(11) **EP 2 366 817 A1**

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 153(4) EPC

(43) Date of publication:

21.09.2011 Bulletin 2011/38

(21) Application number: 09828783.2

(22) Date of filing: 04.11.2009

(51) Int CI.:

D01H 5/00 (2006.01) D01H 4/02 (2006.01) D01H 1/115 (2006.01) D01H 13/00 (2006.01)

(86) International application number:

PCT/JP2009/005844

(87) International publication number:

WO 2010/061533 (03.06.2010 Gazette 2010/22)

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

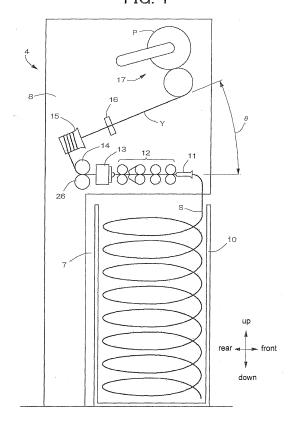
(30) Priority: 28.11.2008 JP 2008303398

(71) Applicant: Murata Machinery, Ltd.
Minami-ku
Kyoto-shi

Kyoto 601-8326 (JP)

(72) Inventor: MORI, Hideshige Kyoto-shi Kyoto 612-8686 (JP)

(74) Representative: Zimmermann, Tankred Klaus et al Schoppe, Zimmermann, Stöckeler & Zinkler Patentanwälte


Postfach 246

82043 Pullach bei München (DE)

(54) SPINNING MACHINERY

(57) Production of a package is improved by revising the arrangement of units constituting the spinning machine so that the units can be handled and maintained conveniently. A spinning machine (4) includes a draft process unit (12) for drawing a sliver (S), a pneumatic spinning unit (13) for twisting the sliver (S) and delivering a spun yam (Y), and a winding unit (17) for winding the spun yam (Y) and forming a package (P). A yam path in a unit configuration section (8) where the units are disposed includes a first yam path (R1) which is horizontal or inclined gently, and a second yarn path which continues from the first yam path (R1) and is guided by a yarn-accumulating device (15) to a different direction from that of the first yam path. The units are arranged along the first yam path (R1) and second yam path (R2).

FIG. 1

1

Description

TECHNICAL FIELD

[0001] The present invention relates to a spinning machine including a draft process unit, a pneumatic spinning unit, a winding unit, and the like.

BACKGROUND ART

[0002] This type of spinning machine is known as disclosed in the Patent Document 1, for example. In the disclosed machine, a draft process unit, a pneumatic spinning unit, a delivery roller, a winding unit and the like are arranged linearly along a yarn path, which extends from bottom to top, above cans that house sliver (fiber bundle).

CITATION LIST

PATENT LITERATURE

[0003]

Patent Document 1: Pamphlet of WO 06/122605 (see Fig. 1)

SUMMARY OF INVENTION

TECHNICAL PROBLEM

[0004] When the units are arranged along the yam path extending linearly in the up and down direction, as disclosed in Patent Document 1, the size of the spinning machine in the up and down direction becomes so large that an operator cannot access the winding unit or the like disposed at the top part of the machine. In order to deal with this problem, it is necessary for the operator to bring a workbench from another place when handling or maintaining the units at the top part of the spinning machine. This results in a decrease in the efficiency of handling or maintenance of the spinning machine, and results in a decrease in efficiency of the spinning process. [0005] In order to solve this problem, the easiest way is to reduce the size of the can in the up and down direction. However, in that case, the capacity of the can is reduced so that the sliver inside runs out faster. As a result, the cans need to be exchanged more frequently, and the efficiency of manufacturing a package is reduced. Therefore, it is not preferable to downsize the can for avoiding an increase in the size of the spinning machine in the up and down direction of the spinning machine.

[0006] An object of the present invention is to improve production of a package by realizing easy handling and maintenance of the units in the spinning machine.

