# (11) **EP 2 369 011 A1**

(12)

#### **EUROPEAN PATENT APPLICATION**

(43) Date of publication:

28.09.2011 Bulletin 2011/39

(51) Int CI.:

C12Q 1/68 (2006.01)

(21) Application number: 11151749.6

(22) Date of filing: 19.03.2007

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

(30) Priority: 20.03.2006 US 743585 P

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: 07753450.1 / 1 996 731

(71) Applicant: The Ohio State University Research Foundation
Columbus, OH 43210-1063 (US)

(72) Inventors:

Croce, Carlo M.
 Colombus, OH 43221 (US)

Calin, George A.
 Pearland, TX 77584 (US)

 Garzon, Ramiro Colombus, OH 43221 (US)

(74) Representative: Turner, Craig Robert
 A.A. Thornton & Co.
 235 High Holborn
 London WC1V 7LE (GB)

#### Remarks:

This application was filed on 21-01-2011 as a divisional application to the application mentioned under INID code 62.

#### (54) Microrna fingerprints during human megakaryocytopoiesis

(57) The present invention provides novel methods and compositions for the diagnosis, prognosis and treatment of cancer and myeloproliferative disorders. The invention also provides methods of identifying anti-cancer agents.

EP 2 369 011 A1

#### Description

30

35

40

50

#### CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of United States Provisional Application No. 60/743,585, filed March 20, 2006, the disclosure of which is incorporated herein by reference.

#### STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

[0002] The invention was supported, in whole or in part, by National Institutes of Health Program Project Grants PO1CA76259, PO1CA16058, PO1GA81534 and PO1CA16672. The Government has certain rights in the invention.

#### BACKGROUND OF THE INVENTION

[0003] MicroRNAs (miRNAs) are a small non-coding family of 19-25 nucleotide RNAs that regulate gene expression by targeting messenger RNAs (mRNA) in a sequence specific manner, inducing translational repression or mRNA degradation depending on the degree of complementarity between miRNAs and their targets (Bartel, D.P. (2004) Cell 116, 281-297;' Ambros, V. (2004) Nature 431, 350-355). Many miRNAs are conserved in sequence between distantly related organisms, suggesting that these molecules participate in essential processes. Indeed, miRNAs are involved in the regulation of gene expression during development (Xu, P., et al. (2003) Curr. Biol. 13, 790-795), cell proliferation (Xu, P., et al. (2003) Curr. Biol. 13, 790-795), apoptosis (Cheng, A.M., et al. (2005) Nucl. Acids Res. 33, 1290-1297), glucose metabolism (Poy, M.N., et al. (2004) Nature 432, 226-230), stress resistance (Dresios, J., et al. (2005) Proc. Natl. Acad. Sci. USA 102, 1865-1870) and cancer (Calin, G.A, et al. (2002) Proc. Natl. Acad. Sci. USA 99, 1554-15529; Calin, G.A., et al. (2004) Proc. Natl. Acad. Sci. USA 101, 11755-11760; He, L., et al. (2005) Nature 435, 828-833; and Lu, J., et al. (2005) Nature 435:834-838).

[0004] There is also strong evidence that miRNAs play a role in mammalian hematopoiesis. In mice, miR-181, miR-223 and miR-142 are differentially expressed in hematopoietic tissues, and their expression is regulated during hematopoiesis and lineage commitment (Chen, C.Z., et al. (2004) Science 303, 83-86). The ectopic expression of miR-181 in murine hematopoietic progenitor cells led to proliferation in the B-cell compartment (Chen, C.Z., et al. (2004) Science 303, 83-86). Systematic miRNA gene profiling in cells of the murine hematopoietic system revealed different miRNA expression patterns in the hematopoietic system compared with neuronal tissues, and identified individual miRNA expression changes that occur during cell differentiation (Monticelli, S., et al. (2005) Genome Biology 6, R71). A recent study has identified down-modulation of miR-221 and miR-222 in human erythropoietic cultures of CD34+ cord blood progenitor cells (Felli, N., et al. (2005) Proc. Natl. Acad. Sci. USA. 102, 18081-18086). These miRNAs were found to target the oncogene c-Kit. Further functional studies indicated that the decline of these two miRNAs in erythropoietic cultures unblocks Kit protein production at the translational level leading to expansion of early erythroid cells (Felli, N., et al. (2005) Proc. Natl. Acad. Sci. USA. 102, 18081-18086). In line with the hypothesis of miRNAs regulating cell differentiation, miR-223 was found to be a key member of a regulatory circuit involving C/EBPa and NFI-A, which controls granulocytic differentiation in all-trans retinoic acid-treated acute promyelocytic leukemic cell lines (Fazi, F., et al. (2005) Cell 123, 819-831).

[0005] miRNAs have also been found deregulated in hematopoietic malignancies. Indeed, the first report linking miRNAs and cancer involved the deletion and down regulation of the miR-15a and miR-16-1 cluster, located at chromosome 13q14.3, a commonly-deleted region in chronic lymphocytic leukemia (Calin, G.A, et al. (2002) Proc. Natl. Acad. Sci. USA 99,1554-15529). High expression of miR-155 and host gene BIC was also reported in B-cell lymphomas (Metzler M., et al. (2004) Genes Chromosomes and Cancer 39; 167-169). More recently it was shown that the miR-17-92 cluster, which is located in a genomic region of amplification in lymphomas, is overexpressed in human B-cell lymphomas and the enforced expression of this cluster acted in concert with c-MYC expression to accelerate tumor development in a mouse B cell lymphoma model (He, L., et al. (2005) Nature 435, 828-833). These observations indicate that miRNAs are important regulators of hematopoiesis and can be involved in malignant transformation.

[0006] Platelets play an essential role in hemostasis and thrombosis. They are produced from in large numbers from their parent cells, bone marrow megakaryocytes, and arise from fragmentation of the cytoplasm. Only recently has the molecular basis of what may turn out to be a large family of related disorders affecting platelet production started to be defined. If the level of circulating platelets drops below a certain number (thrombocytopenia), the patient runs the risk of catastrophic hemorrhage. Patients with cancer who have received chemotherapy or bone marrow transplants usually have thrombocytopenia, and the slow recovery of platelet count in these patients has been a concern. The demand for platelet units for transfusion has been steadily increasing primarily because of the need to maintain a certain platelet level in such patients with cancer or those undergoing major cardiac surgery.

[0007] Identification of microRNAs that are differentially-expressed in cancer cells (e.g., leukemia cells) may help

pinpoint specific miRNAs that are involved in cancer and other disorders (e.g., platelet disorders). Furthermore, the identification of putative targets of these miRNAs may help to unravel their pathogenic role. In particular, discovering the patterns and sequence of miRNA expression during hematopoietic differentiation may provide insights about the functional roles of these tiny non-coding genes in normal and malignant hematopoiesis.

**[0008]** There is a need for novel methods and compositions for the diagnosis, prognosis and treatment of cancer, myeloproliferative disorders and platelet disorders (e.g., inherited platelet disorders).

#### SUMMARY OF THE INVENTION

15

20

30

35

40

45

50

55

**[0009]** The present invention is based, in part, on the identification of specific miRNAs that are involved in megakary-ocytic differentiation and/or have altered expression levels in cancerous cells (e.g., in acute megakaryoblastic leukemia (AMKL cell lines)). In the present study, the miRNA gene expression in human megakaryocyte cultures from bone marrow CD34<sup>+</sup> progenitors and acute megakaryoblastic leukemia cell lines was investigated. The results of this analysis indicate that several miRNAs are downregulated during normal megakaryocytic differentiation. The results further demonstrate that these miRNAs target genes involved in megakaryocytopoiesis, while others are over expressed in cancer cells.

**[0010]** Accordingly, the invention encompasses methods of diagnosing or prognosticating cancer and/or a myeloproliferative disorder in a subject (e.g., a human). According to the methods of the invention, the level of at least one miR gene product in a test sample from the subject is compared to the level of a corresponding miR gene product in a control sample. An alteration (e.g., an increase, a decrease) in the level of the miR gene product in the test sample, relative to the level of a corresponding miR gene product in the control sample, is indicative of the subject either having, or being at risk for developing, cancer and/or a myeloproliferative disorder. In one embodiment, the level of the miR gene product in the test sample from the subject is greater than that of the control. In another embodiment, the at least one miR gene product is selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135 and miR-20. In still another embodiment, the at least one miR gene product is selected from the group consisting of miR-106, miR-20 and miR-135. In yet another embodiment, the at least one miR gene product is selected from the group consisting of miR-106, miR-20 and miR-135. In particular embodiments, the cancer that is diagnosed or prognosticated is a leukemia (e.g., acute myeloid leukemia (e.g., acute megakaryoblastic leukemia)) or multiple myeloma. In other embodiments, the myeloproliferative disorder is selected from the group consisting of essential thrombocytemia (ET), polycythemia vera (PV), myelodisplasia, myelofibrosis (e.g., agnogenic myeloid metaplasia (AMM) (also referred to as idiopathic myelofibrosis)) and chronic myelogenous leukemia (CML).

[0011] In another embodiment, the invention is a method of treating a cancer and/or a myeloproliferative disorder in a subject (e.g., a human). In the method, an effective amount of a compound for inhibiting expression of at least one miR gene product selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135 and miR-20 is administered to the subject. In one embodiment, the compound for inhibiting expression of at least one miR gene product inhibits expression of a miR gene product selected from the group consisting of miR-101, miR-126, miR-106, miR-20 and miR-135. In another embodiment the compound for inhibiting expression of at least one miR gene product inhibits expression of a miR gene product selected from the group consisting of miR-106, miR-20 and miR-135. In particular embodiments, the cancer that is treated is a leukemia (e.g., acute myeloid leukemia (e.g., acute megakaryoblastic leukemia)) or multiple myeloma. In other embodiments, the myeloproliferative disorder is selected from the group consisting of essential thrombocytemia (ET), polycythemia vera (PV), myelodisplasia, myelofibrosis (e.g., agnogenic myeloid metaplasia (AMM)) and chronic myelogenous leukemia (CML).

**[0012]** In another embodiment, the invention is a method of treating a cancer and/or a myeloproliferative disorder associated with overexpression of a MAFB gene product in a subject (e.g., a human). In the method, an effective amount of at least one miR gene product or a variant or biologically-active fragment thereof, which binds to, and decreases expression of, the MAFB gene product, is administered to the subject. In one embodiment, the at least one miR gene product, variant or biologically-active fragment thereof comprises a nucleotide sequence that is complementary to a nucleotide sequence in the MAFB gene product. In another embodiment, the at least one miR gene product is miR-130a or a variant or biologically-active fragment thereof. Cancers and myeloproliferative disorders suitable for treatment using this method include, for example, those described herein.

**[0013]** In another embodiment, the invention is a method of treating a cancer and/or a myeloproliferative disorder associated with overexpression of a HOXA1 gene product in a subject (e.g., a human). In the method, an effective amount of at least one miR gene product or a variant or biologically-active fragment thereof, which binds to, and decreases expression of, the HOXA1 gene product, is administered to the subject. In one embodiment, the at least one miR gene product, variant or biologically-active fragment thereof comprises a nucleotide sequence that is complementary to a nucleotide sequence in the HOXA1 gene product. In another embodiment, the at least one miR gene product is miR-10a or a variant or biologically-active fragment thereof. Cancers and myeloproliferative disorders suitable for treatment using this method include, for example, those described herein.

[0014] In one embodiment, the invention is a method of determining and/or predicting megakaryocytic differentiation. In this method, the level of at least one miR gene product in a sample (e.g., a sample from a subject (e.g., a human)) comprising megakaryocyte progeny and/or megakaryocytes is determined. That level is compared to the level of the corresponding miR gene product in a control. An alteration in the level of the at least one miR gene product in the sample, relative to that of the control, is indicative of megakaryocytic differentiation. In one embodiment, the alteration is a decrease in the level of the at least one miR gene product in the sample. In another embodiment, the at least one miR gene product is selected from the group consisting of miR-10a, miR-126, miR-106, miR-010b, miR-130a, miR-130a-prec, miR-124a, miR-032-prec, miR-101, miR-30c, miR-213, nniR-132-prec, miR-150, miR-020, miR-339, let-7a, let-7d, miR-181b and miR-017. In still another embodiment, the at least one miR gene product is selected from the group consisting of miR-10a, miR-10b, miR-30c, miR-106, miR-126, miR-130a, miR-132, and miR-143.

[0015] The invention further provides pharmaceutical compositions for treating cancer and/or a myeloproliferative disorder. In one embodiment, the pharmaceutical compositions of the invention comprise at least one miR expression-inhibition compound and a pharmaceutically-acceptable carrier. In a particular embodiment, the at least one miR expression-inhibition compound is specific for a miR gene product whose expression is greater in cancer cells (e.g., acute megakaryoblastic leukemia (AMKL) cells) than control cells (i.e., it is upregulated). In one embodiment, the miR expression-inhibition compound is specific for one or more miR gene products selected from the group consisting of miR-101, miR-126, mik-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135 and miR-20. In another embodiment, the miR expression-inhibition compound is specific for one or more miR gene products selected from the group consisting of miR-101, miR-126, miR-106, miR-20, and miR-135. In still another embodiment, the miR expression-inhibition compound is specific for one or more miR gene products selected from the group consisting of miR-106, miR-20 and miR-135. In yet another embodiment, the pharmaceutical composition further comprises at least one anti-cancer agent.

**[0016]** In one embodiment, the invention is a pharmaceutical composition for treating a cancer associated with over-expression of a MAFB gene product and/or a myeloproliferative disorder associated with overexpression of a MAFB gene product. Such pharmaceutical compositions comprise an effective amount of at least one miR gene product and a pharmaceutically-acceptable carrier, wherein the at least one miR gene product binds to, and decreases expression of, the MAFB gene product. In another embodiment, the at least one miR gene product comprises a nucleotide sequence that is complementary to a nucleotide sequence in the MAFB gene product. In still another embodiment, the at least one miR gene product is miR-130a or a variant or biologically-active fragment thereof. In yet another embodiment, the pharmaceutical composition further comprises at least one anti-cancer agent.

[0017] In one embodiment, the invention is a pharmaceutical composition for treating a cancer associated with over-expression of a HOXA1 gene product and/or a myeloproliferative disorder associated with overexpression of a HOXA1 gene product. Such pharmaceutical compositions comprise an effective amount of at least one miR gene product and a pharmaceutically-acceptable carrier, wherein the at least one miR gene product binds to, and decreases expression of, the HOXA1 gene product. In another embodiment, the at least one miR gene product comprises a nucleotide sequence that is complementary to a nucleotide sequence in the HOXA1 gene product. In still another embodiment, the at least one miR gene product is miR-10a or a variant or biologically-active fragment thereof. In yet another embodiment, the pharmaceutical composition further comprises at least one anti-cancer agent.

**[0018]** Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.

#### BRIEF DESCRIPTION OF THE DRAWING

20

30

35

40

[0019] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.

[0020] FIGS. 1A-1D depict Northern Blots and Real Time miRNA-PCR results, which validate microRNA chip data in CD34 progenitor differentiation experiments.

[0021] FIG. 1A depicts Northern Blots for miR-130a, miR-10a and miR-223. A loading RNA control was performed with U6.

<sup>50</sup> **[0022]** FIG. 1B is a graph depicting RT-miRNA-PCR for miR-10a, miR-106, miR-126 and miR-130a. miRNA expression is presented as fold difference with respect to CD34<sup>+</sup> cells before culture.

[0023] FIG. 1C is a graph depicting temporal expression of miR-223 by microarray.

[0024] FIG. 1D is a graph depicting temporal expression of miR-15-1 and miR-16-1 by RT-miRNA PCR.

[0025] FIGS. 2A-2C demonstrate that MAFB is a target of miR-130a.

**[0026]** FIG. 2A depicts MAFB mRNA and protein expression data in CD34<sup>+</sup> progenitors induced to megakaryocytic differentiation. β-Actin was used for RT-PCR and Western blot loading controls.

[0027] FIG. 2B is a graph depicting relative repression of luciferase activity in MEG01 cells co-transfected with miR-10a and PGL3 3'UTRMAFB, miR-10a with PGL3 3'UTR, miR-10a seed match mutated and scramble with mutated, and

wild type 3'UTR MAFB.

20

35

40

50

55

[0028] FIG. 2C depicts Western blots of MAFB total protein lysates in K562 cells transfected with miR-130a and scramble.

[0029] FIGS. 3A-3G demonstrate that MiR-10a downregulates HOXA1 by mediating RNA cleavage.

[0030] FIG. 3A is a graph depicting RT-PCR results for HOXA1 gene expression in differentiated megakaryocytes (Relative amount of transcript with respect to CD34+ progenitors at baseline).

[0031] FIG. 3B is a Western blot showing hoxa1 protein expression in differentiated megakaryocytes.

**[0032]** FIG. 3C is a graph depicting relative repression of luciferase activity of HOXA1 3' UTR cloned PGL3 reporter plasmid when co-transfected with miR-10a and control scramble.

[0033] FIG. 3D is a schematic showing complementarity between miR-10a and the HOXA1 3'UTR as predicted by PICTAR.

[0034] FIG. 3E depicts RT-PCR results for miR-10a gene expression in scramble and miR-10a precursor transfected K562 cells.

**[0035]** FIG. 3F depicts RT-PCR results for HOXA1 gene expression in scramble and miR-10a precursor transfected K562 cells.

[0036] FIG. 3G is a Western blot showing HOXA1 expression in K562 cells transfected with control scramble and precursor miR-10a.

[0037] FIGS. 4A and 4B. show phenotypic characterization results of in vitro-differentiated CD34<sup>+</sup> progenitors.

**[0038]** FIG. 4A depicts May-Giemsa stains that were performed on cytospin preparations from CD34<sup>+</sup> progenitors in culture at different days of culture (day 6, day 10, day 12 and day 14). At day 4, most of the cells were immature, as evidenced by the high nucleous:cytoplasmic ratio. Larger and multinuclear cells were observed by day 10. At day 14, predominantly larger, polyploid cells with long cytoplasmic processes and numerous membrane blebs with invaginations and vacuoles (original magnification 400X) were observed.

**[0039]** FIG. 4B depicts FACS analysis of CD34 in vitro-differentiated megakaryocytes. The membrane phenotype of CD34<sup>+</sup> progenitor cells that are grown in culture is shown. Cells were harvested at days 10 (D+10), 14 (D+14) and 16 (D+16) and were analyzed by single fluorescent labeling using an anti-CD41 antibody, an anti-CD61a antibody, an anti-CD42a antibody and their respective isotype monoclonal antibodies (D + 10 isotype; D + 14 isotype; D + 16 isotype). Double labeling was performed with anti-CD41a and CD61b monoclonal Abs at day 14 only.

[0040] FIG. 5 is a graph depicting RT-PCR expression results for miR-20 and miR-17 in differentiated megakaryocytes.

The results are presented as fold difference with respect to CD34<sup>+</sup> cells at baseline after normalization with 18S and delta Ct calculations.

**[0041]** FIG. 6A is a graph depicting temporal expression of miR-16-1 during megakaryocytic differentiation. The absolute expression value of miR-16-1 was determined by a per-chip median normalization.

**[0042]** FIG. 6B is a graph depicting temporal expression of miR-142 during megakaryocytic differentiation. The absolute expression value of miR-142 was determined by a per-chip median normalization.

**[0043]** FIG. 6C is a graph depicting temporal expression of miR-181b during megakaryocytic differentiation. The absolute expression value of miR-181b was determined by a per-chip median normalization.

**[0044]** FIG. 7 is a Northern Blot of total RNA obtained from K562 cells transfected with *miR-130a* precursor and scramble sequences hybridized with the probe for miR-130a. An RNA loading control was performed using U6 hybridization.

[0045] FIG. 8 is a schematic depicting microRNAs that are located in the HOXA, HOXB, HOXC and HOXD gene clusters.

**[0046]** FIG. 9A is a graph depicting HOXB4 gene expression in differentiated megakaryocytes. RT-PCR results for HOXB4 are shown as fold difference in the expression level with respect to CD34<sup>+</sup> progenitors at baseline (before culture).

**[0047]** FIG. 9B is a graph depicting HOXB5 gene expression in differentiated megakaryocytes. RT-PCR results for HOXB5 are shown as fold difference in the expression levels with respect to CD34<sup>+</sup> progenitors at baseline (before culture).

**[0048]** FIG. 10 is a graph depicting microRNA expression in acute megakaryoblastic cell lines by RT-PCR. Results are expressed as fold difference with respect to CD34-differentiated megakaryocytes after normalization with 18S and delta Ct calculations.

#### DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

**[0049]** The present invention is based, in part, on the identification of specific microRNAs (miRNAs) that are involved in megakaryocytic differentiation and/or have altered expression levels in cancerous cells (e.g., in acute megakaryoblastic leukemia (AMKL cell lines)). The invention is further based, in part, on association of these miRNAs with particular diagnostic, prognostic and therapeutic features. As described and exemplified herein:

[0050] i) particular miRNA are downregulated during megakaryocytic differentiation;

[0051] ii) the transcription factor MAFB is a target for miR-130a;

[0052] iii) miR-10a expression parallels that of HOXB gene expression;

[0053] iv) miR-10a downregulates HOXA1 expression; and

[0054] v) particular miRNA are upregulated in cancerous cells (e.g., acute megakaryoblastic leukemia (AMKL) cells).

**[0055]** As used herein interchangeably, a "miR gene product," "microRNA," "miR," "miR" or "miRNA" refers to the unprocessed or processed RNA transcript from a miR gene. As the miR gene products are not translated into protein, the term "miR gene products" does not include proteins. The unprocessed miR gene transcript is also called a "miR precursor," and typically comprises an RNA transcript of about 70-100 nucleotides in length. The miR precursor can be processed by digestion with an RNAse (for example, Dicer, Argonaut, RNAse III (e.g., *E. coli* RNAse III)) into an active 19-25 nucleotide RNA molecule. This active 19-25 nucleotide RNA molecule is also called the "processed" miR gene transcript or "mature" miRNA.

**[0056]** The active 19-25 nucleotide RNA molecule can be obtained from, the miR precursor through natural processing routes (e.g., using intact cells or cell lysates) or by synthetic processing routes (e.g., using isolated processing enzymes, such as isolated Dicer, Argonaut, or RNAse III). It is understood that the active 19-25 nucleotide RNA molecule can also be produced directly by biological or chemical synthesis, without having to be processed from the miR precursor. When a microRNA is referred to herein by name, the name corresponds to both the precursor and mature forms, unless otherwise indicated.

[0057] Tables 1a and 1b depict the nucleotide sequences of particular precursor and mature human microRNAs. [0058]

Table 1a: Human microRNA Precursor Sequences.

**Precursor Name** Sequence (5' To 3')\* SEQ ID NO. let-7a-1 CACUGUGGGAUGAGGUAGUAGGUUGUAUAGUUUUA GGGUCACACCACCACUGGGAGAUAACÙAUACAAU CUACUGUCUUUCCUAACGUG let-7a-2 2 AGGU<u>UGAGGUAGUAGGUUGUAUAGUU</u>UAGAAUUAC AUCAAGGGAGAUAACUGUACAGCCUCCUAGCULUC CU let-7a-3 3 GGGUGAGGUAGGUUGUAUAGUUUGGGGCUCUG CCCUGCUAUGGGAUAACUAUACAAUCUACUGUCUU UCCU 4 let-7a-4 GUGACUGCAUGCUCCCAGGU<u>UGAGGUAGUAGGUUG</u> UAUAGUUUAGAAUUACACAAGGGAGAUAACUGUAC AGCCUCCUAGCUUUCCUUGGGUCUUGCACUAAACA AC let-7b 5 GGCGGGGUGAGGUAGUAGGUUGUGUGUGUUUCAGGG CAGUGAUGUUGCCCCUCGGAAGAUAACUAUACAAC CUACUGCCUUCCCUG let-7c 6 GCAUCCGGGUUGAGGUAGGUUGUAUGGUUUAG AGUUACACCCUGGGAGUUAACUGUACAACCUUCUA GCUUUCCUUGGAGC 7 let-7d CCUAGGAAGAGGUAGUAGGUUGCAUAGUUUUAGGG CAGGGAUUUUGCCCACAAGGAGGUAACUAUACGAC CUGCUGCCUUUCUUAGG let-7d-v1 8 CUAGGAAGAGGUAGUAGUUUGCAUAGUUUUAGGGC AAAGAUUUUGCCCACAAGUAGUUAGCUAUACGACC UGCAGCCUUUUGUAG let-7d-v2 9 CUGGCUGAGGUAGUAGUUUGUGCUGUUGGUCGGGU UGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAG CUACUGCCUUGCUAG

6

20

25

30

35

40

45

50

55

|    | Precursor Name | Sequence (5' To 3')*                                                                                                              | SEQ ID NO. |
|----|----------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | let-7e         | CCCGGGCUGAGGUAGGAGGUUGUAUAGUUGAGGAG<br>GACACCCAAGGAGAUCACUAUACGGCCUCCUAGCUU<br>UCCCCAGG                                           | 10         |
| 10 | let-7f-1       | UCAGAGUGAGGUAGUAGAUUGUAUAGUUGUGGGGU<br>AGUGAUUUUACCCUGUUCAGGAGAUAACUAUACAA<br>UCUAUUGCCUUCCCUGA                                   | 11         |
|    | let-7f-2-1     | CUGUGGGA <u>UGAGGUAGUAGAUUGUAUAGUU</u> GUGGG<br>GUAGUGAUUUUACCCUGUUCAGGAGAUAACUAUAC<br>AAUCUAUUGCCUUCCCUGA                        | 12         |
| 15 | let-7f-2-2     | CUGUGGGAUGAGGUAGUAGAUUGUAUAGUUUUAGG<br>GUCAUACCCCAUCUUGGAGAUAACUAUACAGUCUA<br>CUGUCUUUCCCACGG                                     | 13         |
| 20 | let-7g         | UUGCCUGAUUCCAGGC <u>UGAGGUAGUAGUUUGUACA</u> <u>GU</u> UUGAGGGUCUAUGAUACCACCCGGUACAGGAGA UAACUGUACAGGCCACUGCCUUGCCAGGAACAGCGC GC   | 14         |
| 25 | let-7i         | CUGGC <u>UGAGGUAGUAGUUUGUGCU</u> GUUGGUCGGGU<br>UGUGACAUUGCCCGCUGUGGAGAUAACUGCGCAAG<br>CUACUGCCUUGCUAG                            | 15         |
| 30 | miR-1b-1-1     | ACCUACUCAGAGUACAUACUUCUUUAUGUACCCAU<br>AUGAACAUACAAUGCUA <u>UGGAAUGUAAAGAAGUAU</u><br><u>GUAU</u> UUUUGGUAGGC                     | 16         |
| 35 | miR-1b-1-2     | CAGCUAACAACUUAGUAAUACCUACUCAGAGUACA<br>UACUUCUUUAUGUACCCAUAUGAACAUACAAUGCU<br>AUGGAAUGUAAAGAAGUAUGUAIJUUUUGGUAGGCA<br>AUA         | 17         |
|    | miR-1b-2       | GCCUGCUUGGGAAACAUACUUCUUUAUAUGCCCAU<br>AUGGACCUGCUAAGCUA <u>UGGAAUGUAAAGAAGUAU</u><br><u>GUA</u> UCUCAGGCCGGG                     | 18         |
| 40 | miR-1b         | UGGGAAACAUACUUCUUUAUAUGCCCAUAUGGACC<br>UGCUAAGCUAUGGAAUGUAAAGAAGUAUGUAUCUC<br>A                                                   | 19         |
| 45 | miR-1d         | ACCUACUCAGAGUACAUACUUCUUUAUGUACCCAU<br>AUGAACAUACAAUGCUA <u>UGGAAUGUAAAGAAGUAU</u><br><u>GUAUU</u> UUUGGUAGGC                     | 20         |
| 50 | miR-7-1a       | UGGAUGUUGGCCUAGUUCUGUG <u>UGGAAGACUAGUG</u><br>AUUUUGUUGUUUUUUAGAUAACUAAAUCGACAACAA<br>AUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCUA<br>CA | 21         |
| 55 | miR-7-1b       | UUGGAUGUUGGCCUAGUUCUGUG <u>UGGAAGACUAGU</u> GAUUUUGUUGUUUUUAGAUAACUAAAUCGACAACA AAUCACAGUCUGCCAUAUGGCACAGGCCAUGCCUCU ACAG         | 22         |

|    | Precursor Name | Sequence (5' To 3')*                                                                                                          | SEQ ID NO. |
|----|----------------|-------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-7-2        | CUGGAUACAGAGUGGACCGGCUGGCCCAUC <u>UGGA</u> AGACUAGUGAUUUUGUUGUUGUUGUCUUACUGCGCUCA ACAACAAAUCCCAGUCUACCUAAUGGUGCCAGCCAU CGCA   | 23         |
| 10 | miR-7-3        | AGAUUAGAGUGGCUGUGGUCUAGUGCUGUG <u>UGGAA</u> GACUAGUGAUUUUGUUGUUCUGAUGUACUACGACA ACAAGUCACAGCCGGCCUCAUAGCGCAGACUCCCUU CGAC     | 24         |
| 15 | miR-9-1        | CGGGGUUGGUUAUCUUUGGUUAUCUAGCUGUA<br><u>UGA</u> GUGGUGUGGAGUCUUCA <u>UAAAGCUAGAUAACC</u><br><u>GAAAGU</u> AAAAAUAACCCCA        | 25         |
| 20 | miR-9-2        | GGAAGCGAGUUGUUAUCUUUGGUUAUCUAGCUGUA<br>UGAGUGUAUUGGUCUUCA <u>UAAAGCUAGAUAACCGA</u><br>AAGUAAAAACUCCUUCA                       | 26         |
| 20 | miR-9-3        | GGAGGCCCGUUUCUCUUUUGGUUAUCUAGCUGUA<br><u>UGA</u> GUGCCACAGAGCCGUCA <u>UAAAGCUAGAUAACC</u><br><u>GAAAGU</u> AGAAAUGAUUCUCA     | 27         |
| 25 | miR-10a        | GAUCUGUCUGUCUGUAUA <u>UACCCUGUAGAUCC</u> GAAUUUGUGUAAGGAAUUUUGUGGUCACAAAUUCG UAUCUAGGGGAAUAUGUAGUUGACAUAAACACUCC GCUCU        | 28         |
| 30 | miR-10b        | CCAGAGGUUGUAAACGUUGUCUAUAUAUAUACCCUGUA<br>GAACCGAAUUUGUGUGGUAUCCGUAUAGUCACAGA<br>UUCGAUUCUAGGGGAAUAUAUGGUCGAUGCAAAAA<br>CUUCA | 29         |
| 35 | miR-15a-2      | GCGCGAAUGUGUGUUUAAAAAAAAAAAAAACCUUGG<br>AGUAAAGUAGCAGCACAUAAUGGUUUGUGGAUUUU<br>GAAAAGGUGCAGGCCAUAUUGUGCUGCCUCAAAAA<br>UAC     | 30         |
| 40 | miR-15a        | CCUUGGAGUAAAGUAGCAGCACAUAAUGGUUUGUG<br>GAUUUUGAAAAGGUGCAGGCCAUAUUGUGCUGCCU<br>CAAAAAUACAAGG                                   | 31         |
|    | miR-15b-1      | CUGUAGCAGCACAUCAUGGUUUACAUGCUACAGUC<br>AAGAUGCGAAUCAUUAUUUGCUGCUCUAG                                                          | 32         |
| 45 | miR-15b-2      | UUGAGGCCUUAAAGUACUG <u>UAGCAGCACAUCAUGG</u><br><u>UUUACA</u> UGCUACAGUCAAGAUGCGAAUCAUUAUUU<br>GCUGCUCUAGAAAUUUAAGGAAAUUCAU    | 33         |
| 50 | miR-16-1       | GUCAGCAGUGCCUUAGCAGCACGUAAAUAUUGGCG<br>UUAAGAUUCUAAAAUUAUCUCCAGUAUUAACUGUG<br>CUGCUGAAGUAAGGUUGAC                             | 34         |
| 55 | miR-16-2       | GUUCCACUCUAGCAGCACGUAAAUAUUGGCGUAGU<br>GAAAUAUAUUAAACACCAAUAUUACUGUGCUGC<br>UUUAGUGUGAC                                       | 35         |

|    | Precursor Name  | Sequence (5' To 3')*                                                                                                      | SEQ ID NO. |
|----|-----------------|---------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-16-13       | GCAGUGCCUUAGCAGCACGUAAAUAUUGGCGUUAA<br>GAUUCUAAAAUUAUCUCCAGUAUUAACUGUGCUGC<br>UGAAGUAAGGU                                 | 36         |
| 10 | miR-17          | GUCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUA<br>GUGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGU<br>AGCAUUAUGGUGAC                              | 37         |
|    | miR-18          | UGUUCUAAGGUGCAUCUAGUGCAGAUAGUGAAGUA<br>GAUUAGCAUCUACUGCCCUAAGUGCUCCUUCUGGC<br>A                                           | 38         |
| 15 | miR-18-13       | UUUUUGUUCUAAGGUGCAUCUAGUGCAGAUAGUGA<br>AGUAGAUUAGCAUCUACUGCCCUAAGUGCUCCUUC<br>UGGCAUAAGAA                                 | 39         |
| 20 | miR-19a         | GCAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACA<br>AGAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUG<br><u>A</u> UGGUGGCCUGC                        | 40         |
| 25 | miR-19a-13      | CAGUCCUCUGUUAGUUUUGCAUAGUUGCACUACAA<br>GAAGAAUGUAGUUGUGCAAAUCUAUGCAAAACUGA<br>UGGUGGCCUG                                  | 41         |
|    | miR-19b-1       | CACUGUUCUAUGGUUAGUUUUGCAGGUUUGCAUCC<br>AGCUGUGUGAUAUUCUGC <u>UGUGCAAAUCCAUGCAA</u><br><u>AACUGA</u> CUGUGGUAGUG           | 42         |
| 30 | miR-19b-2       | ACAUUGCUACUUACAAUUAGUUUUGCAGGUUUGCA<br>UUUCAGCGUAUAUAUGUAUAUGUGGC <u>UGUGCAAAU</u><br>CCAUGC <u>AAAACUGA</u> UUGUGAUAAUGU | 43         |
| 35 | miR-19b-13      | UUCUAUGGUUAGUUUUGCAGGUUUGCAUCCAGCUG<br>UGUGAUAUUCUGCUGUGCAAAUCCAUGCAAAACUG<br>ACUGUGGUAG                                  | 44         |
| 40 | miR-19b-X       | UUACAAUUAGUUUUGCAGGUUUGCAUUUCAGCGUA<br>UAUAUGUAUAUGUGGCUGUGCAAAUCCAUGCAAAA<br>CUGAUUGUGAU                                 | 45         |
|    | miR-20 miR-20a) | GUAGCACUAAAGUGCUUAUAGUGCAGGUAGUGUUU<br>AGUUAUCUACUGCAUUAUGAGCACUUAAAGUACUG<br>C                                           | 46         |
| 45 | miR-21          | UGUCGGGUAGCUUAUCAGACUGAUGUUGACUGUUG<br>AAUCUCAUGGCAACACCAGUCGAUGGGCUGUCUGA<br>CA                                          | 47         |
| 50 | miR-21-17       | ACCUUGUCGGGUAGCUUAUCAGACUGAUGUUGACU<br>GUUGAAUCUCAUGGCAACACCAGUCGAUGGGCUGU<br>CUGACAUUUUG                                 | 48         |
| 55 | miR-22          | GGCUGAGCCGCAGUAGUUCUUCAGUGGCAAGCUUU<br>AUGUCCUGACCCAGCUA <u>AAGCUGCCAGUUGAAGAA</u><br>CUGUUGCCCUCUGCC                     | 49         |

|    | Precursor Name | Sequence (5' To 3')*                                                                                              | SEQ ID NO. |
|----|----------------|-------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-23a        | GGCCGGCUGGGGUUCCUGGGGAUGGGAUUUGCUUC<br>CUGUCACAAAUCACAUUGCCAGGGAUUUCCAACCG<br>ACC                                 | 50         |
| 10 | miR-23b        | CUCAGGUGCUCUGGCUUGGGUUCCUGGCAUGC<br>UGAUUUGUGACUUAAGAUUAAA <u>AUCACAUUGCCAG</u><br>GGAUUACCACGCAACCACGACCUUGGC    | 51         |
| 45 | miR-23-19      | CCACGGCCGGCUGGGGUUCCUGGGGAUGGGAUUUG<br>CUUCCUGUCACAAAUCACAUUGCCAGGGAUUUCCA<br>ACCGACCCUGA                         | 52         |
| 15 | miR-24-1       | CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUU<br>UUACACACUGGCUCAGUUCAGCAGGAACAGGAG                                          | 53         |
| 20 | miR-24-2       | CUCUGCCUCCGUGCCUACUGAGCUGAAACACAGUU<br>GGUUUGUGUACACUGGCUCAGUUCAGCAGGAACAG<br>GG                                  | 54         |
| 25 | miR-24-19      | CCCUGGGCUCUGCCUCCGUGCCUACUGAGCUGAAA<br>CACAGUUGGUUUGUGUACAC <u>UGGCUCAGUUCAGCA</u><br>GGAACAGGGG                  | 55         |
| 25 | miR-24-9       | CCCUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAU<br>UUUACACACUGGCUCAGUUCAGCAGGAACAGCAUC                                       | 56         |
| 30 | miR-25         | GGCCAGUGUUGAGAGGCGGAGACUUGGGCAAUUGC<br>UGGACGCUGCCCUGGG <u>CAUUGCACUUGUCUCGGUC</u><br>UGACAGUGCCGGCC              | 57         |
| 35 | miR-26a        | AGGCCGUGGCCUCGUUCAAGUAAUCCAGGAUAGGC<br>UGUGCAGGUCCCAAUGGCCUAUCUUGGUUACUUGC<br>ACGGGGACGCGGGCCU                    | 58         |
|    | miR-26a-1      | GUGGCCUCG <u>UUCAAGUAAUCCAGGAUAGGCU</u> GUGC<br>AGGUCCCAAUGGGCCUAUUCUUGGUUACUUGCACG<br>GGGACGC                    | 59         |
| 40 | miR-26a-2      | GGCUGUGGCUGGA <u>UUCAAGUAAUCCAGGAUAGGCU</u><br>GUUUCCAUCUGUGAGGCCUAUUCUUGAUUACUUGU<br>UUCUGGAGGCAGCU              | 60         |
| 45 | miR-26b        | CCGGGACCCAG <u>UUCAAGUAAUUCAGGAUAGGU</u> UGU<br>GUGCUGUCCAGCCUGUUCUCCAUUACUUGGCUCGG<br>GGACCGG                    | 61         |
| 50 | miR-27a        | CUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGGU<br>CCACACCAAGUCGUGUUCACAGUGGCUAAGUUCCGC<br>CCCCCAG                            | 62         |
| 50 | miR-27b-1      | AGGUGCAGAGCUUAGCUGAUUGGUGAACAGUGAUU<br>GGUUUCCGCUUUG <u>UUCACAGUGGCUAAGUUCUG</u> CA<br>CCU                        | 63         |
| 55 | miR-27b-2      | ACCUCUCUAACAAGGUGCAGAGCUUAGCUGAUUGG<br>UGAACAGUGAUUGGUUUCCGCUUUG <u>UUCACAGUGG</u><br>CUAAGUUCUGCACCUGAAGAGAAGGUG | 64         |

| Precursor Name  | Sequence (5' To 3')*                                                                                                                     | SEQ ID NO. |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------|------------|
| miR-27-19       | CCUGAGGAGCAGGGCUUAGCUGCUUGUGAGCAGGG<br>UCCACACCAAGUCGUGUUCACAGUGGCUAAGUUCC<br>GCCCCCAGG                                                  | 65         |
| miR-28          | GGUCCUUGCCCUCAAGGAGCUCACAGUCUAUUGAG<br>UUACCUUUCUGACUUUCCCACUAGAUUGUGAGCUC<br>CUGGAGGGCAGGCACU                                           | 66         |
| miR-29a-2       | CCUUCUGUGACCCCUUAGAGGAUGACUGAUUUCUU<br>UUGGUGUUCAGAGUCAAUAUAAUUUU <u>CUAGCACCA</u><br><u>UCUGAAAUCGGUU</u> AUAAUGAUUGGGGAAGAGCACC<br>AUG | 67         |
| miR-29a         | AUGACUGAUUUCUUUUGGUGUUCAGAGUCAAUAUA<br>AUUUUCUAGCACCAUCUGAAAUCGGUUAU                                                                     | 68         |
| miR-29b-1       | CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUU<br>UAAAUAGUGAUUGUC <u>UAGCACCAUUUGAAAUCAGU</u><br>GUUCUUGGGGG                                        | 69         |
| miR-29b-2       | CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUU<br>UUUCCAUCUUUGUAUCUAGCACCAUUUGAAAUCAG<br>UGUUUUAGGAG                                                | 70         |
| mi <i>R-29c</i> | ACCACUGGCCCAUCUCUUACACAGGCUGACCGAUUU<br>CUCCUGGUGUUCAGAGUCUGUUUUUGU <u>CUAGCACC</u><br>AUUUGAAAUCGGUUAUGAUGUAGGGGGAAAAGCAG<br>CAGC       | 71         |
| miR-30a         | GCGAC <u>UGUAAACAUCCUCGACUGGAAGC</u> UGUGAAG<br>CCACAGAUGGGCUUUCAGUCGGAUGUUUGCAGCUG<br>C                                                 | 72         |
| miR-30b-1       | A <u>UGUAAACAUCCUACACUCAGC</u> UGUAAUACAUGGA<br>UUGGCUGGGAGGUGGAUGUUUACGU                                                                | 73         |
| miR-30b-2       | ACCAAGUUUCAGUUCA <u>UGUAAACAUCCUACACUCA</u><br>GCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUGUU<br>UACUUCAGCUGACUUGGA                                 | 74         |
| miR-30c         | AGAUACUGUAAACAUCCUACACUCUCAGCUGUGGA<br>AAGUAAGAAAGCUGGGAGAAGGCUGUUUACUCUUU<br>CU                                                         | 75         |
| miR-30d         | GUUGUUGUAAACAUCCCCGACUGGAAGCUGUAAGA<br>CACAGCUAAGCUUUCAGUCAGAUGUUUGCUGCUAC                                                               | 76         |
| miR-30e         | C <u>UGUAAACAUCCUUGACUGGAA</u> GCUGUAAGGUGUU<br>CAGAGGAGCUUUCAGUCGGAUGUUUACAG                                                            | 77         |
| miR-31          | GGAGAGGCAAGAUGCUGGCAUAGCUGUUGAAC<br>UGGGAACCUGCUAUGCCAACAUAUUGCCAUCUUUC<br>C                                                             | 78         |
| miR-32          | GGAGAUAUUGCACAUUACUAAGUUGCAUGUUGUCA<br>CGGCCUCAAUGCAAUUUAGUGUGUGUGAUAUUUUC                                                               | 79         |

