le couvre-chaîne (3), et un jeu (d1) formé entre la culasse (1) et le couvre-chaîne (3). 15

20

25

30

35

40

45

50

55

FIG. 1

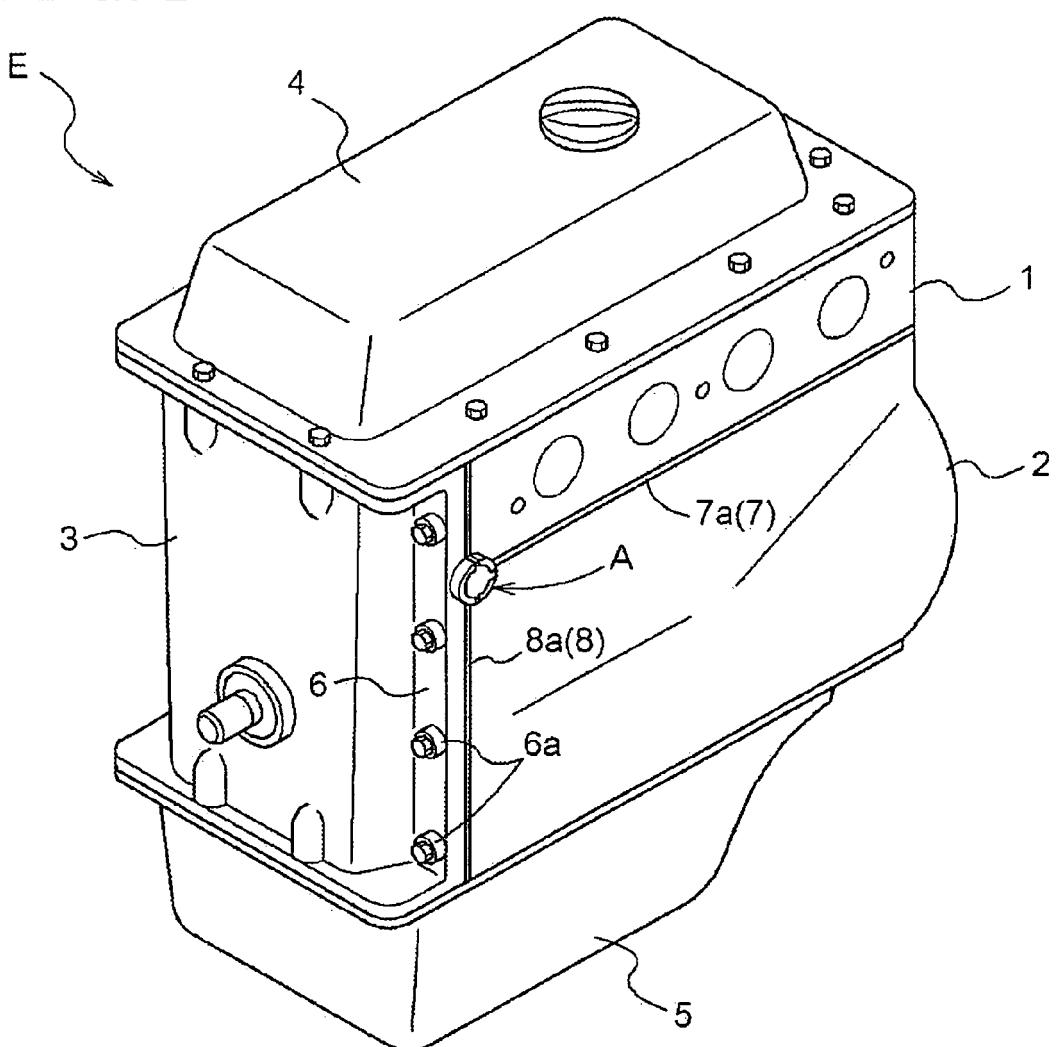


FIG. 2

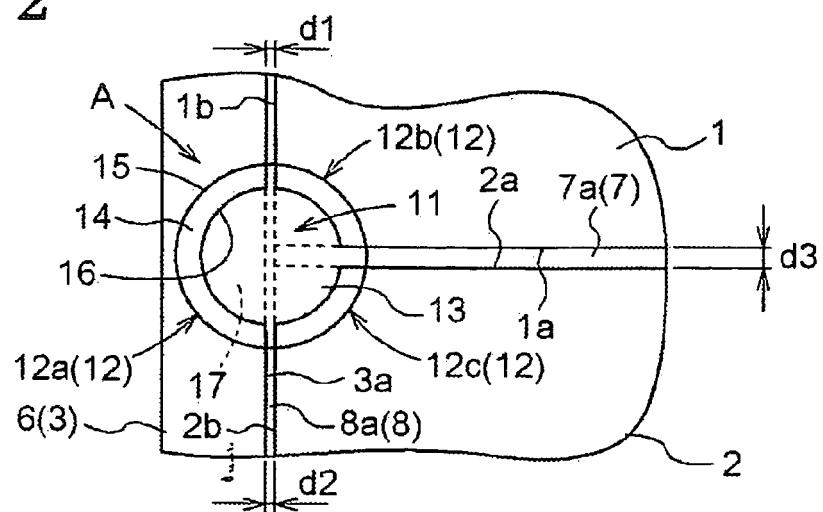


FIG. 3A