SOLUTION TO PROBLEM

[0007] A spinning machine according to the present invention includes a draft process unit, a pneumatic spinning unit, a yarn-accumulating device, and a winding unit. The draft process unit draws a sliver. The pneumatic spinning unit twists the sliver drawn by the draft process unit and delivers a spun yam. A yarn-accumulating device temporarily accumulates the spun yam delivered from the pneumatic spinning unit. The winding unit winds the spun yam so as to form a package. A yarn path in a unit configuration section where the draft process unit, the pneumatic spinning unit, the yarn-accumulating unit, and the winding unit are disposed includes a first yarn path which is horizontal or inclined gently, and a second yam path which continues from the first yam path and is guided by the yarn-accumulating device to a different direction from that of the first yam path. The draft process unit and the pneumatic spinning unit are disposed in the first yarn path, and the winding unit is disposed at a downstream end of the second yam path.

As to the first yam path, "inclined gently" means to be inclined upward or downward at an angle of 45 degrees or less. The shape of the yam path, as a whole, may look like a "<" or "L", or may look like a mirrored image thereof. In this spinning machine, an up and down distance between the lower end of the first yam path and the upper end of the second yam path can be reduced by nearly 50% compared with a conventional spinning machine. By reducing the size of the unit configuration section in the up and down direction, the total size of the spinning machine in the up and down direction can be reduced. Therefore, the operator can access a unit in the upper part of the spinning machine without having to use a workbench, so that handling and maintenance of the units can be performed easily and accurately. Thus, the efficiency of the spinning machine can be improved, and overall production of a package can be enhanced. Further, according to the present invention, the size of the spinning machine in the up and down direction is reduced compared with the conventional spinning machine, and the winding unit can be disposed at a position lower than that of the winding unit in a conventional spinning machine. As a result, a doffing unit of an automatic winder can be shared.

[0008] In this spinning machine, the yarn-accumulating device also serves as a direction-changing guide. Because it is not necessary to provide a dedicated direction-changing guide, the entire structure of the spinning machine can be simplified. In addition, the tension of the spun yam temporarily accumulated in the yam accumulating-device is not related to its bending angle, and it can be set to have a smaller value than that of the spun yam before and after the yarn-accumulating device. Therefore, when the yarn-accumulating device serves as the direction-changing guide, the spun yarn can be bent considerably without imposing a large load on the spun yam.

40

45

25

35

40

45

[0009] In addition, the draft process unit and the pneumatic spinning unit are disposed in the first yam path, and the winding unit is disposed at the downstream end of the second yam path. Therefore, the doffing of a package or exchange of a winding core in the winding unit can be easily and accurately accomplished at the downstream end of the second yam path.

[0010] An angle formed between the second yam path and the first yarn path may be an acute angle. In this spinning machine, the size of the spinning machine in the up and down direction can be sufficiently reduced.

[0011] The spinning machine may further include a delivery roller disposed downstream of the first yarn path for delivering the spun yam delivered from the pneumatic spinning unit. The delivery roller may be disposed at an inner side of a portion of the yarn path where the direction is changed from the first yam path to the second yam path.

In this spinning machine, both the delivery roller and the yarn-accumulating device serve as direction-changing guides. Therefore, even if the bending angle from the first yarn path to the second yam path is small, the spun yarn can be smoothly guided to the second yam path. In other words, because two members are used for changing the direction of the spun yarn, when compared with the case in which a single member is used, the bending angle of the spun yam at each member can be set larger. Therefore, the tension applied to the spun yarn at each direction-changing guide can be reduced substantially. Thus, the load imposed on the spun yarn can be reduced, and malfunctions such as a break of the spun yarn can be reliably prevented.

[0012] A contact angle of the spun yam with respect to the delivery roller may be 90 degrees or less.

In this spinning machine, there is little probability that the spun yam tangles around the delivery roller. Therefore, productivity of the spinning machine is less likely to decrease.

[0013] The delivery roller may be made of a material having a high abrasive resistance.

In this spinning machine, the roller does not need to be exchanged as frequently, so that operation efficiency of the spinning machine is less likely to decrease.

[0014] An upstream side of the draft process unit and the winding unit may be disposed on the side closer to a passageway from where an operator operates the spinning machine. The yarn-accumulating device may be disposed behind the draft process unit and the winding unit when viewed from the passageway. Note that the position of the direction-changing guide, when viewed from the passageway, may be on the straight line connecting the draft process unit and the winding unit, or at a position laterally shifted from the straight line.