|    | Precursor Name      | Sequence (5' To 3')*                                                                                                      | SEQ ID NO. |
|----|---------------------|---------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-33b             | GGGGCCGAGAGAGGCGGCCGGCCCCGCGGUGCAU UGCUGUUGCAUUGCA                                                                        | 80         |
| 10 | miR-33b-2           | ACCAAGUUUCAGUUCAUGUAAACAUCCUACACUCA<br>GCUGUAAUACAUGGAUUGGCUGGGAGGUGGAUGUU<br>UACUUCAGCUGACUUGGA                          | 81         |
| 15 | miR-33              | CUGUG <u>GUGCAUUGUAGUUGCAUUG</u> CAUGUUCUGGU<br>GGUACCCAUGCAAUGUUUCCACAGUGCAUCACAG                                        | 82         |
| 20 | miR-34-a            | GGCCAGCUGUGAGUGUUUCUU <u>UGGCAGUGUCUUAG</u> CUGGUUGUUGUGAGCAAUAGUAAGGAAGCAAUCAG CAAGUAUACUGCCCUAGAAGUGCUGCACGUUGUGG GGCCC | 83         |
|    | miR-34-b            | GUGCUCGGUUUGUAGGCAGUGUCAUUAGCUGAUUG<br>UACUGUGGUGGUUACAAUCACUAACUCCACUGCCA<br>UCAAAACAAGGCAC                              | 84         |
| 25 | miR-34-c            | AGUCUAGUUACUAGGCAGUGUAGUUAGCUGAUUGC<br>UAAUAGUACCAAUCACUAACCACACGGCCAGGUAA<br>AAAGAUU                                     | 85         |
| 30 | miR-91-13           | UCAGAAUAAUGUCAAAGUGCUUACAGUGCAGGUAG<br>UGAUAUGUGCAUCUACUGCAGUGAAGGCACUUGUA<br>GCAUUAUGGUGA                                | 86         |
| 35 | miR-92-1            | CUUUCUACACAGGUUGGGAUCGGUUGCAAUGCUGU<br>GUUUCUGUAUGGUAUUGCACUUGUCCCGGCCUGUU<br>GAGUUUGG                                    | 87         |
|    | miR-92 -2           | UCAUCCCUGGGUGGGGAUUUGUUGCAUUACUUGUG<br>UUCUAUAUAAAGUAUUGCACUUGUCCCGGCCUGUG<br>GAAGA                                       | 88         |
| 40 | miR-93-1 (miR-93-2) | CUGGGGCUCCAAAGUGCUGUUCGUGCAGGUAGUG<br>UGAUUACCCAACCUACUGCUGAGCUAGCACUUCCCG<br>AGCCCCCGG                                   | 89         |
| 45 | miR-95-4            | AACACAGUGGGCACUCAAUAAAUGUCUGUUGAAUU<br>GAAAUGCGUUACAUUCAACGGGUAUUUAUUGAGCA<br>CCCACUCUGUG                                 | 90         |
| 50 | miR-96-7            | UGGCCGAU <u>UUUGGCACUAGCACAUUUUUGC</u> UUGUG<br>UCUCUCCGCUCUGAGCAAUCAUGUGCAGUGCCAAU<br>AUGGGAAA                           | 91         |
|    | miR-97-6 (miR-30*)  | GUGAGCGACUGUAAACAUCCUCGACUGGAAGCUGU<br>GAAGCCACAGAUGGGCUUUCAGUCGGAUGUUUGCA<br>GCUGCCUACU                                  | 92         |
| 55 | miR-98              | GUGAGGUAGUAGUUGUAUUGUUGUGGGGUAGGGA<br>UAUUAGGCCCCAAUUAGAAGAUAACUAUACAACUU<br>ACUACUUUCC                                   | 93         |

|    | Precursor Name               | Sequence (5' To 3')*                                                                                                            | SEQ ID NO. |
|----|------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-99b                      | GGCACC <u>CACCGUAGAACCGACCUUGCG</u> GGCCUUC<br>GCCGCACACAAGCUCGUGUCUGUGGGUCCGUGUC                                               | 94         |
|    | miR-99a                      | CCCAUUGGCAUAAACCCGUAGAUCCGAUCUUGUGG<br>UGAAGUGGACCGCACAAGCUCGCUUCUAUGGGUCU<br>GUGUCAGUGUG                                       | 95         |
| 10 | miR-100-1/2                  | AAGAGAGAAGAUAUUGAGGCCUGUUGCCACA <u>AACC</u> <u>CGUAGAUCCGAACUUGUG</u> GUAUUAGUCCGCACAAG CUUGUAUCUAUAGGUAUGUGUCUGUUAGGCAAUCU CAC | 96         |
| 15 | miR-100-11                   | CCUGUUGCCACAAACCCGUAGAUCCGAACUUGUGG<br>UAUUAGUCCGCACAAGCUUGUAUCUAUAGGUAUGU<br>GUCUGUUAGG                                        | 97         |
| 20 | miR-101-1/2                  | AGGCUGCCCUGGCUCAGUUAUCACAGUGCUGAUGC<br>UGUCUAUUCUAAAGGUACAGUACUGUGAUAACUGA<br>AGGAUGGCAGCCAUCUUACCUUCCAUCAGAGGAGC<br>CUCAC      | 98         |
| 25 | miR-101                      | UCAGUUAUCACAGUGCUGAUGCUGUCCAUUCUAAA<br>GGUACAGUACUGUGAUAACUGA                                                                   | 99         |
|    | miR-101-1                    | UGCCCUGGCUCAGUUAUCACAGUGCUGAUGCUGUC<br>UAUUCUAAAGGUACAGUACUGUGAUAACUGAAGGA<br>UGGCA                                             | 100        |
| 30 | miR-101-2                    | ACUGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUG<br>UAUAUCUGAAAGGUACAGUACUGUGAUAACUGAAG<br>AAUGGUGGU                                         | 101        |
| 35 | miR-101-9                    | UGUCCUUUUUCGGUUAUCAUGGUACCGAUGCUGUA<br>UAUCUGAAAGG <u>UACAGUACUGUGAUAACUGAAG</u> AA<br>UGGUG                                    | 102        |
| 40 | miR-102-1                    | CUUCUGGAAGCUGGUUUCACAUGGUGGCUUAGAUU<br>UUUCCAUCUUUGUAUC <u>UAGCACCAUUUGAAAUCAG</u><br><u>U</u> GUUUUAGGAG                       | 103        |
|    | miR-102-71 (miR-<br>102-7.2) | CUUCAGGAAGCUGGUUUCAUAUGGUGGUUUAGAUU<br>UAAAUAGUGAUUGUCUAGCACCAUUUGAAAUCAGU<br>GUUCUUGGGGG                                       | 104        |
| 45 | miR-103-2                    | UUGUGCUUUCAGCUUCUUUACAGUGCUGCCUUGUA<br>GCAUUCAGGUCAAGCAACAUUGUACAGGGCUAUGA<br>AAGAACCA                                          | 105        |
| 50 | miR-103-1                    | UACUGCCUCGGCUUCUUUACAGUGCUGCCUUGUU<br>GCAUAUGGAUCAAGCAGCAUUGUACAGGGCUAUGA<br>AGGCAUUG                                           | 106        |
| 55 | miR-104-17                   | AAAUGUCAGACAGCCCAUCGACUGGUGUUGCCAUG<br>AGAUUCAACAG <u>UCAACAUCAGUCUGAUAAGCUA</u> CC<br>CGACAAGG                                 | 107        |

|    | Precursor Name  | Sequence (5' To 3')*                                                                                                               | SEQ ID NO. |
|----|-----------------|------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-105-1       | UGUGCAUCGUGG <u>UCAAAUGCUCAGACUCCUGU</u> GGU<br>GGCUGCUCAUGCACCACGGAUGUUUGAGCAUGUGC<br>UACGGUGUCUA                                 | 108        |
| 10 | miR-105-2       | UGUGCAUCGUGGUCAAAUGCUCAGACUCCUGUGGU<br>GGCUGCUUAUGCACCACGGAUGUUUGAGCAUGUGC<br>UAUGGUGUCUA                                          | 109        |
|    | miR-106-a       | CCUUGGCCAUGU <u>AAAAGUGCUUACAGUGCAGGUAG</u><br>CUUUUUGAGAUCUACUGCAAUGUAAGCACUUCUUA<br>CAUUACCAUGG                                  | 110        |
| 15 | miR-106-b       | CCUGCCGGGGCUAAAGUGCUGACAGUGCAGAUAGU<br>GGUCCUCCGUGCUACCGCACUGUGGGUACUUGCU<br>GCUCCAGCAGG                                           | 111        |
| 20 | miR-107         | CUCUCUGCUUUCAGCUUCUUUACAGUGUUGCCUUG<br>UGGCAUGGAGUUCAAGC <u>AGCAUUGUACAGGGCUAU</u><br>CAAAGCACAGA                                  | 112        |
| 25 | MIR-108-1-SMALL | ACACUGCAAGAACAAUAAGGAUUUUUUAGGGGCAUU<br>AUGACUGAGUCAGAAAACACAGCUGCCCCUGAAAG<br>UCCCUCAUUUUUUCUUGCUGU                               | 113        |
| 30 | MIR-108-2-SMALL | ACUGCAAGAGCAAUAAGGAUUUUUUAGGGGCAUUAU<br>GAUAGUGGAAUGGAA                                                                            | 114        |
| 30 | miR-122a-1      | CCUUAGCAGAGCUGUGGAGUGUGACAAUGGUGUUU<br>GUGUCUAAACUAUCAAACGCCAUUAUCACACUAAA<br>UAGCUACUGCUAGGC                                      | 115        |
| 35 | miR-122a-2      | AGCUGUGGAGUGUGACAAUGGUGUUUGUGUCCAAA<br>CUAUCAAACGCCAUUAUCACACUAAAUAGCU                                                             | 116        |
|    | miR-123         | ACAUUAUUACUUUUGGUACGCGCUGUGACACUUCA<br>AACUCGUACCGUGAGUAAUAAUGCGC                                                                  | 117        |
| 40 | miR-124a-1      | AGGCCUCUCUCCGUGUUCACAGCGGACCUUGAUU<br>UAAAUGUCCAUACAAUUAAGGCACGCGGUGAAUGC<br>CAAGAAUGGGGCUG                                        | 118        |
| 45 | miR-124a-2      | AUCAAGAUUAGAGGCUCUGCUCUCCGUGUUCACAG<br>CGGACCUUGAUUUAAUGUCAUACAA <u>UUAAGGCACG</u><br>CGGUGAAUGCCAAGAGCGGAGCCUACGGCUGCACU<br>UGAAG | 119        |
| 50 | miR-124a-3      | UGAGGCCCCUCUGCGUGUUCACAGCGGACCUUGA<br>UUUAAUGUCUAUACAAUUAAGGCACGCGGUGAAUG<br>CCAAGAGAGGCGCCUCC                                     | 120        |
|    | miR-124a        | CUCUGCGUGUUCACAGCGGACCUUGAUUUAAUGUC<br>UAUACAAUUAAGGCACGCGGUGAAUGCCAAGAG                                                           | 121        |
| 55 | miR-124b        | CÚCUCCGUGUUCACAGCGGACCUUGAUUUAAUGUC<br>AUACAA <u>UU</u> AAGGCACGCGGUGAAU <u>GCCA</u> AGAG                                          | 122        |

|    | Precursor Name     | Sequence (5' To 3')*                                                                                                                       | SEQ ID NO. |
|----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-125a-1         | UGCCAGUCUCUAGGUCCCUGAGACCCUUUAACCUGU<br>GAGGACAUCCAGGGUCACAGGUGAGGUUCUUGGGA<br>GCCUGGCGUCUGGCC                                             | 123        |
|    | miR-125a-2         | GGUCCCUGAGACCCUUUAACCUGUGAGGACAUCCA<br>GGGUCACAGGUGAGGUUCUUGGGAGCCUGG                                                                      | 124        |
| 10 | miR-125b-1         | UGCGCUCCUCAGUCCCUGAGACCCUAACUUGUGA<br>UGUUUACCGUUUAAAUCCACGGGUUAGGCUCUUGG<br>GAGCUGCGAGUCGUGCU                                             | 125        |
| 15 | miR-125b-2         | ACCAGACUUUUCCUAGUCCCUGAGACCCUAACUUGU<br>GAGGUAUUUUAGUAACAUCACAAGUCAGGCUCUUG<br>GGACCUAGGCGGAGGGGA                                          | 126        |
| 20 | miR-126-1          | CGCUGGCGACGGGACAUUAUUACUUUUGGUACGCG<br>CUGUGACACUUCAAACUCGUACCGUGAGUAAUAAU<br>GCGCCGUCCACGGCA                                              | 127        |
|    | miR-126-2          | ACAUUAUUACUUUUGGUACGCGCUGUGACACUUCA<br>AACUCGUACCGUGAGUAAUAAUGCGC                                                                          | 128        |
| 25 | miR-127-1          | UGUGAUCACUGUCUCCAGCCUGCUGAAGCUCAGAG<br>GGCUCUGAUUCAGAAAGAUCA <u>UCGGAUCCGUCUGA</u><br>GCUUGGCUGGUCGGAAGUCUCAUCAUC                          | 129        |
| 30 | miR-127-2          | CCAGCCUGCUGAAGCUCAGAGGGCUCUGAUUCAGA<br>AAGAUCAUCGGAUCCGUCUGAGCUUGGCUGGUCGG                                                                 | 130        |
| 50 | miR-128a           | UGAGCUGUUGGAUUCGGGGCCGUAGCACUGUCUGA<br>GAGGUUUACAUUUCUCACAGUGAACCGGUCUCUUU<br>UUCAGCUGCUUC                                                 | 131        |
| 35 | miR-128b           | GCCCGGCAGCCACUGUGCAGUGGGAAGGGGGGCCG<br>AUACACUGUACGAGAGUGAGUAGCAGGUC <u>UCACAG</u><br><u>UGAACCGGUCUCUUUC</u> CCUACUGUGUCACACUCCUA<br>AUGG | 132        |
| 40 | miR-128            | GUUGGAUUCGGGGCCGUAGCACUGUCUGAGAGGUU<br>UACAUUUCUCACAGUGAACCGGUCUCUUUUUCAGC                                                                 | 133        |
| 45 | m <i>iR</i> -129-1 | UGGAUCUUUUUGCGGUCUGGGCUUGCUGUUCCUCU<br>CAACAGUAGUCAGGAAGCCCUUACCCCAAAAAGUA<br>UCUA                                                         | 134        |
|    | MIR-129-2          | UGCCCUUCGCGAAUCUUUUUGCGGUCUGGGCUUGC<br>UGUACAUAACUCAAUAGCCGGAAGCCCUUACCCCAA<br>AAAGCAUUUGCGGAGGGCG                                         | 135        |
| 50 | miR-130a           | UGCUGCUGGCCAGAGCUCUUUUCACAUUGUGCUAC<br>UGUCUGCACCUGUCACUAG <u>CAGUGCAAUGUUAAAA</u><br><u>GGGC</u> AUUGGCCGUGUAGUG                          | 136        |
| 55 | miR-131-1          | GCCAGGAGGCGGGGUUGGUUGUUAUCUUUGGUUAU<br>CUAGCUGUAUGAGUGGUGUGGAGUCUUCA <u>UAAAGC</u><br><u>UAGAUAACCGAAAGU</u> AAAAAUAACCCCAUACACUG<br>CGCAG | 137        |

|    | Precursor Name         | Sequence (5' To 3')*                                                                                                                       | SEQ ID NO. |
|----|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-131-3              | CACGGCGCGCAGCGCACUGGCUAAGGGAGGCCCG<br>UUUCUCUCUUUGGUUAUCUAGCUGUAUGAGUGCCA<br>CAGAGCCGUCAUAAAGCUAGAUAACCGAAAGUAGA<br>AAUG                   | 138        |
| 10 | miR-131                | GUUGUUAUCUUGGUUAUCUAGCUGUAUGAGUGUA<br>UUGGUCUUCAUAAAGCUAGAUAACCGAAAGUAAAA<br>AC                                                            | 139        |
| 15 | miR-132-1              | CCGCCCCGCGUCUCCAGGGCAACCGUGGCUUUCGA<br>UUGUUACUGUGGGAACUGGAGG <u>UAACAGUCUACAG</u><br><u>CCAUGGUCG</u> CCCCGCAGCACGCCCACGCGC               | 140        |
|    | miR-132-2              | GGGCAACCGUGGCUUUCGAUUGUUACUGUGGGAAC<br>UGGAGGUAACAGUCUACAGCCAUGGUCGCCC                                                                     | 141        |
| 20 | miR-133a-1             | ACAAUGCUUUGCUAGAGCUGGUAAAAUGGAACCAA<br>AUCGCCUCUUCAAUGGAU <u>UUGGUCCCCUUCAACCAG</u><br>CUGUAGCUAUGCAUUGA                                   | 142        |
| 25 | miR-133a-2             | GGGAGCCAAAUGCUUUGCUAGAGCUGGUAAAAUGG<br>AACCAAAUCGACUGUCCAAUGGAU <u>UUGGUCCCCUU</u><br>CAACCAGCUGUAGCUGUGCAUUGAUGGCGCCG                     | 143        |
|    | miR-133                | GCUAGAGCUGGUAAAAUGGAACCAAAUCGCCUCUU<br>CAAUGGAUUUGGUCCCCUUCAACCAGCUGUAGC                                                                   | 144        |
| 30 | miR-133b               | CCUCAGAAGAAAGAUGCCCCCUGCUCUGGCUGGUCA<br>AACGGAACCAAGUCCGUCUUCCUGAGAGGU <u>UUGGU</u><br>CCCCUUCAACCAGCUACAGCAGGCUGGCAAUGCCC<br>AGUCCUUGGAGA | 145        |
| 35 | MIR-133B-SMALL         | GCCCCUGCUCUGGCUGGUCAAACGGAACCAAGUCC<br>GUCUUCCUGAGAGGUUUGGUCCCCUUCAACCAGCU<br>ACAGCAGGG                                                    | 146        |
| 40 | miR-134-1              | CAGGGUGUGACUGGUUGACCAGAGGGGCAUGCA<br>CUGUGUUCACCCUGUGGGCCACCUAGUCACCAACCC<br>UC                                                            | 147        |
|    | miR-134-2              | AGGGUGUGACUGGUUGACCAGAGGGGCAUGCAC<br>UGUGUUCACCCUGUGGGCCACCUAGUCACCAACCCU                                                                  | 148        |
| 45 | miR-135a-1             | AGGCCUCGCUGUUCUC <u>UAUGGCUUUUUAUUCCUAU</u><br>GUGAUUCUACUGCUCACUCAUAUAGGGAUUGGAGC<br>CGUGGCGCACGGCGGGGACA                                 | 149        |
| 50 | miR-135a-2 (miR-135-2) | AGAUAAAUUCACUCUAGUGCUU <u>UAUGGCUUUUUAU</u><br><u>UCCUAUGUGA</u> UAGUAAUAAAGUCUCAUGUAGGGAU<br>GGAAGCCAUGAAAUACAUUGUGAAAAAUCA               | 150        |
|    | miR-135                | CUAUGGCUUUUUAUUCCUAUGUGAUUCUACUGCUC<br>ACUCAUAUAGGGAUUGGAGCCGUGG                                                                           | 151        |
| 55 | miR-135b               | CACUCUGCUGUGGCC <u>UAUGGCUUUUCAUUCCUAUG</u><br><u>UG</u> AUUGCUGUCCCAAACUCAUGUAGGGCUAAAAGC<br>CAUGGGCUACAGUGAGGGCGAGCUCC                   | 152        |

|    | Precursor Name | Sequence (5' To 3')*                                                                                                      | SEQ ID NO. |
|----|----------------|---------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-136-1      | UGAGCCCUCGGAGG <u>ACUCCAUUUGUUUUGAUGAUG</u><br>GAUUCUUAUGCUCCAUCAUCGUCUCAAAUGAGUCU<br>UCAGAGGGUUCU                        | 153        |
|    | miR-136-2      | GAGGACUCCAUUUGUUUUGAUGAUGGAUUCUUAUG<br>CUCCAUCAUCGUCUCAAAUGAGUCUUC                                                        | 154        |
| 10 | miR-137        | CUUCGGUGACGGGUAUUCUUGGGUGGAUAAUACGG<br>AUUACGUUGIIUAUUGCUUAAGAAUACGCGUAGUCG<br>AGG                                        | 155        |
| 15 | miR-138-1      | CCCUGGCAUGGUGUGGUGGGGCAGCUGGUGUUGUG<br>AAUCAGGCCGUUGCCAAUCAGAGAACGGCUACUUC<br>ACAACACCAGGGCCACACCACA                      | 156        |
| 20 | miR-138-2      | CGUUGCUGC <u>AGCUGGUGUUGUGAAUC</u> AGGCCGACG<br>AGCAGCGCAUCCUCUUACCCGGCUAUUUCACGACAC<br>CAGGGUUGCAUCA                     | 157        |
|    | miR-138        | CAGCUGGUGUUGUGAAUCAGGCCGACGAGCAGCGCAUCCUCUUACCCGGCUAUUUCACGACACCAGGGUUG                                                   | 158        |
| 25 | miR-139        | GUGUAU <u>UCUACAGUGCACGUGUCU</u> CCAGUGUGGCU<br>CGGAGGCUGGAGACGCGGCCCUGUUGGAGUAAC                                         | 159        |
| 30 | miR-140        | UGUGUCUCUCUGUGUCCUGCCAGUGGUUUUACC<br>CUAUGGUAGGUUACGUCAUGCUGUUCUACCACAGG<br>GUAGAACCACGGACAGGAUACCGGGGCACC                | 160        |
|    | miR-140as      | UCCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGU<br>CAUGCUGUUCUACCACAGGGUAGAACCACGGACAG<br>GA                                          | 161        |
| 35 | miR-140s       | CCUGCCAGUGGUUUUACCCUAUGGUAGGUUACGUC<br>AUGCUGUUCUACCACAGGGUAGAACCACGGACAGG                                                | 162        |
| 40 | miR-141-1      | CGGCCGGCCCUGGGÜCCAUCUUCCAGUACAGUGUUG<br>GAUGGUCUAAUUGUGAAGCUCCU <u>AACACUGUCUGG</u><br><u>UAAAGAUGG</u> CUCCCGGGUGGGUUC   | 163        |
|    | miR-141-2      | GGGUCCAUCUUCCAGUACAGUGUUGGAUGGUCUAA<br>UUGUGAAGCUCCUAACACUGUCUGGUAAAGAUGGC<br>CC                                          | 164        |
| 45 | miR-142        | ACCCAUAAAGUAGAAAGCACUACUAACAGCACUGG<br>AGGGUGUAGUGUUUCCUACUUUAUGGAUG                                                      | 165        |
| 50 | miR-143-1      | GCGCAGCGCCCUGUCUCCCAGCCUGAGGUGCAGUGC<br>UGCAUCUCUGGUCAGUUGGGAGUC <u>UGAGAUGAAGC</u><br>ACUGUAGCUCAGGAAGAGAGAGUUGUUCUGCAGC | 166        |
|    | miR-143-2      | CCUGAGGUGCAGUGCAUCUCUGGUCAGUUGGG<br>AGUCUGAGAUGAAGCACUGUAGCUCAGG                                                          | 167        |
| 55 | miR-144-1      | UGGGCCCUGGCUGGGAUAUCAUCAUAUACUGUAA<br>GUUUGCGAUGAGACACUACAGUAUAGAUGAUGUAC<br><u>UAG</u> UCCGGGCACCCCC                     | 168        |

|    | Precursor Name     | Sequence (5' To 3')*                                                                                                        | SEQ ID NO. |
|----|--------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-144-2          | GGCUGGGAUAUCAUCAUAUACUGUAAGUUUGCGAU<br>GAGACACUACAGUAUAGAUGAUGUACUAGUC                                                      | 169        |
| 10 | miR-145-1          | CACCUUGUCCUCACG <u>GUCCAGUUUUUCCCAGGAAUCC</u> <u>CUU</u> AGAUGCUAAGAUGGGGAUUCCUGGAAAUACUG UUCUUGAGGUCAUGGUU                 | 170        |
| 10 | miR-145-2          | CUCACG <u>GUCCAGUUUUCCCAGGAAUCCCUU</u> AGAUGC<br>UAAGAUGGGGAUUCCUGGAAAUACUGUUCUUGAG                                         | 171        |
| 15 | miR-146-1          | CCGAUGUGUAUCCUCAGCUU <u>UGAGAACUGAAUUCC</u> AUGGGUUGUCAGUGUCAGACCUCUGAAAUUCAG UUCUUCAGCUGGGAUAUCUCUGUCAUCGU                 | 172        |
|    | miR-146-2          | AGCUUUGAGAACUGAAUUCCAUGGGUUGUGUCAGU<br>GUCAGACCUGUGAAAUUCAGUUCUUCAGCU                                                       | 173        |
| 20 | miR-147            | AAUCUAAAGACAACAUUUCUGCACACACACCAGAC<br>UAUGGAAGCCAGUGUGUGGAAAUGCUUCUGCUAGA<br>UU                                            | 174        |
| 25 | miR-148a (miR-148) | GAGGCAAAGUUCUGAGACACUCCGACUCUGAGUAU<br>GAUAGAAGUCAGUGCACUACAGAACUUUGUCUC                                                    | 175        |
|    | miR-148b           | CAAGCACGAUUAGCAUUUGAGGUGAAGUUCUGUUA<br>UACACUCAGGCUGUGGCUCUCUGAAAG <u>UCAGUGCA</u><br><u>UCACAGAACUUUGU</u> CUCGAAAGCUUUCUA | 176        |
| 30 | MIR-148B-SMALL     | AAGCACGAUUAGCAUUUGAGGUGAAGUUCUGUUAU<br>ACACUCAGGCUGUGGCUCUCUGAAAGUCAGUGCAU                                                  | 177        |
| 35 | miR-149-1          | GCCGGCGCCCGAGC <u>UCUGGCUCCGUGUCUUCACUCC</u><br>CGUGCUUGUCCGAGGAGGAGGGAGGGACGGGGC<br>UGUGCUGGGCAGCUGGA                      | 178        |
|    | miR-149-2          | GCUCUGGCUCCGUGUCUCACUCCCGUGCUUGUCCG<br>AGGAGGGAGGGAGGGAC                                                                    | 179        |
| 40 | miR-150-1          | CUCCCAUGGCCCUGUCUCCCAACCCUUGUACCAGU<br>GCUGGGCUCAGACCCUGGUACAGGCCUGGGGACA<br>GGGACCUGGGGAC                                  | 180        |
| 45 | miR-150-2          | CCCUGUCUCCCAACCCUUGUACCAGUGCUGGGCUCA<br>GACCCUGGUACAGGCCUGGGGGACAGGG                                                        | 181        |
|    | miR-151            | UUUCCUGCCUCGAGGAGCUCACAGUCUAGUAUGU<br>CUCAUCCCUA <u>CUAGACUGAAGCUCCUUGAGG</u> ACAG<br>G                                     | 182        |
| 50 | MIR-151-2          | CCUGUCCUCAAGGAGCUUCAGUCUAGUAGGGGAUG<br>AGACAUACUAGACUGUGAGCUCCUCGAGGGCAGG                                                   | 183        |
| 55 | miR-152-1          | UGUCCCCCGGCCCAGGUUCUGUGAUACACUCCGA<br>CUCGGGCUCUGGAGCAG <u>UCAGUGCAUGACAGAACU</u><br><u>UGG</u> GCCCGGAAGGACC               | 184        |

|    | Precursor Name                                                                                                             | Sequence (5' To 3')*                                                                                                                | SEQ ID NO. |
|----|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-152-2                                                                                                                  | GGCCCAGGUUCUGUGAUACACUCCGACUCGGGCUCU<br>GGAGCAGUCAGUGCAUGACAGAACUUGGGCCCCGG                                                         | 185        |
| 10 | miR-153-1-1                                                                                                                | CUCACAGCUGCCAGUGUCAUUUUUGUGAUCUGCAG<br>CUAGUAUUCUCACUCCAG <u>UUGCAUAGUCACAAAAG</u><br>UGAUCAUUGGCAGGUGUGGC                          | 186        |
| 10 | miR-153-1-2                                                                                                                | UCUCUCUCCCUCACAGCUGCCAGUGUCAUUGUCA<br>CAAAAGUGAUCAUUGGCAGGUGUGGCUGCAUG                                                              | 187        |
| 15 | miR-153-2-1                                                                                                                | AGCGGUGGCCAGUGUCAUUUUUGUGAUGUUGCAGC<br>UAGUAAUAUGAGCCCAG <u>UUGCAUAGUCACAAAAGU</u><br><u>GA</u> UCAUUGGAAACUGUG                     | 188        |
|    | miR-153-2-2                                                                                                                | CAGUGUCAUUUUUGUGAUGUUGCAGCUAGUAAUAU<br>GAGCCCAGUUGCAUAGUCACAAAAGUGAUCAUUG                                                           | 189        |
| 20 | miR-154-1                                                                                                                  | GUGGUACUUGAAGAUAGGUUAUCCGUGUUGCCUUC<br>GCUUUAUUUGUGACG <u>AAUCAUACACGGUUGACCUA</u><br><u>UU</u> UUUCAGUACCAA                        | 190        |
| 25 | miR-154-2                                                                                                                  | GAAGAUAGGUUAUCCGUGUUGCCUUCGCUUUAUUU<br>GUGACGAAUCAUACACGGUUGACCUAUUUUU                                                              | 191        |
|    | miR-155                                                                                                                    | CUGUUAAUGCUAAUCGUGAUAGGGGUUUUUUGCCUC<br>CAACUGACUCCUACAUAUUAGCAUUAACAG                                                              | 192        |
| 30 | MIR-156 = MIR- 157=OVERL AP MIR- 141  CCUAACACUGUCUGGUAAAGAUGGCUCCCGGGUGG GUUCUCUCGGCAGUAACCUUCAGGGAGCCCUGAAG ACCAUGGAGGAC |                                                                                                                                     | 193        |
| 35 | MIR-158-SMALL = MIR-<br>192                                                                                                | GCCGAGACCGAGUGCACAGGGCU <u>CUGACCUAUGAA</u> <u>UUGACAGCC</u> AGUGCUCUCGUCUCCCCUCUGGCUGCC  AAUUCCAUAGGUCACAGGUAUGUUCGCCUCAAUGC  CAGC |            |
| 40 | MIR-159-1-SMALL                                                                                                            | UCCCGCCCCUGUAACAGCAACUCCAUGUGGAAGUG<br>CCCACUGGUUCCAGUGGGGCUGCUGUUAUCUGGGG<br>CGAGGGCCA                                             | 195        |
|    | MIR-161-SMALL                                                                                                              | AAAGCUGGGUUGAGAGGGCGAAAAAGGAUGAGGUG<br>ACUGGUCUGGGCUACGCUAUGCUGCGGCGCUCGGG                                                          | 196        |
| 45 | MIR-163-1B-SMALL                                                                                                           | CAUUGGCCUCCUAAGCCAGGGAUUGUGGGUUCGAG<br>UCCCACCCGGGGUAAAGAAAGGCCGAAUU                                                                | 197        |
|    | MIR-163-3-SMALL                                                                                                            | CCUAAGCCAGGGAUUGUGGGUUCGAGUCCCACCUG<br>GGGUAGAGGUGAAAGUUCCUUUUACGGAAUUUUUU                                                          | 198        |
| 50 | miR-162                                                                                                                    | CAAUGUCAGCAGUGCCU <u>UAGCAGCACGUAAAUAUU</u> GGCGUUAAGAUUCUAAAAUUAUCUCCAGUAUUAAC UGUGCUGCUGAAGUAAGGUUGACCAUACUCUACAG UUG             | 199        |
| 55 | MIR-175-SMALL=MIR<br>-224                                                                                                  | GGGCUUUCAAGUCACUAGUGGUUCCGUUUAGUAGA<br>UGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGA<br>CUACAAAGCCC                                           | 200        |

|    | Precursor Name Sequence (5' To 3')* |                                                                                                                                  | SEQ ID NO. |
|----|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | MIR-177-SMALL                       | ACGCAAGUGUCCUAAGGUGAGCUCAGGGAGCACAG<br>AAACCUCCAGUGGAACAGAAGGGCAAAAGCUCAUU                                                       | 201        |
|    | MIR-180-SMALL                       | CAUGUGUCACUUUCAGGUGGAGUUUCAAGAGUCCC<br>UUCCUGGUUCACCGUCUCCUUUGCUCUUCCACAAC                                                       | 202        |
| 10 | miR-181a                            | AGAAGGCUAUCAGGCCAGCCUUCAGAGGACUCCA<br>AGGAACAUUCAACGCUGUCGGUGAGUUUGGGAUUU<br>GAAAAAACCACUGACCGUUGACUGUACCUUGGGGU<br>CCUUA        | 203        |
| 15 | miR-181b-1                          | CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAUC<br>AACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUGG<br>ACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCC<br>CGCUU       | 204        |
| 20 | miR-181b-2                          | CUGAUGGCUGCACUCAACAUUCAUUGCUGUCGGUG<br>GGUUUGAGUCUGAAUCAACUCACUGAUCAAUGAAU<br>GCAAACUGCGGACCAAACA                                | 205        |
| 25 | mIR-181c                            | CGGAAAAUUUGCCAAGGGUUUGGGGG <u>AACAUUCAA</u> CCUGUCGGUGAGUUUGGGCAGCUCAGGCAAACCAU CGACCGUUGAGUGGACCCUGAGGCCUGGAAUUGCC AUCCU        | 206        |
| 30 | miR-182-as                          | GAGCUGCUUGCCUCCCCCGUUU <u>UUGGCAAUGGUA</u> GAACUCACACUGGUGAGGUAACAGGAUCCGG <u>UGGU</u> UCUAGACUUGCCAACUAUGGGGCGAGGACUCAGCC GGCAC | 207        |
|    | miR-182                             | UUUUUGGCAAUGGUAGAACUCACACUGGUGAGGUA<br>ACAGGAUCCGGUGGUUCUAGACUUGCCAACUAUGG                                                       | 208        |
| 35 | miR-183                             | CCGCAGAGUGUGACUCCUGUUCUGUG <u>UAUGGCACU</u> GGUAGAAUUCACUGUGAACAGUCUCAGUCAGUGAA UUACCGAAGGGCCAUAAACAGAGCAGAG                     | 209        |
| 40 | miR-184-1                           | CCAGUCACGUCCCCUUAUCACUUUUCCAGCCCAGCU<br>UUGUGACUGUAAGUGU <u>UGGACGGAGAACUGAUAAG</u><br>GGUAGGUGAUUGA                             | 210        |
| 45 | miR-184-2                           | CCUUAUCACUUUUCCAGCCCAGCUUUGUGACUGUA<br>AGUGUUGGACGGAGAACUGAUAAGGGUAGG                                                            | 211        |
|    | miR-185-1                           | AGGGGCGAGGGAU <u>UGGAGAGAAAGGCAGUUC</u> CUG<br>AUGGUCCCCUCCCAGGGGCUGGCUUUCCUCUGGUC<br>CUUCCCUCCCA                                | 212        |
| 50 | miR-185-2                           | AGGGAU <u>UGGAGAGAAAGGCAGUUC</u> CUGAUGGUCCC<br>CUCCCAGGGGCUGGCUUUCCUCUGGUCCUU                                                   | 213        |
| 55 | miR-186-1                           | UGCUUGUAACUUUCCAAAGAAUUCUCCUUUUGGGC<br>UUUCUGGUUUUAUUUUA                                                                         | 214        |

|    | Precursor Name | Sequence (5' To 3')*                                                                                                              | SEQ ID NO. |
|----|----------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-186-2      | ACUUUCCAAAGAAUUCUCCUUUUGGGCUUUCUGGU<br>UUUAUUUUAAGCCCAAAGGUGAAUUUUUUGGGAAG<br>U                                                   | 215        |
| 10 | miR-187        | GGUCGGGCUCACCAUGACACAGUGUGAGACUCGGG<br>CUACAACACAGGACCCGGGGCGCUGCUCUGACCCC <u>U</u><br>CGUGUCUUGUGUUGCAGCCGGAGGGACGCAGGUCC<br>GCA | 216        |
| 15 | miR-188-1      | UGCUCCCUCUCACAUCCCUUGCAUGGUGGAGGGU<br>GAGCUUUCUGAAAACCCCUCCCACAUGCAGGGUUU<br>GCAGGAUGGCGAGCC                                      | 217        |
|    | miR-188-2      | UCUCACAUCCCUUGCAUGGUGGAGGUUGAGCUUUC<br>UGAAAACCCCUCCACAUGCAGGGUUUGCAGGA                                                           | 218        |
| 20 | miR-189-1      | CUGUCGAUUGGACCCGCCCUCCG <u>GUGCCUACUGAGC</u><br><u>UGAUAUCAGU</u> UCUCAUUUUACACACUGGCUCAGUU<br>CAGCAGGAACAGGAGUCGAGCCCUUGAGCAA    | 219        |
|    | miR-189-2      | CUCCGGUGCCUACUGAGCUGAUAUCAGUUCUCAUU<br>UUACACACUGGCUCAGUUCAGCAGGAACAGGAG                                                          | 220        |
| 25 | miR-190-1      | UGCAGGCCUCUGUGUGAUAUGUUUGAUAUAUUAGG<br>UUGUUAUUUAAUCCAACUAUAUAUCAAACAUAUUC<br>CUACAGUGUCUUGCC                                     | 221        |
| 30 | miR-190-2      | CUGUGUGAUAUGUUUGAUAUAUUAGGUUGUUAUUU<br>AAUCCAACUAUAUAUCAAACAUAUUCCUACAG                                                           | 222        |
| 25 | miR-191-1      | CGGCUGGACAGCGGCAACGGAAUCCCAAAAGCAG<br>CUGUUGUCUCCAGAGCAUUCCAGCUGCGCUUGGAU<br>UUCGUCCCCUGCUCUCCUGCCU                               | 223        |
| 35 | miR-191-2      | AGCGGGCAACGGAAUCCCAAAAGCAGCUGUUGUCU<br>CCAGAGCAUUCCAGCUGCGCUUGGAUUUCGUCCCCU<br>GCU                                                | 224        |
| 40 | miR-192-2/3    | CCGAGACCGAGUGCACAGGGCU <u>CUGACCUAUGAAU</u> <u>UGACAGCC</u> AGUGCUCUCGUCUCCCCUCUGGCUGCCA AUUCCAUAGGUCACAGGUAUGUUCGCCUCAAUGCC AG   | 225        |
| 45 | miR-192        | GCCGAGACCGAGUGCACAGGGCU <u>CUGACCUAUGAA</u> <u>UUGACAGCC</u> AGUGCUCUCGUCUCCCUCUGGCUGCC AAUUCCAUAGGUCACAGGUAUGUUCGCCUCAAUGC CAGC  | 226        |
| 50 | miR-193-1      | CGAGGAUGGGAGCUGAGGCUGGGUCUUUGCGGGC<br>GAGAUGAGGGUGUCGGAUC <u>AACUGGCCUACAAAGU</u><br>CCCAGUUCUCGGCCCCG                            | 227        |
|    | miR-193-2      | GCUGGGUCUUUGCGGGCGAGAUGAGGGUGUCGGAU<br>C <u>AACUGGCCUACAAAGUCCCAG</u> U                                                           | 228        |
| 55 | miR-194-1      | AUGGUGUUAUCAAGUGUAACAGCAACUCCAUGUGG<br>ACUGUGUACCAAUUUCCAGUGGAGAUGCUGUUACU<br>UUUGAUGGUUACCAA                                     | 229        |

|    | Precursor Name         | Sequence (5' To 3')*                                                                                                              | SEQ ID NO. |
|----|------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-194-2              | G <u>UGUAACAGCAACUCCAUGUGGA</u> CUGUGUACCAAU<br>UUCCAGUGGAGAUGCUGUUACUUUUGAU                                                      | 230        |
|    | miR-195-1              | AGCUUCCCUGGCUCIJAGCAGCACAGAAUAUUGGC ACAGGGAAGCGAGUCUGCCAAUAUUGGCUGUGCUG CUCCAGGCAGGUGGUG                                          |            |
| 10 | miR-195-2              | UAGCAGCACAGAAAUAUUGGCACAGGGAAGCGAGU<br>CUGCCAAUAUUGGCUGUGCUGCU                                                                    | 232        |
| 15 | miR-196-1              | CUAGAGCUUGAAUUGGAACUGCUGAGUGAAU <u>UAGG</u> <u>UAGUUUCAUGUUGUUGG</u> GCCUGGGUUUCUGAACAC AACAACAUUAAACCACCCGAUUCACGGCAGUUACU GCUCC | 233        |
| 20 | miR-196a-1             | GUGAAUUAGGUAGUUUCAUGUUGUUGGGCCUGGGU<br>UUCUGAACACAACAUUAAACCACCCGAUUCAC                                                           | 234        |
|    | miR-196a-2 (miR-196-2) | UGCUCGCUCAGCUGAUCUGUGGCU <u>UAGGUAGUUUC</u> AUGUUGUUGGGAUUGAGUUUUGAACUCGGCAACAA GAAACUGCCUGAGUUACAUCAGUCGGUUUUCGUCG AGGGC         | 235        |
| 25 | miR-196                | GUGAAUUAGGUAGUUUCAUGUUGUUGGGCCUGGGU<br>UUCUGAACACAACAACAUUAAACCACCCGAUUCAC                                                        | 236        |
| 30 | miR-196b               | ACUGGUCGGUGAUIUAGGUAGUUUCCUGUUGUUGG<br>GAUCCACCUUUCUCUCGACAGCACGACACUGCCUUC<br>AUUACUUCAGUUG                                      | 237        |
| 35 | miR-197                | GGCUGUGCCGGGUAGAGAGGGCAGUGGGAGGUAAG<br>AGCUCUUCACCC <u>UUCACCACCUUCUCCACCCAGC</u> AU<br>GGCC                                      | 238        |
| 33 | MIR-197-2              | GUGCAUGUGUAUGUAUGUGCAUGUGCAUGUGUA<br>UGUGUAUGAGUGCAUGCGUGUGUGC                                                                    | 239        |
| 40 | miR-198                | UCAUUGGUCCAGAGGGGAGAUAGGUUCCUGUGAUU<br>UUUCCUUCUUCUAUAGAAUAAAUGA                                                                  | 240        |
|    | miR-199a-1             | GCCAACCCAGUGUUCAGACUACCUGUUCAGGAGGC<br>UCUCAAUGUG <u>UACAGUAGUCUGCACAUUGGUU</u> AGG<br>C                                          | 241        |
| 45 | miR-199a-2             | AGGAAGCUUCUGGAGAUCCUGCUCGUCGCCCAGU<br>GUUCAGACUACCUGUUCAGGACAAUGCCGUUGUAC<br>AGUAGUCUGCACAUUGGUUAGACUGGGCAAGGGAG<br>AGCA          | 242        |
| 50 | miR-199b               | CCAGAGGACACCUCCACUCCGUCUACCCAGUGUUUA GACUAUCUGUUCAGGACUCCCAAAUUGUACAGUAG UCUGCACAUUGGUUAGGCUGGGCUG                                | 243        |
| 55 | miR-199s               | GCCAACCCAGUGUUCAGACUACCUGUUCAGGAGGC<br>UCUCAAUGUGUAÇAGUAGUCUGCACAUUGGUUAGG<br>C                                                   | 244        |