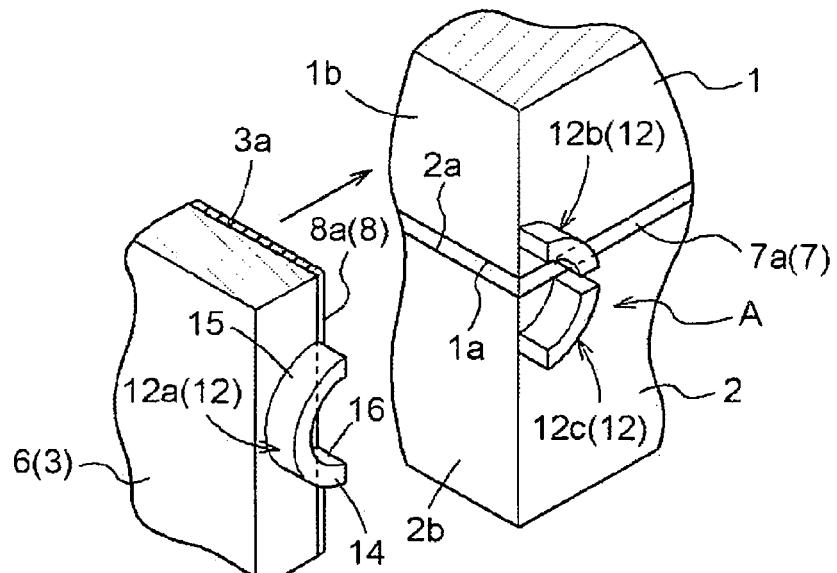


FIG. 3 B

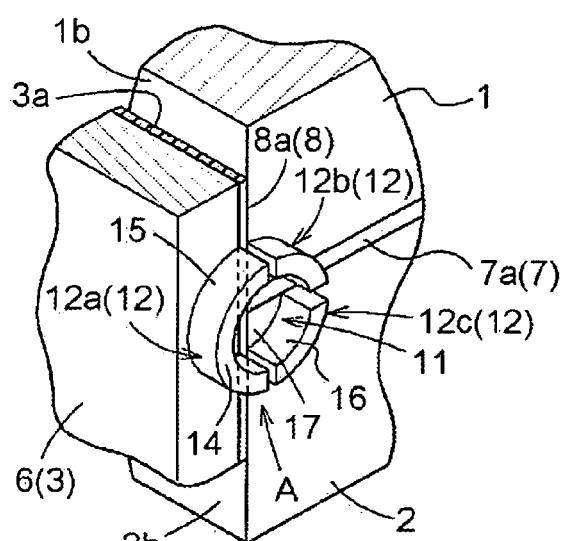


FIG. 3 C

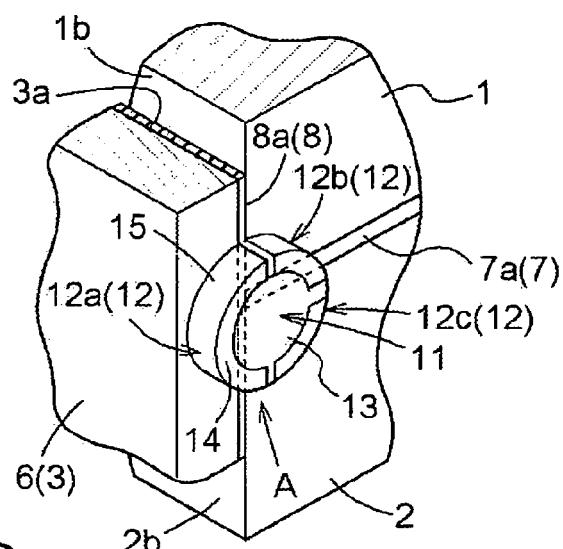


FIG. 3 D

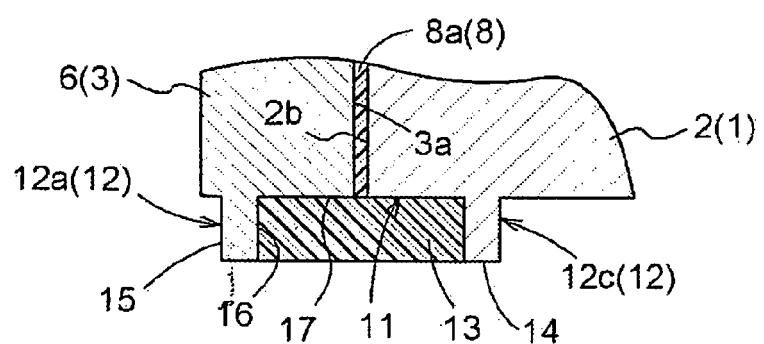


FIG. 4 A

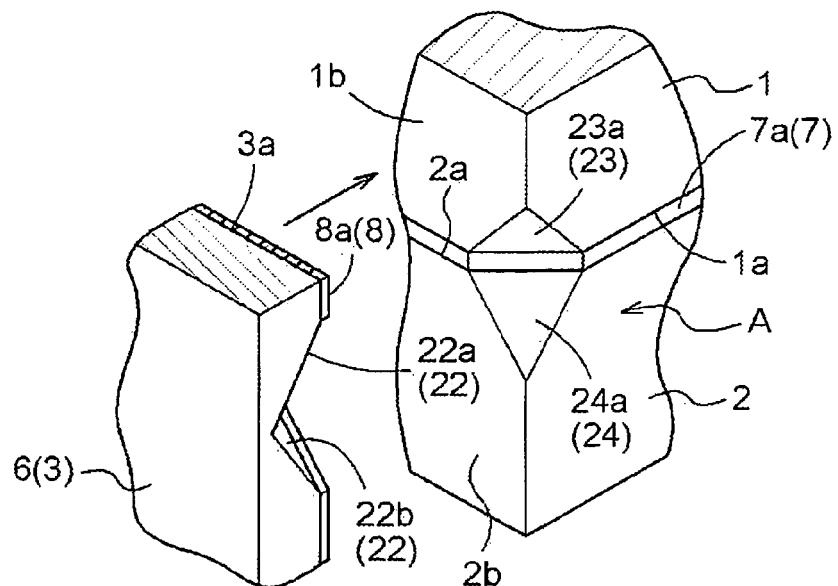


FIG. 4 B