In this spinning machine, because the upstream side of the draft process unit is disposed on the side closer to the passageway for the operator, the operator can easily introduce the sliver to the upstream side. Similarly, because the winding unit is disposed on the passageway side, it is possible for the operator to doff a package and exchange a winding core easily and accurately. In other words, the total size of the spinning machine in the up and down direction can be reduced while an arrangement of units desired for the operator is realized. In addition, the width of the spinning machine, when viewed from the passageway, is smaller when compared with the case in which the entire first yam path and second yam path is disposed on the passageway side. Therefore, more spinning machines can be installed along the passageway.

[0015] The entire first yam path and second yam path may also be disposed on the side closer to the passageway for the operator.

In this spinning machine, because the entire first yarn path and second yam path is disposed on the side closer to the passageway for the operator, the operator can easily access all the units disposed along both yam paths. Therefore, the operator can easily handle and maintain the units. In other words, the total size of the spinning machine in the up and down direction can be reduced while an arrangement of the units desired for the operator is realized.

ADVANTAGEOUS EFFECTS OF INVENTION

[0016] In the spinning machine according to the present invention, each unit can be handled and maintained easily, so that production of a package can be improved.

BRIEF DESCRIPTION OF DRAWINGS

[0017]

Fig. 1 is a side view of a spinning machine according to an embodiment of the present invention.

Fig. 2 is a front view of the spinning machine.

Fig. 3 is a side view illustrating a structure of a yarn path in the spinning machine and an arrangement of units therein.

DESCRIPTION OF EMBODIMENTS

1. Fundamental structure of a spinning machine

[0018] Figs. 1 to 3 illustrate an embodiment of a spinning machine according to the present invention. In this embodiment, as illustrated in Fig. 2, a group of spinning machines 4 is arranged linearly with respect to a base frame 1. In this embodiment, for the sake of easy description, the arrangement direction of the group of spinning machines 4 is defined as the left and right direction and the direction perpendicular to the left and right direction in the horizontal plane is defined as the front and rear direction. In addition, the direction perpendicular to a floor surface on which the base frame 1 is installed is defined as the up and down direction. The orientation of the left, front, upper, and the orientation of the right, rear,

lower are illustrated in Figs. 1 and 2 with crossing arrows. [0019] At the left end of the base frame 1, a motor box 2 is disposed. At the right end of the base frame 1, a blower box 3 is disposed. In a lower part of the front of the base frame 1, a housing portion 7 is disposed for housing cans 10, which store slivers S. In an upper part of the front of the base frame 1, a unit configuration section 8 is disposed in which units constituting the spinning machine 4 are arranged. On the front side of the base frame 1, there is a passageway for the operator, which extends in the left and right direction. The spinning machine 4 is used for manufacturing a package P by winding a spun yam Y from the sliver S as raw material, and one can 10 is disposed for each of the spinning machines 4. The can 10 has a cylindrical shape with a closed bottom surface and an upper opening, and has the same size as the can used in the conventional spinning machine. The can 10 may also be formed in a rectangular tubular shape.

2. Description of fundamental shape of yam path

[0020] A yarn path of the spinning machine 4 in the unit configuration section 8 has substantially a shape like "<" constituted of a first yam path R1 and a second yam path R2 as illustrated in Figs. 1 and 3. The first yam path R1 is constituted of a horizontal yam path extending from the front side to the rear side of the lower part of the unit configuration section 8. The second yarn path R2 is constituted of a yam path continuing from the first yam path R1, and is guided so as to change the direction of the yam from going towards the rear side to the direction towards the front side of the upper part of the unit configuration section 8 in an obliquely upward manner. Note that the first yam path R1 is constituted not of a strictly straight line in the front and rear direction, but a bent line that is substantially a straight line with parts bending in the up and down direction or in the left and right direction. The direction of the second yarn path R2 may change in the left and right direction within a traverse width of a traverse drum 28 of a winding unit 17, and the center of the traverse width can be regarded as a representative of the yarn path.

3. Description of individual units

[0021] The spinning machine 4 is constituted of individual units, including a sliver guide 11, a draft process unit 12, a pneumatic spinning unit 13, a delivery roller 14, a yarn-accumulating device 15, a yam clearer 16, the winding unit 17, and the like. Among these units 11 to 17, the sliver guide 11, the draft process unit 12, the pneumatic spinning unit 13, and the delivery roller 14 are arranged in this order along the first yarn path R1. In addition, the yarn-accumulating device 15, the yam clearer 16, and the winding unit 17 are arranged in this order along the second yarn path R2.