|            | Precursor Name Sequence (5' To 3')* |                                                                                                                                            | SEQ ID NO. |
|------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5          | miR-200a                            | GCCGUGGCCAUCUUACUGGGCAGCAUUGGAUGGAG<br>UCAGGU <u>CUCUAAUACUGCCUGGU</u> AAUGAUGACGGC                                                        | 245        |
| 10         | miR-200b                            | CCAGCUCGGCAGCCGUGGCCAUCUUACUGGCAGC<br>AUUGGAUGGAGUCAGGUCUCUAAUACUGCCUGGUA<br>AUGAUGACGCCGGAGCCCUGCACG                                      | 246        |
| 10         | m <i>iR</i> -200c                   | CCCUCGUCUUACCCAGCAGUGUUUGGGUGCGGUUG<br>GGAGUCUCU <u>AAUACUGCCGGGUAAUGAUGGA</u> GG                                                          | 247        |
| 15         | miR-202                             | GUUCCUUUUUCCUAUGCAUAUACUUCUUUGAGGAU<br>CUGGCCUAAAGAGGUAUAGGGCAUGGGAAGAIIGGA<br>GC                                                          | 248        |
| 20         | miR-203                             | GUGUUGGGACUCGCGCGCUGGGUCCAGUGGUUCU<br>UAACAGUUCAACAGUUCUGUAGCGCAAUU <u>GUGAAA</u><br><u>UGUUUAGGACCACUAG</u> ACCCGGCGGCGCGCGAC<br>AGCGA    | 249        |
| 25         | miR-204                             | GGCUACAGUCUUUCUUCAUGUGACUCGUGGAC <u>UUC</u><br>CCUUUGUCAUCCUAUGCCUGAGAAUAUAUGAAGGA<br>GGCUGGGAAGGCAAAGGGACGUUCAAUUGUCAUCA<br>CUGGC         | 250        |
| 30         | miR-205                             | AAAGAUCCUCAGACAAUCCAUGUGCUUCUCUUG <u>UC</u> CUUCAUUCCACCGGAGUCUGUCUCAUACCCAACCAG AUUUCAGUGGAGUGAAGUUCAGGAGGCAUGGAGCU GACA                  |            |
|            | miR-206-1                           | UGCUUCCGAGGCCACAUGCUUCUUUAUAUCCCCAU<br>AUGGAUUACUUUGCUA <u>UGGAAUGUAAGGAAGUGUG</u><br><u>UGG</u> UUUCGGCAAGUG                              | 252        |
| 35         | miR-206-2                           | AGGCCACAUGCUUCUUUAUAUCCCCAUAÜGGAUÜA<br>CUUUGCUAUGGAAUGUAAGGAAGUGUGUGGUUUU                                                                  | 253        |
| <b>4</b> 0 | miR-208                             | UGACGGCGAGCUUUUGGCCCGGGUUAUACCUGAU<br>GCUCACGUAUAAGACGAGCAAAAAGCUUGUUGGUC<br>A                                                             | 254        |
| <b>4</b> 5 | miR-210                             | ACCCGGCAGUGCCUCCAGGCGCAGGGCAGCCCCUGC<br>CCACCGCACACUGCGCUGCCCCAGACCCA <u>CUGUGCG</u><br><u>UGUGACAGCGGCUG</u> AUCUGUGCCUGGGCAGCGCGA<br>CCC | 255        |
| 50         | miR-211                             | UCACCUGGCCAUGUGACUUGUGGGC <u>UUCCCUUUGU</u><br>CAUCCUUCGCCUAGGGCUCUGAGCAGGGCAC<br>AGCAAAGGGGUGCUCAGUUGUCACUUCCCACAGCA<br>CGGAG             | 256        |
| 55         | miR-212                             | CGGGGCACCCCGCCGGACAGCGCGCCGGCACCUUG<br>GCUCUAGACUGCUUACUGCCCGGGCCGCCCUCAG <u>UA</u><br>ACAGUCUCCAGUCACGGCCACGACGCCUGGCCCG<br>CC .          | 257        |

|    | Precursor Name | Sequence (5' To 3')*                                                                                                                | SEQ ID NO. |
|----|----------------|-------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-213-2      | CCUGUGCAGAGAUUAUUUUUUAAAAGGUCACAAUC<br>AACAUUCAUUGCUGUCGGUGGGUUGAACUGUGUGG<br>ACAAGCUCACUGAACAAUGAAUGCAACUGUGGCCC<br>CGCUU          | 258        |
| 10 | miR-213        | GAGUUUUGAGGUUGCUUCAGUGAACAUUCAACGCU<br>GUCGGUGAGUUUGGAAUUAAAAUCAAA <u>ACCAUCGA</u><br>CCGUUGAUUGUACCCUAUGGCUAACCAUCAUCUAC<br>UCC    | 259        |
| 15 | miR-214        | GGCCUGGCUGGACAGAGUUGUCAUGUGUCUGCCUG UCUACACUUGCUGUGCAGAACAUCCGCUCACCUGUA CAGCAGGCACAGACAGGCAGUCACAUGACAACCCAG CCU                   | 260        |
| 20 | miR-215        | AUCAUUCAGAAAUGGUAUACAGGAAA <u>AUGACCUAU</u> GAAUUGACAGACAAUAUAGCUGAGUUUGUCUGUCA UUUCUUUAGGCCAAUAUUCUGUAUGACUGUGCUAC UUCAA           | 261        |
| 25 | miR-216        | GAUGGCUGUGAGUUGGCU <u>UAAUCUCAGCUGGCAAC</u> <u>UGUG</u> AGAUGUUCAUACAAUCCCUCACAGUGGUCUC UGGGAUUAUGCUAAACAGAGCAAUUUCCUAGCCCU CACGA   | 262        |
| 30 | miR-217        | AGUAUAAUUAUUACAUAGUUUUUUGAUGUCGCAGA <u>U</u><br>ACUGCAUCAGGAACUGAUUGGAUAAGAAUCAGUCA<br>CCAUCAGUUCCUAAUGCAUUGCCUUCAGCAUCUAA<br>ACAAG | 263        |
| 35 | miR-218-1      | GUGAUAAUGUAGCGAGAUUUUCUG <u>UUGUGCUUGAU</u> CUAACCAUGUGGUUGCGAGGUAUGAGUAAAACAUG GUUCCGUCAAGCACCAUGGAACGUCACGCAGCUUUC UACA           | 264        |
| 40 | miR-218-2      | GACCAGUCGCUGCGGGGCUUUCCU <u>UUGUGCUUGAU</u> CUAACCAUGUGGUGGAACGAUGGAAACGGAACAUG GUUCUGUCAAGCACCGCGGAAAGCACCGUGCUCUCC UGCA           | 265        |
| 45 | miR-219        | CCGCCCGGGCCGCGGCUCC <u>UGAUUGUCCAAACGCA</u> <u>AUUCU</u> CGAGUCUAUGGCUCCGGCCGAGAGUUGAGU CUGGACGUCCCGAGCCGCCCCCAAACCUCGAGC GGG       | 266        |
|    | miR-219-1      | CCGCCCGGGCCGCGCCCCGAUUGUCCAAACGCA<br><u>AUUCU</u> CGAGUCUAUGGCUCCGGCCGAGAGUUGAGU<br>CUGGACGUCCCGAGCCGCCCCCAAACCUCGAGC<br>GGG        | 267        |
| 50 | miR-219-2      | ACUCAGGGGCUUCGCCAC <u>UGAUUGUCCAAACGCAA</u> <u>UUCU</u> UGUACGAGUCUGCGGCCAACCGAGAAUUGUG GCUGGAÇAUCUGUGGCUGAGCUCCGGG                 | 268        |
| 55 | miR-220        | GACAGUGUGGCAUUGUAGGGCU <u>CCACACCGUAUCU</u> GACACUUUGGGCGAGGGCACCAUGCUGAAGGUGUU CAUGAUGCGGUCUGGGAACUCCUCACGGAUCUUAC UGAUG           | 269        |

|    | Precursor Name    | Sequence (5' To 3')*                                                                                                                       | SEQ ID NO. |
|----|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-221           | UGAACAUCCAGGUCUGGGCAUGAACCUGGCAUAC AAUGUAGAUUUCUGUGUUCGUUAGGCAAC <u>AGCUAC</u> AUUGUCUGCUGGGUUUCAGGCUACCUGGAAACAUG UUCUC                   |            |
| 10 | miR-222           | GCUGCUGGAAGGUGUAGGUACCCUCAAUGGCUCAG<br>UAGCCAGUGUAGAUCCUGUCUUUCGUAAUCAGC <u>AG</u><br>CUACAUCUGGCUACUGGGUCUCUGAUGGCAUCUUC<br>UAGCU         | 271        |
| 15 | miR-223           | CCUGGCCUCCUGCAGUGCCACGCUCCGUGUAUUUGA<br>CAAGCUGAGUUGGACACUCCAUGUGGUAGAG <u>UGUC</u><br><u>AGUUUGUCAAAUACCCC</u> AAGUGCGGCACAUGCUUA<br>CCAG | 272        |
| 20 | miR-224           | GGGCUUTICAAGUCACUAGUGGUUCCGUUUAGUAGA<br>UGAUUGUGCAUUGUUUCAAAAUGGUGCCCUAGUGA<br>CUACAAAGCCC                                                 | 273        |
|    | MIR-294-1 (CHR16) | CAAUCUUCCUUUAUCAUGGUAUUGAUUUUUCAGUG<br>CUUCCCUUUUGUGUGAGAGAAGAUA                                                                           | 274        |
| 25 | miR-296           | AGGACCCUUCCAGAGGGCCCCCCCUCAAUCCUGUUG<br>UGCCUAAUUCAGAGGGUUGGGUGGAGGCUCUCCUG<br>AAGGGCUCU                                                   | 275        |
| 30 | miR-299           | AAGAAAUGGUUUACCGUCCCACAUACAUUUUGAAU<br>AUGUAUGUGGGAUGGUAAACCGCUUCUU                                                                        | 276        |
|    | miR-301           | ACUGCUAACGAAUGCUCUGACUUUAUUGCACUACU<br>GUACUUUACAGCUAGCAGUGCAAUAGUAUUGUCAA<br>AGCAUCUGAAAGCAGG                                             | 277        |
| 35 | miR-302a          | CCACCACUUAAACGUGGAUGUACUUGCUUUGAAAC<br>UAAAGAAGUAAGUGCUUCCAUGUUUUGGUGAUGG                                                                  | 278        |
| 40 | miR-302b          | GCUCCCUUCAACUUUAACAUGGAAGUGCUUUCUGU<br>GACUUUAAAAGUAAGUGCUUCCAUGUUUUAGUAGG<br>AGU                                                          | 279        |
|    | miR-302c          | CCUUUGCUUUAACAUGGGGGUACCUGCUGIIGUGAA<br>ACAAAGUAAGUGCUUCCAUGUUUCAGUGGAGG                                                                   | 280        |
| 45 | miR-302d          | CCUCUACUUUAACAUGGAGGCACUUGCUGUGACAU<br>GACAAAAA <u>UAAGUGCUUCCAUGUUUGAGUGU</u> GG                                                          | 281        |
|    | miR-320           | GCUUCGCUCCCCUCCGCCUUCUCUCCCGGUUCUUC<br>CCGGAGUCGGAAAAGCUGGGUUGAGAGGGCGAAA<br>AAGGAUGAGGU                                                   | 282        |
| 50 | miR-321           | UUGGCCUCCUAAGCCAGGGAUUGUGGGUUCGAGUC<br>CCACCCGGGGUAAAGAAGGCCGA                                                                             | 283        |
| 55 | miR-323           | UUGGUACUUGGAGAGAGGUGGUCCGUGGCGCGUUC<br>GCUUUAUUUAUGGCGCACAUUACACGGUCGACCUC<br>UUUGCAGUAUCUAAUC                                             | 284        |

|    | Precursor Name                                                                       | Sequence (5' To 3')*                                                                                                   | SEQ ID NO. |
|----|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------|
| 5  | CUGACUAUGCCUCCCGCAUCCCCUAGGGCAUUGGU GUAAAGCUGGAGACCCACUGCCCCAGGUGCUGCUG GGGGUUGUAGUC |                                                                                                                        | 285        |
| 10 | miR-325                                                                              | AUACAGUGCUUGGUUCCUAGUAGGUGUCCAGUAAG<br>UGUUUGUGACAUAAUUUGUUUAUUGAGGACCUCCU<br>AUCAAUCAAGCACUGUGCUAGGCUCUGG             | 286        |
|    | miR-326                                                                              | CUCAUCUGUCUGUUGGGCUGGAGGCAGGGCCUUUG<br>UGAAGGCGGGUGGUGCUCAGAUCGCCUCUGGGCCC<br>UUCCUCCAGCCCGAGGCGGAUUCA                 | 287        |
| 15 | miR-328                                                                              | UGGAGUGGGGGGCAGGAGGGGCUCAGGGAGAAAG<br>UGCAUACAGCCCCUGGCCCUCUCUGCCCUUCCGUCC<br>CCUG                                     | 288        |
| 20 | miR-330                                                                              | CUUUGGCGAUCACUGCCUCUCUGGGCCUGUGUCUU<br>AGGCUCUGCAAGAUCAACCGAGCAAAGCACACGGCC<br>UGCAGAGAGGCAGCGCUCUGCCC                 | 289        |
| 25 | miR-331                                                                              | GAGUUUGGUUUUGUUUGGGUUUGUUCUAGGUAUGG<br>UCCCAGGGAUCCCAGAUCAAACCAG <u>GCCCCUGGGCC</u><br><u>UAUCCUAGAA</u> CCAACCUAAGCUC | 290        |
|    | miR-335                                                                              | UGUUUUGAGCGGGG <u>UCAAGAGCAAUAACGAAAAA</u> <u>UGU</u> UUGUCAUAAACCGUUUUUUCAUUAUUGCUCCUG ACCUCCUCUCAUUUGCUAUAUUCA       | 291        |
| 30 | miR-337                                                                              | GUAGUCAGUAGUUGGGGGGGGGAACGGCUUCAUA<br>CAGGAGUUGAUGCACAGUUA <u>UCCAGCUCCUAUAUG</u><br>AUGCCUUUCUUCAUCCCCUUCAA           | 292        |
| 35 | miR-338                                                                              | UCUCCAACAAUAUCCUGGUGCUGAGUGAUGACUCA<br>GGCGACUCCAGCAUCAGUGAUUUUGUUGAAGA:                                               | 293        |
| 40 | miR-339                                                                              | CGGGCGCCGCUCUCCCUGUCCUCAGGAGCUCAC<br>GUGUGCCUGCGUGAGGCCCUCGACGACAGAGCCG<br>GCGCCUGCCCAGUGUCUGCGC                       | 294        |
| 40 | miR-340                                                                              | UUGUACCUGGUGUGAUUAUAAAGCAAUGAGACUGA<br>UUGUCAUAUGUCGUUUGUGGGA <u>UCCGUCUCAGUUA</u><br>CUUUAUAGCCAUACCUGGUAUCUUA        | 295        |
| 45 | miR-342                                                                              | GAAACUGGGCUCAAGGUGAGGGGUGCUAUCUGUGA<br>UUGAGGGACAUGGUUAAUGGAAUUG <u>UCUCACACAG</u><br>AAAUCGCACCCGUCACCUUGGCCUACUUA    | 296        |
| 50 | miR-345                                                                              | ACCCAAACCCUAGUCUGCUGACUCCUAGUCCAGGG<br>CUCGUGAUGGCUGGUGGGCCCUGAACGAGGGGUCU<br>GGAGGCCUGGGUUUGAAUAUCGACAGC              | 297        |
|    | miR-346                                                                              | GUCUGUCUGCCGCAUGCCUGCCUCUGUUGCUCU<br>GAAGGAGGCAGGGGCUGGGCCUGCAGCUGCCUGGG<br>CAGAGCGGCUCCUGC                            | 298        |
| 55 | miR-367                                                                              | CCAUUACUGUUGCUAAUAUGCAACUCUGUUGAAUA<br>UAAAUUGGAAUUGCACUUUAGCAAUGGUGAUGG                                               | 299        |

(continued)

|    | Precursor Name | Sequence (5' To 3')*                                                                                           | SEQ ID NO. |
|----|----------------|----------------------------------------------------------------------------------------------------------------|------------|
| 5  | miR-368        | AAAAGGUGGAUAUUCCUUCUAUGUUUAUGUUAUUU<br>AUGGUUAAACAUAGAGGAAAUUCCACGUUUU                                         | 300        |
|    | miR-369        | UUGAAGGGAGAUCGACCGUGUUAUAUUCGCUUUAU<br>UGACUUCG <u>AAUAAUACAUGGUUGAUCUUU</u> UCUCAG                            | 301        |
| 10 | miR-370        | AGACAGAGAAGCCAGGUCACGUCUCUGCAGUUACA<br>CAGCUCACGAGU <u>GCCUGCUGGGGUGGAACCUGG</u> UC<br>UGUCU                   | 302        |
| 15 | miR-371        | GUGGCACUCAAACUGUGGGGGCACUUUCUGCUCUC<br>UGGUGAAAGUGCCGCCAUCUUUUGAGUGUUAC                                        | 303        |
|    | miR-372        | GUGGGCCUCAAAUGÜGGAGCACUAUUCUGAUGUCC<br>AAGUGGAAAGUGCUGCGACAUUUGAGCGUCAC                                        | 304        |
| 20 | miR-373        | GGGAUACUCAAAAUGGGGGCGCUUUCCUUUUUGUC<br>UGUACUGGGAAGUGCUUCGAUUUUGGGGUGUCCC                                      | 305        |
| 25 | miR-374        | UACAUCGGCCA <u>UUAUAAUACAACCUGAUAAGUG</u> UU<br>AUAGCACUUAUCAGAUUGUAUUGUAAUUGUCUGUG<br>UA                      | 306        |
|    | mir-hes1       | AUGGAGCUGCUCACCCUGUGGGCCUCAAAUGUGGA<br>GGAACUAUUCUGAUGUCCAAGUGGAAAGUGCUGCG<br>ACAUUUGAGCGUCACCGGUGACGCCCAUAUCA | 307        |
| 30 | mir-hes2       | GCAUCCCUCAGCCUGUGGCACUCAAACUGUGGGGG<br>CACUUUCUGCUCUCUGGUGAAAGUGCCGCCAUCUU<br>UUGAGUGUUACCGCUUGAGAAGACUCAACC   | 308        |
| 35 | mir-hes3       | CGAGGAGCUCAUACUGGGAUACUCAAAAUGGGGGC<br>GCUUUCCUUUUUGUCUGUUACUGGGAAGUGCUUCG<br>AUUUUGGGGUGUCCCUGUUUGAGUAGGGCAUC | 309        |

[0059] \*An underlined sequence within a precursor sequence corresponds to a mature processed miR transcript (see Table 1b). Some precursor sequences have two underlined sequences denoting two different mature miRs that are derived from the same precursor. All sequences are human.

[0060]

Table 1b: Human Mature microRNA Sequences.

|    | · · · · · · · · · · · · · · · · · · · |                                  |            |                                                    |  |
|----|---------------------------------------|----------------------------------|------------|----------------------------------------------------|--|
| 45 | Mature miRNA Name                     | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |  |
|    | let-7a                                | UGAGGUAGUAGGUUG<br>UAUAGUU       | 310        | let-7a-1; let-7a-2; let-7a-3; let-7a-4             |  |
| 50 | let-7b                                | UGAGGUAGUAGGUUG<br>UGUGGUU       | 311        | let-7b                                             |  |
|    | let-7c                                | UGAGGUAGUAGGUUG<br>UAUGGUU       | 312        | let-7c                                             |  |
| 55 | let-7d                                | AGAGGUAGUAGGUUG<br>CAUAGU        | 313        | let-7d; let-7d-v1                                  |  |

| Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |
|-------------------|----------------------------------|------------|----------------------------------------------------|
| let-7e            | UGAGGUAGGAGGUUG<br>UAUAGU        | 314        | let-7e                                             |
| let-7f            | UGAGGUAGUAGAUUG<br>UAUAGUU       | 315        | let-7f-1; let-7f-2-1; let-7f-2-2                   |
| let-7g            | UGAGGUAGUAGUUUG<br>UACAGU        | 316        | let-7g                                             |
| let-7i            | UGAGGUAGUAGUUUG<br>UGCU          | 317        | let-7i                                             |
| miR-1             | UGGAAUGUAAAGAAG<br>UAUGUA        | 318        | miR-1b; miR-1b-1; miR-1b-2                         |
| miR-7             | UGGAAGACUAGUGAU<br>UUUGUU        | 319        | miR-7-1; miR-7-1a <sub>,</sub> miR-7-2; miR-7-3    |
| miR-9             | UCUUUGGUUAUCUAGC<br>UGUAUGA      | 320        | miR-9-1; miR-9-2; miR-9-3                          |
| miR-9*            | UAAAGCUAGAUAACCG<br>AAAGU        | 321        | miR-9-1; miR-9-2; miR-9-3                          |
| miR-10a           | UACCCUGUAGAUCCGA<br>AUUUGUG      | 322        | miR-10a                                            |
| miR-10b           | UACCCUGUAGAACCGA<br>AUUUGU       | 323        | miR-10b                                            |
| miR-15a           | UAGCAGCACAUAAUGG<br>UUUGUG       | 324        | miR-15a; miR-15a-2                                 |
| miR-15b           | UAGCAGCACAUCAUGG<br>UUUACA       | 325        | miR-15b                                            |
| miR-16            | UAGCAGCACGUAAAUA<br>UUGGCG       | 326        | miR-16-1; miR-16-2; miR-16-13                      |
| miR-17-5p         | CAAAGUGCUUACAGUG<br>CAGGUAGU     | 327        | miR-17                                             |
| miR-17-3p         | ACUGCAGUGAAGGCAC<br>UUGU         | 328        | miR-17                                             |
| miR-18            | UAAGGUGCAUCUAGUG<br>CAGAUA       | 329        | miR-18; miR-18-13                                  |
| miR-19a           | UGUGCAAAUCUAUGCA<br>AAACUGA      | 330        | miR-19a; miR-19a-13                                |
| miR-19b           | UGUGCAAAUCCAUGCA<br>AAACUGA      | 331        | miR-19b-1; miR-19b-2                               |
| miR-20            | ÚAAAGUGCUUAUAGU<br>GCAGGUA       | 332        | miR-20 (miR-20a)                                   |

|    | Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |
|----|-------------------|----------------------------------|------------|----------------------------------------------------|
| 5  | miR-21            | UAGCUUAUCAGACUGA<br>UGUUGA       | 333        | miR-21; miR-21-17                                  |
|    | miR-22            | AAGCUGCCAGUUGAAG<br>AACUGU       | 334        | miR-22                                             |
| 10 | miR-23a           | AUCACAUUGCCAGGGA<br>UUUCC        | 335        | miR-23a                                            |
| 15 | miR-23b           | AUCACAUUGCCAGGGA<br>UUACCAC      | 336        | miR-23b                                            |
|    | miR-24            | UGGCUCAGUUCAGCAG<br>GAACAG       | 337        | miR-24-1; miR-24-2; miR-24-19; miR-<br>24-9        |
| 20 | miR-25            | CAUUGCACUUGUCUCG<br>GUCUGA       | 338        | miR-25                                             |
|    | miR-26a           | UUCAAGUAAUCCAGGA<br>UAGGCU       | 339        | miR-26a; miR-26a-1; miR-26a-2                      |
| 25 | miR-26b           | UUCAAGUAAUUCAGGA<br>UAGGU        | 340        | miR-26b                                            |
|    | miR-27a           | UUCACAGUGGCUAAGU<br>UCCGCC       | 341        | miR-27a                                            |
| 30 | miR-27b           | UUCACAGUGGCUAAGU<br>UCUG         | 342        | miR-27b-1; miR-27b-2                               |
| 25 | miR-28            | AAGGAGCUCACAGUCU<br>AUUGAG       | 343        | miR-28                                             |
| 35 | miR-29a           | CUAGCACCAUCUGAAA<br>UCGGUU       | 344        | miR-29a-2; miR-29a                                 |
| 40 | miR-29b           | UAGCACCAUUUGAAAU<br>CAGU         | 345        | miR-29b-1; miR-29b-2                               |
|    | miR-29c           | UAGCACCAUUUGAAAU<br>CGGUUA       | 346        | miR-29c                                            |
| 45 | miR-30a-5p        | UGUAAACAUCCUCGAC<br>UGGAAĢC      | 347        | miR-30a                                            |
|    | miR-30a-3p        | CUUUCAGUCGGAUGUU<br>UGCAGC       | 348        | miR-30a                                            |
| 50 | miR-30b           | UGUAAACAUCCUACAC<br>UCAGC        | 349        | miR-30b-1; miR-30b-2                               |
|    | miR-30c           | UGUAAACAUCCUACAC<br>UCUCAGC      | 350        | miR-30c                                            |
| 55 | miR-30d           | UGUAAACAUCCCCGAC<br>UGGAAG       | 351        | miR-30d                                            |

|     | Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |
|-----|-------------------|----------------------------------|------------|----------------------------------------------------|
| 5   | miR-30e           | UGUAAACAUCCUUGAC<br>UGGA         | 352        | miR-30e                                            |
|     | miR-31            | GGCAAGAUGCUGGCAU<br>AGCUG        | 353        | miR-31                                             |
| 10  | miR-32            | UAUUGCACAUUACUAA<br>GUUGC        | 354        | miR-32                                             |
| 15  | miR-33            | GUGCAUUGUAGUUGCA<br>UUG          | 355        | miR-33; miR-33b                                    |
|     | miR-34a           | UGGCAGUGUCUUAGCU<br>GGUUGU       | 356        | miR-34a                                            |
| 20  | miR-34b           | AGGCAGUGUCAUUAGC<br>UGAUUG       | 357        | miR-34b                                            |
|     | miR-34c           | AGGCAGUGUAGUUAGC<br>UGAUUG       | 358        | miR-34c                                            |
| 25  | miR-92            | UAUUGCACUUGUCCCG<br>GCCUGU       | 359        | miR-92-2; miR-92-1                                 |
|     | miR-93            | AAAGUGCUGUUCGUGC<br>AGGUAG       | 360        | miR-93-1; miR-93-2                                 |
| 30  | miR-95            | UUCAACGGGUAUUUAU<br>UGAGCA       | 361        | miR-95                                             |
| 0.5 | miR-96            | UUUGGCACUAGCACAU<br>UUUUGC       | 362        | miR-96                                             |
| 35  | miR-98            | UGAGGUAGUAAGUUG<br>UAUUGUU       | 363        | miR-98                                             |
| 40  | miR-99a           | AACCCGUAGAUCCGAU<br>CUUGUG       | 364        | miR-99a                                            |
|     | miR-99b           | CACCCGUAGAACCGAC<br>CUUGCG       | 365        | miR-99b                                            |
| 45  | miR-100           | UACAGUACUGUGAUAA<br>CUGAAG       | 366        | miR-100                                            |
|     | miR-101           | UACAGUACUGUGAUAA<br>CUGAAG       | 367        | miR-101-1; miR-101-2                               |
| 50  | miR-103           | AGCAGCAUUGUACAGG<br>GCUAUGA      | 368        | miR-103-1                                          |
|     | miR-105           | UCAAAUGCUCAGACUC<br>CUGU         | 369        | miR-105                                            |
| 55  | miR-106-a         | AAAAGUGCUUACAGUG<br>CAGGUAGC     | 370        | miR-106-a                                          |

|    | Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |
|----|-------------------|----------------------------------|------------|----------------------------------------------------|
| 5  | miR-106-b         | UAAAGUGCUGACAGUG<br>CAGAU        | 371        | miR-106-b                                          |
|    | miR-107           | AGCAGCAUUGUACAGG<br>GCUAUCA      | 372        | miR-107                                            |
| 10 | miR-122a          | UGGAGUGUGACAAUG<br>GUGUUUGU      | 373        | miR-122a-1; miR-122a-2                             |
| 15 | miR-124a          | UUAAGGCACGCGGUGA<br>AUGCCA       | 374        | miR-124a-1; miR-124a-2; miR-124a-3                 |
|    | miR-125a          | UCCCUGAGACCCUUUA<br>ACCUGUG      | 375        | miR-125a-1; miR-125a-2                             |
| 20 | miR-125b          | UCCCUGAGACCCUAAC<br>UUGUGA       | 376        | miR-125b-1; miR-125b-2                             |
|    | miR-126*          | CAUUAUUACUUUUGGU<br>ACGCG        | 377        | miR-126-1; miR-126-2                               |
| 25 | miR-126           | UCGUACCGUGAGUAAU<br>AAUGC        | 378        | miR-126-1; miR-126-2                               |
|    | miR-127           | UCGGAUCCGUCUGAGC<br>UUGGCU       | 379        | miR-127-1; miR-127-2                               |
| 30 | miR-128a          | UCACAGUGAACCGGUC<br>UCUUUU       | 380        | miR-128; miR-128a                                  |
| 25 | miR-128b          | UCACAGUGAACCGGUC<br>UCUUUC       | 381        | miR-128b                                           |
| 35 | miR-129           | CUUUUUGCGGUCUGGG<br>CUUGC        | 382        | miR-129-1; miR-129-2                               |
| 40 | miR-130a          | CAGUGCAAUGUUAAAA<br>GGGC         | 383        | miR-130a                                           |
|    | miR-130b          | CAGUGCAAUGAUGAAA<br>GGGCAU       | 384        | miR-130b                                           |
| 45 | miR-132           | UAACAGUCUACAGCCA<br>UGGUCG       | 385        | miR-132-1                                          |
|    | miR-133a          | UUGGUCCCCUUCAACC<br>AGCUGU       | 386        | miR-133a-1; miR-133a-2                             |
| 50 | miR-133b          | UUGGUCCCCUUCAACC<br>AGCUA        | 387        | miR-133b                                           |
|    | miR-134           | UGUGACUGGUUGACCA<br>GAGGG        | 388        | miR-134-1; miR-134-2                               |
| 55 | miR-135a          | UAUGGCUUUUUAUUCC<br>UAUGUGA      | 389        | miR-135a; miR-135a-2 (miR-135-2)                   |

|    | Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |
|----|-------------------|----------------------------------|------------|----------------------------------------------------|
| 5  | miR-135b          | UAUGGCUUUUCAUUCC<br>UAUGUG       | 390        | miR-135b                                           |
| 40 | miR-136           | ACUCCAUUUGUUUUGA<br>UGAUGGA      | 391        | miR-136-1; miR-136-2                               |
| 10 | miR-137           | UAUUGCUUAAGAAUAC<br>GCGUAG       | 392        | miR-137                                            |
| 15 | miR-138           | AGCUGGUGUUGUGAA<br>UC            | 393        | miR-138-1; miR-138-2                               |
|    | miR-139           | UCUACAGUGCACGUGU<br>CU           | 394        | miR-139                                            |
| 20 | miR-140           | AGUGGUUUUACCCUAU<br>GGUAG        | 395        | miR-140; miR-140as; miR-140s                       |
|    | miR-141           | AACACUGUCUGGUAAA<br>GAUGG        | 396        | miR-141-; miR-141-2                                |
| 25 | miR-142-3p        | UGUAGUGUUUCCUACU<br>UUAUGGA      | 397        | miR-142                                            |
|    | miR-142-5p        | CAUAAAGUAGAAAGCA<br>CUAC         | 398        | miR-142                                            |
| 30 | miR-143           | UGAGAUGAAGCACUGU<br>AGCUCA       | 399        | miR-143-1                                          |
| 35 | miR-144           | UACAGUAUAGAUGAU<br>GUACUAG       | 400        | miR-144-1; miR-144-2                               |
|    | miR-145           | GUCCAGUUUUCCCAGG<br>AAUCCCUU     | 401        | miR-145-1; miR-145-2                               |
| 40 | miR-146           | UGAGAACUGAAUUCCA<br>UGGGUU       | 402        | miR-146-1; miR-146-2                               |
|    | miR-147           | GUGUGUGGAAAUGCU<br>UCUGC         | 403        | miR-147                                            |
| 45 | miR-148a          | UCAGUGCACUACAGAA<br>CUUUGU       | 404        | miR-148a (miR-148)                                 |
|    | miR-148b          | UCAGUGCAUCACAGAA<br>CUUUGU       | 405        | miR-148b                                           |
| 50 | miR-149           | UCUGGCUCCGUGUCUU<br>CACUCC       | 406        | miR-149                                            |
|    | miR-150           | UCUCCCAACCCUUGUA<br>CCAGUG       | 407        | miR-150-1; miR-150-2                               |
| 55 | miR-151           | ACUAGACUGAAGCUCC<br>UUGAGG       | 408        | miR-151                                            |

|    | Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a     |
|----|-------------------|----------------------------------|------------|--------------------------------------------------------|
| 5  | miR-152           | UCAGUGCAUGACAGAA<br>CUUGG        | 409        | miR-152-1; miR-152-2                                   |
| 10 | miR-153           | UUGCAUAGUCACAAAA<br>GUGA         | 410        | miR-153-1-1; miR-153-1-2; miR-<br>153-2-1; miR-153-2-2 |
|    | miR-154           | UAGGUUAUCCGUGUUG<br>CCUUCG       | 411        | miR-154-1; miR-154-2                                   |
| 15 | miR-154*          | AAUCAUACACGGUUGA<br>CCUAUU       | 412        | miR-154-1; miR-154-2                                   |
|    | miR-155           | UUAAUGCUAAUCGUGA<br>UAGGGG       | 413        | miR-155                                                |
| 20 | miR-181a          | AACAUUCAACGCUGUC<br>GGUGAGU      | 414        | miR-181a                                               |
| 25 | miR-181b          | AACAUUCAUUGCUGUC<br>GGUGGGUU     | 415        | miR-181b-1; miR-181b-2                                 |
| 20 | miR-181c          | AACAUUCAACCUGUCG<br>GUGAGU       | 416        | miR-181c                                               |
| 30 | miR-182           | UUUGGCAAUGGUAGA<br>ACUCACA       | 417        | miR-182; miR-182as                                     |
|    | miR-182*          | UGGUUCUAGACUUGCC<br>AACUA        | 418        | miR-182; miR-182as                                     |
| 35 | miR-183           | UAUGGCACUGGUAGAA<br>UUCACUG      | 419        | miR-183                                                |
|    | miR-184           | UGGACGGAGAACUGAU<br>AAGGGU       | 420        | miR-184-1; miR-184-2                                   |
| 40 | miR-185           | UGGAGAGAAAGGCAG<br>UUC           | 421        | miR-185-1; miR-185-2                                   |
|    | miR-186           | CAAAGAAUUCUCCUUU<br>UGGGCUU      | 422        | miR-186-1; miR-186-2                                   |
| 45 | miR-187           | UCGUGUCUUGUGUUGC<br>AGCCG        | 423        | miR-187                                                |
| 50 | miR-188           | CAUCCCUUGCAUGGUG<br>GAGGGU       | 424        | miR-188                                                |
| 50 | miR-189           | GUGCCUACUGAGCUGA<br>UAUCAGU      | 425        | miR-189-1; miR-189-2                                   |
| 55 | miR-190           | UGAUAUGUUUGAUAU<br>AUUAGGU       | 426        | miR-190-1; miR-190-2                                   |
|    | miR-191           | CAACGGAAUCCCAAAA<br>GCAGCU       | 427        | miR-191-1; miR-191-2                                   |

|    | Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |
|----|-------------------|----------------------------------|------------|----------------------------------------------------|
| 5  | miR-192           | CUGACCUAUGAAUUGA<br>CAGCC        | 428        | miR-192                                            |
|    | miR-193           | AACUGGCCUACAAAGU<br>CCCAG        | 429        | miR-193-1; miR-193-2                               |
| 10 | miR-194           | UGUAACAGCAACUCCA<br>UGUGGA       | 430        | miR-194-1; miR-194-2                               |
| 15 | miR-195           | UAGCAGCACAGAAAUA<br>UUGGC        | 431        | miR-195-1; miR-195-2                               |
|    | miR-196a          | UAGGUAGUUUCAUGU<br>UGUUGG        | 432        | miR-196a; miR-196a-2 (miR196)                      |
| 20 | miR-196b          | UAGGUAGUUUCCUGUU<br>GUUGG        | 433        | miR-196b                                           |
|    | miR-197           | UUCACCACCUUCUCCA<br>CCCAGC       | 434        | miR-197                                            |
| 25 | miR-198           | GGUCCAGAGGGGAGAU<br>AGG          | 435        | miR-198                                            |
|    | miR-199a          | CCCAGUGUUCAGACUA<br>CCUGUUC      | 436        | miR-199a-1; miR-199a-2                             |
| 30 | miR-199a*         | UACAGUAGUCUGCACA<br>UUGGUU       | 437        | miR-199a-1; miR-199a-2; miR-199s;<br>miR-199b      |
|    | miR-199b          | CCCAGUGUUUAGACUA<br>UCUGUUC      | 438        | miR-199b                                           |
| 35 | miR-200a          | UAACACUGUCUGGUAA<br>CGAUGU       | 439        | miR-200a                                           |
| 40 | miR-200b          | CUCUAAUACUGCCUGG<br>UAAUGAUG     | 440        | miR-200b                                           |
|    | miR-200c          | AAUACUGCCGGGUAAU<br>GAUGGA       | 441        | miR-200c                                           |
| 45 | miR-202           | AGAGGUAUAGGGCAU<br>GGGAAGA       | 442        | miR-202                                            |
|    | miR-203           | GUGAAAUGUUUAGGA<br>CCACUAG       | 443        | miR-203                                            |
| 50 | miR-204           | UUCCCUUUGUCAUCCU<br>AUGCCU       | 444        | miR-204                                            |
|    | miR-205           | UCCUUCAUUCCACCGG<br>AGUCUG       | 445        | miR-205                                            |
| 55 | miR-206           | UGGAAÚGUAAGGAAG<br>UGUGUGG       | 446        | miR-206-1; miR-206-2                               |

|    | Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |
|----|-------------------|----------------------------------|------------|----------------------------------------------------|
| 5  | miR-208           | AUAAGACGAGCAAAAA<br>GCUUGU       | 447        | miR-208                                            |
|    | miR-210           | CUGUGCGUGUGACAGC<br>GGCUG        | 448        | miR-210                                            |
| 10 | miR-211           | UUCCCUUUGUCAÜĊCU<br>UCGCCU       | 449        | miR-211                                            |
| 15 | miR-212           | UAACAGUCUCCAGUCA<br>CGGCC        | 450        | miR-212                                            |
|    | miR-213           | ACCAUCGACCGUUGAU<br>UGUACC       | 451        | miR-213                                            |
| 20 | miR-214           | ACAGCAGGCACAGACA<br>GGCAG        | 452        | miR-214                                            |
|    | miR-215           | AUGACCUAUGAAUUGA<br>CAGAC        | 453        | miR-215                                            |
| 25 | miR-216           | UAAUCUCAGCUGGCAA<br>CUGUG        | 454        | miR-216                                            |
|    | miR-217           | UACUGCAUCAGGAACU<br>GAUUGGAU     | 455        | miR-217                                            |
| 30 | miR-218           | UUGUGCUUGAUCUAAC<br>CAUGU        | 456        | miR-218-1; miR-218-2                               |
|    | miR-219           | UGAUUGUCCAAACGCA<br>AUUCU        | 457        | miR-219; miR-219-1; miR-219-2                      |
| 35 | miR-220           | CCACACCGUAUCUGAC<br>ACUUU        | 458        | miR-220                                            |
| 40 | miR-221           | AGCUACAUUGUCUGCU<br>GGGUUUC      | 459        | miR-221                                            |
|    | miR-222           | AGCUACAUCUGGCUAC<br>UGGGUCUC     | 460        | miR-222                                            |
| 45 | miR-223           | UGUCAGUUUGUCAAAU<br>ACCCC        | 461        | miR-223                                            |
|    | miR-224           | CAAGUCACUAGUGGUU<br>CCGUUUA      | 462        | miR-224                                            |
| 50 | miR-296           | AGGCCCCCCUCAAU<br>CCUGU          | 463        | miR-296                                            |
|    | miR-299           | UGGUUUACCGUCCCAC<br>AUACAU       | 464        | miR-299                                            |
| 55 | miR-301           | CAGUGCAAUAGUAUUG<br>UCAAAGC      | 465        | miR-301                                            |

|    | Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |
|----|-------------------|----------------------------------|------------|----------------------------------------------------|
| 5  | miR-302a          | UAAGUGCUUCCAUGUU<br>UUGGUGA      | 466        | miR-302a                                           |
| 10 | miR-302b*         | ACUUUAACAUGGAAGU<br>GCUUUCU      | 467        | miR-302b                                           |
| 10 | miR-302b          | UAAGUGCUUCCAUGUU<br>UUAGUAG      | 468        | miR-302b                                           |
| 15 | miR-302c*         | UUUAACAUGGGGGUAC<br>CUGCUG       | 469        | miR-302c                                           |
|    | miR-302c          | UAAGUGCUUCCAUGUU<br>UCAGUGG      | 470        | miR-302c                                           |
| 20 | miR-302d          | UAAGUGCUUCCAUGUU<br>UGAGUGU      | 471        | miR-302d                                           |
|    | miR-320           | AAAAGCUGGGUUGAG<br>AGGGCGAA      | 472        | miR-320                                            |
| 25 | miR-321           | UAAGCCAGGGAUUGUG<br>GGUUC        | 473        | miR-321                                            |
|    | miR-323           | GCACAUUACACGGUCG<br>ACCUCU       | 474        | miR-323                                            |
| 30 | miR-324-5p        | CGCAUCCCCUAGGGCA<br>UUGGUGU      | 475        | miR-324                                            |
| 35 | míR-324-3p        | CCACUGCCCCAGGUGC<br>UGCUGG       | 476        | miR-324                                            |
|    | miR-325           | CCUAGUAGGUGUCCAG<br>UAAGU        | 477        | miR-325                                            |
| 40 | miR-326           | CCUCUGGGCCCUUCCU<br>CCAG         | 478        | miR-326                                            |
|    | miR-328           | CUGGCCCUCUCUGCCC                 | 479        | miR-328                                            |
| 45 | miR-330           | GCAAAGCACACGGCCU<br>GCAGAGA      | 480        | miR-330                                            |
|    | miR-331           | GCCCCUGGGCCUAUCC<br>UAGAA        | 481        | miR-331                                            |
| 50 | miR-335           | UCAAGAGCAAUAACGA<br>AAAAUGU      | 482        | miR-335                                            |
| 55 | miR-337           | UCCAGCUCCUAUAUGA<br>UGCCUUU      | 483        | miR-337                                            |

(continued)

|    | Mature miRNA Name | Mature miRNA Sequence (5' to 3') | SEQ ID NO. | Corresponding precursor microRNA (s); see Table 1a |
|----|-------------------|----------------------------------|------------|----------------------------------------------------|
| 5  | miR-338           | UCCAGCAUCAGUGAUU<br>UUGUUGA      | 484        | miR-338                                            |
| 10 | miR-339           | UCCCUGUCCUCCAGGA<br>GCUCA        | 485        | miR-339                                            |
| 10 | miR-340           | UCCGUCUCAGUUACUU<br>UAUAGCC      | 486        | miR-340                                            |
| 15 | miR-342           | UCUCACACAGAAAUCG<br>CACCCGUC     | 487        | miR-342                                            |
|    | miR-345           | UGCUGACUCCUAGUCC<br>AGGGC        | 488        | miR-345                                            |
| 20 | miR-346           | UGUCUGCCCGCAUGCC<br>UGCCUCU      | 489        | miR-346                                            |
|    | miR-367           | AAUUGCACUUUAGCAA<br>UGGUGA       | 490        | miR-367                                            |
| 25 | miR-368           | ACAUAGAGGAAAUUCC<br>ACGUUU       | 491        | miR-368                                            |
| 30 | miR-369           | AAUAAUACAUGGUUG<br>AUCUUU        | 492        | miR-369                                            |
|    | miR-370           | GCCUGCUGGGGUGGAA<br>CCUGG        | 493        | miR-370                                            |
| 35 | miR-371           | GUGCCGCCAUCUUUUG<br>AGUGU        | 494        | miR-371                                            |
|    | miR-372           | AAAGUGCUGCGACAUU<br>UGAGCGU      | 495        | miR-372                                            |
| 40 | miR-373*          | ACUCAAAAUGGGGGCG<br>CUUUCC       | 496        | miR-373                                            |
|    | miR-373           | GAAGUGCUUCGAUUUU<br>GGGGUGU      | 497        | miR-373                                            |
| 45 | miR-374 .         | UUAUAAUACAACCUGA<br>UAAGUG       | 498        | miR-374                                            |

**[0061]** The present invention encompasses methods of diagnosing or prognosticating whether a subject has, or is at risk for developing, a cancer and/or myeloproliferative disorder. The methods comprise determining the level of at least one miR gene product in a sample from the subject and comparing the level of the miR gene product in the sample to a control. As used herein, a "subject" can be any mammal that has, or is suspected of having, a cancer and/or myeloproliferative disorder. In a preferred embodiment, the subject is a human who has, or is suspected of having, a cancer, myeloproliferative disorder and/or a platelet disorder.