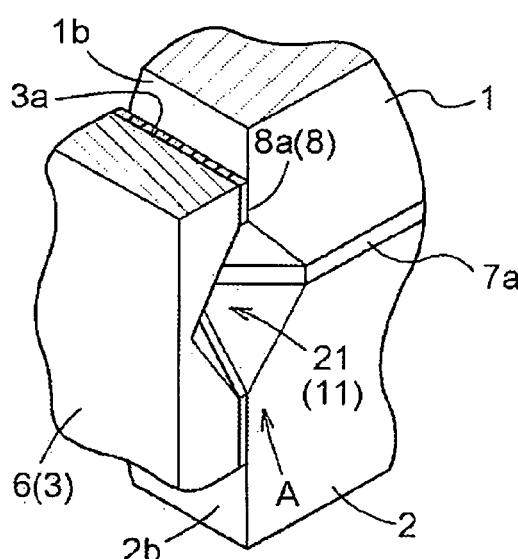


FIG. 4 C

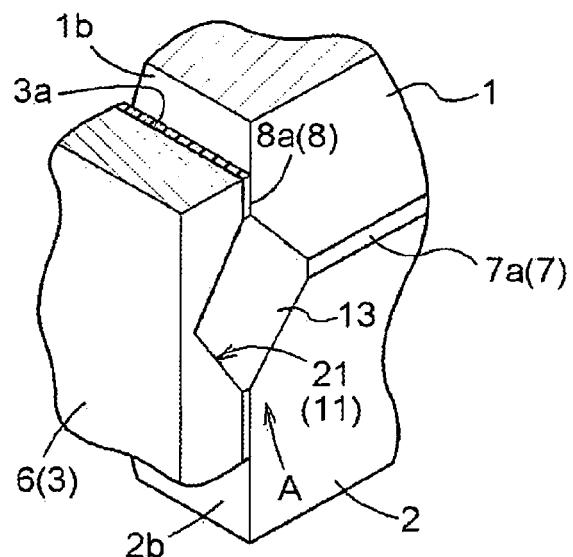
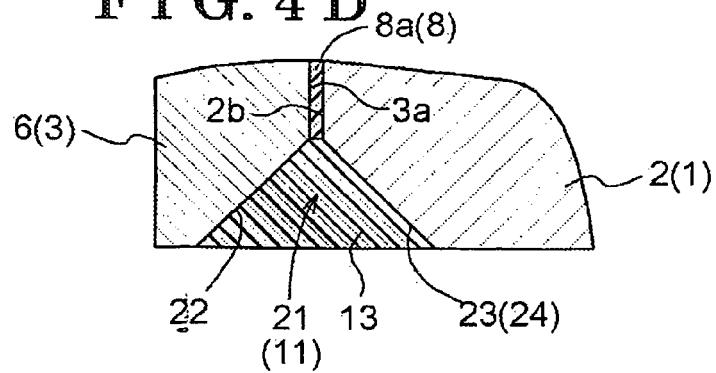



FIG. 4 D

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 1235008 A2 [0007]
- JP 2005188375 A [0008] [0009]