[0022] The draft process unit 12 is a device which

draws the sliver S to form the fiber bundle and delivers the fiber bundle to the pneumatic spinning unit 13. The draft process unit 12 is constituted of four pairs of draft rollers nipping and drawing the sliver S. The pairs of draft rollers are driven by a motor (not shown) and rotate in response thereto. As a specific arrangement, a back roller pair 21, a third roller pair 22, a second roller pair 23 around which an apron belt is wound, and a front roller pair 24, each of which being constituted of a pair of top and bottom rollers, are arranged in the front and rear direction from the upstream side in the first yam path R1. The rotation speed of the draft roller pairs 21 to 24 increases towards the downstream side. Thus, while the sliver S passes through the draft process unit 12, the sliver S is sent to the downstream side and is drawn to be a predetermined thinness based on a ratio between the rotation speeds of neighboring draft roller pairs. In this embodiment, the back roller pair 21 on the upstream side is disposed at the front side of the base frame 1, i.e. the side closer to the passageway for the operator. Thus, the operator can easily introduce the sliver S to the back roller pair 21.

[0023] The pneumatic spinning unit 13 is a device which applies a whirling air current to the fiber bundle so as to spin truly-twisted spun yam Y The pneumatic spinning unit 13 includes a pneumatic spinning nozzle, which forms the whirling air current, and a hollow guide shaft. The pneumatic spinning nozzle and the hollow guide shaft work together so that the whirling air current blows to the sliver S and twists the sliver S. As a result, the spun yam Y is formed.

[0024] The delivery roller 14 and a nip roller 26 are devices disposed on the downstream side of the pneumatic spinning unit 13 for delivering the yam. The delivery roller 14 is disposed above the nip roller 26, and more specifically, right above the nip roller 26. The delivery roller 14 is driven by a motor (not shown) and rotates in response thereto. The nip roller 26 is a roller that, when working together with the delivery roller 14, nips the spun yam Y. In general, the delivery roller 14 is formed of a metallic material having high abrasive resistance, such as iron or aluminum, and the surface of the nip roller 26 is formed of an elastic material, such as rubber. Thus, the spun yarn Y delivered from the draft process unit 12 and the pneumatic spinning unit 13 can be reliably nipped and delivered to the downstream side along the yam traveling direction.

[0025] The yarn-accumulating device 15 has a cylindrical shape with a tapered flange on its downstream side in the second yam path R2. The shape of the yarn-accumulating device 15 is not limited to the illustrated one. As long as the spun yarn Y delivered from the pneumatic spinning unit 13 can be temporarily stored, the shape may also be a cylindrical shape with a tapered flange on the upstream side in the second yam path R2. The yarn-accumulating device 15 is disposed above the delivery roller 14, and more specifically, slightly shifted towards the rear above the delivery roller 14. In addition, the ro-

40

25

tation axis of the yarn-accumulating device 15 extends obliquely upward when viewed from the rear to the front of the device.

[0026] The spun yam Y is guided into the yarn-accumulating device 15 in the direction perpendicular to the rotation axis of the yarn-accumulating device 15 and is wound spirally around the outer circumferential surface thereof so as to be accumulated. The accumulated spun yam Y is drawn out in the direction of the rotation axis of the yarn-accumulating device 15, and after the yam clearer 16 checks the spun yarn Y for any yam defect, the spun yam Y is wound by the winding unit 17.

[0027] The winding unit 17, which is located at the downstream end of the second yarn path R2 and at the uppermost part of the spinning machine 4, includes the traverse drum 28 which traverses the spun yam Y along the center axis direction of the package P, a cradle arm 29 which supports a winding core of the package P, and the like. The cradle arm 29 is urged by swinging urging means (not shown) in such a direction that the package P is in contact with the traverse drum 28. The traverse drum 28 rotates while being in contact with the package P so as to apply a torque to the package P. The winding unit 17 is disposed at the front side of the base frame 1, i.e. the side closer to the passageway for the operator. Thus, the operator can doff the package P and exchange the winding core easily and accurately.

4. Detailed description of yam path

[0028] In this embodiment, both the delivery roller 14 and the yarn-accumulating device 15 serve as a direction-changing guide. Specifically, the spun yarn Y delivered from the pneumatic spinning unit 13 is guided by the delivery roller 14 and the yarn-accumulating device 15 such that its direction changes to an obliquely frontward and upward direction, and is delivered to the second yam path R2. In other words, the spun yarn Y is bent at an obtuse angle by the delivery roller 14 and is bent at a right angle by the yarn-accumulating device 15.