50

**[0062]** The level of at least one miR gene product can be measured in cells of a biological sample obtained from the subject. For example, a tissue sample can be removed from a subject suspected of having cancer and/or a myeloproliferative disorder by conventional biopsy techniques. In another embodiment, a blood sample can be removed from the subject, and white blood cells can be isolated for DNA extraction by standard techniques. In one embodiment, the blood

or tissue sample is obtained from the subject prior to initiation of radiotherapy, chemotherapy or other therapeutic treatment. A corresponding control tissue or blood sample, or a control reference sample (e.g., obtained from a population of control samples), can be obtained from unaffected tissues of the subject, from a normal human individual or population of normal individuals, or from cultured cells corresponding to the majority of cells in the subject's sample. The control tissue or blood sample can then processed along with the sample from the subject, so that the levels of miR gene product produced from a given miR gene in cells from the subject's sample can be compared to the corresponding miR gene product levels from cells of the control sample. Alternatively, a reference sample can be obtained and processed separately (e.g., at a different time) from the test sample and the level of a miR gene product produced from a given miR gene in cells from the test sample can be compared to the corresponding miR gene product level from the reference sample.

10

20

30

35

50

55

[0063] In one embodiment, the level of the at least one miR gene product in the test sample is greater than the level of the corresponding miR gene product in the control sample (i.e., expression of the miR gene product is "upregulated"), As used herein, expression of a miR gene product is "upregulated" when the amount of miR gene product in a cell or tissue sample from a subject is greater than the amount of the same gene product in a control (e.g., a reference standard, a control cell sample, a control tissue sample). In another embodiment, the level of the at least one miR gene product in the test sample is less than the level of the corresponding miR gene product in the control sample (i.e., expression of the miR gene product is "downregulated"). As used herein, expression of a miR gene is "downregulated" when the amount of miR gene product produced from that gene in a cell or tissue sample from a subject is less than the amount produced from the same gene in a control cell or tissue sample. The relative miR gene expression in the control and normal samples can be determined with respect to one or more RNA expression standards. The standards can comprise, for example, a zero miR gene expression level, the miR gene expression level in a standard cell line, the miR gene expression level in unaffected tissues of the subject, or the average level of miR gene expression previously obtained for a population of normal human controls (e.g., a control reference standard).

[0064] An alteration (i.e., an increase or decrease) in the level of a miR gene product in the sample obtained from the subject, relative to the level of a corresponding miR gene product in a control sample, is indicative of the presence of cancer and/or a myeloproliferative disorder in the subject. In one embodiment, the level of the at least one miR gene product in the test sample is greater than the level of the corresponding miR gene product in the control sample. miR gene products having higher expression levels in cancer cell lines (e.g., AMKL cell lines) than control cells (e.g., in vitro CD34+-differentiated megakaryocytes) are described and exemplified herein (see, e.g., Example 5). In one embodiment, the at least one miR gene product is selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135, miR-20 and combinations thereof In another embodiment, the at least one miR gene product is selected from the group consisting of miR-101, miR-126, miR-106, miR-20 and nuR-135 and combinations thereof. In yet another embodiment, the at least one miR gene product is selected from the group consisting of miR-106, miR-20 and miR-135 and combinations thereof. As described and exemplified herein, the increased expression of such miR gene products discriminates cancerous cells from corresponding non-cancerous cells. [0065] As described herein, the diagnostic and prognostic methods of the invention can be used to diagnose or prognosticate cancers and/or myeloproliferative disorders. In particular embodiments, the diagnostic and prognostic methods are used to diagnose or prognosticate a cancer in a subject, tissue sample, cell sample or fluid sample. The diagnostic and prognostic methods can be used to diagnose or prognosticate any type of cancer. In particular embodiments, the diagnostic and prognostic methods can be used to diagnose or prognosticate a leukemia. In one embodiment, the leukemia that is diagnosed or prognosticated is acute myeloid leukemia (e.g., acute megakaryoblastic leukemia). In other embodiments, the diagnostic and prognostic methods can be used to diagnose or prognosticate multiple myeloma.

**[0066]** The diagnostic and prognostic methods of the invention can also be used to diagnose or prognosticate hematologic malignancies (e.g., myeloproliferative disorders). In one embodiment, the myeloproliferative disorder that is diagnosed or prognosticated is selected from the group consisting of essential thrombocytemia (ET), polycythemia vera (PV), myelodisplasia, myelofibrosis (e.g., agnogenic myeloid metaplasia (AMM) (also referred to as idiopathic myelofibrosis)) and chronic myelogenous leukemia (CML).

[0067] In particular embodiments, the diagnostic, prognostic and therapeutic methods of the invention can also be used to diagnose, prognosticate and/or treat platelet disorders (e.g., inherited platelet disorders). For example, the diagnostic, prognostic and therapeutic methods can be used to diagnose, prognosticate and/or treat defects in platelet-vessel wall interactions (i.e., disorders of adhesion). Such adhesion disorders include, e.g., von Willebrand disease (deficiency or defect in plasma vWF) and Bernard-Soulier syndrome (deficiency or defect in GPIb). In other embodiments, the diagnostic, prognostic and therapeutic methods can be used to diagnose, prognosticate and/or treat defects in platelet-platelet interaction (i.e., disorders of aggregation). Such aggregation disorders include, e.g., congenital afibrinogenemia (deficiency of plasma fibrinogen) and glanzmann thrombasthenia (deficiency or defect in GPIIb-IIIa). In other embodiments, the diagnostic, prognostic and therapeutic methods can be used to diagnose, prognosticate and/or treat disorders of platelet secretion and abnormalities of granules. Such disorders of platelet secretion and abnormalities of

granules include, e.g., storage pool deficiency and Quebec platelet disorder. In yet other embodiments, the diagnostic, prognostic and therapeutic methods can be used to diagnose, prognosticate and/or treat disorders of platelet secretion and signal transduction (primary secretion defects). Such primary secretion defects include, e.g., defects in platelet-agonist interaction (receptor defects) (e.g., thromboxane  $A_2$ , collagen, ADP, epinephrine), defects in G-protein activation (e.g.,  $G\alpha q$  deficiency,  $G\alpha q$  deficiency,  $G\alpha q$  deficiency,  $G\alpha q$  deficiency, defects in phosphatidylinositol metabolism (e.g., phospholipase C-2 deficiency), defects in calcium mobilization, defects in protein phosphorylation (pleckstrin) PKC-y deficiency, and abnormalities in arachidonic acid pathways and thromboxane synthesis (e.g., cyclooxygenase deficiency, thromboxane synthase deficiency). In other embodiments, the diagnostic, prognostic and therapeutic methods can be used to diagnose, prognosticate and/or treat defects in cytoskeletal regulation (e.g., Wiskott-Aldrich syndrome). In still other embodiments, the diagnostic, prognostic and therapeutic methods can be used to diagnose, prognosticate and/or treat disorders of platelet coagulant-protein interaction (membrane phospholipid defects) (e.g., Scott syndrome). Other platelet disorders (e.g., inherited platelet disorders) can also be diagnosed, prognosticated and/or treated using the methods of the invention.

[0068] The invention also provides methods of determining the prognosis of a subject with cancer and/or a myeloproliferative disorder. In this method, the level of at least one miR genes product, which is associated with a particular prognosis in cancer and/or a myeloproliferative disorder (e.g., a good or positive prognosis, a poor or adverse prognosis), is measured in a test sample from the subject. An alteration (e.g., an increase, a decrease) in the level of the miR gene product in the test sample, relative to the level of a corresponding miR gene product in a control sample, is indicative of the subject having a cancer and/or myeloproliferative disorder with a particular prognosis. In one embodiment, the miR gene product is associated with an adverse (i.e., poor) prognosis. Examples of an adverse prognosis include, but are not limited to, low survival rate and rapid disease progression. In one embodiment, the level of the at least one miR gene product in the test sample is greater than the level of the corresponding miR gene product in a control sample (i.e., it is upregulated). In a particular embodiment, the at least one miR gene product that is upregulated is selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135, miR-20 and combinations thereof. In another embodiment, the at least one miR gene product that is upregulated is selected from the group consisting of miR-101, miR-126, miR-106, miR-20 and miR-135 and combinations thereof In yet another embodiment, the at least one miR gene product that is upregulated is selected from the group consisting of miR-106, miR-20 and miR-135 and combinations thereof The increased expression of such miR gene products can correlate with an adverse prognosis and the severity of a subject's cancer and/or myeloproliferative disorder.

20

30

35

50

55

**[0069]** In certain embodiments of the diagnostic and prognostic methods described herein, the level of the at least one miR gene product is measured by reverse transcribing RNA from a test sample obtained from the subject to provide a set of target oligodeoxynucleotides, hybridizing the target oligodeoxynucleotides to a microarray that comprises miRNA-specific probe oligonucleotides to provide a hybridization profile for the test sample, and comparing the test sample hybridization profile to a hybridization profile generated from a control sample.

[0070] Identification of targets of particular miR gene products (e.g., those miR gene products exhibiting upregulated or downregulated expression relative to a control sample) can aid in elucidating mechanisms of action of microRNAs. As described and exemplified herein, particular targets and putative targets of select microRNAs were identified (see, e.g., Tables 2, 3 and 5 and Exemplification). For example, the transcription factor MAFB was identified as a target of mi-130a (Example 2). Similarly, HOXA1 was identified as a target of miR-10a (Example 5). For both miRs, direct interaction of the miR with the 3' UTR of its respective target was demonstrated (Examples 2 and 5). Moreover, an inverse relation in the expression of the miR and its respective target were demonstrated. Thus, expression of pre-miR-130a resulted in decreased expression of MAFB (see, e.g., FIG. 2C) while expression of pre-miR-10a resulted in decreased expression of HOXA1 (see, e.g., FIGS. 3C, 3F and 3G). Thus, in one embodiment, expression of target genes of particular microRNAs (e.g., those listed in Tables 2, 3 and 5) can be used to diagnose cancer and/or a myeloproliferative disorder. Such target genes display inverse expression to the respective miR that targets it. One of skill in the art can measure the expression levels of any of these target genes using known methods and/or methods described herein for measuring the expression levels of microRNAs (e.g., quantitative or semi-quantitative RT-PCR, Northern blot analysis, solution hybridization detection, microarray analysis), without undue experimentation. In particular embodiments, the target gene that is measured is MAFB or HOXA1.

[0071] The level of the at least one miR gene product can be measured using a variety of techniques that are well known to those of skill in the art (e.g., quantitative or semi-quantitative RT-PCR, Northern blot analysis, solution hybridization detection). In a particular embodiment, the level of at least one miR gene product is measured by reverse transcribing RNA from a test sample obtained from the subject to provide a set of target oligodeoxynucleotides, hybridizing the target oligodeoxynucleotides to one or more miRNA-specific probe oligonucleotides (e.g., a microarray that comprises miRNA-specific probe oligonucleotides) to provide a hybridization profile for the test sample, and comparing the test sample hybridization profile to a hybridization profile generated from a control sample. An alteration in the signal of at least one miRNA in the test sample relative to the control sample is indicative of the subject either having, or being at risk for developing cancer and/or a myeloproliferative disorder. In one embodiment, the signal of at least one miRNA is

upregulated, relative to the signal generated from the control sample. In another embodiment, the signal of at least one miRNA is downregulated, relative to the signal generated from the control sample. In a particular embodiment, the microarray comprises miRNA-specific probe oligonucleotides for a substantial portion of all known human miRNAs (e.g., the miRNAs listed in Tables 1a and 1b plus other known or discovered miRNAs). In a further embodiment, the microarray comprises miRNA-specific probe oligonucleotides for one or more miRNAs selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135, miR-20 and a combination thereof. In one embodiment, the microarray comprises miRNA-specific probe oligonucleotides for one or more miRNAs selected from the group consisting of miR-101, miR-126, miR-106, miR-20, miR-135 and a combination thereof. [0072] The microarray can be prepared from gene-specific oligonucleotide probes generated from known miRNA sequences, The array may contain two different oligonucleotide probes for each miRNA, one containing the active, mature sequence and the other being specific for the precursor of the miRNA. The array may also contain controls, such as one or more mouse sequences differing from human orthologs by only a few bases, which can serve as controls for hybridization stringency conditions. tRNAs and other RNAs (e.g., rRNAs, mRNAs) from both species may also be printed on the microchip, providing an internal, relatively stable, positive control for specific hybridization. One or more appropriate controls for non-specific hybridization may also be included on the microchip. For this purpose, sequences are selected based upon the absence of any homology with any known miRNAs.

10

20

30

35

40

50

55

[0073] The microarray may be fabricated using techniques known in the art. For example, probe oligonucleotides of an appropriate length, e.g., 40 nucleotides, are 5'-amine modified at position C6 and printed using commercially available microarray systems, e.g., the GanaMachine OmniGrid™ 100 Microarrayer and Amersham CodeLink™ activated slides. Labeled cDNA oligomer corresponding to the target RNAs is prepared by reverse transcribing the target RNA with labeled primer. Following first strand synthesis, the RNA/DNA hybrids are denatured to degrade the RNA templates. The labeled target cDNAs thus prepared are then hybridized to the microarray chip under hybridizing conditions, e.g., 6X SSPE/30% formamide at 25°C for 18 hours, followed by washing in 0.75X TNT at 37°C for 40 minutes. At positions on the array where the immobilized probe DNA recognizes a complementary target cDNA in the sample, hybridization occurs. The labeled target cDNA marks the exact position on the array where binding occurs, allowing automatic detection and quantification. The output consists of a list of hybridization events, indicating the relative abundance of specific cDNA sequences, and therefore the relative abundance of the corresponding complementary miRs, in the patient sample. According to one embodiment, the labeled cDNA oligomer is a biotin-labeled cDNA, prepared from a biotin-labeled primer. The microarray is then processed by direct detection of the biotin-containing transcripts using, e.g., Streptavidin-Alexa647 conjugate, and scanned utilizing conventional scanning methods. Image intensities of each spot on the array are proportional to the abundance of the corresponding miR in the patient sample.

[0074] The use of the array has several advantages for miRNA expression detection. First, the global expression of several hundred genes can be identified in the same sample at one time point. Second, through careful design of the oligonucleotide probes, expression of both mature and precursor molecules can be identified. Third, in comparison with Northern blot analysis, the chip requires a small amount of RNA, and provides reproducible results using 2.5  $\mu$ g of total RNA. The relatively limited number of miRNAs (a few hundred per species) allows the construction of a common microarray for several species, with distinct oligonucleotide probes for each. Such a tool would allow for analysis of trans-species expression for each known miR under various conditions.

**[0075]** In addition to use for quantitative expression level assays of specific miRs, a microchip containing miRNA-specific probe oligonucleotides corresponding to a substantial portion of the miRNome, preferably the entire miRNome, may be employed to carry out miR gene expression profiling, for analysis ofmiR expression patterns. Distinct miR signatures can be associated with established disease markers, or directly with a disease state.

[0076] According to the expression profiling methods described herein, total RNA from a sample from a subject suspected of having a cancer and/or a myeloproliferative disorder is quantitatively reverse transcribed to provide a set of labeled target oligodeoxynucleotides complementary to the RNA in the sample. The target oligodeoxynucleotides are then hybridized to a microarray comprising miRNA-specifc probe oligonucleotides to provide a hybridization profile for the sample. The result is a hybridization profile for the sample representing the expression pattern of miRNA in the sample. The hybridization profile comprises the signal from the binding of the target oligodeoxynucleotides from the sample to the miRNA-specific probe oligonucleotides in the microarray. The profile may be recorded as the presence or absence of binding (signal vs. zero signal). More preferably, the profile recorded includes the intensity of the signal from each hybridization. The profile is compared to the hybridization profile generated from a normal (e.g., noncancerous, non-myeloproliferative disorder) control sample or reference sample. An alteration in the signal is indicative of the presence of, or propensity to develop, cancer in the subject.

**[0077]** Other techniques for measuring miR gene expression are also within the skill in the art, and include various techniques for measuring rates of RNA transcription and degradation.

**[0078]** The invention also provides methods of diagnosing whether a subject has, or is at risk for developing, a cancer and/or myeloproliferative disorder with an adverse prognosis. In this method, the level of at least one miR gene product, which is associated with an adverse prognosis in a cancer and/or myeloproliferative disorder, is measured by reverse

transcribing RNA from a test sample obtained from the subject to provide a set of target oligodeoxynucleotides. The target oligodeoxynucleotides are then hybridized to one or more miRNA-specific probe oligonucleotides (e.g., a microarray that comprises miRNA-specific probe oligonucleotides) to provide a hybridization profile for the test sample, and the test sample hybridization profile is compared to a hybridization profile generated from a control sample. An alteration in the signal of at least one miRNA in the test sample relative to the control sample is indicative of the subject either having, or being at risk for developing, a cancer and/or myeloproliferative disorder with an adverse prognosis. miRs suitable for use in this method include, e.g" those that are upregulated in cancerous cells (e.g., AMKL cells).

[0079] In particular embodiments of the diagnostic, prognostic and therapeutic methods of the invention, as well as the pharmaceutical compositions of the invention, the miR gene product is not one or more of let7a-2, let-7c, let-7g, let-7i, miR-7-2, miR-7-3, miR-9, miR-9-1, miR-10a, miR-15a, miR-15b, miR-16-1, miR-16-2, miR-17-5p, miR-20a, miR-20a, miR-21, miR-24-1, miR-24-2, miR-25, miR-29b-2, miR-30, miR-30a-5p, miR-30c, miR-30d, miR-31, miR-32, miR-34, miR-34a, miR-34a prec, miR-34a-1, miR-34a-2, miR-92-2, miR-96, miR-99a, miR-99b pree, miR-100, miR-103, miR-106a, miR-107, miR-123, miR-124a-1, miR-125b-1, miR-125b-2, miR-126\*, miR-127, miR-128b, miR-129, miR-129, miR-129, miR-155, miR-135-1, miR-136, miR-137, miR-141, miR-142-as, miR-143, miR-146, miR-148, miR-149, miR-196-1, miR-196-1, miR-196-1, miR-196-2, miR-199a-1, miR-199a-2, miR-199b, miR-200b, miR-202, miR-203, miR-204, miR-205, miR-210, miR-211, miR-212, miR-214, miR-215, miR-217, miR-221 and/or miR-223.

10

15

20

30

35

40

45

50

55

[0080] As described herein, the level of a miR gene product in a sample can be measured using any technique that is suitable for detecting RNA expression levels in a biological sample. Suitable techniques (e.g., Northern blot analysis, RT-PCR, *in situ* hybridization) for determining RNA expression levels in a biological sample (e.g., cells, tissues) are well known to those of skill in the art. In a particular embodiment, the level of at least one miR gene product is detected using Northern blot analysis. For example, total cellular RNA can be purified from cells by homogenization in the presence of nucleic acid extraction buffer, followed by centrifugation. Nucleic acids are precipitated, and DNA is removed by treatment with DNase and precipitation. The RNA molecules are then separated by gel electrophoresis on agarose gels according to standard techniques, and transferred to nitrocellulose filters. The RNA is then immobilized on the filters by heating. Detection and quantification of specific RNA is accomplished using appropriately labeled DNA or RNA probes complementary to the RNA in question. See, for example, Molecular Cloning: A Laboratory Manual, J. Sambrook et al., eds., 2nd edition, Cold Spring Harbor Laboratory Press, 1989, Chapter 7, the entire disclosure of which is incorporated by reference.

[0081] Suitable probes (e.g., DNA probes, RNA probes) for Northern blot hybridization of a given miR gene product can be produced from the nucleic acid sequences provided in Table 1a and Table 1b and include, but are not limited to, probes having at least about 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% complementarity to a miR gene product of interest, as well as probes that have complete complementarity to a miR gene product of interest. Methods for preparation of labeled RNA and RNA probes, and the conditions for hybridization thereof to target nucleotide sequences, are described in Molecular Cloning: A Laboratory Manual, J. Sambrook et al., eds., 2nd edition, Cold Spring Harbor Laboratory Press, 1989, Chapters 10 and 11, the disclosures of which are incorporated herein by reference.

**[0082]** For example, the nucleic acid probe can be labeled with, e.g., a radionuclide, such as <sup>3</sup>H, <sup>32</sup>P, <sup>33</sup>P, <sup>14</sup>C, or <sup>35</sup>S; a heavy metal; a ligand capable of functioning as a specific binding pair member for a labeled ligand (e.g., biotin, avidin or an antibody); a fluorescent molecule; a chemiluminescent molecule; an enzyme or the like.

**[0083]** Probes can be labeled to high specific activity by either the nick translation method of Rigby et al. (1977), J. Mol. Biol, 113:237-251 or by the random priming method of Fienberg et al. (1983), Anal. Biochem. 132:6-13, the entire disclosures ofwhich are incorporated herein by reference. The latter is the method of choice for synthesizing <sup>32</sup>P-labeled probes of high specific activity from single-stranded DNA or from RNA templates. For example, by replacing preexisting nucleotides with highly radioactive nucleotides according to the nick translation method, it is possible to prepare <sup>32</sup>P-labeled nucleic acid probes with a specific activity well in excess of 10<sup>8</sup> cpm/microgram. Autoradiographic detection of hybridization can then be performed by exposing hybridized filters to photographic film. Densitometric scanning of the photographic films exposed by the hybridized filters provides an accurate measurement of m iR gene transcript levels. Using another approach, miR gene transcript levels can be quantified by computerized imaging systems, such as the Molecular Dynamics 400-B 2D Phosphorimager available from Amersham Biosciences, Piscataway, NJ.

**[0084]** Where radionuclide labeling of DNA or RNA probes is not practical, the random-primer method can be used to incorporate an analogue, for example, the dTTP analogue 5-(N-(N-biotinyl-epsilon-aminocaproyl)-3-aminoallyl)deoxyuridine triphosphate, into the probe molecule. The biotinylated probe oligonucleotide can be detected by reaction with biotin-binding proteins, such as avidin, streptavidin and antibodies (e.g., anti-biotin antibodies) coupled to fluorescent dyes or enzymes that produce color reactions.

**[0085]** In addition to Northern and other RNA hybridization techniques, determining the levels of RNA transcripts can be accomplished using the technique of *in situ* hybridization. This technique requires fewer cells than the Northern blotting technique and involves depositing whole cells onto a microscope cover slip and probing the nucleic acid content of the cell with a solution containing radioactive or otherwise labeled nucleic acid (e.g., cDNA or RNA) probes. This

technique is particularly well-suited for analyzing tissue biopsy samples from subjects. The practice of the *in situ* hybridization technique is described in more detail in U.S. Patent No. 5,427,916, the entire disclosure of which is incorporated herein by reference. Suitable probes for *in situ* hybridization of a given miR gene product can be produced from the nucleic acid sequences provided in Table 1a and Table 1b, and include, but are not limited to, probes having at least about 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% complementarity to a miR gene product of interest, as well as probes that have complete complementarity to a miR gene product of interest, as described above.

**[0086]** The relative number of miR gene transcripts in cells can also be determined by reverse transcription of miR gene transcripts, followed by amplification of the reverse-transcribed transcripts by polymerase chain reaction (RT-PCR), for example, as exemplified herein. The levels of miR gene transcripts can be quantified in comparison with an internal standard, for example, the level ofmRNA from a "housekeeping" gene present in the same sample. A suitable "housekeeping" gene for use as an internal standard includes, e.g., U6 small nuclear RNA, myosin or glyceraldehyde-3-phosphate dehydrogenase (G3PDH). Methods for performing quantitative and semi-quantitative RT-PCR, and variations thereof, are well known to those of skill in the art.

10

20

30

35

40

45

50

55

[0087] In some instances, it may be desirable to simultaneously determine the expression level of a plurality of different miR gene products in a sample. In other instances, it may be desirable to determine the expression level of the transcripts of all known miR genes correlated with a cancer and/or myeloproliferative disorder. Assessing cancer-specific expression levels for hundreds of miR genes or gene products is time consuming and requires a large amount of total RNA (e.g., at least 20 µg for each Northern blot) and autoradiographic techniques that require radioactive isotopes.

[0088] To overcome these limitations, an oligolibrary, in microchip format (i.e., a microarray), may be constructed containing a set of oligonucleotide (e.g., oligodeoxynucleotide) probes that are specific for a set of miR genes. Using such a microarray, the expression level of multiple microRNAs in a biological sample can be determined by reverse transcribing the RNAs to generate a set of target oligodeoxynucleotides, and hybridizing them to probe the oligonucleotides on the microarray to generate a hybridization, or expression, profile. The hybridization profile of the test sample can then be compared to that of a control sample to determine which microRNAs have an altered expression level in cancer cells and/or cells exhibiting a myeloproliferative disorder. As used herein, "probe oligonucleotide" or "probe oligodeoxynucleotide" refers to an oligonucleotide that is capable of hybridizing to a target oligonucleotide. "Target oligonucleotide" or "target oligodeoxynucleotide" refers to a molecule to be detected (e.g., via hybridization). By "miRspecific probe oligonucleotide" or "probe oligonucleotide specific for a miR" is meant a probe oligonucleotide that has a sequence selected to hybridize to a specific miR gene product, or to a reverse transcript of the specific miR gene product. [0089] An "expression profile" or "hybridization profile" of a particular sample is essentially a fingerprint of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is unique to the state of the cell. That is, normal tissue, cell or fluid samples may be distinguished from corresponding cancerous and/or myeloproliferative disorderexhibiting tissue, cell or fluid samples. Within cancerous and/or myeloproliferative disorder-exhibiting tissue, cell or fluid samples, different prognosis states (for example, good or poor long term survival prospects) may be determined. By comparing expression profiles of cancerous and/or myeloproliferative disorder-exhibiting tissue, cell or fluid samples in different states, information regarding which genes are important (including both upregulation and downregulation of genes) in each of these states is obtained. The identification of sequences that are differentially expressed in cancerous and/or myeloproliferative disorder-exhibiting tissue, cell or fluid samples, as well as differential expression resulting in different prognostic outcomes, allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated (e.g., to determine whether a chemotherapeutic drug acts to improve the long-term prognosis in a particular subject). Similarly, diagnosis may be done or confirmed by comparing samples from a subject with known expression profiles. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates that suppress the cancer and/or myeloproliferative disorder expression profile or convert a poor prognosis profile to a better prognosis profile.

**[0090]** Without wishing to be bound by any one theory, it is believed that alterations in the level of one or more miR gene products in cells can result in the deregulation of one or more intended targets for these miRs, which can lead to aberrant megakaryocytic differentiation and/or the formation of cancer, a myeloproliferative disorder and/or a platelet disorder. Therefore, altering the level of the miR gene product (e.g., by decreasing the level of a miR that is upregulated in cancerous and/or myeloproliferative disorder-exhibiting cells, by increasing the level of a miR that is downregulated in cancerous and/or myeloproliferative disorder-exhibiting cells) may successfully treat the cancer, myeloproliferative disorder and/or platelet disorder.

**[0091]** Accordingly, the present invention encompasses methods of treating a cancer and/or myeloproliferative disorder in a subject, wherein at least one miR gene product is deregulated (e.g., downregulated, upregulated) in the cells (e.g., cancerous cells and/or myeloproliferative disorder-exhibiting cells) of the subject. In one embodiment, the level of at least one miR gene product in a test sample (e.g., a sample comprising cancerous and/or myeloproliferative disorder-exhibiting tissues, cells or fluid) is greater than the level of the corresponding miR gene product in a control or reference sample. In another embodiment, the level of at least one miR gene product in a test sample (e.g., a sample comprising

cancerous and/or myeloproliferative disorder-exhibiting tissues, cells or fluid) is less than the level of the corresponding miR gene product in a control sample. When the at least one isolated miR gene product is downregulated in the test sample (e.g., a sample comprising cancerous and/or myeloproliferative disorder-exhibiting tissues, cells or fluid), the method comprises administering an effective amount of the at least one isolated miR gene product, or an isolated variant or biologically-active fragment thereof, such that proliferation of the cancerous and/or myeloproliferative disorder-exhibiting cells in the subject is inhibited. For example, when a miR gene product is downregulated in a cancer cell in a subject, administering an effective amount of an isolated miR gene product to the subject can inhibit proliferation of the cancer call, The isolated miR gene product that is administered to the subject can be identical to an endogenous wild-type miR gene product (e.g., a miR gene product shown in Table 1a or Table 1b) that is downregulated in the cancer cell or it can be a variant or biologically-active fragment thereof As defined herein, a "variant" of a miR gene product refers to a miRNA that has less than 100% identity to a corresponding wild-type miR gene product and possesses one or more biological activities of the corresponding wild-type miR gene product. Examples of such biological activities include, but are not limited to, inhibition of expression of a target RNA molecule (e.g., inhibiting translation of a target RNA molecule, modulating the stability of a target RNA, molecule, inhibiting processing of a target RNA molecule) and inhibition of a cellular process associated with cancer and/or a myeloproliferative disorder (e.g., cell differentiation, cell growth, cell death). These variants include species variants and variants that are the consequence of one or more mutations (e.g., a substitution, a deletion, an insertion) in a miR gene. In certain embodiments, the variant is at least about 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99% identical to a corresponding wild-type miR gene product.

10

15

20

30

35

40

45

50

55

**[0092]** As defined herein, a "biologically-active fragment" of a miR gene product refers to an RNA fragment of a miR gene product that possesses one or more biological activities of a corresponding wild-type miR gene product. As described above, examples of such biological activities include, but are not limited to, inhibition of expression of a target RNA molecule and inhibition of a cellular process associated with cancer and/or a myeloproliferative disorder. In certain embodiments, the biologically-active fragment is at least about 5, 7, 10, 12, 15, or 17 nucleotides in length. In a particular embodiment, an isolated miR gene product can be administered to a subject in combination with one or more additional anti-cancer treatments. Suitable anti-cancer treatments include, but are not limited to, chemotherapy, radiation therapy and combinations thereof (e.g., chemoradiation).

**[0093]** When the at least one isolated miR gene product is upregulated in the cancer cells, the method comprises administering to the subject an effective amount of a compound that inhibits expression of the at least one miR gene product, such that proliferation of the cancer and/or myeloproliferative disorder-exhibiting cells is inhibited. Such compounds are referred to herein as miR gene expression-inhibition compounds. Examples of suitable miR gene expression-inhibition compounds include, but are not limited to, those described herein (e.g., double-stranded RNA, antisense nucleic acids and enzymatic RNA molecules). In a particular embodiment, a miR gene expression-inhibiting compound can be administered to a subject in combination with one or more additional anti-cancer treatments. Suitable anti-cancer treatments include, but are not limited to, chemotherapy, radiation therapy and combinations thereof (e.g., chemoradiation).

[0094] As described, when the at least one isolated miR gene product is upregulated in cancer cells (e.g., AMKL cells), the method comprises administering to the subject an effective amount of at least one compound for inhibiting expression of the at least one miR gene product, such that proliferation of cancer cells is inhibited. In one embodiment, the compound for inhibiting expression of the at least one miR gene product inhibits a miR gene product selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135, miR-20 and a combination thereof. In another embodiment, the compound for inhibiting expression of the at least one miR gene product inhibits a miR gene product selected from the group consisting of miR-101, miR-126, miR-106, miR-20, miR-135 and a combination thereof. In yet another embodiment, the compound for inhibiting expression of the at least one miR gene product inhibits a miR gene product selected from the group consisting of miR-106, miR-20, miR-135 and a combination thereof

**[0095]** As described and exemplified herein, the transcription factor MAFB, which is upregulated in megakaryocytic differentiation, is a target of miR-130a. Moreover, an inverse relation in the expression of miR-130a and its respective target were demonstrated. Thus, expression of pre-miR-130a resulted in decreased expression of *MAFB* (see, e.g., FIG. 2C). MAFB is known to be deregulated in cancer (e.g., multiple myeloma and acute myeloid leukemia). For example, ectopic expression of MAFB has been observed in human myeloma cells carrying (14;20)(q32;q11) chromosomal translocations (Hanamura, I.. et al. (2001) Jpn. J. Cancer Res. 92(6):638-644 (2001)). Accordingly, in one embodiment, the invention is a method of treating a cancer and/or myeloproliferative disorder in a subject comprising administering an effective amount of at least one miR gene product or an isolated variant or biologically-active fragment thereof to the subject, wherein:

[0096] the cancer and/or myeloproliferative disorder is associated with overexpression of a MAFB gene product; and [0097] the at least one miR gene product binds to, and decreases expression of, the MAFB gene product.

**[0098]** In one embodiment, the at least one miR gene product or isolated variant or biologically-active fragment thereof comprises a nucleotide sequence that is complementary to a nucleotide sequence in the MAFB gene product (e.g.,

complementary to the 3' UTR of MAFB). In a particular embodiment, the at least one miR gene product is miR-130a or an isolated variant or biologically-active fragment thereof.

[0099] Also as described and exemplified herein, mRNA of HOXA1, one of the members of the HOX family of proteins, is upregulated 7-fold in megakaryocytic differentiation (see, e.g., Example 4). Moreover, HOXA1 is a target of miR-10a and its expression is inversely related to the expression af miR-10a. Thus, expression of pre-miR-10a resulted in decreased expression of HOXA1 (see, e.g., FIGS. 3C, 3F and 3G). HOXA1. Expression of HOXA1 has been demonstrated to be sufficient to result in the oncogenic transformation of immortalized human mammary epithelial cells with aggressive *in vivo* tumor formation (Zhang, X., et al., (2002) J. Biol. Chem. 278(9):7580-7590). Further, forced expression of HOXA1 in mammary carcinoma cells, in a Bcl-2-dependent manner, resulted in a dramatic enhancement of anchorage-independent proliferation and colony formation in soft agar. *Id.* Accordingly, in one embodiment, the invention is a method of treating a cancer and/or myeloproliferative disorder in a subject comprising administering an effective amount of at least one miR gene product or an isolated variant or biologically-active fragment thereof to the subject, wherein:

**[0100]** the cancer and/or myeloproliferative disorder is associated with overexpression of a HOXA1 gene product; and **[0101]** the at least one miR gene product binds to, and decreases expression of, the HOXA1 gene product.

**[0102]** In one embodiment, the at least one miR gene product or isolated variant or biologically-active fragment thereof comprises a nucleotide sequence that is complementary to a nucleotide sequence in the HOXA1 gene product (e.g., complementary to the 3' UTR of HOXA1). In a particular embodiment, the at least one miR gene product is miR-10a or an isolated variant or biologically-active fragment thereof.

20

30

35

40

50

**[0103]** In a related embodiment, the methods of treating cancer and/or a myeloproliferative disorder in a subject additionally comprise the step of first determining the amount of at least one miR gene product in a sample from the subject, and comparing that level of the miR gene product to the level of a corresponding miR gene product in a control. If expression of the miR gene product is deregulated (e.g., downregulated, upregulated) in the sample from the subject, the methods further comprise altering the amount of the at least one miR gene product expressed in the sample from the subject. In one embodiment, the amount of the miR gene product expressed in the sample from the subject is less than the amount of the miR gene product expressed in the control, and an effective amount of the miR gene product, or an isolated variant or biologically-active fragment thereof, is administered to the subject. In another embodiment, the amount of the miR gene product expressed in the samples from the subject is greater than the amount of the miR gene product expressed in the control, and an effective amount of at least one compound for inhibiting expression of the at least one miR gene is administered to the subject. Suitable miRs and compounds that inhibit expression of miR genes include, for example, those described herein.

**[0104]** The terms "treat", "treating" and "treatment", as used herein, refer to ameliorating symptoms associated with a disease or condition, for example, cancer and/or a myeloproliferative disorder, including preventing or delaying the onset of the disease symptoms, and/or lessening the severity or frequency of symptoms of the disease or condition. The terms "subject", "patient" and "individual" are defined herein to include animals, such as mammals, including, but not limited to, primates, cows, sheep, goats, horses, dogs, cats, rabbits, guinea pigs, rats, mice or other bovine, ovine, equine, canine, feline, rodent, or murine species. In a preferred embodiment, the animal is a human.

**[0105]** As used herein, an "effective amount" of an isolated miR gene product is an amount sufficient to inhibit proliferation of cells (e.g., cancerous cells, cells exhibiting a myeloproliferative disorder) in a subject suffering from cancer and/or a myeloproliferative disorder. One skilled in the art can readily determine an effective amount of a miR gene product to be administered to a given subject, by taking into account factors, such as the size and weight of the subject; the extent of disease penetration; the age, health and sex of the subject; the route of administration; and whether the administration is regional or systemic.

**[0106]** For example, an effective amount of an isolated miR gene product can be based on the approximate weight of a tumor mass to be treated. The approximate weight of a tumor mass can be determined by calculating the approximate volume of the mass, wherein one cubic centimeter of volume is roughly equivalent to one gram. An effective amount of the isolated miR gene product based on the weight of a tumor mass can be in the range of about 10-500 micrograms/ gram of tumor mass. In certain embodiments, the tumor mass can be at least about 10 micrograms/gram of tumor mass, at least about 60 micrograms/gram of tumor mass or at least about 100 micrograms/gram of tumor mass.

**[0107]** An effective amount of an isolated miR gene product can also be based on the approximate or estimated body weight of a subject to be treated. Preferably, such effective amounts are administered parenterally or enterally, as described herein. For example, an effective amount of the isolated miR gene product that is administered to a subject can range from about 5 - 3000 micrograms/kg of body weight, from about 700 - 1000 micrograms/kg of body weight, or greater than about 1000 micrograms/kg of body weight,

**[0108]** One skilled in the art can also readily determine an appropriate dosage regimen for the administration of an isolated miR gene product to a given subject. For example, a miR gene product can be administered to the subject once (e.g., as a single injection or deposition). Alternatively, a miR gene product can be administered once or twice daily to a subject for a period of from about three to about twenty-eight days, more particularly from about seven to about ten days. In a particular dosage regimen, a miR gene product is administered once a day for seven days. Where a dosage

regimen comprises multiple administrations, it is understood that the effective amount of the miR- gene product administered to the subject can comprise the total amount of gene product administered over the entire dosage regimen.

**[0109]** As used herein, an "isolated" miR gene product is one that is synthesized, or altered or removed from the natural state through human intervention. For example, a synthetic miR gene product, or a miR gene product partially or completely separated from the coexisting materials of its natural state, is considered to be "isolated." An isolated miR gene product can exist in a substantially-purified form, or can exist in a cell into which the miR gene product has been delivered. Thus, a miR gene product that is deliberately delivered to, or expressed in, a cell is considered an "isolated" miR gene product. A miR gene product produced inside a cell from a miR precursor molecule is also considered to be an "isolated" molecule. According to the invention, the isolated miR gene products described herein can be used for the manufacture of a medicament for treating cancer and/or a myeloproliferative disorder in a subject (e.g., a human).

**[0110]** Isolated miR gene products can be obtained using a number of standard techniques. For example, the miR gene products can be chemically synthesized or recombinantly produced using methods known in the art. In one embodiment, miR gene products are chemically synthesized using appropriately protected ribonucleoside phosphoramidites and a conventional DNA/RNA synthesizer. Commercial suppliers of synthetic RNA molecules or synthesis reagents include, e.g., Proligo (Hamburg, Germany), Dharmacon Research (Lafayette, CO, U.S.A.), Pierce Chemical (part of-Perbio Science, Rockford, IL, U.S.A.), Glen Research (Sterling, VA, U.S.A.), ChemGenes (Ashland, MA, U.S.A.) and Cruachem (Glasgow, UK).

**[0111]** Alternatively, the miR gene products can be expressed from recombinant circular or linear DNA plasmids using any suitable promoter. Suitable promoters for expressing RNA from a plasmid include, e.g., the U6 or H1RNA pol III promoter sequences, or the cytomegalovirus promoters. Selection of other suitable promoters is within the skill in the art. The recombinant plasmids of the invention can also comprise inducible or regulatable promoters for expression of the miR gene products in cells (e.g., cancerous cells, cells exhibiting a myeloproliferative disorder).