In this way, a bending angle θ between the first yam path R1 and the second yam path R2 is an acute angle. This bending angle θ is preferably 90 degrees or less, so that the size of the unit configuration section 8 in the up and down direction is small. When the bending angles of the spun yam Y at the delivery roller 14 and the yarn-accumulating device 15 are respectively denoted by α and β , the bending angle θ is expressed as $\theta = \alpha + \beta - 180$ (degrees).

[0029] In this embodiment, as described above, the yam path is bent at an obtuse angle by the delivery roller 14. In other words, the delivery roller 14 is disposed at an inner side of a portion of the yam path where the direction is changed from the first yam path R1 to the second yam path R2, and the nip roller 26 is disposed at an outer side of the portion of the yam path where the direction is changed from the first yam path R1 to the second yam path R2. This is because if the nip roller 26, which

is made of rubber, is used for bending the yam path, the surface of the nip roller 26 would wear out soon due to the spun yam Y running at high speed. In that case, the nip roller 26 must then be exchanged frequently, which deteriorates the utilization rate of the spinning machine 4. In addition, production of the package P is also deteriorated. Therefore, in this embodiment, the spinning machine 4 has a structure in which the delivery roller 14, which is made of a metal having high abrasive resistance, is used for bending the yarn path. Thus, the yarn path is bent while good utilization rate of the spinning machine 4 is maintained, so that a spinning machine 4 having a reduced base frame height can be realized.

[0030] Further, as illustrated in Fig. 3, a contact angle γ of the spun yam Y around the delivery roller 14 is 90 degrees or less. If the contact angle γ is 90 degrees or more, i.e. the spun yarn Y is in contact with the delivery roller 14 for a larger area, the running spun yam Y may fail to be delivered to the yarn-accumulating device 15 and tangles around the delivery roller 14. If the spun yarn Y tangles around the delivery roller 14, the running of the spun yam Y is stopped by the delivery roller 14 and the spun yam Y cannot be wound around the package P. As a result, productivity of the spinning machine 4 is deteriorated. Further, if the spun yarn Y is supplied to the downstream side in the yarn traveling direction in spite of the tangling around the delivery roller 14, and is wound to form the package P, the following malfunction occurs. The spun yam Y that has been damaged by being tangled around the delivery roller 14 is wound to form the package P, which causes the quality of the package P to deteriorate. In addition, it is desirable in view of yam quality that the spun yam Y does not substantively contact the individual units before being wound to form the package P. Therefore, in this embodiment, the contact angle γ is set to 90 degrees or less.

5. Effect of the embodiment

[0031] As described above, in this embodiment, the yarn path of the spinning machine 4 in the unit configuration section 8 is formed to have a shape like "<", and includes the first yarn path R1 arranged laterally from the front side to the rear side in the lower part of the unit configuration section 8, and the second yam path R2 that continues from the first yam path R1 and is guided to a different direction from that of the first yam path R1 and extends to the upper part of the unit configuration section 8. Thus, a distance in the up and down direction between the lower end of the first yam path R1 and the upper end of the second yam path R2 is reduced by almost 50%, compared with the conventional arrangement, to be approximately 600 mm. Further, a distance in the up and down direction between the floor and the winding unit 17 can be approximately 1800 mm, which is just a little higher than the height of a typical operator. Therefore, the operator can access the winding unit 17 without using a workbench. Thus, the operator can handle and carry out maintenance work on the winding unit 17 easily and accurately. Further, the operator can doff the package P and exchange the winding core thereof easily and accurately. In this way, the efficiency of the spinning machine can be improved, and overall production of the package P can be improved.

6. Other embodiments

[0032] Although one embodiment of the present invention has been described above, the present invention is not limited to the embodiment and can be modified variously without deviating from the scope and the spirit of the present invention.

(1) In the embodiment described above, the first yam path R1 extends from the front side to the rear side in the lower part of the unit configuration section 8, and the second yam path R2 extends from the rear side of the lower part of the unit configuration section 8 to the front side of the upper part of the unit configuration section 8. However, the present invention is not limited to this structure. For example, the entire first yarn path R1 and second yarn path R2 may be disposed at the front side of the unit configuration section 8. In this case, the first yam path R1 and the second yam path R2 extend not in the front and rear direction but in the left and right direction. If the entire yam path is disposed at the front side, i.e. the side closer to the passageway for the operator, as is in this modified example, the operator can easily access all the units 11 to 17 in the unit configuration section 8. Therefore, the operator can easily handle and carry out maintenance work on the units 11 to 17.

[0033]

(2) In the embodiment described above, both the delivery roller 14 and the yarn-accumulating device 15 also serve as the direction-changing guide. However, it is acceptable that only the yarn-accumulating device 15 is used as the direction-changing guide.

If only the yarn-accumulating device 15 serves as the direction-changing guide, the delivery roller 14 and the nip roller 26 can be removed from the spinning machine 4. In this case, the number of units which the spun yam Y contacts before being wound to form the package P can be reduced. Therefore, the quality of the spun yam Y wound to form the package P can be further improved. Since the number of units in the spinning machine 4 is reduced, the structure can be simplified while the height of the base frame is reduced.

[0034]

(3) In the embodiment described above, the bending angle of the spun yam Y at the yarn-accumulating device 15 is the right angle. However, the present

invention is not limited to the described embodiment. As long as the total bending angle 0 is an acute angle, the bending angle β at the yarn-accumulating device 15 may also be an acute angle. If the yam path is arranged as described, the height of the base frame of the spinning machine 4 can be further reduced.

[0035]

(4) In addition to the delivery roller 14 and the yarnaccumulating device 15, a special-purpose member may be provided as a part of the direction-changing guide.

15 Specifically, either a single or multiple special-purpose members may be used as the direction-changing guide. Alternatively, one or both of the delivery roller 14 and the yarn accumulating device 15 may be combined with a special-purpose member to be used as the direction-changing guide. As a specific example of the special-purpose member, a rotatable roller or a fixed and supported guide rod like a round shaft may be used. The delivery roller 14 may also be omitted.

[0036]

25

30

35

40

45

(5) The yarn path in the unit configuration section 8 does not strictly have to have a shape like "<" as illustrated in Figs. 1 and 3. For example, the yarn path may have a shape like "L" or a similar shape. Further, the shape may be a mirrored shape of "<" or "L".

[0037]

(6) The first yarn path R1 does not have to be horizontal, but may be inclined downward or upward.

[0038]

(7) The draft process unit 12 does not have to be constituted of four draft roller pairs, but may be constituted of three draft roller pairs.

[0039]

(8) Instead of the traverse drum 28, a traverse guide, which traverses the spun yam Y, and a friction roller which contacts the package P so as to apply the torque to the package P may be provided.

INDUSTRIAL APPLICABILITY

[0040] The present invention can be widely applied to spinning machine that includes units such as a draft process unit, a pneumatic spinning unit, and a winding unit.

10

15

25

30

40

45

50

55

REFERENCE SIGNS LIST

[0041]

4 spinning machine

- 8 unit configuration section
- 10 can
- 12 draft process unit
- 13 pneumatic spinning unit
- 14 delivery roller
- 15 yarn-accumulating device
- 17 winding unit
- S sliver
- Y spun yam
- P package
- R1 first yam path
- R2 second yarn path

Claims

1. A spinning machine comprising:

a draft process unit configured to draw a sliver; a pneumatic spinning unit arranged to twist the sliver drawn by the draft process unit and deliver a spun yarn;

a yarn-accumulating device arranged to temporarily accumulate the spun yam delivered from the pneumatic spinning unit; and

- a winding unit arranged to wind the spun yam so as to form a package, wherein
- a yam path in a unit configuration section where the draft process unit, the pneumatic spinning unit, the yarn-accumulating device, and the winding unit are disposed includes a first yam path arranged to be horizontal or inclined gently, and a second yam path arranged to continue from the first yam path and is guided by the yarn-accumulating device to a different direction from that of the first yam path, and

the draft process unit and the pneumatic spinning unit are disposed in the first yam path, and the winding unit is disposed at a downstream end of the second yam path.