20

30

35

50

**[0112]** The miR gene products that are expressed from recombinant plasmids can be isolated from cultured cell expression systems by standard techniques. The miR gene products that are expressed from recombinant plasmids can also be delivered to, and expressed directly in, cells (e.g., cancerous cells, cells exhibiting a myeloproliferative disorder). The use of recombinant plasmids to deliver the miR gene products to cells (e.g., cancerous cells, cells exhibiting a myeloproliferative disorder) is discussed in more detail below.

**[0113]** The miR gene products can be expressed from a separate recombinant plasmids, or they can be expressed from the same recombinant plasmid. In one embodiment, the miR gene products are expressed as RNA precursor molecules from a single plasmid, and the precursor molecules are processed into the functional miR gene product by a suitable processing system, including, but not limited to, processing systems extant within a cancer cell. Other suitable processing systems include, e.g., the *in vitro* Drosophila cell lysate system (e.g., as described in U.S. Published Patent Application No. 2002/0086356 to Tuschl et al., the entire disclosure of which is incorporated herein by reference) and the *E. coli* RNAse III system (e.g., as described in U.S. Published Patent Application No. 2004/0014113 to Yang et al., the entire disclosure of which is incorporated herein by reference).

**[0114]** Selection of plasmids suitable for expressing the miR gene products, methods for inserting nucleic acid sequences into the plasmid to express the gene products, and methods of delivering the recombinant plasmid to the cells of interest are within the skill in the art. See, for example, Zeng et al. (2002), Molecular Cell 9:1327-1333; Tuschl (2002), Nat. Biotechnol, 20:446-448; Brummelkamp et al. (2002), Science 296:550-553; Miyagishi et al. (2002), Nat. Biotechnol. 20:497-500; Paddison et al. (2002), Genes Dev. 16:948-958; Lee et al. (2002), Nat. Biotechnol. 20:500-505; and Paul et al. (2002), Nat. Biotechnol. 20:505-508, the entire disclosures of which are incorporated herein by reference.

**[0115]** In one embodiment, a plasmid expressing the miR gene products comprises a sequence encoding a miR precursor RNA under the control of the CMV intermediate-early promoter. As used herein, "under the control" of a promoter means that the nucleic acid sequences encoding the miR gene product are located 3' of the promoter, so that the promoter can initiate transcription of the miR gene product coding sequences.

**[0116]** The miR gene products can also be expressed from recombinant viral vectors. It is contemplated that the miR gene products can be expressed from two separate recombinant viral vectors, or from the same viral vector. The RNA expressed from the recombinant viral vectors can either be isolated from cultured cell expression systems by standard techniques, or can be expressed directly in cells (e.g., cancerous cells, cells exhibiting a myeloproliferative disorder). The use of recombinant viral vectors to deliver the miR gene products to cells (e.g., cancerous cells, cells exhibiting a myeloproliferative disorder) is discussed in more detail below.

**[0117]** The recombinant viral vectors of the invention comprise sequences encoding the miR gene products and any suitable promoter for expressing the RNA sequences. Suitable promoters include, but are not limited to, the U6 or H1 RNA pol III promoter sequences, or the cytomegalovirus promoters. Selection of other suitable promoters is within the skill in the art. The recombinant viral vectors of the invention can also comprise inducible or regulatable promoters for expression of the miR gene products in a cancer cell.

[0118] Any viral vector capable of accepting the coding sequences for the miR gene products can be used; for example, vectors derived from adenovirus (AV); adeno-associated virus (AAV); retroviruses (e.g., lentiviruses (LV), Rhabdoviruses,

murine leukemia virus); herpes virus, and the like. The tropism of the viral vectors can be modified by pseudotyping the vectors with envelope proteins or other surface antigens from other viruses, or by substituting different viral capsid proteins, as appropriate.

**[0119]** For example, lentiviral vectors of the invention can be pseudotyped with surface proteins from vesicular stomatitis virus (VSV), rabies, Ebola, Mokola, and the like. AAV vectors of the invention can be made to target different cells by engineering the vectors to express different capsid protein serotypes. For example, an AAV vector expressing a serotype 2 capsid on a serotype 2 genome is called AAV 2/2. This serotype 2 capsid gene in the AAV 2/2 vector can be replaced by a serotype 5 capsid gene to produce an AAV 2/5 vector. Techniques for constructing AAV vectors that express different capsid protein serotypes are within the skill in the art; see, e.g., Rabinowitz, J.E., et al. (2002), J. Virol. 76:791-801, the entire disclosure of which is incorporated herein by reference.

**[0120]** Selection of recombinant viral vectors suitable for use in the invention, methods for inserting nucleic acid sequences for expressing RNA into the vector, methods of delivering the viral vector to the cells of interest, and recovery of the expressed RNA products are within the skill in the art. See, for example, Dornburg (1995), Gene Therapy 2: 301-310; Eglitis (1988), Biotechniques 6:608-614; Miller (1990), Hum. Gene Therapy 1:5-14; and Anderson (1998), Nature 392:25-30, the entire disclosures of which are incorporated herein by reference.

**[0121]** Particularly suitable viral vectors are those derived from AV and AAV. A suitable AV vector for expressing the miR gene products, a method for constructing the recombinant AV vector, and a method for delivering the vector into target cells, are described in Xia et al. (2002), Nat. Biotech. 20:1006-1010, the entire disclosure of which is incorporated herein by reference. Suitable AAV vectors for expressing the miR gene products, methods for constructing the recombinant AAV vector, and methods for delivering the vectors into target cells are described in Samulski et al. (1987), J. Virol. 61:3096-3101; Fisher et al. (1996), J. Virol., 70:520-532; Samulski et al. (1989), J. Virol. 63:3822-3826; U.S. Patent No. 5,252,479; U.S. Patent No. 5,139,941; International Patent Application No. WO 94/13788; and International Patent Application No. WO 93/24641, the entire disclosures of which are incorporated herein by reference. In one embodiment, the miR gene products are expressed from a single recombinant AAV vector comprising the CMV intermediate early promoter.

20

30

35

40

50

55

**[0122]** In a certain embodiment, a recombinant AAV viral vector of the invention comprises a nucleic acid sequence encoding a miR precursor RNA in operable connection with a polyT termination sequence under the control of a human U6 RNA promoter. As used herein, "in operable connection with a polyT termination sequence" means that the nucleic acid sequences encoding the sense or antisense strands are immediately adjacent to the polyT termination signal in the 5' direction. During transcription of the miR sequences from the vector, the polyT termination signals act to terminate transcription.

[0123] In other embodiments of the treatment methods of the invention, an effective amount of at least one compound that inhibits miR expression can be administered to the subject. As used herein, "inhibiting miR expression" means that the production of the precursor and/or active, mature form of miR gene product after treatment is less than the amount produced prior to treatment. One skilled in the art can readily determine whether miR expression has been inhibited in cells (e.g., cancerous cells, cells exhibiting a myeloproliferative disorder), using, for example, the techniques for determining miR transcript level discussed herein. Inhibition can occur at the level of gene expression (i.e., by inhibiting transcription of a miR gene encoding the miR gene product) or at the level of processing (e.g., by inhibiting processing of a miR precursor into a mature, active miR).

**[0124]** As used herein, an "effective amount" of a compound that inhibits miR expression is an amount sufficient to inhibit proliferation of cells (e.g., cancerous cells, cells exhibiting a myeloproliferative disorder) in a subject suffering from cancer and/or a myeloproliferative disorder. One skilled in the art can readily determine an effective amount of a miR expression-inhibiting compound to be administered to a given subject, by taking into account factors, such as the size and weight of the subject; the extent of disease penetration; the age, health and sex of the subject; the route of administration; and whether the administration is regional or systemic.

**[0125]** For example, an effective amount of the expression-inhibiting compound can be based on the approximate weight of a tumor mass to be treated, as described herein. An effective amount of a compound that inhibits miR expression can also be based on the approximate or estimated body weight of a subject to be treated, as described herein.

**[0126]** One skilled in the art can also readily determine an appropriate dosage regimen for administering a compound that inhibits miR expression to a given subject, as described herein. Suitable compounds for inhibiting miR gene expression include double-stranded RNA (such as short- or small-interfering RNA or "siRNA"), antisense nucleic acids, and enzymatic RNA molecules, such as ribozymes. Each of those compounds can be targeted to a given miR gene product and interfere with the expression (e.g., by inhibiting translation, by inducing cleavage and/or degradation) of the target miR gene product.

**[0127]** For example, expression of a given miR gene can be inhibited by inducing RNA interference of the miR gene with an isolated double-stranded RNA ("dsRNA") molecule which has at least 90%, for example, at least 95%, at least 98%, at least 99%, or 100%, sequence homology with at least a portion of the miR gene product. In a particular embodiment, the dsRNA molecule is a "short or small interfering RNA" or "siRNA."

**[0128]** siRNA useful in the present methods comprise short double-stranded RNA from about 17 nucleotides to about 29 nucleotides in length, preferably from about 19 to about 25 nucleotides in length. The siRNA comprise a sense RNA strand and a complementary antisense RNA strand annealed together by standard Watson-Crick base-pairing interactions (hereinafter "base-paired"). The sense strand comprises a nucleic acid sequence that is substantially identical to a nucleic acid sequence contained within the target miR gene product.

**[0129]** As used herein, a nucleic acid sequence in an siRNA that is "substantially identical" to a target sequence contained within the target mRNA is a nucleic acid sequence that is identical to the target sequence, or that differs from the target sequence by one or two nucleotides. The sense and antisense strands of the siRNA can comprise two complementary, single-stranded RNA molecules, or can comprise a single molecule in which two complementary portions are base-paired and are covalently linked by a single-stranded "hairpin" area.

**[0130]** The siRNA can also be altered RNA that differs from naturally-occurring RNA by the addition, deletion, substitution and/or alteration of one or more nucleotides. Such alterations can include addition of non-nucleotide material, such as to the end(s) of the siRNA or to one or more internal nucleotides of the siRNA, or modifications that make the siRNA resistant to nuclease digestion, or the substitution of one or more nucleotides in the siRNA with deoxyribonucleotides

**[0131]** One or both strands of the siRNA can also comprise a 3' overhang. As used herein, a "3' overhang" refers to at least one unpaired nucleotide extending from the 3'-end of a duplexed RNA strand. Thus, in certain embodiments, the siRNA comprises at least one 3' overhang of from 1 to about 6 nucleotides (which includes ribonucleotides or deoxyribonucleotides) in length, from 1 to about 5 nucleotides in length, from 1 to about 4 nucleotides in length, or from about 2 to about 4 nucleotides in length. In a particular embodiment, the 3' overhang is present on both strands of the siRNA, and is 2 nucleotides in length. For example, each strand of the siRNA can comprise 3' overhangs of dithymidylic acid ("TT") or diuridylic acid ("uu").

20

30

35

50

**[0132]** The siRNA can be produced chemically or biologically, or can be expressed from a recombinant plasmid or viral vector, as described above for the isolated miR gene products. Exemplary methods for producing and testing dsRNA or siRNA molecules are described in U.S. Published Patent Application No. 2002/0173478 to Gewirtz and in U.S. Published Patent Application No. 2004/0018176 to Reich et al., the entire disclosures of both of which are incorporated herein by reference.

**[0133]** Expression of a given miR gene can also be inhibited by an antisense nucleic acid. As used herein, an "antisense nucleic acid" refers to a nucleic acid molecule that binds to target RNA by means ofRNA-RNA, RNA-DNA or RNA-peptide nucleic acid interactions, which alters the activity of the target RNA. Antisense nucleic acids suitable for use in the present methods are single-stranded nucleic acids (e.g., RNA, DNA, RNA-DNA chimeras, peptide nucleic acids (PNA)) that generally comprise a nucleic acid sequence complementary to a contiguous nucleic acid sequence in a miR gene product. The antisense nucleic acid can comprise a nucleic acid sequence that is 50-100% complementary, 75-100% complementary, or 95-100% complementary to a contiguous nucleic acid sequence in a miR gene product. Nucleic acid sequences of particular human miR gene products are provided in Table 1a and Table 1b. Without wishing to be bound by any theory, it is believed that the antisense nucleic acids activate RNase H or another cellular nuclease that digests the miR gene product/antisense nucleic acid duplex.

**[0134]** Antisense nucleic acids can also contain modifications to the nucleic acid backbone or to the sugar and base moieties (or their equivalent) to enhance target specificity, nuclease resistance, delivery or other properties related to efficacy of the molecule. Such modifications include cholesterol moieties, duplex intercalators, such as acridine, or one or more nuclease-resistant groups.

**[0135]** Antisense nucleic acids can be produced chemically or biologically, or can be expressed from a recombinant plasmid or viral vector, as described above for the isolated miR gene products. Exemplary methods for producing and testing are within the skill in the art; see, e.g., Stein and Cheng (1993), Science 261:1004 and U.S. Patent No. 5,849,902 to Woolf et al., the entire disclosures of which are incorporated herein by reference.

**[0136]** Expression of a given miR gene can also be inhibited by an enzymatic nucleic acid. As used herein, an "enzymatic nucleic acid" refers to a nucleic acid comprising a substrate binding region that has complementarity to a contiguous nucleic acid sequence of a miR gene product, and which is able to specifically cleave the miR gene product. The enzymatic nucleic acid substrate binding region can be, for example, 50-100% complementary, 75-100% complementary, or 95-100% complementary to a contiguous nucleic acid sequence in a miR gene product. The enzymatic nucleic acids can also comprise modifications at the base, sugar, and/or phosphate groups. An exemplary enzymatic nucleic acid for use in the present methods is a ribozyme.

**[0137]** The enzymatic nucleic acids can be produced chemically or biologically, or can be expressed from a recombinant plasmid or viral vector, as described above for the isolated miR gene products. Exemplary methods for producing and testing dsRNA or siRNA molecules are described in Werner and Uhlenbeck (1995), Nucleic Acids Res. 23:2092-96; Hammann et al. (1999), Antisense and Nucleic Acid Drug Dev. 9:25-31; and U.S. Patent No. 4,987,071 to Cech et al, the entire disclosures of which are incorporated herein by reference.

[0138] Administration of at least one miR gene product, or at least one compound for inhibiting miR expression, will

inhibit the proliferation of cells (e.g., cancerous cells, cells exhibiting a myeloproliferative disorder) in a subject who has a cancer and/or a myeloproliferative disorder. As used herein, to "inhibit the proliferation of cancerous cells or cells exhibiting a myeloproliferative disorder" means to kill the cells, or permanently or temporarily arrest or slow the growth of the cells. Inhibition of cell proliferation can be inferred if the number of such cells in the subject remains constant or decreases after administration of the miR gene products or miR gene expression-inhibiting compounds. An inhibition of proliferation of cancerous cells or cells exhibiting a myeloproliferative disorder can also be inferred if the absolute number of such cells increases, but the rate of tumor growth decreases.

**[0139]** The number of cancer cells in the body of a subject can be determined by direct measurement, or by estimation from the size of primary or metastatic tumor masses. For example, the number of cancer cells in a subject can be measured by immunohistological methods, flow cytometry, or other techniques designed to detect characteristic surface markers of cancer cells.

10

20

30

35

40

50

**[0140]** The size of a tumor mass can be ascertained by direct visual observation, or by diagnostic imaging methods, such as X-ray, magnetic resonance imaging, ultrasound, and scintigraphy. Diagnostic imaging methods used to ascertain size of the tumor mass can be employed with or without contrast agents, as is known in the art. The size of a tumor mass can also be ascertained by physical means, such as palpation of the tissue mass or measurement of the tissue mass with a measuring instrument, such as a caliper.

**[0141]** The miR gene products or miR gene expression-inhibiting compounds can be administered to a subject by any means suitable for delivering these compounds to cells (e.g., cancer cells, cells exhibiting a myeloproliferative disorder) of the subject. For example, the miR gene products or miR expression-inhibiting compounds can be administered by methods suitable to transfect cells of the subject with these compounds, or with nucleic acids comprising sequences encoding these compounds. In one embodiment, the cells are transfected with a plasmid or viral vector comprising sequences encoding at least one miR gene product or miR gene expression-inhibiting compound.

**[0142]** Transfection methods for eukaryotic cells are well known in the art, and include, e.g., direct injection of the nucleic acid into the nucleus or pronucleus of a cell; electroporation; liposome transfer or transfer mediated by lipophilic materials; receptor-mediated nucleic acid delivery, bioballistic or particle acceleration; calcium phosphate precipitation, and transfection mediated by viral vectors.

**[0143]** For example, cells can be transfected with a liposomal transfer compound, e.g., DOTAP (N-[1-(2,3-dioleoyloxy) propyl]-N,N,N-trimethyl-ammonium methylsulfate, Boehringer-Mannheim) or an equivalent, such as LIPOFECTIN. The amount of nucleic acid used is not critical to the practice of the invention; acceptable results may be achieved with 0.1-100 micrograms of nucleic acid/ $10^5$  cells. For example, a ratio of about 0.5 micrograms of plasmid vector in 3 micrograms of DOTAP per  $10^5$  cells can be used.

**[0144]** A miR gene product or miR gene expression-inhibiting compound can also be administered to a subject by any suitable enteral or parenteral administration route. Suitable enteral administration routes for the present methods include, e.g., oral, rectal, or intranasal delivery. Suitable parenteral administration routes include, e.g., intravascular administration (e.g., intravenous bolus injection, intravenous infusion, intra-arterial bolus injection, intra-arterial infusion and catheter instillation into the vasculature); peri- and intra-tissue injection (e.g., peri-tumoral and intra-tumoral injection, intra-retinal injection, or subretinal injection); subcutaneous injection or deposition, including subcutaneous infusion (such as by osmotic pumps); direct application to the tissue of interest, for example by a catheter or other placement device (e.g., a retinal pellet or a suppository or an implant comprising a porous, non-porous, or gelatinous material); and inhalation. Particularly suitable administration routes are injection, infusion and direct injection into the tumor.

**[0145]** In the present methods, a miR gene product or miR gene product expression-inhibiting compound can be administered to the subject either as naked RNA, in combination with a delivery reagent, or as a nucleic acid (e.g., a recombinant plasmid or viral vector) comprising sequences that express the miR gene product or miR gene expression-inhibiting compound. Suitable delivery reagents include, e.g., the Mirus Transit TKO lipophilic reagent; LIPOFECTIN; lipofectamine; cellfectin; polycations (e.g., polylysine) and liposomes.

**[0146]** Recombinant plasmids and viral vectors comprising sequences that express the miR gene products or miR gene expression-inhibiting compounds, and techniques for delivering such plasmids and vectors to cancer cells, are discussed herein and/or are well known in the art.

**[0147]** In a particular embodiment, liposomes are used to deliver a miR gene product or miR gene expression-inhibiting compound (or nucleic acids comprising sequences encoding them) to a subject. Liposomes can also increase the blood half-life of the gene products or nucleic acids. Suitable liposomes for use in the invention can be formed from standard vesicle-forming lipids, which generally include neutral or negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of factors, such as the desired liposome size and half-life of the liposomes in the blood stream. A variety of methods are known for preparing liposomes, for example, as described in Szoka et al. (1980), Ann. Rev. Biophys. Bioeng. 9:467; and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369, the entire disclosures of which are incorporated herein by reference.

[0148] The liposomes for use in the present methods can comprise a ligand molecule that targets the liposome to cancer cells. Ligands that bind to receptors prevalent in cancer cells, such as monoclonal antibodies that bind to tumor

cell antigens, are preferred.

20

30

35

40

45

50

55

**[0149]** The liposomes for use in the present methods can also be modified so as to avoid clearance by the mononuclear macrophage system ("MMS") and reticuloendothelial system ("RES"). Such modified liposomes have opsonization-inhibition moieties on the surface or incorporated into the liposome structure. In a particularly preferred embodiment, a liposome of the invention can comprise both an opsonization-inhibition moiety and a ligand.

**[0150]** Opsonization-inhibiting moieties for use in preparing the liposomes of the invention are typically large hydrophilic polymers that are bound to the liposome membrane. As used herein, an opsonization-inhibiting moiety is "bound" to a liposome membrane when it is chemically or physically attached to the membrane, e.g., by the intercalation of a lipid-soluble anchor into the membrane itself, or by binding directly to active groups of membrane lipids. These opsonization-inhibiting hydrophilic polymers form a protective surface layer that significantly decreases the uptake of the liposomes by the MMS and RES; e.g., as described in U.S. Patent No. 4,920,016, the entire disclosure of which is incorporated herein by reference.

[0151] Opsonization-inhibiting moieties suitable for modifying liposomes are preferably water-soluble polymers with a number-average molecular weight from about 500 to about 40,000 daltons, and more preferably from about 2,000 to about 20,000 daltons. Such polymers include polyethylene glycol (PEG) or polypropylene glycol (PPG) or derivatives thereof; e.g., methoxy PEG or PPG, and PEG or PPG stearate; synthetic polymers, such as polyacrylamide or poly N-vinyl pyrrolidone; linear, branched, or dendrimeric polyamidoamines; polyacrylic acids; polyalcohols, e.g., polyvinylal-cohol and polyxylitol to which carboxylic or amino groups are chemically linked, as well as gangliosides, such as ganglioside GM1. Copolymers of PEG, methoxy PEG, or methoxy PPG, or derivatives thereof, are also suitable. In addition, the opsonization-inhibiting polymer can be a block copolymer of PEG and either a polyamino acid, polysaccharide, polyamidoamine, polyethyleneamine, or polynucleotide. The opsonization-inhibiting polymers can also be natural polysaccharides containing amino acids or carboxylic acids, e.g., galacturonic acid, glucuronic acid, mannuronic acid, hyaluronic acid, pectic acid, neuraminic acid, alginic acid, carrageenan; aminated polysaccharides or oligosaccharides (linear or branched); or carboxylated polysaccharides or oligosaccharides, e.g., reacted with derivatives of carbonic acids with resultant linking of carboxylic groups. Preferably, the opsanization-inhibiting moiety is a PEG, PPG, or a derivative thereof. Liposomes modified with PEG or PEG-derivatives are sometimes called "PEGylated liposomes."

**[0152]** The opsonization-inhibiting moiety can be bound to the liposome membrane by any one of numerous well-known techniques. For example, an N-hydroxysuccinimide ester of PEG can be bound to a phosphatidyl-ethanolamine lipid-soluble anchor, and then bound to a membrane. Similarly, a dextran polymer can be derivatized with a stearylamine lipid-soluble anchor via reductive amination using Na(CN)BH<sub>3</sub> and a solvent mixture, such as tetrahydrofuran and water in a 30:12 ratio at 60°C.

**[0153]** Liposomes modified with opsonization-inhibition moieties remain in the circulation much longer than unmodified liposomes. For this reason, such liposomes are sometimes called "stealth" liposomes. Stealth liposomes are known to accumulate in tissues fed by porous or "leaky" microvasculature. Thus, tissue characterized by such microvasculature defects, for example, solid tumors, will efficiently accumulate these liposomes; see Gabizon, et al. (1988), Proc. Natl. Acad. Sci., U.S.A., 18:6949-53. In addition, the reduced uptake by the RES lowers the toxicity of stealth liposomes by preventing significant accumulation of the liposomes in the liver and spleen. Thus, liposomes that are modified with opsonization-inhibition moieties are particularly suited to deliver the miR gene products or miR gene expression-inhibition compounds (or nucleic acids comprising sequences encoding them) to tumor cells.

**[0154]** The miR gene products or miR gene expression-inhibition compounds can be formulated as pharmaceutical compositions, sometimes called "medicaments," prior to administering them to a subject, according to techniques known in the art. Accordingly, the invention encompasses pharmaceutical compositions for treating cancer and/or a myeloproliferative disorder.

[0155] In one embodiment, the pharmaceutical composition of the invention comprises at least one miR expression-inhibition compound and a pharmaceutically-acceptable carrier. In a particular embodiment, the at least one miR expression-inhibition compound is specific for a miR gene product whose expression is greater in cancer cells than control cells (i.e., it is upregulated). In another embodiment, the miR expression-inhibition compound is specific for one or more miR gene products selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135 and miR-20. In another embodiment, the miR expression-inhibition compound is specific for one or more miR gene products selected from the group consisting of miR-101, miR-126, miR-106, miR-20, and miR-135. In yet another embodiment, the miR expression-inhibition compound is specific for one or more miR gene products selected from the group consisting of miR-106, miR-20 and miR-135.

**[0156]** In other embodiments, the pharmaceutical compositions comprise an effective amount of at least one miR gene product, or an isolated variant or biologically-active fragment thereof, and a pharmaceutically-acceptable carrier. In one embodiment, the invention is a pharmaceutical composition for treating a cancer and/or a myeloproliferative disorder, wherein the cancer and/or myeloproliferative disorder is associated with overexpression of a MAFB gene product. In this embodiment, the pharmaceutical composition comprises at least one miR gene product that binds to, and decreases expression of, the MAFB gene product. In a particular embodiment, the at least one miR gene product

comprises a nucleotide sequence that is complementary to a nucleotide sequence in the MAFB gene product. In another embodiment, the at least one miR gene product is miR-130a or an isolated variant or biologically-active fragment thereof. **[0157]** In one embodiment, the invention is a pharmaceutical composition for treating a cancer and/or a myeloproliferative disorder, wherein the cancer and/or myeloproliferative disorder is associated with overexpression of a HOXA1 gene product. In this embodiment, the pharmaceutical composition comprises at least one miR gene product that binds to, and decreases expression of, the HOXA1 gene product. In a particular embodiment, the at least one miR gene product comprises a nucleotide sequence that is complementary to a nucleotide sequence in the HOX1 gene product. In another embodiment, the at least one miR gene product is miR-10a or an isolated variant or biologically-active fragment thereof.

**[0158]** Pharmaceutical compositions of the present invention are characterized as being at least sterile and pyrogenfree. As used herein, "pharmaceutical compositions" include formulations for human and veterinary use. Methods for preparing pharmaceutical compositions of the invention are within the skill in the art, for example, as described in Remington's Pharmaceutical Science, 17th ed., Mack Publishing Company, Easton, PA. (1985), the entire disclosure of which is incorporated herein by reference.

10

15

20

30

35

40

50

55

**[0159]** The present pharmaceutical compositions comprise at least one miR gene product or miR gene expression-inhibition compound (or at least one nucleic acid comprising a sequence encoding the miR gene product or miR gene expression-inhibition compound) (e.g., 0.1 to 90% by weight), or a physiologically-acceptable salt thereof, mixed with a pharmaceutically-acceptable carrier. In certain embodiments, the pharmaceutical composition of the invention additionally comprises one or more anti-cancer agents (e.g., chemotherapeutic agents). The pharmaceutical formulations of the invention can also comprise at least one miR gene product or miR gene expression-inhibition compound (or at least one nucleic acid comprising a sequence encoding the miR gene product or miR gene expression-inhibition compound), which are encapsulated by liposomes and a pharmaceutically-acceptable carrier. In one embodiment, the pharmaceutical composition comprises a miR gene or gene product that is not miR-15, miR-143 and/or miR-145.

**[0160]** Especially suitable pharmaceutically-acceptable carriers are water, buffered water, normal saline, 0.4% saline, 0.3% glycine, hyaluronic acid and the like.

**[0161]** In a particular embodiment, the pharmaceutical compositions of the invention comprise at least one miR gene product or miR gene expression-inhibition compound (or at least one nucleic acid comprising a sequence encoding the miR gene product or miR gene expression-inhibition compound) that is resistant to degradation by nucleases. One skilled in the art can readily synthesize nucleic acids that are nuclease resistant, for example by incorporating one or more ribonucleotides that is modified at the 2'-position into the miR gene product. Suitable 2'-modified ribonucleotides include those modified at the 2'-position with fluoro, amino, alkyl, alkoxy and O-allyl.

**[0162]** Pharmaceutical compositions of the invention can also comprise conventional pharmaceutical excipients and/or additives. Suitable pharmaceutical excipients include stabilizers, antioxidants, osmolality adjusting agents, buffers, and pH adjusting agents. Suitable additives include, e.g., physiologically biocompatible buffers (e.g., tromethamine hydrochloride), additions of chelants (such as, for example, DTPA or DTPA-bisamide) or calcium chelate complexes (such as, for example, calcium DTPA, CaNaDTPA-bisamide), or, optionally, additions of calcium or sodium salts (for example, calcium chloride, calcium ascorbate, calcium gluconate or calcium lactate). Pharmaceutical compositions of the invention can be packaged for use in liquid form, or can be lyophilized.

**[0163]** For solid pharmaceutical compositions of the invention, conventional nontoxic solid pharmaceutically-acceptable carriers can be used; for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like.

**[0164]** For example, a solid pharmaceutical composition for oral administration can comprise any of the carriers and excipients listed above and 10-95%, preferably 25%-75%, of the at least one miR gene product or miR gene expression-inhibition compound (or at least one nucleic acid comprising sequences encoding them). A pharmaceutical composition for aerosol (inhalational) administration can comprise 0.01-20% by weight, preferably 1%-10% by weight, of the at least one miR gene product or miR gene expression-inhibition compound (or at least one nucleic acid comprising a sequence encoding the miR gene product or miR gene expression-inhibition compound) encapsulated in a liposome as described above, and a propellant. A carrier can also be included as desired; e.g., lecithin for intranasal delivery.

[0165] The pharmaceutical compositions of the invention can further comprise one or more anti-cancer agents. In a particular embodiment, the compositions comprise at least one miR gene product or miR gene expression-inhibition compound (or at least one nucleic acid comprising a sequence encoding the miR gene product or miR gene expression-inhibition compound) and at least one chemotherapeutic agent. Chemotherapeutic agents that are suitable for the methods of the invention include, but are not limited to, DNA-alkylating agents, antitumor antibiotic agents, anti-metabolic agents, tubulin stabilizing agents, tubulin destabilizing agents, hormone antagonist agents, topoisomerase inhibitors, protein kinase inhibitors, HMG-CoA inhibitors, CDK inhibitors, cyclin inhibitors, caspase inhibitors, metalloproteinase inhibitors, antisense nucleic acids, triple-helix DNAs, nucleic acids aptamers, and molecularly-modified viral, bacterial and exotoxic agents. Examples of suitable agents for the compositions of the present invention include, but are not limited to, cytidine arabinoside, methotrexate, vincristine, etoposide (VP-16), doxorubicin (adriamycin), cisplatin (CDDP),

dexamethasone, arglabin, cyclophosphamide, sarcolysin, methylnitrosourea, fluorouracil, 5-fluorouracil (5FU), vinblastine, camptothecin, actinomycin-D, mitomycin C, hydrogen peroxide, oxaliplatin, irinotecan, topotecan, leucovorin, carmustine, streptozocin, CPT-11, taxol, tamoxifen, dacarbazine, rituximab, daunorubicin, 1-β-D-arabinofuranosylaytosine, imatinib, fludarabine, docetaxel and FOLFOX4.

[0166] The invention also encompasses methods of identifying an anti-cancer agent, comprising providing a test agent to a cell and measuring the level of at least one miR gene product in the cell. In one embodiment, the method comprises providing a test agent to a cell and measuring the level of at least one miR gene product associated with increased expression levels in cancer cells (e.g., in AMKL eells). A decrease in the level of the miR gene product that is associated with increased expression levels in cancer, relative to a suitable control (e.g., the level of the miR gene product in control cells), is indicative of the test agent being an anti-cancer agent. In a particular embodiment, the at least one miR gene product associated with increased expression levels in cancer cells is selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135 and miR-20. In another embodiment, the at least one miR gene product associated with increased expression levels in cancer cells is selected from the group consisting of miR-101, miR-126, miR-106, miR-20 and miR-135. In yet another embodiment, the at least one miR gene product associated with increased expression levels in cancer cells is selected from the group consisting of miR-106, miR-20 and miR-135. In one embodiment, the miR gene product is not one or more of let7a-2, let-7c, let-7g, let-7i, miR-7-2, miR-7-3, miR-9, miR-9-1, miR-10a, miR-15a, miR-15b, miR-16-1, miR-16-2, miR-17-5p, miR-20a, miR-21, miR-24-1, miR-24-2, miR-25, miR-29b-2, miR-30, miR-30a-5p, miR-30c, miR-30d, miR-31, miR-32, miR-34, miR-34a, miR-34a prec, miR-34a-1, miR-34a-2, miR-92-2, miR-96, miR-99a, miR-99b prec, miR-100, miR-103, miR-106a, miR-107, miR-123, miR-124a-1, miR-125b-1, miR-125b-2, miR-126\*, miR-127, miR-128b, miR-129, miR-129-1/2 prec, miR-132, miR-135-1, miR-136, miR-137, miR-141, miR-142-as, miR-143, miR-146, miR-148, miR-149, miR-153, miR-155, miR 159-1, miR-181, miR-181b-1, miR-182, miR-196, miR-191, miR-192, miR-195, miR-196-1, miR-196-1 prec, miR-196-2, miR-199a-1, miR-199a-2, miR-199b, miR-200b, miR-202, rniR-203, miR-204, miR-205, miR-210, miR-211, miR-212, miR-214, miR-215, nniR-217, miR-221 and/or miR-223.

**[0167]** In one embodiment, the method comprises providing a test agent to a cell and measuring the level of at least one miR gene product associated with decreased expression levels in cancerous cells. An increase in the level of the miR gene product in the cell, relative to a to a suitable control (e.g., the level of the miR gene product in a control cell), is indicative of the test agent being an anti-cancer agent.

**[0168]** Suitable agents include, but are not limited to drugs (e.g., small molecules, peptides), and biological macromolecules (e.g., proteins, nucleic acids). The agent can be produced recombinantly, synthetically, or it may be isolated (i.e., purified) from a natural source. Various methods for providing such agents to a cell (e.g., transfection) are well known in the art, and several of such methods are described hereinabove. Methods for detecting the expression of at least one miR gene product (e.g., Northern blotting, *in situ* hybridization, RT-PCR, expression profiling) are also well known in the art. Several of these methods are also described herein.

The invention will now be illustrated by the following non-limiting examples.

[0170] EXEMPLIFICATION

10

20

30

40

50

55

[0171] Unless otherwise noted, the following materials and methods were used in the Examples.

[0172] Material and methods

[0173] Cell Lines and Human CD34+ Cells

[0174] The human chronic myeloid leukemia (CML) blast crisis cell lines K-562 and MEG-01 were obtained from American Type Tissue Culture (ATCC, Manassas, VA) and maintained in RPMI 1640 (GIBCO, Carlsbad, CA) containing 10% FBS with penicillin-gentamycin at 37°C with 5% CO2. The human megakaryoblastic leukemia cells UT-7, and CMK, and the chronic myeloid leukemia (CML) in blast crisis LAMA were obtained from DSMZ (Braunsweig, Germany). All cells were maintained in RPMI medium 1640 with 20% FBS and antibiotics, except UT-7 which is factor-dependent and was cultured in MEM-α with 20% FBS and 5 ng/ml GM-CSF. Fresh and frozen human bone marrow CD34<sup>+</sup> cells were obtained from Stemcell Technologies (Vancouver, B.C., Canada). FACS analysis for CD34 antigen revealed a purity >98%.

[0175] Human Progenitor CD34+ Cell Cultures.

[0176] Human bone marrow CD34<sup>+</sup> cells were grown in STEM-media (Stemcell Technologies), which includes Isocove modified Dulbecco's medium supplemented with human transferrin, insulin, bovine serine albumin, human low density lipoprotein and glutamine, in the presence of 100 ng/ml human recombinant thrombopoietin (TPO) for the first 4 days, followed by a combination of 100 ng/ml TPO, IL3, and SCF (cytokine mixture CC-200, Stemcell Technologies). The initial cell density was 100,000 cells/ml; three times a week, the cell density was adjusted to 100,000 to 200,000 cells/ml. To increase the purity of the cells for microarray analysis, cell sorting was performed at day 10 of culture. Cells were incubated on ice for 45 minutes with anti-human CD34<sup>+</sup>, anti-human CD41<sup>+</sup>, anti-human CD61<sup>+</sup>, and their respective isotypes. After washing twice with PBS 3% FBS, cells were sorted using a FACS Aria sorting machine in bulk in two separate populations; CD34<sup>-</sup> CD61<sup>+</sup> and CD34<sup>+</sup> CD61<sup>+</sup> cells for culture and RNA extraction. The purity of the sorted populations was greater than 95%.

[0177] Megakaryocytes Characterization.

**[0178]** Cytospin preparations of CD34<sup>+</sup> progenitors in culture were performed and stained with May-Grunwald Giemsa at different time points during the megakaryocytic differentiation induction. For FACS analysis, the primary antibodies that were used were as follows: CD41A, CD61A, CD42B, and CD34 with their respective isotypes (BD Pharmingen, San Diego, CA). Cytometric studies were performed as previously described (Tajima, S., et al. (1996) J. Exp. Med 184,1357-1364) using a FACScalibur (BD Biosciences) and the CELLQUEST software (BD Biosciences).

[0179] RNA Extraction, Northern Blotting and miRNA Microarray Experiments.

**[0180]** Procedures were performed as described in detail elsewhere (Liu, C.G., et al. (2002) Proc. Natl. Acad. Sci. USA 101, 9740-9744). Raw data were normalized and analyzed in GENESPRING 7.2 software (zoomSilicon Genetics, Redwood City, CA). Expression data were median-centered by using both GENESPRING normalization option and global median normalization of the BIOCONDUCTOR package (www.bioconductor.org) with similar results. Statistical comparisons were done by using the GENBSPRING ANOVA tool, predictive analysis of microarray (PAM) and the significance analysis of microarray (SAM) software (www-stat.stanford.edu/~tibs/SAM/index.html).

[0181] Reverse Transcriptase PCR (RT-PCR) and Real Time PCR.

[0182] Total RNA isolated with Trizol reagent (Invitrogen, Carlsbad, CA) was processed after DNAase treatment (Ambion, Austin, TX) directly to cDNA by reverse transcription using Superscript II (Invitrogen). Comparative real-time PCR was performed in triplicate. Primers and probes were obtained from Applied Biosystems (Foster City, CA) for the following genes: HOXA1, HOXA3, HOXB4, HOXB5, and HOXD10. Gene expression levels were quantified by using the ABI Prism 7900 Sequence detection system (Applied Biosystems). Normalization was performed by using the 18S RNA primer kit. Relative expression was calculated by using the computed tomography (CT) method. RT-PCR also was performed by using the following oligonucleotide primers:

[0183] MAFB FW; 5'-AACTTTGTCTTGGGGGACAC-3'(SEQ ID NO:499);

[0184] MAFB RW; 5'-GAGGGGAGGATCTGTTTTCC-3' (SEQ ID NO:500);

[0185] HOXA1 FW; 5'-CCAGGAGCTCAGGAAGAGA GAT-3' (SEQ ID NO:501); and

[0186] HOXA1 RW; S'-CCCTCTGAGGCATCTGATTGGGTTT-3' (SEQ ID NO:502).

[0187] Real-Time Quantification of miRNAs by Stem-Loop RT-PCR.

**[0188]** Real time-PCR for pri-miRNAs 10a, miR15a, miR16-1, miR-130a, miR-20, miR-106, miR-17-5, miR-181b, miR-99a, and miR-126 were performed as described (Chen, C., et al. (2005) Nucl. Acid's Res. 33, e179. 18S was used for normalization. All reagents and primers were obtained from Applied Biosystems.

30 [0189] Bioinformatics.

20

35

50

55

**[0190]** miRNA target prediction of the differentially expressed miRNAs was performed by using TARGETSCAN (www.genes.mit.edu/targetsean), MIRANDA (www.mskc.miranda.org), and PICTAR (www.pictar.bio.nyu.edu) software. **[0191]** *Cell Transfection with miRNA Precursors.* 

[0192] miRNA precursors miR-10a and miR-130a were purchased from Ambion: Five million K562 cells were nucleoporated by using Amaxa (Gaithesburg, MD) with 5  $\mu$ g of precursor oligonucleotides in a total volume of 10 ml. The

[0193] Luciferase Reporter Experiments.

**[0194]** The 3' UTR segments containing the target sites for *miR-10a* and *miR-130a* from *HOXA1* and *MAFB* genes, respectively, were amplified by PCR from genomic DNA and inserted into the pGL3 control vector (Promega, Madison, WI), by using the XbaI site immediately downstream from the stop codon of luciferase. The following oligonucleotide primer sets were used to generate specific fragments:

[0195] MAFB FW 5'-GCATCTAGAGCACCCCAGAGGAGTGT-3' (SEQ ID NO:503);

[0196] MAFB RW 5'-GCATCTAGACAAGCACCATGCGGTTC-3' (SEQ ID NO:504);

[0197] HOXA1 FW 5'-TACTCTAGACCAGGAGCTCAGGAAGA-3' (SEQ ID NO:505); and

expression of the oligonucleotides was assessed by Northern blots and RT-PCR as described.

[0198] ROXA1 RW 5'-MCATTCTAGATGAGGCATCTGATTGGG-3' (SEQ ID NO:506).

**[0199]** We also generated two inserts with deletions of 5 bp and 9 bp, respectively, from the site of perfect complementarity by using the QuikChange XL-site directed Mutagenesis Kit (Stratagene, La Jolla, CA). Wild type (WT) and mutant insert were confirmed by sequencing,

[0200] Human chronic myeloid leukemia (CML) in megakaryoblastic crisis cell line (MEG-01) was cotransfected in six-well plates by using Lipofectamine 2000 (Invitrogen) according to the manufacturer's protocol with 0.4  $\mu$ g of the firefly luciferase report vector and 0.08  $\mu$ g of the control vector containing Renilla luciferase, pRL-TK (Promega). For each well, 10 nM of the premiR-130a and premiR-10a precursors (Ambion) were used. Firefly and Renilla luciferase activities were measured consecutively by using the dual luciferase assays (Promega) 24 hours after transfection.

[0201] Western Blots.

[0202] Total and nuclear protein extracts from K562 cells transfected with miR-10a and miR-130a, as well as CD34<sup>+</sup> cells at different stages of megakaryocytic differentiation were extracted by using RIPA buffer or Nuclear extraction Kit (Pierce, Rockford, IL). Protein expression was analyzed by Western blotting with the following primary antibodies: MAFB (Santa Cruz Biotechnology, Santa Cruz, CA), HOXA1 (R&D Systems, Minneapolis, MN), β-Actin and Nucleolin (Santa

Cruz Biotechnology). Appropriate secondary antibodies were used (Santa Cruz Biotechnology).

[0203] Example 1: miRNA Expression During in Vitro Megakaryocytic Differentiation of CD34<sup>±</sup> Progenitors. [0204] Using a combination of a specific megakaryocytic growth factor (thrombopoietin) and nonspecific cytokines (SCF and IL-3), we were able to generate *in vitro* pure, abundant megakaryocyte progeny from CD34<sup>±</sup> bone marrow progenitors suitable for microarray studies (FIG. 4). Total RNA was obtained for miRNA chip analysis from three different CD34 progenitors at baseline and at days 10, 12, 14 and 16 of culture with cytokines. We initially compared the expression of miRNA between the CD34<sup>±</sup> progenitors and the pooled CD34<sup>±</sup> differentiated megakaryocytes at all points during the differentiation process. 17 miRNA (Table 1) that are sharply down regulated during megakaryocytic differentiation were identified. There were no statistically significant miRNAs upregulated during megakaryocytic differentiation. Using predictive analysis of microarray (PAM), we identified 8 microRNAs that predicted megakaryocytic differentiation with no misclassification error: miR-10a, miR-10b, miR-30c, miR-106, miR-126, miR-130a, miR-132, and miR-143. All of these miRNAs, except miR-143, are included in the 17 miRNAs identified by significance analysis of microarray (SAM). Northern blots and real-time PCR for several miRNAs confirmed the results obtained by miRNA chip analysis (FIG. 1).

[0205] Because we found mainly downregulation of miRNAs during megakaryocytopoiesis, we hypothesized that these miRNAs may unblock target genes involved in differentiation. In line with this hypothesis, miRNAs that are sharply downregulated in our system are predicted to target genes with important roles in megakaryocytic differentiation. Among the transcription factors with well-known function in megakaryocytopoiesis, RUNX-1 (Elagib, K.E., et al. (2003) Blood, 101:4333-4341), Fli-1 (Athanasoiu, M., et al. (1996) Cell Growth Differ. 7, 1525-1534), FLT1 (Casella, I., et al. (2003) Blood 101, 1316-1323), ETV6 (Hock, H., et al. (2004) Genes Dev. 18:2336-2341), TALI (Begley, C.G., and Green, A.R. (1999) Blood, 93:2760-2770), ETS1 (Jackers, P., et al. (2004) J. Biol. Chem. 279:52183-52190) and CRK (Lannutti, B.J., et al. (2003) Exp. Hematol. 12:1268-1274) are putative targets for several miRNAs downregulated in differentiated megakaryocytes. Moreover, each of these transcription factors has more than one miRNA predicted to be its regulator. For example, RUNX1 (AML1) is predicted to be the target of miR-106, miR-181b, miR-101, let7d and the miR-17-92 cluster. The multiplicity ofmiRNAs predicted to target *AML1* suggests a combinatorial model of regulation.

[0206] We then looked at the temporal expression of miRNAs during the megakaryocytic differentiation process from CD34<sup>+</sup> progenitors. We focused on miRNAs that have been described in hematopoietic tissues, such as miR-223, miR-181, miR-155, miR-142, miR-15a, miR-16, miR-106 and the cluster of miR-17-92 (FIG. 5). We found sequential changes in the expression of miR-223. Initially, miR-223 is downregulated during megakaryocytic differentiation, but after 14 days in culture, its expression returns to levels comparable with that of C1734 progenitors (FIG. 1C). The miR-15a and miR-16-1 cluster also follows the same pattern of expression as miR-223 (FIG. 1D), whereas miR-181b, miR-155, miR-106a, miR-17, and miR-20 were downregulated during differentiation (FIG. 6). The temporal variation of the expression of miR-223 and miR-15a/mir-16-1 suggests a stage-specific function.

[0207]

20

30

Table 2. miRNAs downregulated during *in vitro* CD34<sup>+</sup> megakaryocytic differentiation. All differentially expressed miRNAs have q value <0.01 (false-positive rate).

|    | TABLE 2            | Chromosomal | T 45 -4 (4) | Fald Ohanna | Destation to work |
|----|--------------------|-------------|-------------|-------------|-------------------|
|    | miRNA              | Location    | T-test (†)  | Fold Change | Putative targets  |
| 40 |                    |             |             |             | HOXA1,            |
| 40 |                    | 47 04       | 0.40        | 50.00       | HOXA3, .HOXD10,   |
|    | hsa-mir-010a*      | 17 q21      | -9.10       | 50.00       | 50.00CRK, FLT1    |
|    |                    |             |             |             | CRK, EV12,        |
|    |                    |             |             |             | HOXA9, MAFB,      |
|    | hsa-mir-126*       | 9q34        | -2.73       | 8.33        | CMAF              |
| 45 |                    |             |             |             | TAL1, FLT1, SKI,  |
|    |                    |             |             |             | RUNX1, FOG2, FL1, |
|    | hsa-mir-106*       | xq26.2      | -2.63       | 2.86        | PDGFRA, CRK       |
|    |                    | ·           |             |             | HOXA1, HOXA3,     |
|    |                    |             |             |             | HOXD10, ETS-1,    |
| 50 | hsa-mir-010b*      | 2q31        | -2.17       | 11.11       | CRK FLT1          |
|    |                    |             |             |             | MAFB, MYB, FOG2,  |
|    |                    |             |             |             | CBFB, PDGFRA,     |
|    | hsa-mir-130a*      | 11q12       | -2.08       | 4.76        | SDFR1, CXCL12     |
| 55 | hsa-mir-130a-prec* | 11q12       | -2.07       | 7.69        | $NA.\pm$          |
| 00 | ·                  |             |             |             | TAL1, SK1, FLT1,  |
|    |                    |             |             |             | FOG2, ETS-1,      |
|    | hsa-mir-124a       | 8q23        | -1.81       | 2.78        | CBFB, RAF1, MYB   |

(continued)

|     | TABLE 2          | Chromosomal |            |             |                   |
|-----|------------------|-------------|------------|-------------|-------------------|
|     | miRNA            | Location    | T-test (†) | Fold Change | Putative targets  |
| 5   | hsa-mir-032-prec | 9q31        | -1.76      | 3.57        | NA±               |
| 5   |                  |             |            |             | TAL1, CXCL12,     |
|     |                  |             |            |             | MEIS1 ,MEIS2,     |
|     | hsa-mir-101      | lp31.3      | -1.75      | 3.33        | ETS-1 RUNX1, MYB  |
|     |                  |             |            |             | CBFB, MAFG,       |
| 10  |                  |             |            |             | HOXA1, SBF1,      |
|     | hsa-mir-30c      | 6q13        | -1.71      | 2.56        | NCOR2, ERG        |
|     | hsa-mir-213*     | 1q31.3      | -1.69      | 2.38        | MAX-SATB2         |
|     | hsa-mir-132-prec | 17p13       | -1.67      | 4.17        | $N\!A\pm$         |
|     |                  |             |            |             | MYB, SDFR1 TAL1,  |
| 15  | hsa-mir-150*     | 19q13.3     | -1.63      | 5.26        | SKI, RUNX-1,FLT1, |
|     |                  |             |            |             | CRK, FOG2, RARB   |
|     |                  |             |            |             | SK1, ETV6, GATA2, |
|     | hsa-mir-020      | 13q31       | -1.62      | 2.17        | FLT1,             |
|     |                  |             |            |             | RAP1B, JUNB,      |
| 20  |                  |             |            |             | MEIS2 HOXA1,      |
|     | hsa-mir-339      | 7p22        | -1.60      | 3.03        | HOXA9, MEIS2,     |
|     |                  |             |            |             | ITGB3, PLDN       |
|     |                  |             |            |             | HOXA1, HOXD1,     |
| 0.5 | hsa-let-7a       | 9q22        | -1.58      | 2.94        | ITGB3,            |
| 25  |                  |             |            |             | RUNX1, PDGFRA     |
|     |                  |             |            |             | RUNX-1, KIT,      |
|     | hsa-let-7d       | 9q22        | -1.56      | 2.17        | HOXA1, MEIS2,     |
|     |                  |             |            |             | ETS-1 ETV6,       |
| 30  |                  |             |            |             | PDGFRA RUNX-1,    |
|     |                  |             |            |             | KIT, ITGA3 ,      |
|     | hsa-mir-181c     | 19p13       | -1.55      | 2.50        | HOXA1,            |
|     |                  |             |            |             | MEIS2 ,ETS-1,     |
|     |                  |             |            |             | SDFR1, TAL1, SK1, |
| 35  | hsa-mir-181b     | 1q31.3      | -1.53      | 2.13        | FLT1, RUNX1,      |
|     |                  |             |            |             | CRK, FOG1, ETS-   |
|     | hsa-mir-017      | 13q31       | -1.38      | 1.82        | 1,MEIS1           |
|     | t t test p<0.05  |             |            |             |                   |

<sup>†</sup> t test p<0.05.

40

45

50

55

[0208] NA±: miRNA precursor sequence that does not contain the mature miRNA, therefore no putative target is shown.

### [0209] Example 2: MAFB Transcription Factor is a Target of miR-130a.

**[0210]** By using three target prediction algorithms (TARGETSCAN (www.genes.mit.edu/targetscan), MIRANDA (www.microma.org/miranda\_new.html), and PICTAR (www.piotar.bio.nyu.edu)), we identified that miR-130a is predicted to target MAFB, a transcription factor that is upregulated during megakaryocytic differentiation and induces the GPIIb gene, in synergy with GATE1, SP1 and ETS-1 (Sevinsky, J.R., et al. (2004) Mol. Cell. Biol. 24, 4534-4545). To investigate this putative interaction, first, we examined MAFB protein and mRNA levels in CD34<sup>+</sup> progenitors at baseline and after cytokine stimulation (FIG. 2A). We found that the MAFB protein is upregulated during *in vitro* megakaryocytic differentiation. Although the mRNA levels for MAFB by PCR increase with differentiation, this increase does not correlate well with the intensity of its protein expression. The inverse pattern of expression of MAFB and miR-130a suggested *in vivo* interaction that was further investigated.

**[0211]** To demonstrate a direct interaction between the 3' UTRs of MAFB with miR-130a, we inserted the 3' UTR regions predicted to interact with this miRNA into a luciferase vector. This experiment revealed a repression of about -60% of luciferase activity compared with control vector (FIG. 2B). As an additional control experiment, we used a mutated target mRNA sequence for MAFB lacking five of the complementary bases. As expected, the mutations com-

<sup>\*</sup> These miRNAs were identified by PAM as predictors of a megakaryocytic class with the lowest misclassification error. All, except miR-143 are downregulated during megakaryocytic differentiation.

pletely abolished the interaction between miR-130a and its target 3'UTRs (FIG. 2B).

**[0212]** We also determined the *in vivo* consequences of overexpressing miR-130a on MAFB expression. The premiR-130a and a negative control were transfected by electroporation into K562 cells, which naturally express MAFB and lack miR-130a. Transfection of the pre-miR-130a, but not the control, resulted in a decrease in the protein levels at 48 hours (FIG. 2C). Northern blotting confirmed successful ectopic expression of miR-130a in K562 cells (FIG. 7).

[0213] Example 3: MiR-10a Correlates with HOXB Gene Expression.

**[0214]** It has been reported that in mouse embryos, miR-10a, miR-10b, and miR-196 are expressed in HOX-like patterns (Mansfield, J.H., et al. (2004) Nature 36, 1079-1083) and closely follow their "host" HOX cluster during evolution (Tanzer, A., et al. (2005) J. Exp. Zool. B Mol. Dev. Evol. 304B, 75-85). These data suggest common regulatory elements across paralog clusters. MiR-10a is located at chromosome 17q21 within the cluster of the HOXB genes (FIG. 8) and miR-10b is located at chromosome 2q31 within the HOXD gene cluster. To determine whether the miR-10a expression pattern correlates with the expression of HOXB genes, we performed RT-PCR for HOXB4 and HOXB5, which are the genes located 5' and 3', respectively, to miR-10a in the HOXB cluster. As shown in FIG. 8, HOXB4 and HOXB5 expression paralleled that of miR-10a, suggesting a common regulatory mechanism.

[0215] Example 4: MiR-10a Downregulates HOXA1.

10

20

30

35

40

50

55

[0216] We determined by miRNA array and Northern blot that miR-10a is sharply downregulated during megakaryocytic differentiation. Interestingly, we found several HOX genes as putative targets for miR-10a (Table 2). We thus investigated whether miR-10a could target a HOX gene. We performed real-time PCR for the predicted HOX targets of miR-10: HOXA1, HOXA3, and HOXD10. After normalization with 18S RNA, we found that HOXA1 mRNA is upregulated 7-fold during megakaryocytic differentiation compared with CD34 progenitors (FIG. 3A; see also FIG. 9). HOXA1 protein levels were also upregulated during megakaryocytic differentiation (FIG. 3B). These results are in sharp contrast with the downregulation of miR-10a in megakaryocytic differentiation, suggesting that miR-10a could be an inhibitor of HOXA1 expression. To demonstrate a direct interaction of miR-10a and the 3' UTR sequences of the HOXA1 gene, we carried out a luciferase reporter assay as described in *Material and Methods*. When the miRNA precursor miR-10a was introduced in the MEG01 cells along with the reporter plasmid containing the 3' UTR sequence of *HOXA1*, a 50 % reduction in luciferase activity was observed (FIG. 3C). The degree of complementarity between miR-10a and the HOXA1 3' UTR is shown in Fig. 3D, as predicted by PICTAR (www.pictar.bio.nyu.edu).

**[0217]** To confirm *in vivo* these findings, we transfected K562 cells with the pre-miR-10a precursor using nucleoporation and measured HOXA1 mRNA expression by RT-PCR and HOXA1 protein levels by Western blotting. Successful ectopic expression of miR-10a was documented by Northern Blot (FIG. 3E). A significant reduction at the mRNA and protein levels for HOXA1 was found for K562 cells transfected with the miR-10a precursor but not with the negative control (FIGS. 3F and 3G). These data indicate that miR-10a targets HOXA1 *in vitro* and *in vivo*.

**[0218]** It has been reported that miR-196 induces cleavage of HOXBB mRNA, pointing to a posttranscriptional restriction mechanism of HOX gene expression (Yekta, S., et al. (2004) Science, 304:594-596). Contrary to the miR-196-HOXBB interaction, where an almost perfect complementarity exists, the degree of pairing between miR-10a and the human HOXA1 3' UTR is suboptimal (FIG. 4). Although our results indicated target mRNA degradation, further studies are needed to determine whether cleavage or translational repression is the primary mechanism of downregulation of the HOXA1 gene in this system. A previous study using microarray analysis showed that a large number of target mRNA genes are downregulated by miRNA at the level of transcription (Lim, L.P., et al. (2005) Nature: 433,769-771). These data raise the question whether target degradation is a consequence of translational repression and subsequent relocalization of the miR-target complexes to cytoplasmic processing bodies or is a primary event (Pillai, R. (2005) RNA 11, 1753-1761).

[0219] Example 5: miRNA Profiling in Acute Megakaryoblastic Leukemia (AMKL) Cell Lines.

**[0220]** After the identification of the microRNA expression profile of CD34<sup>+</sup> cells during megakaryocytic differentiation, we then investigated miRNA expression in AMKL cell lines with the goal to identify differentially expressed miRNAs that could have a pathogenic role in megakaryoblastic leukemia. We initially compared miRNA expression in four AMKL cell lines with that of *in vitro* CD34<sup>+</sup>-differentiated megakaryocytes. Using significance analysis of microarray (SAM), we identified 10 miRNAs upregulated in AMKL cell lines compared with that of CD34 *in vitro*-differentiated megakaryocytes (Table 3; see also Table 4). These miRNAs are as follows (in order of the fold increase with respect to differentiated megakaryocytes): miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33 and miR-135. Results were validated by RT-PCR as shown in FIG. 10. Using PAM, we compared miRNA expression in CD34<sup>+</sup> cells with *in vitro*-differentiated megakaryocytes and AMKL cell lines (FIG. 10). Interestingly, we found five miRNAs involved in the megakaryocytic differentiation signature (miR-101, miR-126, miR-106, miR-20, and miR-135) that were upregulated in the leukemic cell lines (Tables 3, 5 and 6). Whether this profile represents merely a differentiation state of the cells or has a truly pathogenic role remains to be elucidated. Supporting the second hypothesis, miR-106, miR-135, and miR-20 are predicted to target RUNX1, which is one of the genes most commonly associated with leukemia (Nakao, M., et al. (2004) Oncogene 125, 709-719). Moreover, mutations of RUNX1 have been described in familial thrombocytopenias with a propensity to develop acute myeloid leukemia (Song, W.J., et al. (1999) Nat. Genet.

23,166-175).

30

35

40

45

50

**[0221]** Table 3. microRNAs upregulated in acute megakaryoblastic cell lines compared with *in vitro*-differentiated megakaryocytes

[0222] All the miRNAs have a q value <0.01 (false discovery rate).

**[0223]** The same miRNAs, except miR-339 and miR-149, were found by using PAM to predict a megakaryoblastic leukemia class with no misclassification error.\

[0224] The results described herein demonstrate that there is a downregulation of miRNAs

|    | TABLE 3           |                      |             |             |                           |
|----|-------------------|----------------------|-------------|-------------|---------------------------|
| 10 | microRNA          | Chromosomal Location | ttest Score | Fold Change | Putative Targets          |
|    |                   |                      |             |             | MEIS2, RUNX1, ETS-1, C-   |
|    | hsa-mir-101       | 1p31.3               | 6.14        | 11.85       | MYB, FOS, RARB, NFE2L2    |
|    | hsa-mir-126       | 9q34                 | 4.91        | 11.97       | V-CRK                     |
| 15 | hsa-mir-099a      | 21q21                | 3.30        | 6.83        | HOXA1, EIF2C, FOXA1       |
|    | hsa-mir-099b-prec | 21q21                | 2.85        | 7.59        | NA                        |
|    |                   |                      |             |             | FLT1, SK1 E2F1, NCDA3,    |
|    | hsa-mir-106       | xq26.2               | 2.79        | 3.33        | PDGFRA, CRK               |
|    |                   |                      |             |             | HOXA1, FLT1, PTP4A1,      |
| 20 | hsa-mir-339       | 7p22                 | 2.58        | 3.36        | RAP1B                     |
|    | hsa-mir-099b      | 19q13                | 2.46        | 4.19        | HOXA1, MYCBP2             |
|    |                   |                      |             |             | RAPIA, MAFF, PDGFRA, SP1, |
|    | hsa-mir-149       | 2q37                 | 2.29        | 3.53        | NFIB                      |
|    |                   |                      |             |             | PDGFRA, HIF1A, MEIS2      |
| 25 | hsa-mir-033       | 2q13                 | 2.27        | 3.23        | SP1,HIFIA, SP3, HNRPA1,   |
|    | hsa-mir-135       | 3p21                 | 2.12        | 3.97        | HOXA10, RUNX1             |

during megakaryocytopoiesis. Hypothetically, the downregulation of miRNAs unblocks target genes involved in differentiation. In line with this hypothesis, miRNA that are sharply downregulated in our system are predicted to target genes with important roles in megakaryocytic differentiation. Thus, we have shown that miR-130a targets MAFB, and miR-10a modulates HOXA1. The fact that we found several differentially expressed miR-NAs during differentiation and leukemia that are predicted to target HOXA1 suggests a function for HOXA1 in megakaryocytopoiesis. Loss and gain studies will ultimately be needed to define the role of HOXA1 in this differentiation process. Our findings delineate the expression of miRNAs in megakaryocytic differentiation and suggest a role for miRNA modulation of this lineage by targeting megakaryocytic transcription factors. Furthermore, in megakaryoblastic leukemia cell lines, we have found inverse expression of miRNAs involved in normal megakaryocytic differentiation. These data provide a starting point for future studies of miRNAs in megakaryocytopoiesis and leukemia.

**[0225]** Table 4. Signature of megakaryocytic differentiation.

| TABLE 4<br>microRNA | CD34 Expression | Megakaryocytic Expression |
|---------------------|-----------------|---------------------------|
| hsa-mir-010a        | up              | Down                      |
| hsa-mir-126         | up              | Down                      |
| hsa-mir-130a-prec   | up              | Down                      |
| hsa-mir-010b        | up              | Down                      |
| hsa-mir-106         | up              | Down                      |
| hsa-mir-130a        | up              | Down                      |
| hsa-mir-132         | up              | Down                      |
| hsa-mir-30c         | up              | Down                      |
| hsa-mir-143-prec    | Down            | up                        |

[0226] PAM selected microRNAs with a very low misclassification error.

[0227] Table 5 Signature of megakaryoblastic leukemia cell lines

EP 2 369 011 A1

|    | TABLE 5      |              |             | Level of Expression in AML |                           |
|----|--------------|--------------|-------------|----------------------------|---------------------------|
|    | MicroRNA     | t test Score | Fold Change | М7                         | Putative Targets          |
|    | hsa-mir-101- | 6.14         | 11.85       | up                         | MEIS2, RUNX1, C-MYB, FOS, |
| 5  |              |              |             |                            | RARb, NFE2L2              |
|    | hsa-mir-126  | 4.91         | 11.97       | up                         | V-CRK                     |
|    | hsa-mir-099a | 3.30         | 6.83        | up                         | HOXA1, EIF2C, FOXA1       |
|    | hsa-mir-095  |              |             | up                         | SHOX2                     |
|    | hsa-mir-033  | 2.27         | 3.23        | up                         | PDGFRA, HIFIA, MEIS2      |
| 10 | hsa-mir-135  | 2.12         | 3.97        | up                         | SP1, HIF1A, SP3, HNRPA1,  |
|    |              |              |             |                            | HOXA10, RUNX1             |
|    | hsa-mir-099b | 2.85         | 7.59        | up                         | HOXA1, MYCBP2             |
|    | hsa-mir-339  | 2.58         | 3.36        | up                         | HOXA1, FLT1, PTP4A1,      |
| 15 |              |              |             |                            | RAP1B                     |
| 13 | hsa-mir-106  | 2.79         | 3.33        | up                         | HOXA1, EIF2C, FOXA1       |
|    | hsa-mir-124a | 2.07         | 2.78        | up                         | SDFRI,RXRa                |
|    | hsa-mir-155  |              |             | down                       | <i>ETS-</i> 1             |
|    | hsa-mir-020  | 2.00         | 3.09        | up                         | TAL1, SKI, RUNX-1, FLTI,  |
| 20 |              |              |             |                            | CRK, FOG2, RARB           |
|    | hsa-mir-025  | 1.98         | 4.24        | up                         | GATA2,                    |
|    | hsa-mir-140  |              |             | down                       | GATA1                     |

**[0228]** PAM selected microRNAs. The fold change of miRNA expression is shown alongside *t* test score (SAM) and putative targets.

**[0229]** Table 6 Three class analysis showing the different regulated microRNAs among the three cell types: CD34<sup>+</sup> progenitors, acute megakaryoblastic leukemia cell lines

| 30 | TABLE 6<br>microRNA                                | Chromosomal<br>Location | CD34 <sup>+</sup> Score | AML M7 cell lines<br>score | <i>In Vitro</i> -differentiated<br>Megakaryocytes<br>Score |  |
|----|----------------------------------------------------|-------------------------|-------------------------|----------------------------|------------------------------------------------------------|--|
|    | hsa-mir-010a                                       | 17q21                   | 1.0198                  | 0                          | -0.3562                                                    |  |
|    | hsa-mir-101                                        | 1p31.3                  | 0                       | 0.814                      | -0.432                                                     |  |
| 35 | hsa-mir-126                                        | 9q34                    | 0.0621                  | 0.4882                     | -0.4514                                                    |  |
|    | hsa-mir-099a                                       | 21q21                   | 0                       | 0.4685                     | -0.2875                                                    |  |
|    | hsa-mir-033                                        | 22q13                   | 0                       | 0.4258                     | -0.2294                                                    |  |
|    | hsa-mir-095                                        | 4p16                    | 0                       | 0.41.42                    | -0.3567                                                    |  |
| 40 | hsa-mir-010b                                       | 2q31                    | 0.3308                  | 0                          | 0                                                          |  |
|    | hsa-mir-155                                        | 21q21                   | 0                       | -0.3217                    | 0                                                          |  |
|    | hsa-mir-130a                                       | 11q12                   | 0.2755                  | 0                          | 0                                                          |  |
|    | hsa-let-7d                                         | 9q22                    | 0.263                   | -0.274                     | 0                                                          |  |
|    | hsa-mir-099b-pree                                  | 21q21                   | 0                       | 0.266                      | -0.1078                                                    |  |
| 45 | hsa-mir-135-2-prec                                 | 12q23                   | 0                       | 0.2279                     | -0.2566                                                    |  |
|    | hsa-mir-339                                        | 7p22                    | 0                       | 0.2456                     | -0.1176                                                    |  |
|    | hsa-mir-099b                                       | 19q13                   | 0                       | 0.2275                     | -0.1025                                                    |  |
|    | hsa-mir-106                                        | xq26                    | 0                       | 0.0575                     | -0.1891                                                    |  |
|    | hsa-let-7c                                         | 21q21                   | 0.0289                  | -0.1753                    | 0                                                          |  |
| 50 | hsa-mir-148                                        | 7p15                    | 0                       | -0.1748                    | 0                                                          |  |
|    | hsa-mir-132-prec                                   | 17p13                   | 0.1721                  | 0                          | 0                                                          |  |
|    | hsa-mir-020                                        | 13q31                   | 0                       | 0.0374                     | -0.1509                                                    |  |
|    | (AMKL) and in vitro-differentiated megakaryocytes. |                         |                         |                            |                                                            |  |

**[0230]** There are three patterns of miRNA expression among the three different cell types. The first pattern is defined by miRNA highly expressed in CD34<sup>+</sup> cells and downregulated in AMKL and differentiated megakaryocytes. miR-10a

and miR-130a follow this pattern of expression; however, miR-10a is upregulated in AMKL relative to differentiated megakaryocytes. The second pattern is miRNA that is upregulated in AMKL, downregulated in CD34<sup>+</sup> cells and differentiated megakaryocytes and includes the following miRNAs: miR-126, miR-99, miR-101, let 7A, and miR-100. The last two miRNAs are equally expressed in CD34<sup>+</sup> and differentiated megakaryocytes, rather than showing a gradual decline in expression, as evidenced by miR-126, miR-99 and miR-101. The last pattern includes miRNA-106 and miRNA-135-2, which are upregulated in CD34<sup>+</sup> cells and AMKL, but low in differentiated megakaryocytes.

**[0231]** MicroRNAs are a highly conserved class of non-coding RNAs with important regulatory functions in proliferation, apoptosis, development and differentiation. As described herein, to discover novel regulatory pathways during megakaryocytic differentiation, we performed microRNAs expression profiling of *in vitro*-differentiated megakaryocytes derived from CD34+ hematopoietic progenitors. One major finding was downregulation of miR-10a, miR-126, miR-106, miR-10b, miR-17 and miR-20. Without wishing to be bound to any theory, it is believed that the downregulation of microRNAs unblocks target genes involved in differentiation. It was confirmed in vitro and in vivo that miR-130a targets the transcription factor MAFB, which is involved in the activation of the GPIIB promoter, a key protein for platelet physiology. In addition, it was shown that miR-10a expression in differentiated megakaryocytes is inverse to that of HOXA1, and HOXA1 is a direct target of miR-10a. Finally, the microRNA expression of megakaryoblastic leukemic cell lines was compared to that of in vftro-differentiated megakaryocytes and CD34<+> progenitors. This analysis revealed upregulation of miR-101, miR-126, miR-99a, miR-135, and miR-20 in the cancerous cell line. The data and results described herein delineate the expression of microRNAs during megakaryocytopoiesis and demonstrate a regulatory role of microRNAs in this process by targeting megakaryocytic transcription factors.

The relevant teachings of all publications cited herein that have not explicitly been incorporated by reference, are incorporated herein by reference in their entirety. While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.

While the invention has been described with reference to various and preferred embodiments, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the essential scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed herein contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. The claims of the parent application are given in the Appendix. These are included as part of the description and are included for completeness to preserve all subject matter.

### **APPENDIX**

20

25

30

35

40

45

50

- 1. A method of diagnosing or prognosticating cancer and/or a myeloproliferative disorder in a subject, comprising: i) determining the level of at least one miR gene product in a sample from the subject; and ii) comparing the level of the at least one miR gene product in the sample to a control, wherein an increase in the level of the at least one miR gene product in the sample from the subject, relative to that of the control, is diagnostic or prognostic of cancer and/or a myeloproliferative disorder, and wherein the at least one miR gene product is selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135 and miR-20.
  - 2. The method of Claim 1, wherein the at least one miR gene product is selected from the group consisting of miR-101, miR-126, miR-106, miR-20 and miR-135.
  - 3. The method of Claim 1, wherein the at least one miR gene product is selected from the group consisting of miR-106, miR-20 and miR-135.
  - 4. The method of Claim 1, wherein the cancer and/or a myeloproliferative disorder is a cancer.
  - 5. The method of Claim 4, wherein the cancer is a leukemia.
    - 6. The method of Claim 5, wherein the leukemia is acute myeloid leukemia.
  - 7. The method of Claim 6, wherein the acute myeloid leukemia is acute megakaryoblastic leukemia.
    - 8. The method of Claim 4, wherein the cancer is multiple myeloma.

- 9. The method of Claim 1, wherein the cancer and/or a myeloproliferative disorder is a myeloproliferative disorder.
- 10. The method of Claim 9, wherein the myeloproliferative disorder is selected from the group consisting of essential thrombocytemia (ET), polycythemia vera (PV), myelodisplasia, myelofibrosis and chronic myelogenous leukemia (CML).

15

20

5

10

11. The method of Claim 1, wherein the control is selected from the group consisting of: i) a reference standard; ii) the level of the at least one miR gene product from a subject that does not have cancer and/or a myeloproliferative disorder; and iii) the level of the at least one miR gene product from a sample of the subject that is non-cancerous and/or does not exhibit a myeloproliferative disorder.

25

12. The method of Claim 1, wherein the subject is a human.

30

35

13. A method of treating a cancer and/or a myeloproliferative disorder in a subject, comprising administering to the subject an effective amount of a compound for inhibiting expression of at least one miR gene product, wherein the at least one miR gene product is selected from the group consisting of miR-101, miR-126, miR-99a, miR-99-prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135 and miR-20.

40

14. The method of Claim 13, wherein the at least one miR gene product is selected from the group consisting of miR-101, miR-126, miR-106, miR-20 and miR-135.

50

15. The method of Claim 13, wherein the at least one miR gene product is selected from the group consisting of miR-106, miR-20 and miR-135.

|    | 16. The method of Claim 13, wherein the cancer and/or a                                                                                                   |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | myeloproliferative disorder is a cancer.                                                                                                                  |
|    | 17. The method of Claim 16, wherein the cancer is a leukemia.                                                                                             |
| 10 | 18. The method of Claim 17, wherein the leukemia is acute myeloid                                                                                         |
|    | leukemia.                                                                                                                                                 |
| 15 | 19. The method of Claim 18, wherein the acute myeloid leukemia is acute                                                                                   |
|    | megakaryoblastic leukemia.                                                                                                                                |
| 20 |                                                                                                                                                           |
| 20 | The method of Claim 16, wherein the cancer is multiple myeloma.                                                                                           |
| 25 | 21. The method of Claim 13, wherein the cancer and/or a                                                                                                   |
|    | myeloproliferative disorder is a myeloproliferative disorder.                                                                                             |
| 30 | 22. The method of Claim 21, wherein the myeloproliferative disorder is                                                                                    |
|    | selected from the group consisting of essential thrombocytemia (ET),                                                                                      |
|    | polycythemia vera (PV), myelodisplasia, myelofibrosis and chronic myelogenous                                                                             |
| 35 | leukemia (CML).                                                                                                                                           |
|    | The method of Claim 13, wherein the subject is a human.                                                                                                   |
| 40 |                                                                                                                                                           |
|    | 24. A method of treating a cancer and/or a myeloproliferative disorder in a subject comprising administering an effective amount of at least one miR gene |
| 45 | product or an isolated variant or biologically-active fragment thereof to the                                                                             |
|    | subject, wherein: the cancer and/or myeloproliferative disorder is associated with                                                                        |
|    | overexpression of a MAFB gene product; and the at least one miR gene product                                                                              |
| 50 | binds to, and decreases expression of, the MAFB gene product.                                                                                             |
|    | 25. The method of Claim 24, wherein the at least one miR gene product or                                                                                  |
| 55 | isolated variant or biologically-active fragment thereof comprises a nucleotide                                                                           |
|    |                                                                                                                                                           |

| 5  | sequence product. | that is complementary to a nucleotide sequence in the MAFB gene                                                                                                                                     |
|----|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | 26.<br>miR- 130a  | The method of Claim 25, wherein the at least one miR gene product is a or an isolated variant or biologically-active fragment thereof.                                                              |
| 15 | 27.<br>myeloprol  | The method of Claim 24, wherein the cancer and/or a iferative disorder is a cancer.                                                                                                                 |
|    | 28.               | The method of Claim 27, wherein the cancer is a leukemia.                                                                                                                                           |
| 20 | 29.<br>Ieukemia.  | The method of Claim 28 wherein the leukemia is acute myeloid                                                                                                                                        |
| 25 | 30.<br>megakary   | The method of Claim 29, wherein the acute myeloid leukemia is acute oblastic leukemia.                                                                                                              |
| 30 | 31.               | The method of Claim 27, wherein the cancer is multiple myeloma.                                                                                                                                     |
| 35 | 32.<br>myeloprol  | The method of Claim 24, wherein the cancer and/or a iferative disorder is a myeloproliferative disorder.                                                                                            |
| 40 |                   | The method of Claim 32, wherein the myeloproliferative disorder is from the group consisting of essential thrombocytemia (ET), mia vera (PV), myelodisplasia, myelofibrosis and chronic myelogenous |
| 45 | leukemia (        | (CML).                                                                                                                                                                                              |
| 50 | 34.               | The method of Claim 24, wherein the subject is a human.                                                                                                                                             |
|    | 35. subject co    | A method of treating a cancer and/or a myeloproliferative disorder in a emprising administering an effective amount of at least one miR gene                                                        |
| 55 | product o         | r an isolated variant or biologically-active fragment thereof to the                                                                                                                                |

|    | subject, wherein: the cancer and/or myeloproliferative disorder is associated with overexpression of a HOXAl gene product; and the at least one miR gene product                                                                   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5  | binds to, and decreases expression of, the HOXAl gene product.                                                                                                                                                                     |
| 10 | 36. The method of Claim 35, wherein the at least one miR gene product or isolated variant or biologically-active fragment thereof comprises a nucleotide sequence that is complementary to a nucleotide sequence in the HOXAl gene |
| 15 | product.                                                                                                                                                                                                                           |
| 20 | 37. The method of Claim 36, wherein the at least one miR gene product is miR-1 Oa or an isolated variant or biologically-active fragment thereof.                                                                                  |
| 25 | 38. The method of Claim 35, wherein the cancer and/or a myeloproliferative disorder is a cancer.                                                                                                                                   |
|    | 39. The method of Claim 38, wherein the cancer is a leukemia.                                                                                                                                                                      |
| 30 | 40. The method of Claim 39, wherein the leukemia is acute myeloid leukemia.                                                                                                                                                        |
| 35 | 41. The method of Claim 40, wherein the acute myeloid leukemia is acute megakaryoblastic leukemia.                                                                                                                                 |
| 40 | 42. The method of Claim 38, wherein the cancer is multiple myeloma.                                                                                                                                                                |
| 45 | 43. The method of Claim 35, wherein the cancer and/or a myeloproliferative disorder is a myeloproliferative disorder.                                                                                                              |
| 50 | 44. The method of Claim 43, wherein the myeloproliferative disorder is selected from the group consisting of essential thrombocytemia (ET)3 polycythemia vera (PV), myelodisplasia, myelofibrosis and chronic myelogenous          |
| 55 | leukemia (CML).                                                                                                                                                                                                                    |

| 5 | 45. | The method | of Claim 35, | wherein t | the subject is | a human. |
|---|-----|------------|--------------|-----------|----------------|----------|
| J |     |            |              |           |                |          |

10

15

20

25

30

35

40

45

46. A method of determining and/or predicting megakaryocytic differentiation comprising: i) determining the level of at least one miR gene product in a sample comprising megakaryocyte progeny and/or megakaryocytes; and ii) comparing the level of the at least one miR gene product in the sample to a control, wherein an alteration in the level of the at least one miR gene product in the sample, relative to that of the control, is indicative of megakaryocytic differentiation.

47. The method of Claim 46 wherein the alteration is a decrease in the level of the at least one miR gene product in the sample.

- 48. The method of Claim 46, wherein the at least one miR gene product is selected from the group consisting of miR-10a, miR-126, miR-106, miR-010b, miR-130a, miR-130a- prec, miR-124a, miR-032-prec, miR-101, miR-30c, miR-213, miR-132-prec, miR-150, miR-020, miR-339, let-7a, let-7d, miR-181c, miR-181b and miR-017.
  - 49. The method of Claim 46, wherein the at least one miR gene product is selected from the group consisting of miR-lOa, miR-lOb, miR-30c, miR-106, miR-126, miR-130a, miR-132, and miR-143.
    - 50. The method of Claim 46, wherein said sample is from a subject.
  - 51. The method of Claim 50, wherein the subject is a human.
- 50 52. The method of Claim 1, wherein the control is selected from the group consisting of: i) a reference standard; and ii) the level of the at least one miR gene product from a reference sample comprising non-differentiating megakaryocyte progeny and/or megakaryocytes.

- 53. A pharmaceutical composition for treating a cancer and/or a myeloproliferative disorder comprising an effective amount of a compound for inhibiting expression of at least one miR gene product and a pharmaceutically-acceptable carrier, wherein the at least one miR gene product is selected from the group consisting of miR-101, miR-126, miR-99a, miR-99- prec, miR-106, miR-339, miR-99b, miR-149, miR-33, miR-135 and miR-20.
- 54. The pharmaceutical composition of Claim 53, wherein the at least one miR gene product is selected from the group consisting of miR-101, miR-126, miR-106, miR-20, and miR-135.
- The pharmaceutical composition of Claim 53, wherein the at least one miR gene product is selected from the group consisting of miR-106, miR-20 and miR-135.

30

35

40

- 56. The pharmaceutical composition of Claim 53, wherein the pharmaceutical composition further comprises at least one anti-cancer agent.
- 57. A pharmaceutical composition for treating a cancer associated with overexpression of a MAFB gene product and/or a myeloproliferative disorder associated with overexpression of a MAFB gene product comprising an effective amount of at least one miR gene product and a pharmaceutically-acceptable carrier, wherein the at least one miR gene product binds to, and decreases expression of, the MAFB gene product.
- 58. The pharmaceutical composition of Claim 57, wherein the at least one miR gene product comprises a nucleotide sequence that is complementary to a nucleotide sequence in the MAFB gene product.

- 59. The pharmaceutical composition of Claim 58, wherein the at least one miR gene product is miR- 130a or an isolated variant or biologically-active fragment thereof.
- <sup>10</sup> 60. The pharmaceutical composition of Claim 57, wherein the pharmaceutical composition further comprises at least one anti-cancer agent.
- 15 61. A pharmaceutical composition for treating a cancer associated with overexpression of a HOXAl gene product and/or a myeloproliferative disorder associated with overexpression of a HOXAl gene product comprising an effective amount of at least one miR gene product and a pharmaceutically-acceptable carrier, wherein the at least one miR gene product binds to, and decreases expression of, the HOXAl gene product.
- 62. The pharmaceutical composition of Claim 61, wherein the at least one miR gene product comprises a nucleotide sequence that is complementary to a nucleotide sequence in the HOXAl gene product.
- The pharmaceutical composition of Claim 62, wherein the at least one miR gene product is miR-10a or an isolated variant or biologically-active fragment thereof.