- 2. The spinning machine according to claim 1, wherein an angle between the second yarn path and the first yam path is an acute angle.
- 3. The spinning machine according to claim 1 or 2, further comprising a delivery roller disposed downstream of the first yam path and arranged to deliver the spun yarn delivered from the pneumatic spinning unit, wherein

the delivery roller is disposed at an inner side of a portion of the yam path where the direction is changed from the first yam path to the second yam path.

- **4.** The spinning machine according to claim 3, wherein a contact angle of the spun yam with respect to the delivery roller is 90 degrees or less.
- **5.** The spinning machine according to claim 3 or 4, wherein the delivery roller is made of a material having a high abrasive resistance.
- **6.** The spinning machine according to any one of claims 1 to 5, wherein

an upstream side of the draft process unit and the winding unit are disposed on a side closer to a passageway from where an operator operates the spinning machine, and

the yarn-accumulating device is disposed behind the draft process unit and the winding unit when viewed from the passageway.

7. The spinning machine according to any one of claims 1 to 5, wherein the entire first yarn path and second yam path are disposed on a side closer to a passageway for an operator operating the spinning machine.

7

FIG. 1

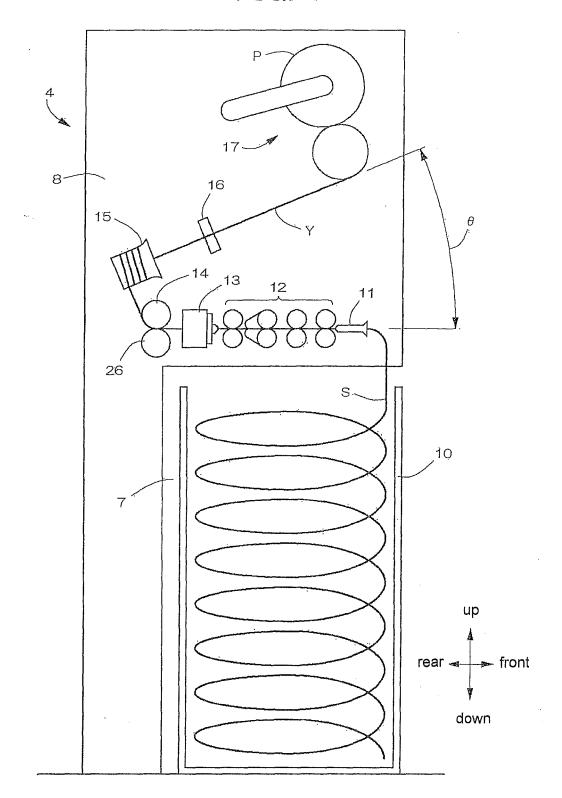
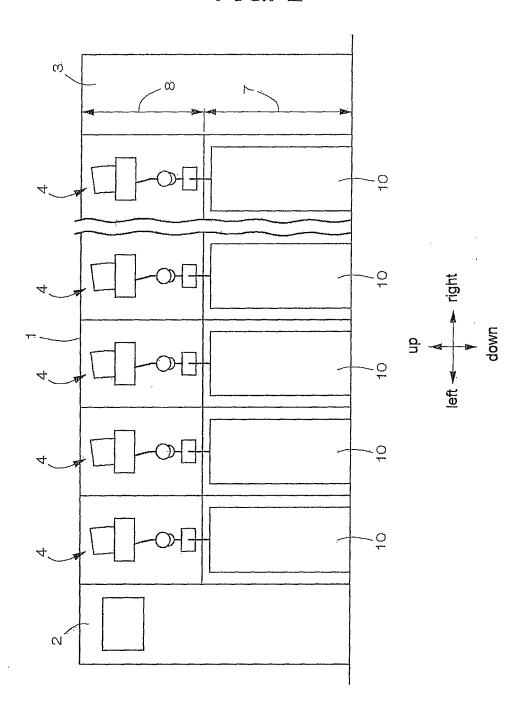
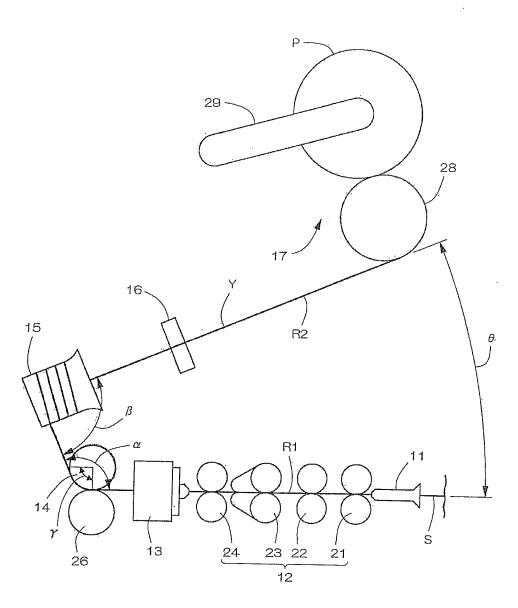




FIG. 2

EP 2 366 817 A1

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2009/005844

	CATION OF SUBJECT MATTER 2006.01)i,	01H13/00		
(2006.01)	i			
According to Int	ernational Patent Classification (IPC) or to both national classification and IPC			
B. FIELDS SE				
D01H1/00-	nentation searched (classification system followed by classification symbols) 17/02, D02G1/00-3/48, D02J1/00-13/00			
	searched other than minimum documentation to the extent that such documents are included in the			
Jitsuyo Shinan Koho 1922-1996 Jitsuyo Shinan Toroku Koho 1996-2009 Kokai Jitsuyo Shinan Koho 1971-2009 Toroku Jitsuyo Shinan Koho 1994-2009				
Electronic data l	base consulted during the international search (name of data base and, where practicable, search to	erms used)		
C. DOCUME	NTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.		
Y	<pre>JP 59-43126 A (Maschinenfabrik Rieter AG.), 10 March 1984 (10.03.1984), page 2, lower right column, line 15 to page 3, upper left column, line 9; fig. 2, 3 & EP 104415 A1</pre>	1-7		
Y	JP 2006-306588 A (Murata Machinery Ltd.), 09 November 2006 (09.11.2006), entire text; all drawings & EP 1717182 A2	1-7		
Y	JP 3378619 B2 (Maschinenfabrik Rieter AG.), 17 February 2003 (17.02.2003), paragraph [0015] & DE 4230316 A & IT 1272563 B & CN 1084910 A	5		
× Further do	ocuments are listed in the continuation of Box C. See patent family annex.			

later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier application or patent but published on or after the international filing date "E" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 18 November, 2009 (18.11.09) 01 December, 2009 (01.12.09) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office Telephone No

Form PCT/ISA/210 (second sheet) (April 2007)

EP 2 366 817 A1

INTERNATIONAL SEARCH REPORT International application No.

	F		PCT/JP2009/005844	
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.	
Y	JP 62-110927 A (Ishikawa Seisakusho, Ltd 22 May 1987 (22.05.1987), page 3, lower left column, lines 11 to 19 (Family: none)		5	
A	Microfilm of the specification and drawing annexed to the request of Japanese Utility Model Application No. 170280/1985 (Laid-op No. 79884/1987) (Toyoda Automatic Loom Works, Ltd.), 21 May 1987 (21.05.1987), pages 5, 13, 14; fig. 1, 2 (Family: none)	ΣÝ	1-7	
Α	JP 2008-540861 A (Oerlikon Textile GmbH KG.), 20 November 2008 (20.11.2008), entire text; all drawings & US 2009/0094958 A & EP 1907612 A & WO 2006/122605 A1 & DE 10200502218 & CN 101171374 A		1-7	
A	JP 2004-169264 A (Maschinenfabrik Rieter 17 June 2004 (17.06.2004), entire text; all drawings & US 2004/0226278 A1 & EP 1422323 A2 & CN 1502730 A	AG.),	1-7	
А	CD-ROM of the specification and drawings annexed to the request of Japanese Utilit Model Application No. 45300/1992(Laid-ope No. 96075/1993) (Murata Machinery Ltd.), 27 December 1993 (27.12.1993), entire text; all drawings (Family: none)		1-7	
A	JP 5-331718 A (Murata Machinery Ltd.), 14 December 1993 (14.12.1993), entire text; all drawings (Family: none)		1-7	
Α	CD-ROM of the specification and drawings annexed to the request of Japanese Utilit Model Application No. 65145/1991(Laid-ope No. 10478/1993) (Murata Machinery Ltd.), 09 February 1993 (09.02.1993), entire text; all drawings (Family: none)		1-7	

Form PCT/ISA/210 (continuation of second sheet) (April 2007)

EP 2 366 817 A1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• WO 06122605 A [0003]