45

5

50

# SEQUENCE LISTING

|    | <110> THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION                             |   |
|----|---------------------------------------------------------------------------------|---|
| 5  | <120> MICRORNA FINGERPRINTS DURING HUMAN MEGAKARYOCYTOPOIESIS                   |   |
|    | <130> 53-28351                                                                  |   |
| 10 | <140> PCT/US2007/006824<br><141> 2007-03-19                                     |   |
| 10 | <150> 60/743,585<br><151> 2006-03-20                                            |   |
|    | <160> 507                                                                       |   |
| 15 | <170> PatentIn version 3.3                                                      |   |
|    | <210> 1<br><211> 90<br><212> RNA<br><213> Homo sapiens                          |   |
| 20 | <400> 1 cacuguggga ugagguagua gguuguauag uuuuaggguc acacccacca cugggagaua 60    | 0 |
|    | acuauacaau cuacugucuu uccuaacgug 90                                             | 0 |
| 25 | <210> 2<br><211> 72<br><212> RNA<br><213> Homo sapiens                          |   |
| 30 | <400> 2<br>agguugaggu aguagguugu auaguuuaga auuacaucaa gggagauaac uguacagccu 60 | 0 |
|    | ccuagcuuuc cu 72                                                                | 2 |
| 35 | <210> 3<br><211> 74<br><212> RNA<br><213> Homo sapiens                          |   |
|    | <400> 3<br>gggugaggua guagguugua uaguuugggg cucugcccug cuaugggaua acuauacaau 60 | Λ |
| 40 | cuacugucuu uccu 74                                                              |   |
| 45 | <210> 4<br><211> 107<br><212> RNA<br><213> Homo sapiens                         |   |
|    | <400> 4 gugacugcau gcucccaggu ugagguagua gguuguauag uuuagaauua cacaagggag 60    | 0 |
| 50 | auaacuguac agccuccuag cuuuccuugg gucuugcacu aaacaac 107                         | 7 |
| 55 | <210> 5<br><211> 85<br><212> RNA<br><213> Homo sapiens                          |   |
|    | <400> 5                                                                         |   |

|    | ggcgggguga                                      | gguaguaggu | ugugugguuu | cagggcagug | auguugcccc | ucggaagaua | 60 |
|----|-------------------------------------------------|------------|------------|------------|------------|------------|----|
|    | acuauacaac                                      | cuacugccuu | cccug      |            |            |            | 85 |
| 5  | <210> 6<br><211> 84<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
| 10 | <400> 6<br>gcauccgggu                           | ugagguagua | gguuguaugg | uuuagaguua | cacccuggga | guuaacugua | 60 |
|    | caaccuucua                                      | gcuuuccuug | gagc       |            |            |            | 84 |
| 15 | <210> 7<br><211> 87<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
| 20 | <400> 7<br>ccuaggaaga                           | gguaguaggu | ugcauaguuu | uagggcaggg | auuuugccca | caaggaggua | 60 |
|    | acuauacgac                                      | cugcugccuu | ucuuagg    |            |            |            | 87 |
| 25 | <210> 8<br><211> 85<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
|    | <400> 8<br>cuaggaagag                           | guaguaguuu | gcauaguuuu | agggcaaaga | uuuugcccac | aaguaguuag | 60 |
| 30 | cuauacgacc                                      | ugcagccuuu | uguag      |            |            |            | 85 |
| 35 | <210> 9<br><211> 85<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
|    | <400> 9<br>cuggcugagg                           | uaguaguuug | ugcuguuggu | cggguuguga | cauugcccgc | uguggagaua | 60 |
| 40 | acugcgcaag                                      | cuacugccuu | gcuag      |            |            |            | 85 |
|    | <210> 10<br><211> 79<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 45 | <400> 10<br>cccgggcuga                          | gguaggaggu | uguauaguug | aggaggacac | ccaaggagau | cacuauacgg | 60 |
|    | ccuccuagcu                                      | uuccccagg  |            |            |            |            | 79 |
| 50 | <210> 11<br><211> 87<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 55 | <400> 11<br>ucagagugag                          | guaguagauu | guauaguugu | gggguaguga | uuuuacccug | uucaggagau | 60 |

|    | aacuauacaa                                       | ucuauugccu | ucccuga    |            |            |            | 87  |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | <210> 12<br><211> 89<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 12<br>cugugggaug                           | agguaguaga | uuguauaguu | gugggguagu | gauuuuaccc | uguucaggag | 60  |
| 10 | auaacuauac                                       | aaucuauugc | cuucccuga  |            |            |            | 89  |
| 15 | <210> 13<br><211> 85<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 13 cugugggaug                              | agguaguaga | uuguauaguu | uuagggucau | accccaucuu | ggagauaacu | 60  |
| 20 | auacagucua                                       | cugucuuucc | cacgg      |            |            |            | 85  |
| 25 | <210> 14<br><211> 108<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 14<br>uugccugauu                           | ccaggcugag | guaguaguuu | guacaguuug | agggucuaug | auaccacccg | 60  |
|    |                                                  | uaacuguaca |            |            |            |            | 108 |
| 30 | <210> 15<br><211> 85<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 35 | <400> 15<br>cuggcugagg                           | uaguaguuug | ugcuguuggu | cggguuguga | cauugcccgc | uguggagaua | 60  |
|    | acugcgcaag                                       | cuacugccuu | gcuag      |            |            |            | 85  |
| 40 | <210> 16<br><211> 85<br><212> RNA<br><213> Homo  | sapiens    |            | •          |            |            |     |
| 45 | <400> 16<br>accuacucag                           | aguacauacu | ucuuuaugua | cccauaugaa | cauacaaugc | uauggaaugu | 60  |
|    | aaagaaguau                                       | guauuuuugg | uaggc      |            |            |            | 85  |
| 50 | <210> 17<br><211> 108<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 17<br>cagcuaacaa                           | cuuaguaaua | ccuacucaga | guacauacuu | cuuuauguac | ccauaugaac | 60  |
| 55 | auacaaugcu                                       | auggaaugua | aagaaguaug | uauuuuggu  | aggcaaua   |            | 108 |

| 5  | <210> 18<br><211> 85<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|-----|
|    | <400> 18<br>gccugcuugg                           | gaaacauacu | ucuuuauaug | cccauaugga | ccugcuaagc | uauggaaugu | 60  |
| 10 | aaagaaguau                                       | guaucucagg | ccggg      |            |            |            | 85  |
| 45 | <210> 19<br><211> 71<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 15 | <400> 19<br>ugggaaacau                           | acuucuuuau | augcccauau | ggaccugcua | agcuauggaa | uguaaagaag | 60  |
|    | uauguaucuc                                       | a          |            |            |            |            | 71  |
| 20 | <210> 20<br><211> 85<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 25 | <400> 20<br>accuacucag                           | aguacauacu | ucuuuaugua | cccauaugaa | cauacaaugc | uauggaaugu | 60  |
|    | aaagaaguau                                       | guauuuuugg | uaggc      |            |            |            | 85  |
| 30 | <210> 21<br><211> 108<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 35 | <400> 21<br>uggauguugg                           | ccuaguucug | uguggaagac | uagugauuuu | guuguuuuua | gauaacuaaa | 60  |
|    | ucgacaacaa                                       | aucacagucu | gccauauggc | acaggccaug | ccucuaca   |            | 108 |
| 40 | <210> 22<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 22<br>uuggauguug                           | gccuaguucu | guguggaaga | cuagugauuu | uguuguuuuu | agauaacuaa | 60  |
| 45 | aucgacaaca                                       | aaucacaguc | ugccauaugg | cacaggccau | gccucuacag |            | 110 |
| 50 | <210> 23<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 23<br>cuggauacag                           | aguggaccgg | cuggccccau | cuggaagacu | agugauuuug | uuguugucuu | 60  |
|    | acugcgcuca                                       | acaacaaauc | ccagucuacc | uaauggugcc | agccaucgca |            | 110 |
| 55 | <210> 24                                         |            |            |            |            |            |     |

|    | <211> 110<br><212> RNA<br><213> Homo             | sapiens      |            |            |            |            |     |
|----|--------------------------------------------------|--------------|------------|------------|------------|------------|-----|
| 5  | <400> 24<br>agauuagagu                           | ggcugugguc   | uagugcugug | uggaagacua | gugauuuugu | uguucugaug | 60  |
|    | uacuacgaca                                       | acaagucaca   | gccggccuca | uagcgcagac | ucccuucgac |            | 110 |
| 10 | <210> 25<br><211> 89<br><212> RNA<br><213> Homo  | sapiens      |            |            |            |            |     |
| 15 | <400> 25<br>cgggguuggu                           | ı uguuaucuuu | gguuaucuag | cuguaugagu | gguguggagu | cuucauaaag | 60  |
|    | cuagauaaco                                       | gaaaguaaaa   | auaacccca  |            |            |            | 89  |
| 20 | <210> 26<br><211> 87<br><212> RNA<br><213> Homo  | sapiens      |            |            |            |            |     |
|    | <400> 26<br>ggaagcgagu                           | ı uguuaucuuu | gguuaucuag | cuguaugagu | guauuggucu | ucauaaagcu | 60  |
| 25 | agauaaccga                                       | aaguaaaaac   | uccuuca    |            |            |            | 87  |
| 30 | <210> 27<br><211> 90<br><212> RNA<br><213> Homo  | sapiens      |            |            |            |            |     |
|    | <400> 27<br>ggaggcccgu                           | uucucucuuu   | gguuaucuag | cuguaugagu | gccacagagc | cgucauaaag | 60  |
| 35 | cuagauaaco                                       | gaaaguagaa   | augauucuca |            |            |            | 90  |
|    | <210> 28<br><211> 110<br><212> RNA<br><213> Homo | sapiens      |            |            |            |            |     |
| 40 | <400> 28<br>gaucugucug                           | ucuucuguau   | auacccugua | gauccgaauu | uguguaagga | auuuuguggu | 60  |
|    | cacaaauucg                                       | uaucuagggg   | aauauguagu | ugacauaaac | acuccgcucu |            | 110 |
| 45 | <210> 29<br><211> 110<br><212> RNA<br><213> Homo | o sapiens    |            |            |            |            |     |
| 50 | <400> 29<br>ccagagguug                           | ı uaacguuguc | uauauauacc | cuguagaacc | gaauuugugu | gguauccgua | 60  |
|    | uagucacaga                                       | uucgauucua   | ggggaauaua | uggucgaugc | aaaaacuuca |            | 110 |
| 55 | <210> 30<br><211> 108<br><212> RNA               |              |            |            |            |            |     |

|    | <213> Homo                                      | sapiens    |            |            |            |            |     |
|----|-------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | <400> 30<br>gcgcgaaugu                          | guguuuaaaa | aaaauaaaac | cuuggaguaa | aguagcagca | cauaaugguu | 60  |
|    | uguggauuuu                                      | gaaaaggugc | aggccauauu | gugcugccuc | aaaaauac   |            | 108 |
| 10 | <210> 31<br><211> 83<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 31<br>ccuuggagua                          | aaguagcagc | acauaauggu | uuguggauuu | ugaaaaggug | caggccauau | 60  |
| 15 | ugugcugccu                                      | caaaaauaca | agg        |            |            |            | 83  |
| 20 | <210> 32<br><211> 64<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 32<br>cuguagcagc                          | acaucauggu | uuacaugcua | cagucaagau | gcgaaucauu | auuugcugcu | 60  |
|    | cuag                                            |            |            |            |            |            | 64  |
| 25 | <210> 33<br><211> 98<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 30 | <400> 33<br>uugaggccuu                          | aaaguacugu | agcagcacau | caugguuuac | augcuacagu | caagaugcga | 60  |
|    | aucauuauuu                                      | gcugcucuag | aaauuuaagg | aaauucau   |            |            | 98  |
| 35 | <210> 34<br><211> 89<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 40 | <400> 34<br>gucagcagug                          | ccuuagcagc | acguaaauau | иаасациааа | auucuaaaau | uaucuccagu | 60  |
|    |                                                 | cugcugaagu |            |            |            | <b>--</b>  | 89  |
| 45 | <210> 35<br><211> 81<br><212> RNA               |            | 33 3       |            |            |            |     |
|    | <213> Homo                                      | sapiens    |            |            |            |            |     |
| 50 | <400> 35<br>guuccacucu                          | agcagcacgu | aaauauuggc | guagugaaau | auauauuaaa | caccaauauu | 60  |
| 50 | acugugcugc                                      | uuuaguguga | С          |            |            |            | 81  |
| 55 | <210> 36<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |

|    | <400> 36<br>gcagugccuu                          | agcagcacgu | aaauauuggc | guuaagauuc | uaaaauuauc | uccaguauua | 60       |
|----|-------------------------------------------------|------------|------------|------------|------------|------------|----------|
| 5  | acugugcugc                                      | ugaaguaagg | u          |            |            |            | 81       |
| 10 | <210> 37<br><211> 84<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
| 70 | <400> 37<br>gucagaauaa                          | ugucaaagug | cuuacagugc | agguagugau | augugcaucu | acugcaguga | 60       |
|    | aggcacuugu                                      | agcauuaugg | ugac       |            |            |            | 84       |
| 15 | <210> 38<br><211> 71<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
| 20 | <400> 38<br>uguucuaagg                          | ugcaucuagu | gcagauagug | aaguagauua | gcaucuacug | cccuaagugc | 60       |
|    | uccuucuggc                                      | a          |            |            |            |            | 71       |
| 25 | <210> 39<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
|    | <400> 39                                        |            |            |            |            |            | 60       |
| 30 |                                                 |            |            | agugaaguag | auuagcaucu | acugcccuaa | 60<br>81 |
|    | gugcuccuuc                                      | uggcauaaga | a          |            |            |            | 01       |
| 35 | <210> 40<br><211> 82<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
|    | <400> 40<br>gcaguccucu                          | guuaguuuug | cauaguugca | cuacaagaag | aauguaguug | ugcaaaucua | 60       |
| 40 | ugcaaaacug                                      | augguggccu | gc         |            |            |            | 82       |
| 45 | <210> 41<br><211> 80<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
|    | <400> 41 caguccucug                             | uuaguuuugc | auaguugcac | uacaagaaga | auguaguugu | gcaaaucuau | 60       |
| 50 | gcaaaacuga                                      | ugguggccug |            |            |            |            | 80       |
|    | <210> 42<br><211> 87<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
| 55 | <400> 42<br>cacuguucua                          | ugguuaguuu | ugcagguuug | cauccagcug | ugugauauuc | ugcugugcaa | 60       |

|    | auccaugcaa                                      | aacugacugu | gguagug    |            |            |            | 87 |
|----|-------------------------------------------------|------------|------------|------------|------------|------------|----|
| 5  | <210> 43<br><211> 96<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 10 | <400> 43<br>acauugcuac                          | uuacaauuag | uuuugcaggu | uugcauuuca | gcguauauau | guauaugugg | 60 |
|    | cugugcaaau                                      | ccaugcaaaa | cugauuguga | uaaugu     |            |            | 96 |
| 15 | <210> 44<br><211> 80<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 44<br>uucuaugguu                          | aguuuugcag | guuugcaucc | agcuguguga | uauucugcug | ugcaaaucca | 60 |
| 20 | ugcaaaacug                                      | acugugguag |            |            |            |            | 80 |
| 25 | <210> 45<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 45<br>uuacaauuag                          | uuuuqcaqqu | uugcauuuca | gcguauauau | guauaugugg | cuguqcaaau | 60 |
| 30 |                                                 | cugauuguga |            |            | 3 3 33     | 5 5        | 81 |
|    | <210> 46<br><211> 71<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 35 | <400> 46<br>guagcacuaa                          | agugcuuaua | gugcagguag | uguuuaguua | ucuacugcau | uaugagcacu | 60 |
|    | uaaaguacug                                      | С          |            |            |            |            | 71 |
| 40 | <210> 47<br><211> 72<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 45 | <400> 47<br>ugucggguag                          | cuuaucagac | ugauguugac | uguugaaucu | cauggcaaca | ccagucgaug | 60 |
|    | ggcugucuga                                      | ca         |            |            |            |            | 72 |
| 50 | <210> 48<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 55 | <400> 48<br>accuugucgg                          | guagcuuauc | agacugaugu | ugacuguuga | aucucauggc | aacaccaguc | 60 |
|    | gaugggcugu                                      | cugacauuuu | g          |            |            |            | 81 |

| 5  | <210> 4<br><211> 8<br><212> R<br><213> H | 35<br>RNA | sapiens     |            |            |            |            |    |
|----|------------------------------------------|-----------|-------------|------------|------------|------------|------------|----|
|    | <400> 4<br>ggcugag                       |           | caguaguucu  | ucaguggcaa | gcuuuauguc | cugacccagc | uaaagcugcc | 60 |
| 10 | aguugaa                                  | igaa      | cuguugcccu  | cugcc      |            |            |            | 85 |
| 15 | <210> 5<br><211> 7<br><212> R<br><213> H | 73<br>RNA | sapiens     |            |            |            |            |    |
|    | <400> 5<br>ggccggc                       |           | gguuccuggg  | gaugggauuu | gcuuccuguc | acaaaucaca | uugccaggga | 60 |
|    | uuuccaa                                  | ıccg      | acc         |            |            |            |            | 73 |
| 20 | <210> 5 <211> 9 <212> R <213> H          | 7<br>RNA  | sapiens     |            |            |            |            |    |
| 25 | <400> 5<br>cucaggu                       |           | cuggcugcuu  | ggguuccugg | caugcugauu | ugugacuuaa | gauuaaaauc | 60 |
|    | acauugc                                  | cag       | ggauuaccac  | gcaaccacga | ccuuggc    |            |            | 97 |
| 30 | <210> 5<br><211> 8<br><212> R<br><213> H | I<br>NA   | sapiens     |            |            |            |            |    |
| 35 | <400> 5<br>ccacggc                       |           | cugggguucc  | uggggauggg | auuugcuucc | ugucacaaau | cacauugcca | 60 |
|    | gggauuu                                  | ıcca      | accgacccug  | a          |            |            |            | 81 |
| 40 | <210> 5<br><211> 6<br><212> R<br><213> H | 8<br>NA   | sapiens     |            |            |            |            |    |
|    | <400> 5<br>cuccggu                       |           | uacugagcug  | auaucaguuc | ucauuuuaca | cacuggcuca | guucagcagg | 60 |
| 45 | aacagga                                  | .g        |             |            |            |            |            | 68 |
| 50 | <210> 5<br><211> 7<br><212> R<br><213> H | 3<br>.NA  | sapiens     |            |            |            |            |    |
|    | <400> 5<br>cucugcc                       |           | cgugccuacu  | gagcugaaac | acaguugguu | uguguacacu | ggcucaguuc | 60 |
| 55 | agcagga                                  | aca       | <b>9</b> 99 |            |            |            |            | 73 |

| 5  | <210> 55<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|----|-------------------------------------------------|------------|------------|------------|------------|------------|----|
| Ü  | <400> 55<br>cccugggcuc                          | ugccucccgu | gccuacugag | cugaaacaca | guugguuugu | guacacuggc | 60 |
|    | ucaguucagc                                      | aggaacaggg | g          |            |            |            | 81 |
| 10 | <210> 56<br><211> 71<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 15 | <400> 56<br>cccuccggug                          | ccuacugagc | ugauaucagu | ucucauuuua | cacacuggcu | caguucagca | 60 |
|    | ggaacagcau                                      | c          |            |            |            |            | 71 |
| 20 | <210> 57<br><211> 84<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 25 | <400> 57<br>ggccaguguu                          | gagaggcgga | gacuugggca | auugcuggac | gcugcccugg | gcauugcacu | 60 |
|    | ugucucgguc                                      | ugacagugcc | ggcc       |            |            |            | 84 |
| 30 | <210> 58<br><211> 86<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 58<br>aggccguggc                          | cucguucaag | uaauccagga | uaggcugugc | aggucccaau | ggccuaucuu | 60 |
| 35 | gguuacuugc                                      | acggggacgc | gggccu     |            |            |            | 86 |
| 40 | <210> 59<br><211> 77<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 59<br>guggccucgu                          | ucaaguaauc | caggauaggc | ugugcagguc | ccaaugggcc | uauucuuggu | 60 |
|    | uacuugcacg                                      | gggacgc    |            |            |            |            | 77 |
| 45 | <210> 60                                        |            |            |            |            |            |    |
|    | <211> 84<br><212> RNA<br><213> Homo             | sapiens    |            |            |            |            |    |
| 50 | <400> 60<br>ggcuguggcu                          | ggauucaagu | aauccaggau | aggcuguuuc | caucugugag | gccuauucuu | 60 |
|    | gauuacuugu                                      | uucuggaggc | agcu       |            |            |            | 84 |
| 55 | <210> 61<br><211> 77                            |            |            |            |            |            |    |

|    | <212> RNA<br><213> Homo                          | sapiens    |              |            |            |                 |    |
|----|--------------------------------------------------|------------|--------------|------------|------------|-----------------|----|
| 5  | <400> 61<br>ccgggaccca                           | guucaaguaa | uucaggauag   | guugugugcu | guccagccug | uucuccauua      | 60 |
|    | cuuggcucgg                                       | ggaccgg    |              |            |            |                 | 77 |
| 10 | <210> 62<br><211> 78<br><212> RNA<br><213> Homo  | sapiens    |              |            |            |                 |    |
| 45 | <400> 62<br>cugaggagca                           | gggcuuagcu | gcuugugagc   | aggguccaca | ccaagucgug | uucacagugg      | 60 |
| 15 | cuaaguuccg                                       | cccccag    |              |            |            |                 | 78 |
| 20 | <210> 63<br><211> 73<br><212> RNA<br><213> Homo  | sapiens    |              |            |            |                 |    |
|    | <400> 63<br>aggugcagag                           | cuuagcugau | uggugaacag   | ugauugguuu | ccgcuuuguu | cacaguggcu      | 60 |
| 25 | aaguucugca                                       | ccu        |              |            |            |                 | 73 |
| 30 | <210> 64<br><211> 97<br><212> RNA<br><213> Homo  | sapiens    |              |            |            | •               |    |
| 30 | <400> 64                                         | caannucan  | ancillancila | auuggugaac | adudanndon | ווווככמכוווווומ | 60 |
|    |                                                  |            | caccugaaga   |            | agagaaagga | aucegeaaag      | 97 |
| 35 | <210> 65<br><211> 80<br><212> RNA<br><213> Homo  | sapiens    |              |            |            |                 |    |
| 40 | <400> 65<br>ccugaggagc                           | agggcuuagc | ugcuugugag   | caggguccac | accaagucgu | guucacagug      | 60 |
|    | gcuaaguucc                                       | gcccccagg  |              |            |            |                 | 80 |
| 45 | <210> 66<br><211> 86<br><212> RNA<br><213> Homo  | sapiens    |              |            |            |                 |    |
| 50 | <400> 66<br>gguccuugcc                           | cucaaggagc | ucacagucua   | uugaguuacc | uuucugacuu | ucccacuaga      | 60 |
|    | uugugagcuc                                       | cuggagggca | ggcacu       |            |            |                 | 86 |
| 55 | <210> 67<br><211> 108<br><212> RNA<br><213> Homo | sapiens    |              |            |            |                 |    |

|    | <400> 67<br>ccuucuguga                           | ccccuuagag  | gaugacugau | uucuuuuggu | guucagaguc | aauauaauuu  | 60  |
|----|--------------------------------------------------|-------------|------------|------------|------------|-------------|-----|
| 5  | ucuagcacca                                       | ucugaaaucg  | guuauaauga | uuggggaaga | gcaccaug   |             | 108 |
| 10 | <210> 68<br><211> 64<br><212> RNA<br><213> Homo  | sapiens     |            |            |            |             |     |
|    | <400> 68<br>augacugauu                           | ucuuuuggug  | uucagaguca | auauaauuuu | cuagcaccau | cugaaaucgg  | 60  |
| 15 | uuau                                             |             |            |            |            |             | 64  |
|    | <210> 69<br><211> 81<br><212> RNA<br><213> Homo  | sapiens     |            |            |            |             |     |
| 20 | <400> 69<br>cuucaggaag                           | cugguuucau  | auggugguuu | agauuuaaau | agugauuguc | uagcaccauu  | 60  |
|    | ugaaaucagu                                       | guucuugggg  | g          |            |            |             | 81  |
| 25 | <210> 70<br><211> 81<br><212> RNA<br><213> Homo  | sapiens     |            |            |            |             |     |
| 30 | <400> 70                                         | CHUUUHHICAC | augguggcuu | agannunicc | ลมดมนนตนลน | cuagcaccau  | 60  |
|    |                                                  | uguuuuagga  |            | agadadadee | aucuuuguau | cuageaceau  | 81  |
| 35 | <210> 71<br><211> 110<br><212> RNA<br><213> Homo | sapiens     |            |            |            |             |     |
|    | <400> 71                                         | cancucunac  | acaggcugac | casimicacc | паанаппсаа | adiichdhinn | 60  |
| 40 |                                                  |             | cgguuaugau |            |            | agacagaaaa  | 110 |
| 45 | <210> 72<br><211> 71<br><212> RNA<br><213> Homo  | sapiens     |            |            |            |             |     |
|    | <400> 72<br>gcgacuguaa                           | acauccucga  | cuggaagcug | ugaagccaca | gaugggcuuu | cagucggaug  | 60  |
| 50 | uuugcagcug                                       | С           |            |            |            |             | 71  |
| 55 | <210> 73<br><211> 60<br><212> RNA<br><213> Homo  | sapiens     |            |            |            |             |     |
|    | <400> 73                                         |             |            |            |            |             |     |

|    | auguaaacau                                      | ccuacacuca | gcuguaauac | auggauuggc | ugggaggugg | auguuuacgu | 60 |
|----|-------------------------------------------------|------------|------------|------------|------------|------------|----|
| 5  | <210> 74<br><211> 88<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 74<br>accaaguuuc                          | aguucaugua | aacauccuac | acucagcugu | aauacaugga | uuggcuggga | 60 |
| 10 | gguggauguu                                      | uacuucagcu | gacuugga   |            |            |            | 88 |
| 15 | <210> 75<br><211> 72<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 75<br>agauacugua                          | aacauccuac | acucucagcu | guggaaagua | agaaagcugg | gagaaggcug | 60 |
| 20 | uuuacucuuu                                      | cu         |            |            |            |            | 72 |
| 25 | <210> 76<br><211> 70<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 76<br>guuguuguaa                          | acauccccga | cuggaagcug | uaagacacag | cuaagcuuuc | agucagaugu | 60 |
|    | uugcugcuac                                      |            |            |            |            |            | 70 |
| 30 | <210> 77<br><211> 64<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 35 | <400> 77                                        | ccuugacugg | aagcuguaag | guguucagag | gagcuuucag | ucagauguuu | 60 |
|    | acag                                            | 3 33       | 3 3 3      |            |            |            | 64 |
| 40 | <210> 78<br><211> 71<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 45 | <400> 78<br>ggagaggagg                          | caagaugcug | gcauagcugu | ugaacuggga | accugcuaug | ccaacauauu | 60 |
|    | gccaucuuuc                                      | c          |            |            |            |            | 71 |
| 50 | <210> 79<br><211> 70<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 79<br>ggagauauug                          | cacauuacua | aguugcaugu | ugucacggcc | ucaaugcaau | uuagugugug | 60 |
| 55 | ugauauuuuc                                      |            |            |            |            |            | 70 |

| 5  | <210> 80<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|-----|
|    | <400> 80<br>gggggccgag                           | agaggcgggc | ggccccgcgg | ugcauugcug | uugcauugca | cgugugugag | 60  |
| 10 | gcgggugcag                                       | ugccucggca | gugcagcccg | gagccggccc | cuggcaccac |            | 110 |
|    | <210> 81<br><211> 88<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 15 | <400> 81<br>accaaguuuc                           | aguucaugua | aacauccuac | acucagcugu | aauacaugga | uuggcuggga | 60  |
|    | gguggauguu                                       | uacuucagcu | gacuugga   |            |            |            | 88  |
| 20 | <210> 82<br><211> 69<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 25 | <400> 82<br>cuguggugca                           | uuguaguugc | auugcauguu | cuggugguac | ccaugcaaug | uuuccacagu | 60  |
|    | gcaucacag                                        |            |            |            |            |            | 69  |
| 30 | <210> 83<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 83                                         | gaguguuucu | nnaacsanan | chnaachaan | uguugugagc | aauaguaagg | 60  |
| 35 |                                                  | caaguauacu |            |            |            |            | 110 |
| 40 | <210> 84<br><211> 84<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 84<br>gugcucgguu                           | uguaggcagu | gucauuagcu | gauuguacug | uggugguuac | aaucacuaac | 60  |
| 45 | uccacugcca                                       | ucaaaacaag | gcac       |            |            |            | 84  |
| 50 | <210> 85<br><211> 77<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 85<br>agucuaguua                           | cuaggcagug | uaguuagcug | auugcuaaua | guaccaauca | cuaaccacac | 60  |
|    | ggccagguaa                                       | aaagauu    |            |            |            |            | 77  |
| 55 | <210> 86                                         |            |            |            |            |            |     |

|    | <211> 82<br><212> RNA<br><213> Homo             | sapiens    |            |            |            |            |    |
|----|-------------------------------------------------|------------|------------|------------|------------|------------|----|
| 5  | <400> 86<br>ucagaauaau                          | gucaaagugc | uuacagugca | gguagugaua | ugugcaucua | cugcagugaa | 60 |
|    | ggcacuugua                                      | gcauuauggu | ga         |            |            |            | 82 |
| 10 | <210> 87<br><211> 78<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 15 | <400> 87<br>cuuucuacac                          | agguugggau | cgguugcaau | gcuguguuuc | uguaugguau | ugcacuuguc | 60 |
|    | ccggccuguu                                      | gaguuugg   |            |            |            |            | 78 |
| 20 | <210> 88<br><211> 75<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 88<br>ucaucccugg                          | guggggauuu | guugcauuac | uuguguucua | uauaaaguau | ugcacuuguc | 60 |
| 25 | ccggccugug                                      | gaaga      |            |            |            |            | 75 |
| 30 | <210> 89<br><211> 80<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 89<br>cugggggcuc                          | caaagugcug | uucgugcagg | uagugugauu | acccaaccua | cugcugagcu | 60 |
| 35 | agcacuuccc                                      | gagcccccgg |            |            |            |            | 80 |
|    | <210> 90<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 40 | <400> 90<br>aacacagugg                          | gcacucaaua | aaugucuguu | gaauugaaau | gcguuacauu | caacggguau | 60 |
|    | uuauugagca                                      | cccacucugu | g          |            |            |            | 81 |
| 45 | <210> 91<br><211> 78<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 50 | <400> 91<br>uggccgauuu                          | uggcacuagc | acauuuuugc | uugugucucu | ccgcucugag | caaucaugug | 60 |
|    | cagugccaau                                      |            |            |            |            |            | 78 |
| 55 | <210> 92<br><211> 80<br><212> RNA               |            |            |            |            |            |    |

|    | <213> Homo                                       | sapiens      |              |            |             |             |     |
|----|--------------------------------------------------|--------------|--------------|------------|-------------|-------------|-----|
| 5  | <400> 92<br>gugagcgacu                           | guaaacaucc   | ucgacuggaa   | gcugugaagc | cacagauggg  | cuuucagucg  | 60  |
|    | gauguuugca                                       | gcugccuacu   |              |            |             |             | 80  |
| 10 | <210> 93<br><211> 80<br><212> RNA<br><213> Homo  | sapiens      |              |            |             |             |     |
|    | <400> 93<br>gugagguagu                           | aaguuguauu   | guuguggggu   | agggauauua | ggccccaauu  | agaagauaac  | 60  |
| 15 | uauacaacuu                                       | acuacuuucc   |              |            |             |             | 80  |
| 20 | <210> 94<br><211> 70<br><212> RNA<br><213> Homo  | sapiens      |              |            |             |             |     |
|    | <400> 94                                         | canadaacca   | accilliacada | gccuucgccg | cacacaadcu  | cananchana  | 60  |
|    | gguccguguc                                       | cyuayaaccy   | accuageggg   | gecaucyccy | cacacaage   | egugueugug  | 70  |
| 25 |                                                  |              |              |            |             |             |     |
|    | <210> 95<br><211> 81<br><212> RNA<br><213> Homo  | sapiens      |              |            |             |             |     |
| 30 | <400> 95                                         | 112220000112 | asuccasucu   | uguggugaag | וותמפרכתכפר | 220CHCUCHH  | 60  |
|    |                                                  | gugucagugu   |              | uguggugaag | uggaccgcac  | aagcacgcaa  | 81  |
| 35 | <210> 96<br><211> 108<br><212> RNA<br><213> Homo |              | J            |            |             |             |     |
| 40 | <400> 96 aagagaag                                | auauugaggc   | cuguugccac   | aaacccguag | auccgaacuu  | gugguauuag  | 60  |
|    |                                                  |              |              | ucuguuaggc |             |             | 108 |
| 45 | <210> 97<br><211> 80<br><212> RNA<br><213> Homo  | sapiens      |              |            |             |             |     |
|    | <400> 97                                         | caaacccoua   | חשווככמששכוו | ugugguauua | מווככמכפכפפ | acimanancii | 60  |
| 50 |                                                  | gucuguuagg   | gaucegaacu   | agagguaada | gaccycacaa  | geologiaale | 80  |
| 55 | <210> 98<br><211> 110<br><212> RNA<br><213> Homo | sapiens      |              |            |             |             |     |

|    | <400> 98<br>aggcugcccu                                      | ggcucaguua | ucacagugcu | gaugcugucu | auucuaaagg | uacaguacug | 60  |
|----|-------------------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | ugauaacuga                                                  | aggauggcag | ccaucuuacc | uuccaucaga | ggagccucac |            | 110 |
| 10 | <210> 99<br><211> 57<br><212> RNA<br><213> Homo<br><400> 99 | sapiens    |            |            |            |            |     |
|    |                                                             | cagugcugau | gcuguccauu | cuaaagguac | aguacuguga | uaacuga    | 57  |
| 15 | <210> 100<br><211> 75<br><212> RNA<br><213> Homo            | sapiens    |            |            |            |            |     |
|    | <400> 100<br>ugcccuggcu                                     | caguuaucac | agugcugaug | cugucuauuc | uaaagguaca | guacugugau | 60  |
| 20 | aacugaagga                                                  | uggca      |            |            |            |            | 75  |
| 25 | <210> 101<br><211> 79<br><212> RNA<br><213> Homo            | sapiens    |            |            |            |            |     |
|    | <400> 101<br>acuguccuuu                                     | uucgguuauc | augguaccga | ugcuguauau | cugaaaggua | caguacugug | 60  |
| 30 | auaacugaag                                                  | aaugguggu  |            |            |            |            | 79  |
| 25 | <210> 102<br><211> 75<br><212> RNA<br><213> Homo            | sapiens    |            |            |            |            |     |
| 35 | <400> 102<br>uguccuuuuu                                     | cgguuaucau | gguaccgaug | cuguauaucu | gaaagguaca | guacugugau | 60  |
|    | aacugaagaa                                                  | uggug      |            |            |            |            | 75  |
| 40 | <210> 103<br><211> 81<br><212> RNA<br><213> Homo            | sapiens    |            |            |            |            |     |
| 45 | <400> 103<br>cuucuggaag                                     | cugguuucac | augguggcuu | agauuuuucc | aucuuuguau | cuagcaccau | 60  |
|    | uugaaaucag                                                  | uguuuuagga | g          |            |            |            | 81  |
| 50 | <210> 104<br><211> 81<br><212> RNA<br><213> Homo            | sapiens    |            |            |            |            |     |
| 55 | <400> 104<br>cuucaggaag                                     | cugguuucau | auggugguuu | agauuuaaau | agugauuguc | uagcaccauu | 60  |
|    | ugaaaucagu                                                  | guucuugggg | g          |            |            |            | 81  |

| 5  | <210> 105<br><211> 78<br><212> RNA<br><213> Homo | sapiens    |               |            |            |             |    |
|----|--------------------------------------------------|------------|---------------|------------|------------|-------------|----|
|    | <400> 105<br>uugugcuuuc                          | agcuucuuua | cagugcugcc    | uuguagcauu | caggucaagc | aacauuguac  | 60 |
| 10 | agggcuauga                                       | aagaacca   |               |            |            |             | 78 |
| 15 | <210> 106<br><211> 78<br><212> RNA<br><213> Homo | sapiens    |               |            |            |             |    |
|    | <400> 106<br>uacugcccuc                          | ggcuucuuua | cagugcugcc    | uuguugcaua | uggaucaagc | agcauuguac  | 60 |
| 00 | agggcuauga                                       | aggcauug   |               |            |            |             | 78 |
| 20 | <210> 107<br><211> 78<br><212> RNA<br><213> Homo | sapiens    |               |            |            |             |    |
| 25 | <400> 107<br>aaaugucaga                          | cagcccaucg | acugguguug    | ccaugagauu | caacagucaa | caucagucug  | 60 |
|    | auaagcuacc                                       | cgacaagg   |               |            |            |             | 78 |
| 30 | <210> 108<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |               |            |            |             |    |
| 35 | <400> 108<br>ugugcaucgu                          | ggucaaaugc | ucagacuccu    | gugguggcug | cucaugcacc | acggauguuu  | 60 |
|    | gagcaugugc                                       | uacggugucu | a             |            |            |             | 81 |
| 40 | <210> 109<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |               |            |            |             |    |
|    | <400> 109                                        | ggucaaaugc | ווכאמאכווככוו | anaanaacna | cuuaugcacc | acquanquiii | 60 |
| 45 |                                                  | uauggugucu |               | 9499499649 | cudaugeace | acggaagaaa  | 81 |
| 50 | <210> 110<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |               |            |            |             |    |
|    | <400> 110<br>ccuuggccau                          | guaaaagugc | uuacagugca    | gguagcuuuu | ugagaucuac | ugcaauguaa  | 60 |
| 55 | gcacuucuua                                       | cauuaccaug | g             |            |            |             | 81 |

| 5  | <210> 111<br><211> 82<br><212> RNA<br><213> Homo | o sapiens    |            |            |            |            |    |
|----|--------------------------------------------------|--------------|------------|------------|------------|------------|----|
| Ü  | <400> 111<br>ccugccgggg                          | g cuaaagugcu | gacagugcag | auaguggucc | ucuccgugcu | accgcacugu | 60 |
|    | ggguacuug                                        | ugcuccagca   | gg         |            |            |            | 82 |
| 10 | <210> 112<br><211> 81<br><212> RNA<br><213> Homo | o sapiens    |            |            |            |            |    |
| 15 | <400> 112<br>cucucugcu                           | ı ucagcuucuu | uacaguguug | ccuuguggca | uggaguucaa | gcagcauugu | 60 |
|    | acagggcual                                       | ı caaagcacag | a          |            |            |            | 81 |
| 20 | <210> 113<br><211> 90<br><212> RNA<br><213> Homo | o sapiens    |            |            |            |            |    |
|    | <400> 113                                        |              |            |            |            |            | 60 |
| 25 |                                                  | aacaauaagg   |            | gcauuaugac | ugagucagaa | aacacagcug | 60 |
|    | ccccugaaag                                       | , ucccucauuu | uucuugcugu |            |            |            | 90 |
| 30 | <210> 114<br><211> 80<br><212> RNA<br><213> HOMO | o sapiens    |            |            |            |            |    |
|    | <400> 114<br>acugcaagag                          | g caauaaggau | uuuuaggggc | auuaugauag | uggaauggaa | acacaucugc | 60 |
| 35 | ccccaaaagı                                       | cccucauuuu   |            |            |            |            | 80 |
| 40 | <210> 115<br><211> 85<br><212> RNA<br><213> Homo | sapiens      |            |            |            |            |    |
|    | <400> 115<br>ccuuagcaga                          | gcuguggagu   | gugacaaugg | uguuuguguc | uaaacuauca | aacgccauua | 60 |
|    | ucacacuaaa                                       | uagcuacugc   | uaggc      |            |            |            | 85 |
|    | <210> 116<br><211> 66<br><212> RNA<br><213> Homo | sapiens      |            |            |            |            |    |
|    | <400> 116<br>agcuguggag                          | ugugacaaug   | guguuugugu | ccaaacuauc | aaacgccauu | aucacacuaa | 60 |
|    | auagcu                                           |              |            |            |            |            | 66 |
|    | <210> 117<br><211> 61                            |              |            |            |            |            |    |

|    | <212> RNA<br><213> Homo                           | sapiens      |            |            |              |            |     |
|----|---------------------------------------------------|--------------|------------|------------|--------------|------------|-----|
| 5  | <400> 117<br>acauuauua                            | uuuugguacg   | cgcugugaca | cuucaaacuc | guaccgugag   | uaauaaugcg | 60  |
|    | c                                                 |              |            |            |              |            | 61  |
| 10 | <210> 118<br><211> 85<br><212> RNA<br><213> Homo  | o sapiens    |            |            |              |            |     |
|    | <400> 118<br>aggccucucu                           | cuccguguuc   | acagcggacc | uugauuuaaa | uguccauaca   | auuaaggcac | 60  |
| 15 | gcggugaaug                                        | ccaagaaugg   | ggcug<br>c |            | <b>⊕</b> €,* |            | 85  |
| 20 | <210> 119<br><211> 110<br><212> RNA<br><213> Homo | o sapiens    |            |            |              |            |     |
|    | <400> 119<br>aucaagauua                           | ı gaggcucugc | ucuccguguu | cacagcggac | cuugauuuaa   | ugucauacaa | 60  |
| 25 | uuaaggcacg                                        | g cggugaaugc | caagagcgga | gccuacggcu | gcacuugaag   |            | 110 |
| 20 | <210> 120<br><211> 87<br><212> RNA<br><213> Homo  | o sapiens    |            |            |              |            |     |
| 30 | <400> 120<br>ugagggcccc                           | ucugcguguu   | cacagcggac | cuugauuuaa | ugucuauaca   | auuaaggcac | 60  |
|    | gcggugaau                                         | ccaagagagg   | cgccucc    |            |              |            | 87  |
| 35 | <210> 121<br><211> 68<br><212> RNA<br><213> Homo  | o sapiens    |            |            |              |            |     |
| 40 | <400> 121<br>cucugcgugu                           | ı ucacagcgga | ccuugauuua | augucuauac | aauuaaggca   | cgcggugaau | 60  |
|    | gccaagag                                          |              |            |            |              |            | 68  |
| 45 | <210> 122<br><211> 67<br><212> RNA<br><213> Homo  | sapiens      |            |            |              |            |     |
| 50 | <400> 122<br>cucuccgugu                           | ı ucacagcgga | ccuugauuua | augucauaca | auuaaggcac   | gcggugaaug | 60  |
|    | ccaagag                                           |              |            |            |              |            | 67  |
| 55 | <210> 123<br><211> 86<br><212> RNA<br><213> Homo  | o sapiens    |            |            |              |            |     |

|    | <400> 123<br>ugccagucuc                          | uaggucccug | agacccuuua | accugugagg | acauccaggg | ucacagguga | 60 |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|----|
| 5  | gguucuuggg                                       | agccuggcgu | cuggcc     |            |            |            | 86 |
| 10 | <210> 124<br><211> 65<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 124<br>ggucccugag                          | acccuuuaac | cugugaggac | auccaggguc | acaggugagg | uucuugggag | 60 |
| 15 | ccugg                                            |            |            |            |            |            | 65 |
|    | <210> 125<br><211> 88<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 20 | <400> 125<br>ugcgcuccuc                          | ucagucccug | agacccuaac | uugugauguu | uaccguuuaa | auccacgggu | 60 |
|    | uaggcucuug                                       | ggagcugcga | gucgugcu   |            |            |            | 88 |
| 25 | <210> 126<br><211> 89<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 30 | <400> 126<br>accagacuuu                          | uccuaguccc | ugagacccua | acuugugagg | uauuuuagua | acaucacaag | 60 |
|    | ucaggcucuu                                       | gggaccuagg | cggagggga  |            |            |            | 89 |
| 35 | <210> 127<br><211> 85<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 127                                        | aaaacauuau | иасииииоаи | acgcgcugug | acacuucaaa | cucquaccqu | 60 |
| 40 |                                                  | gcgccgucca |            |            |            |            | 85 |
| 45 | <210> 128<br><211> 61<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 128<br>acauuauuac                          | uuuugguacg | cgcugugaca | cuucaaacuc | guaccgugag | uaauaaugcg | 60 |
| 50 | С                                                |            |            |            |            |            | 61 |
| 55 | <210> 129<br><211> 97<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 129                                        |            |            |            |            |            |    |

|    | ugugaucacu                                        | gucuccagcc   | ugcugaagcu    | cagagggcuc | ugauucagaa | agaucaucgg  | 60  |
|----|---------------------------------------------------|--------------|---------------|------------|------------|-------------|-----|
|    | auccgucuga                                        | gcuuggcugg   | ucggaagucu    | caucauc    |            |             | 97  |
| 5  | <210> 130<br><211> 70<br><212> RNA<br><213> Homo  | sapiens      |               |            |            |             |     |
| 10 | <400> 130<br>ccagccugcu                           | gaagcucaga   | gggcucugau    | ucagaaagau | caucggaucc | gucugagcuu  | 60  |
|    | ggcuggucgg                                        |              |               |            |            |             | 70  |
| 15 | <210> 131<br><211> 82<br><212> RNA<br><213> Homo  | sapiens      |               |            |            |             |     |
|    | <400> 131                                         | 031111500005 | cansacsena    | ucuazazaau |            | cacadildaac | 60  |
| 20 |                                                   | uucagcugcu   | uc cguagcacug | ucuyayayyu | uuacauuucu | cacagugaac  | 82  |
| 25 | <210> 132<br><211> 110<br><212> RNA<br><213> Homo | sapiens      |               |            |            |             |     |
|    | <400> 132<br>gcccggcagc                           | cacugugcag   | ugggaagggg    | ggccgauaca | cuguacgaga | gugaguagca  | 60  |
| 30 | ggucucacag                                        | ugaaccgguc   | ucuuucccua    | cugugucaca | cuccuaaugg |             | 110 |
| 35 | <210> 133<br><211> 70<br><212> RNA<br><213> Homo  | sapiens      |               |            |            |             |     |
|    | <400> 133<br>guuggauucg                           | gggccguagc   | acugucugag    | agguuuacau | uucucacagu | gaaccggucu  | 60  |
| 40 | cuuuuucagc                                        |              |               |            |            |             | 70  |
|    | <210> 134<br><211> 74<br><212> RNA<br><213> Homo  | sapiens      |               |            |            |             |     |
| 45 | <400> 134<br>uggaucuuuu                           | ugcggucugg   | gcuugcuguu    | ccucucaaca | guagucagga | agcccuuacc  | 60  |
|    | ccaaaaagua                                        | ucua         |               |            |            |             | 74  |
| 50 | <210> 135<br><211> 90<br><212> RNA<br><213> Homo  | sapiens      |               |            |            |             |     |
| 55 | <400> 135<br>ugcccuucgc                           | gaaucuuuuu   | gcggucuggg    | cuugcuguac | auaacucaau | agccggaagc  | 60  |

|    | ccuuacccca                                        | aaaagcauuu | gcggagggcg   |            |            |            | 90  |
|----|---------------------------------------------------|------------|--------------|------------|------------|------------|-----|
| 5  | <210> 136<br><211> 89<br><212> RNA<br><213> Homo  | sapiens    |              |            |            |            |     |
| 10 | <400> 136<br>ugcugcuggc                           | cagagcucuu | uucacauugu   | gcuacugucu | gcaccuguca | cuagcagugc | 60  |
| 10 | aauguuaaaa                                        | gggcauuggc | cguguagug    |            |            |            | 89  |
| 15 | <210> 137<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |              |            |            |            |     |
|    | <400> 137<br>gccaggaggc                           | gggguugguu | guuaucuuug   | guuaucuagc | uguaugagug | guguggaguc | 60  |
| 20 | uucauaaagc                                        | uagauaaccg | aaaguaaaaa   | uaaccccaua | cacugcgcag |            | 110 |
| 25 | <210> 138<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |              |            |            |            |     |
| 20 | <400> 138                                         | cagcggcacu | aacuaaaaaa   | aucccammc  | исисициал  | uaucuagcug | 60  |
|    |                                                   | acagagccgu |              |            |            | uuucuugcug | 110 |
| 30 |                                                   |            | 2            |            |            |            |     |
|    | <210> 139<br><211> 72<br><212> RNA<br><213> Homo  | sapiens    |              |            |            |            |     |
| 35 | <400> 139<br>quuquuaucu                           | uugguuaucu | agcuguauga   | guguauuggu | cuucauaaag | cuagauaacc | 60  |
|    | gaaaguaaaa                                        |            | 3 3 3        | 3 3 33     | J          | J          | 72  |
| 40 | <210> 140<br><211> 101<br><212> RNA<br><213> Homo | sapiens    |              |            |            |            |     |
| 45 | <400> 140                                         | gucuccaggg | caaccauaac   | uuucaauuau | иасидиддда | acuggaggua | 60  |
| 45 |                                                   | gccauggucg |              |            |            | 33 33      | 101 |
| 50 | <210> 141<br><211> 66<br><212> RNA<br><213> Homo  | sapiens    |              |            |            |            |     |
|    | <400> 141<br>gggcaaccgu                           | ggcuuucgau | uguuacuguq   | ggaacuggaq | guaacagucu | acagccaugg | 60  |
| 55 | ucgccc                                            |            | <del>-</del> |            | - <b>-</b> |            | 66  |

| 5  | <210> 142<br><211> 88<br><212> RNA<br><213> Homo  | sapiens     |            |            |            |            |          |
|----|---------------------------------------------------|-------------|------------|------------|------------|------------|----------|
|    | <400> 142<br>acaaugcuuu                           | gcuagagcug  | guaaaaugga | accaaaucgc | cucuucaaug | gauuuggucc | 60       |
| 10 | ccuucaacca                                        | gcuguagcua  | ugcauuga   |            |            |            | 88       |
|    | <210> 143<br><211> 102<br><212> RNA<br><213> Homo | sapiens     |            |            |            |            |          |
| 15 | <400> 143<br>gggagccaaa                           | ugcuuugcua  | gagcugguaa | aauggaacca | aaucgacugu | ccaauggauu | 60       |
|    | ugguccccuu                                        | caaccagcug  | uagcugugca | uugauggcgc | cg         |            | 102      |
| 20 | <210> 144<br><211> 68<br><212> RNA<br><213> Homo  | sapiens     |            |            |            |            |          |
| 25 | <400> 144<br>gcuagagcug                           | guaaaaugga  | accaaaucgc | cucuucaaug | gauuuggucc | ccuucaacca | 60       |
|    | gcuguagc                                          |             |            |            |            |            | 68       |
| 30 | <210> 145<br><211> 119<br><212> RNA<br><213> Homo | sapiens     |            |            |            |            |          |
|    | <400> 145                                         |             |            |            |            |            |          |
| 35 |                                                   | aagaugcccc  |            |            |            |            | 60       |
|    | agagguuugg                                        | uccccuucaa  | ccagcuacag | cagggcuggc | aaugcccagu | ccuuggaga  | 119      |
| 40 | <210> 146<br><211> 80<br><212> RNA<br><213> Homo  | sapiens     |            |            |            |            |          |
|    | <400> 146                                         | Suggeriance |            |            |            |            | 60       |
|    | -                                                 | cuggcugguc  | aaacyyaacc | aaguccgucu | uccugagagg | uuuggucccc | 60<br>80 |
| 45 | uucaaccayc                                        | uacagcaggg  |            |            |            |            | 80       |
| 50 | <210> 147<br><211> 73<br><212> RNA<br><213> Homo  | sapiens     |            |            |            |            |          |
|    | <400> 147<br>cagggugugu                           | gacugguuga  | ccagaggggc | augcacugug | uucacccugu | gggccaccua | 60       |
|    | gucaccaacc                                        | cuc         |            |            |            |            | 73       |
| 55 | <210> 148                                         |             |            |            |            |            |          |
|    |                                                   |             |            |            |            |            |          |

|    | <211> 71<br><212> RNA<br><213> Homo               | sapiens    |            |            |            |            |     |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | <400> 148<br>agggugugug                           | acugguugac | cagaggggca | ugcacugugu | ucacccugug | ggccaccuag | 60  |
|    | ucaccaaccc                                        | u          |            |            |            |            | 71  |
| 10 | <210> 149<br><211> 90<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 15 | <400> 149<br>aggccucgcu                           | guucucuaug | gcuuuuuauu | ccuaugugau | ucuacugcuc | acucauauag | 60  |
|    | ggauuggagc                                        | cguggcgcac | ggcggggaca |            |            |            | 90  |
| 20 | <210> 150<br><211> 100<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 150<br>agauaaauuc                           | acucuagugc | uuuauggcuu | uuuauuccua | ugugauagua | auaaagucuc | 60  |
| 25 | auguagggau                                        | ggaagccaug | aaauacauug | ugaaaaauca |            |            | 100 |
| 30 | <210> 151<br><211> 60<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 151<br>cuauggcuuu                           | uuauuccuau | gugauucuac | ugcucacuca | uauagggauu | ggagccgugg | 60  |
| 35 | <210> 152<br><211> 97<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 40 | <400> 152<br>cacucugcug                           | uggccuaugg | cuuuucauuc | cuaugugauu | gcugucccaa | acucauguag | 60  |
|    | ggcuaaaagc                                        | caugggcuac | agugaggggc | gagcucc    |            |            | 97  |
| 45 | <210> 153<br><211> 82<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 153<br>ugagcccucg                           | gaggacucca | uuuguuuuga | ugauggauuc | uuaugcucca | ucaucgucuc | 60  |
| 50 | aaaugagucu                                        | ucagaggguu | cu         |            |            |            | 82  |
| 55 | <210> 154<br><211> 62<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |

|    | <400> 154<br>gaggacucca                           | uuuguuuuga | ugauggauuc | uuaugcucca | ucaucgucuc | aaaugagucu | 60 |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|----|
| 5  | uc                                                |            |            |            |            |            | 62 |
|    | <210> 155<br><211> 73<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
| 10 | <400> 155<br>cuucggugac                           | ggguauucuu | ggguggauaa | uacggauuac | guuguuauug | cuuaagaaua | 60 |
|    | cgcguagucg                                        | agg        |            |            |            |            | 73 |
| 15 | <210> 156<br><211> 99<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
| 20 | <400> 156 cccuggcaug                              | gugugguggg | gcagcuggug | uugugaauca | ggccguugcc | aaucagagaa | 60 |
|    | cggcuacuuc                                        | acaacaccag | ggccacacca | cacuacagg  |            |            | 99 |
| 25 | <210> 157<br><211> 84<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
| 30 | <400> 157<br>cguugcugca                           | gcugguguug | ugaaucaggc | cgacgagcag | cgcauccucu | uacccggcua | 60 |
| 00 | uuucacgaca                                        | ccaggguugc | auca       |            |            |            | 84 |
| 35 | <210> 158<br><211> 71<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
|    | <400> 158<br>cagcuggugu                           | ugugaaucag | gccgacgagc | agcgcauccu | cuuacccggc | uauuucacga | 60 |
| 40 | caccaggguu                                        | g          |            |            |            |            | 71 |
| 45 | <210> 159<br><211> 68<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
|    | <400> 159<br>guguauucua                           | cagugcacgu | gucuccagug | uggcucggag | gcuggagacg | cggcccuguu | 60 |
|    | ggaguaac                                          |            |            |            |            |            | 68 |
| 50 |                                                   |            |            |            |            |            |    |
|    | <210> 160<br><211> 100<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 55 | <400> 160<br>ugugucucuc                           | ucuguguccu | gccagugguu | uuacccuaug | guagguuacg | ucaugcuguu | 60 |

|    | cuaccacagg                                        | guagaaccac | ggacaggaua | ccggggcacc |            |            | 100 |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | <210> 161<br><211> 72<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 10 | <400> 161<br>uccugccagu                           | gguuuuaccc | uaugguaggu | uacgucaugc | uguucuacca | caggguagaa | 60  |
|    | ccacggacag                                        | ga         |            |            |            |            | 72  |
| 15 | <210> 162<br><211> 70<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 162<br>ccugccagug                           | guuuuacccu | augguagguu | acgucaugcu | guucuaccac | aggguagaac | 60  |
| 20 | cacggacagg                                        |            |            |            |            |            | 70  |
| 25 | <210> 163<br><211> 95<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 163<br>cggccggccc                           | uggguccauc | uuccaguaca | guguuggaug | gucuaauugu | gaagcuccua | 60  |
| 30 | acacugucug                                        | guaaagaugg | cucccgggug | gguuc      |            |            | 95  |
| 35 | <210> 164<br><211> 72<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 164<br>ggguccaucu                           | uccaguacag | uguuggaugg | ucuaauugug | aagcuccuaa | cacugucugg | 60  |
|    | uaaagauggc                                        | сс         |            |            |            |            | 72  |
| 40 | <210> 165<br><211> 64<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 45 | <400> 165<br>acccauaaag                           | uagaaagcac | uacuaacagc | acuggagggu | guaguguuuc | cuacuuuaug | 60  |
|    | gaug                                              |            |            |            |            |            | 64  |
| 50 | <210> 166<br><211> 106<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 55 | <400> 166<br>gcgcagcgcc                           | cugucuccca | gccugaggug | cagugcugca | ucucugguca | guugggaguc | 60  |
|    | ugagaugaag                                        | cacuguagcu | caggaagaga | gaaguuguuc | ugcagc     |            | 106 |

| 5  | <210> 167<br><211> 63<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|----|
|    | <400> 167<br>ccugaggugc                          | agugcugcau | cucuggucag | uugggagucu | gagaugaagc | acuguagcuc | 60 |
| 10 | agg                                              |            |            |            |            |            | 63 |
| 15 | <210> 168<br><211> 86<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 168<br>uggggcccug                          | gcugggauau | caucauauac | uguaaguuug | cgaugagaca | cuacaguaua | 60 |
| 20 | gaugauguac                                       | uaguccgggc | accccc     |            |            |            | 86 |
|    | <210> 169<br><211> 66<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 25 | <400> 169<br>ggcugggaua                          | ucaucauaua | cuguaaguuu | gcgaugagac | acuacaguau | agaugaugua | 60 |
|    | cuaguc                                           |            |            |            |            |            | 66 |
| 30 | <210> 170<br><211> 88<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 35 | <400> 170<br>caccuugucc                          | ucacggucca | guuuucccag | gaaucccuua | gaugcuaaga | uggggauucc | 60 |
|    | uggaaauacu                                       | guucuugagg | ucaugguu   |            |            |            | 88 |
| 40 | <210> 171<br><211> 70<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 171 cucacqqucc                             | aguuuuccca | ggaaucccuu | agaugcuaag | auggggauuc | cuggaaauac | 60 |
| 45 | uguucuugag                                       | _          |            |            |            |            | 70 |
| 50 | <210> 172<br><211> 99<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 172<br>ccgaugugua                          | uccucagcuu | ugagaacuga | auuccauggg | uugugucagu | gucagaccuc | 60 |
| 55 | ugaaauucag                                       | uucuucagcu | gggauaucuc | ugucaucgu  |            |            | 99 |

| 5  | <210> <211> <211> <212> <213> <          | 65<br>Rna | sapiens    |            |            |            |            |    |
|----|------------------------------------------|-----------|------------|------------|------------|------------|------------|----|
| Ü  | <400><br>agcuuu                          |           | acugaauucc | auggguugug | ucagugucag | accugugaaa | uucaguucuu | 60 |
|    | cagcu                                    |           |            |            |            |            |            | 65 |
| 10 | <210><br><211><br><212><br><213>         | 72<br>RNA | sapiens    |            |            |            |            |    |
| 15 | <400><br>aaucua                          |           | caacauuucu | gcacacacac | cagacuaugg | aagccagugu | guggaaaugc | 60 |
|    | uucugc                                   | uaga      | uu         |            |            |            |            | 72 |
| 20 | <210><br><211><br><212><br><213>         | 68<br>Rna | sapiens    |            |            |            |            |    |
| 25 | <400><br>gaggca                          |           | ucugagacac | uccgacucug | aguaugauag | aagucagugc | acuacagaac | 60 |
|    | uuuguc                                   | uc        |            |            |            |            |            | 68 |
| 30 | <210> (211> (212> (213> (213> (          | 99<br>RNA | sapiens    |            |            |            |            |    |
|    | <400> caagca                             |           | uagcauuuga | ggugaaguuc | uguuauacac | ucaggcugug | gcucucugaa | 60 |
| 35 | agucag                                   | ugca      | ucacagaacu | uugucucgaa | agcuuucua  |            |            | 99 |
| 40 | <210> (211> (212> (213> (                | 70<br>Rna | sapiens    |            |            |            |            |    |
|    | <400> aagcac                             |           | agcauuugag | gugaaguucu | guuauacacu | caggcugugg | cucucugaaa | 60 |
| 45 | gucagu                                   | gcau      |            |            |            |            |            | 70 |
|    | <210> :<br><211> :<br><212> :<br><213> : | 89<br>RNA | sapiens    |            |            |            |            |    |
| 50 | <400> :<br>gccggc                        |           | gagcucuggc | uccgugucuu | cacucccgug | cuuguccgag | gagggaggga | 60 |
|    | gggacg                                   | 9999      | cugugcuggg | gcagcugga  |            |            |            | 89 |
| 55 | <210> :<211> :                           |           |            |            |            |            |            |    |

|    | <212> RNA<br><213> Homo                          | sapiens    |            |            |            |            |    |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|----|
|    | <400> 179<br>gcucuggcuc                          | cgugucuuca | cucccgugcu | uguccgagga | gggagggagg | gac        | 53 |
|    | <210> 180<br><211> 84<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 180<br>cuccccaugg                          | cccugucucc | caacccuugu | accagugcug | ggcucagacc | cugguacagg | 60 |
| 15 | ccugggggac                                       | agggaccugg | ggac       |            |            |            | 84 |
|    | <210> 181<br><211> 64<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 20 | <400> 181<br>cccugucucc                          | caacccuugu | accagugcug | ggcucagacc | cugguacagg | ccugggggac | 60 |
|    | aggg                                             |            |            |            |            |            | 64 |
| 25 | <210> 182<br><211> 72<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 30 | <400> 182<br>uuuccugccc                          | ucgaggagcu | cacagucuag | uaugucucau | ccccuacuag | acugaagcuc | 60 |
|    | cuugaggaca                                       | <b>g</b> g |            |            |            |            | 72 |
| 35 | <210> 183<br><211> 69<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 183<br>ccuguccuca                          | aggagcuuca | gucuaguagg | ggaugagaca | uacuagacug | ugagcuccuc | 60 |
| 40 | gagggcagg                                        |            |            |            |            |            | 69 |
| 45 | <210> 184<br><211> 87<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 184<br>ugucccccc                           | ggcccagguu | cugugauaca | cuccgacucg | ggcucuggag | cagucagugc | 60 |
| 50 | augacagaac                                       | uugggcccgg | aaggacc    |            |            |            | 87 |
| 55 | <210> 185<br><211> 71<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 185                                        |            |            |            |            |            |    |

|    | ggcccagguu                                       | cugugauaca | cuccgacucg | ggcucuggag | cagucagugc | augacagaac | 60 |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|----|
|    | uugggccccg                                       | g          |            |            |            |            | 71 |
| 5  | <210> 186<br><211> 90<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 10 | <400> 186                                        |            | uuuugugauc | ugcagcuagu | auucucacuc | caguugcaua | 60 |
|    | gucacaaaag                                       | ugaucauugg | cagguguggc |            |            |            | 90 |
| 15 | <210> 187<br><211> 71<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 20 | <400> 187<br>ucucucucuc                          | ccucacagcu | gccaguguca | uugucacaaa | agugaucauu | ggcaggugug | 60 |
|    | gcugcugcau                                       | g          |            |            |            |            | 71 |
| 25 | <210> 188<br><211> 87<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 188<br>agcgguggcc                          | agugucauuu | uugugauguu | gcagcuagua | auaugagccc | aguugcauag | 60 |
| 30 | ucacaaaagu                                       | gaucauugga | aacugug    |            |            |            | 87 |
| 35 | <210> 189<br><211> 69<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 189<br>cagugucauu                          | uuugugaugu | ugcagcuagu | aauaugagcc | caguugcaua | gucacaaaag | 60 |
| 40 | ugaucauug                                        |            |            |            |            |            | 69 |
|    | <210> 190<br><211> 84<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 45 | <400> 190<br>gugguacuug                          | aagauagguu | auccguguug | ccuucgcuuu | auuugugacg | aaucauacac | 60 |
|    | gguugaccua                                       | uuuuucagua | ccaa       |            |            |            | 84 |
| 50 | <210> 191<br><211> 66<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 55 | <400> 191<br>gaagauaggu                          | uauccguguu | gccuucgcuu | uauuugugac | gaaucauaca | cgguugaccu | 60 |

|    | auuuuu                           | I          |            |            |            |            |            | 66       |
|----|----------------------------------|------------|------------|------------|------------|------------|------------|----------|
| 5  | <210><br><211><br><212><br><213> | 65<br>RNA  | sapiens    |            |            |            |            |          |
| 10 | <400><br>cuguua<br>aacag         |            | uaaucgugau | agggguuuuu | gccuccaacu | gacuccuaca | uauuagcauu | 60<br>65 |
| 15 | <210><211><212>                  | 82<br>RNA  | sapiens    |            |            |            |            |          |
|    |                                  | acug       |            |            | gguggguucu | cucggcagua | accuucaggg | 60       |
| 20 | agcccu                           | gaag       | accauggagg | ac         |            |            |            | 82       |
| 25 | <210><br><211><br><212><br><213> | 110<br>RNA | sapiens    |            |            |            |            |          |
|    | <400><br>gccgag                  |            | agugcacagg | gcucugaccu | augaauugac | agccagugcu | cucgucuccc | 60       |
|    | cucugg                           | cugc       | caauuccaua | ggucacaggu | auguucgccu | caaugccagc |            | 110      |
| 30 | <210><br><211><br><212><br><213> | 80<br>RNA  | sapiens    |            |            |            |            |          |
| 35 | <400><br>ucccgc                  |            | uguaacagca | acuccaugug | gaagugccca | cugguuccag | uggggcugcu | 60       |
|    | guuauc                           | uggg       | gcgagggcca |            |            |            |            | 80       |
| 40 | <210><br><211><br><212><br><213> | 70<br>RNA  | sapiens    |            |            |            |            |          |
| 45 | <400><br>aaagcu                  |            | ugagagggcg | aaaaaggaug | aggugacugg | ucugggcuac | gcuaugcugc | 60       |
|    | ggcgcu                           | cggg       |            |            |            |            |            | 70       |
| 50 | <210><br><211><br><212><br><213> | 64<br>RNA  | sapiens    |            |            |            |            |          |
|    | <400><br>cauugg                  |            | cuaagccagg | gauugugggu | ucgaguccca | cccgggguaa | agaaaggccg | 60       |
| 55 | aauu                             |            |            |            |            |            |            | 64       |

| 5  | <210> 198<br><211> 70<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |          |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|----------|
|    | <400> 198<br>ccuaagccag                           | ggauuguggg | uucgaguccc | accuggggua | gaggugaaag | uuccuuuuac | 60       |
| 10 | ggaauuuuuu                                        |            |            |            |            |            | 70       |
|    | <210> 199<br><211> 108<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
| 15 | <400> 199<br>caaugucagc                           | agugccuuag | cagcacguaa | auauuggcgu | uaagauucua | aaauuaucuc | 60       |
|    | caguauuaac                                        | ugugcugcug | aaguaagguu | gaccauacuc | uacaguug   |            | 108      |
| 20 | <210> 200<br><211> 81<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |          |
| 25 | <400> 200<br>gggcuuucaa                           | gucacuagug | guuccguuua | guagaugauu | gugcauuguu | ucaaaauggu | 60       |
|    | gcccuaguga                                        | cuacaaagcc | С          |            |            |            | 81       |
| 30 | <210> 201<br><211> 70<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |          |
| 35 | <400> 201<br>acgcaagugu<br>aaagcucauu             | ccuaagguga | gcucagggag | cacagaaacc | uccaguggaa | cagaagggca | 60<br>70 |
| 40 | <210> 202<br><211> 70<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |          |
|    | <400> 202<br>caugugucac<br>cuuccacaac             | uuucaggugg | aguuucaaga | gucccuuccu | gguucaccgu | cuccuuugcu | 60<br>70 |
| 45 | cuuccacaac                                        |            |            |            |            |            | 70       |
| 50 | <210> 203<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
|    | <400> 203<br>agaagggcua                           | ucaggccagc | cuucagagga | cuccaaggaa | cauucaacgc | ugucggugag | 60       |
|    | uuugggauuu                                        | gaaaaaacca | cugaccguug | acuguaccuu | gggguccuua |            | 110      |
| 55 | <210> 204                                         |            |            |            |            |            |          |

|    | <211> 110<br><212> RNA<br><213> Homo              | sapiens    |            |            |            |            |     |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | <400> 204<br>ccugugcaga                           | gauuauuuuu | uaaaagguca | caaucaacau | ucauugcugu | cgguggguug | 60  |
|    | aacugugugg                                        | acaagcucac | ugaacaauga | augcaacugu | ggccccgcuu |            | 110 |
| 10 | <210> 205<br><211> 89<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 15 | <400> 205<br>cugauggcug                           | cacucaacau | ucauugcugu | cgguggguuu | gagucugaau | caacucacug | 60  |
|    | aucaaugaau                                        | gcaaacugcg | gaccaaaca  |            |            |            | 89  |
| 20 | <210> 206<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 206<br>cggaaaauuu                           | gccaaggguu | ugggggaaca | uucaaccugu | cggugaguuu | gggcagcuca | 60  |
| 25 | ggcaaaccau                                        | cgaccguuga | guggacccug | aggccuggaa | uugccauccu |            | 110 |
| 30 | <210> 207<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 207<br>gagcugcuug                           | ccucccccg  | uuuuuggcaa | ugguagaacu | cacacuggug | agguaacagg | 60  |
| 35 | auccgguggu                                        | ucuagacuug | ccaacuaugg | ggcgaggacu | cagccggcac |            | 110 |
|    | <210> 208<br><211> 70<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 40 | <400> 208<br>uuuuuggcaa                           | ugguagaacu | cacacuggug | agguaacagg | auccgguggu | ucuagacuug | 60  |
|    | ccaacuaugg                                        |            |            |            |            |            | 70  |
| 45 | <210> 209<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 50 | <400> 209<br>ccgcagagug                           | ugacuccugu | ucuguguaug | gcacugguag | aauucacugu | gaacagucuc | 60  |
|    | agucagugaa                                        | uuaccgaagg | gccauaaaca | gagcagagac | agauccacga |            | 110 |
| 55 | <210> 210<br><211> 84<br><212> RNA                |            |            |            |            |            |     |

|    | <213> Homo                                        | sapiens    |            |            |            |            |    |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|----|
| 5  | <400> 210<br>ccagucacgu                           | ccccuuauca | cuuuuccagc | ccagcuuugu | gacuguaagu | guuggacgga | 60 |
|    | gaacugauaa                                        | ggguagguga | uuga       |            |            |            | 84 |
| 10 | <210> 211<br><211> 65<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
|    | <400> 211<br>ccuuaucacu                           | uuuccagccc | agcuuuguga | cuguaagugu | uggacggaga | acugauaagg | 60 |
| 15 | guagg                                             |            |            |            |            |            | 65 |
| 20 | <210> 212<br><211> 82<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
|    | <400> 212<br>aggggggcgag                          | ggauuggaga | gaaaggcagu | uccugauggu | ccccucccca | ggggcuggcu | 60 |
| 25 | uuccucuggu                                        | ccuucccucc | ca         |            |            |            | 82 |
| 25 | <210> 213<br><211> 66<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
| 30 | <400> 213<br>agggauugga                           | gagaaaggca | guuccugaug | guccccuccc | caggggcugg | cuuuccucug | 60 |
|    | guccuu                                            |            |            |            |            |            | 66 |
| 35 | <210> 214<br><211> 86<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
| 40 | <400> 214<br>ugcuuguaac                           | uuuccaaaga | auucuccuuu | ugggcuuucu | gguuuuauuu | uaagcccaaa | 60 |
|    | ggugaauuuu                                        | uugggaaguu | ugagcu     |            |            |            | 86 |
| 45 | <210> 215<br><211> 71<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |    |
|    | <400> 215<br>acuuuccaaa                           | gaauucuccu | uuugggcuuu | cugguuuuau | uuuaagccca | aaggugaauu | 60 |
| 50 | uuuugggaag                                        | u          |            |            |            |            | 71 |
| 55 | <210> 216<br><211> 109<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |

|    | <400> 216<br>ggucgggcuc                           | accaugacac | agugugagac | ucgggcuaca | acacaggacc    | cggggcgcug | 60        |
|----|---------------------------------------------------|------------|------------|------------|---------------|------------|-----------|
| 5  | cucugacccc                                        | ucgugucuug | uguugcagcc | ggagggacgc | agguccgca     |            | 109       |
| 10 | <210> 217<br><211> 86<br><212> RNA<br><213> Homo  | sapiens    |            |            |               |            |           |
|    | <400> 217<br>ugcucccucu                           | cucacauccc | uugcauggug | gagggugagc | uuucugaaaa    | ccccucccac | 60        |
|    | augcaggguu                                        | ugcaggaugg | cgagcc     |            |               |            | 86        |
| 15 | <210> 218<br><211> 68<br><212> RNA<br><213> Homo  | sapiens    |            |            |               |            |           |
| 20 | <400> 218<br>ucucacaucc                           | cuugcauggu | ggagggugag | cuuucugaaa | accccuccca    | caugcagggu | 60        |
|    | uugcagga                                          |            |            |            |               |            | 68        |
| 25 | <210> 219<br><211> 102<br><212> RNA<br><213> Homo | sapiens    |            |            |               |            |           |
|    | <400> 219                                         |            |            |            | 2116251116116 | 2          | 60        |
| 30 |                                                   | gacccgcccu |            |            |               | auuuuacaca | 60<br>102 |
|    | cuggcucagu                                        | ucagcaggaa | cayyayucya | gcccuugagc | aa<br>·       |            | 102       |
| 35 | <210> 220<br><211> 68<br><212> RNA<br><213> Homo  | sapiens    |            |            |               |            |           |
|    | <400> 220<br>cuccggugcc                           | uacugagcug | auaucaguuc | ucauuuuaca | cacuggcuca    | guucagcagg | 60        |
| 40 | aacaggag                                          |            |            |            |               |            | 68        |
| 45 | <210> 221<br><211> 85<br><212> RNA<br><213> Homo  | sapiens    |            |            |               |            |           |
|    | <400> 221<br>ugcaggccuc                           | ugugugauau | guuugauaua | uuagguuguu | auuuaaucca    | acuauauauc | 60        |
| 50 | aaacauauuc                                        | cuacaguguc | uugcc      |            |               |            | 85        |
|    | <210> 222<br><211> 67<br><212> RNA<br><213> Homo  | sapiens    |            |            |               |            |           |
| 55 | <400> 222<br>cugugugaua                           | uguuugauau | auuagguugu | uauuuaaucc | aacuauauau    | caaacauauu | 60        |

|    | ccuacag                                           |            |            |            |            |            | 67  |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | <210> 223<br><211> 92<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 10 | <400> 223<br>cggcuggaca                           | gcgggcaacg | gaaucccaaa | agcagcuguu | gucuccagag | cauuccagcu | 60  |
|    | gcgcuuggau                                        | uucguccccu | gcucuccugc | Cu         |            |            | 92  |
| 15 | <210> 224<br><211> 74<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 224<br>agcgggcaac                           | ggaaucccaa | aagcagcugu | ugucuccaga | gcauuccagc | ugcgcuugga | 60  |
| 20 | uuucgucccc                                        | ugcu       |            |            |            |            | 74  |
| 25 | <210> 225<br><211> 108<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 225<br>ccgagaccga                           | gugcacaggg | cucugaccua | ugaauugaca | gccagugcuc | ucgucucccc | 60  |
| 30 | ucuggcugcc                                        | aauuccauag | gucacaggua | uguucgccuc | aaugccag   |            | 108 |
| 25 | <210> 226<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 35 | <400> 226<br>gccgagaccg                           | agugcacagg | gcucugaccu | augaauugac | agccagugcu | cucgucuccc | 60  |
|    | cucuggcugc                                        | caauuccaua | ggucacaggu | auguucgccu | caaugccagc |            | 110 |
| 40 | <210> 227<br><211> 88<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 45 | <400> 227<br>cgaggauggg                           | agcugagggc | ugggucuuug | cgggcgagau | gagggugucg | gaucaacugg | 60  |
|    | ccuacaaagu                                        | cccaguucuc | ggcccccg   |            |            |            | 88  |
| 50 | <210> 228<br><211> 58<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 55 | <400> 228<br>gcugggucuu                           | ugcgggcgag | augagggugu | cggaucaacu | ggccuacaaa | gucccagu   | 58  |

| 5  | <210> 229<br><211> 85<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |           |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----------|
| v  | <400> 229<br>augguguuau                           | caaguguaac | agcaacucca | uguggacugu | guaccaauuu | ccaguggaga | 60        |
|    | ugcuguuacu                                        | uuugaugguu | accaa      |            |            |            | 85        |
| 10 | <210> 230<br><211> 63<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |           |
| 15 | <400> 230<br>guguaacagc                           | aacuccaugu | ggacugugua | ccaauuucca | guggagaugc | uguuacuuuu | 60        |
|    | gau                                               |            |            |            |            |            | 63        |
| 20 | <210> 231<br><211> 87<br><212> RNA<br><213> Homo  | sapiens    |            |            | ·          |            |           |
| 25 | <400> 231<br>agcuucccug                           | gcucuagcag | cacagaaaua | uuggcacagg | gaagcgaguc | ugccaauauu | 60        |
|    | ggcugugcug                                        | cuccaggcag | gguggug    |            |            |            | 87        |
| 30 | <210> 232<br><211> 58<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |           |
|    | <400> 232<br>uagcagcaca                           | gaaauauugg | cacagggaag | cgagucugcc | aauauuggcu | gugcugcu   | 58        |
| 35 | <210> 233<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |           |
| 40 | <400> 233                                         |            |            |            |            |            | 60        |
|    |                                                   |            |            | uuagguaguu |            | gggccugggu | 60<br>110 |
|    | uucugaacac                                        | aaCaaCauua | aaccacccya | uucacggcag | uuacuycucc |            | 110       |
| 45 | <210> 234<br><211> 70<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |           |
| 50 | <400> 234<br>gugaauuagg                           | uaguuucaug | uuguugggcc | uggguuucug | aacacaacaa | cauuaaacca | 60        |
|    | cccgauucac                                        |            |            |            |            |            | 70        |
| 55 | <210> 235<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |           |

|    | <400> 235<br>ugcucgcuca                          | gcugaucugu | ggcuuaggua | guuucauguu | guugggauug | aguuuugaac | 60  |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | ucggcaacaa                                       | gaaacugccu | gaguuacauc | agucgguuuu | cgucgagggc |            | 110 |
| 10 | <210> 236<br><211> 70<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 236<br>gugaauuagg                          | uaguuucaug | uuguugggcc | uggguuucug | aacacaacaa | cauuaaacca | 60  |
| 15 | cccgauucac                                       |            |            |            |            |            | 70  |
|    | <210> 237<br><211> 84<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 20 | <400> 237<br>acuggucggu                          | gauuuaggua | guuuccuguu | guugggaucc | accuuucucu | cgacagcacg | 60  |
|    | acacugccuu                                       | cauuacuuca | guug       |            |            |            | 84  |
| 25 | <210> 238<br><211> 75<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 30 | <400> 238<br>ggcugugccg                          | gguagagagg | gcagugggag | guaagagcuc | uucacccuuc | accaccuucu | 60  |
|    | ccacccagca                                       | uggcc      |            |            |            |            | 75  |
| 35 | <210> 239<br><211> 60<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 40 | <400> 239<br>gugcaugugu                          | auguaugugu | gcaugugcau | guguaugugu | augagugcau | gcgugugugc | 60  |
|    | <210> 240<br><211> 62<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 45 | <400> 240<br>ucauuggucc                          | agaggggaga | uagguuccug | ugauuuuucc | uucuucucua | uagaauaaau | 60  |
|    | ga                                               |            |            |            |            |            | 62  |
| 50 | <210> 241<br><211> 71<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 55 | <400> 241<br>gccaacccag                          | uguucagacu | accuguucag | gaggcucuca | auguguacag | uagucugcac | 60  |

|               | auugguuagg                                        | j C          |            |            |            |            | 71  |
|---------------|---------------------------------------------------|--------------|------------|------------|------------|------------|-----|
| 5             | <210> 242<br><211> 110<br><212> RNA<br><213> Homo | o sapiens    |            |            |            |            |     |
| 10            | <400> 242<br>aggaagcuud                           | uggagauccu   | gcuccgucgc | cccaguguuc | agacuaccug | uucaggacaa | 60  |
| 10            | ugccguugua                                        | a caguagucug | cacauugguu | agacugggca | agggagagca |            | 110 |
| 15            | <210> 243<br><211> 110<br><212> RNA<br><213> Homo | o sapiens    |            |            |            |            |     |
|               | <400> 243 ccagaggaca                              | ccuccacucc   | gucuacccag | uguuuagacu | aucuguucag | gacucccaaa | 60  |
| 20            |                                                   | a gucugcacau |            |            |            |            | 110 |
| 25            | <210> 244<br><211> 71<br><212> RNA<br><213> Homo  | o sapiens    |            |            |            |            |     |
|               | <400> 244<br>gccaacccag                           | g uguucagacu | accuguucag | gaggcucuca | auguguacag | uagucugcac | 60  |
|               | auugguuagg                                        | ) C          |            |            |            |            | 71  |
| 30            | <210> 245<br><211> 70<br><212> RNA<br><213> Homo  | o sapiens    |            |            |            |            |     |
| 35            | <400> 245<br>gccguggcca                           | ucuuacuggg   | cagcauugga | uggagucagg | ucucuaauac | ugccugguaa | 60  |
|               | ugaugacggo                                        | ]            |            |            |            |            | 70  |
| 40            | <210> 246<br><211> 95<br><212> RNA<br><213> Homo  | o sapiens    |            |            |            |            |     |
| 45            | <400> 246                                         | g cagccguggc | caucuuacuq | ggcagcauug | gauggaguca | ggucucuaau | 60  |
| <del>70</del> |                                                   | aaugaugacg   |            |            | 5 55 5     |            | 95  |
| 50            | <210> 247<br><211> 68<br><212> RNA<br><213> Homo  | o sapiens    |            |            |            |            |     |
|               | <400> 247<br>cccucgucui                           | acccagcagu   | guuugggugc | gguugggagu | cucuaauacu | gccggguaau | 60  |
| 55            | gauggagg                                          |              |            |            |            |            | 68  |

| 5  | <210> 248<br><211> 72<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
|    | <400> 248<br>guuccuuuuu                           | ccuaugcaua | uacuucuuug | aggaucuggc | cuaaagaggu | auagggcaug | 60  |
| 10 | ggaagaugga                                        | gc         |            |            |            |            | 72  |
|    | <210> 249<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 15 | <400> 249<br>guguugggga                           | cucgcgcgcu | ggguccagug | guucuuaaca | guucaacagu | ucuguagcgc | 60  |
|    | aauugugaaa                                        | uguuuaggac | cacuagaccc | ggcgggcgcg | gcgacagcga |            | 110 |
| 20 | <210> 250<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 25 | <400> 250<br>ggcuacaguc                           | uuucuucaug | ugacucgugg | acuucccuuu | gucauccuau | gccugagaau | 60  |
|    | auaugaagga                                        | ggcugggaag | gcaaagggac | guucaauugu | caucacuggc |            | 110 |
| 30 | <210> 251<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 35 | <400> 251<br>aaagauccuc                           | agacaaucca | ugugcuucuc | uuguccuuca | uuccaccgga | gucugucuca | 60  |
|    | uacccaacca                                        | gauuucagug | gagugaaguu | caggaggcau | ggagcugaca |            | 110 |
| 40 | <210> 252<br><211> 86<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 252<br>ugcuucccga                           | ggccacaugc | uucuuuauau | ccccauaugg | auuacuuugc | uauggaaugu | 60  |
| 45 | aaggaagugu                                        | gugguuucgg | caagug     |            |            |            | 86  |
| 50 | <210> 253<br><211> 69<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|    | <400> 253<br>aggccacaug                           | cuucuuuaua | uccccauaug | gauuacuuug | cuauggaaug | uaaggaagug | 60  |
|    | ugugguuuu                                         |            |            |            |            |            | 69  |
| 55 | <210> 254                                         |            |            |            |            |            |     |

|    | <211> 71<br><212> RNA<br><213> Homo               | sapiens    |            |            |            |            |     |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | <400> 254<br>ugacgggcga                           | gcuuuuggcc | cggguuauac | cugaugcuca | cguauaagac | gagcaaaaag | 60  |
|    | cuuguugguc                                        | a          |            |            |            |            | 71  |
| 10 | <210> 255<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            | ·          |     |
| 15 | <400> 255<br>acccggcagu                           | gccuccaggc | gcagggcagc | cccugcccac | cgcacacugc | gcugccccag | 60  |
|    | acccacugug                                        | cgugugacag | cggcugaucu | gugccugggc | agcgcgaccc |            | 110 |
| 20 | <210> 256<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 256<br>ucaccuggcc                           | augugacuug | ugggcuuccc | uuugucaucc | uucgccuagg | gcucugagca | 60  |
| 25 | gggcagggac                                        | agcaaagggg | ugcucaguug | ucacuuccca | cagcacggag |            | 110 |
| 30 | <210> 257<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 257<br>cggggcaccc                           | cgcccggaca | gcgcgccggc | accuuggcuc | uagacugcuu | acugcccggg | 60  |
| 35 | ccgcccucag                                        | uaacagucuc | cagucacggc | caccgacgcc | uggccccgcc |            | 110 |
|    | <210> 258<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 40 | <400> 258<br>ccugugcaga                           | gauuauuuuu | uaaaagguca | caaucaacau | ucauugcugu | cgguggguug | 60  |
|    | aacugugugg                                        | acaagcucac | ugaacaauga | augcaacugu | ggccccgcuu |            | 110 |
| 45 | <210> 259<br><211> 108<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 50 | <400> 259<br>gaguuuugag                           | guugcuucag | ugaacauuca | acgcugucgg | ugaguuugga | auuaaaauca | 60  |
|    | aaaccaucga                                        | ccguugauug | uacccuaugg | cuaaccauca | ucuacucc   |            | 108 |
| 55 | <210> 260<br><211> 110<br><212> RNA               |            |            |            |            |            |     |

|    | <213> Homo                                        | sapiens    |            |            |            |            |     |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
| 5  | <400> 260<br>ggccuggcug                           | gacagaguug | ucaugugucu | gccugucuac | acuugcugug | cagaacaucc | 60  |
|    | gcucaccugu                                        | acagcaggca | cagacaggca | gucacaugac | aacccagccu |            | 110 |
| 10 | <210> 261<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 261                                         |            |            |            |            |            | 60  |
|    | -                                                 | aaugguauac |            | -          |            | auagcugagu | 60  |
| 15 | uugucuguca                                        | uuucuuuagg | ccaauauucu | guaugacugu | gcuacuucaa |            | 110 |
| 20 | <210> 262<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 262<br>gauggcugug                           | aguuggcuua | aucucagcug | gcaacuguga | gauguucaua | caaucccuca | 60  |
|    | caguggucuc                                        | ugggauuaug | cuaaacagag | caauuuccua | gcccucacga |            | 110 |
| 25 | 210 262                                           |            |            |            |            |            |     |
|    | <210> 263<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 30 | <400> 263<br>aguauaauua                           | uuacauaguu | uuugaugucg | cagauacugc | aucaggaacu | gauuggauaa | 60  |
|    | gaaucaguca                                        | ccaucaguuc | cuaaugcauu | gccuucagca | ucuaaacaag |            | 110 |
| 35 | <210> 264<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
| 40 | <400> 264<br>gugauaaugu                           | agcgagauuu | ucuguugugc | uugaucuaac | caugugguug | cgagguauga | 60  |
|    | guaaaacaug                                        | guuccgucaa | gcaccaugga | acgucacgca | gcuuucuaca |            | 110 |
| 45 | <210> 265<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 265<br>gaccagucgc                           | ugcggggcuu | uccuuugugc | uugaucuaac | cauguggugg | aacgauggaa | 60  |
| 50 | acggaacaug                                        | guucugucaa | gcaccgcgga | aagcaccgug | cucuccugca |            | 110 |
| 55 | <210> 266<br><211> 110<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |

|            | <400> 266<br>ccgccccggg                           | ccgcggcucc    | ugauugucca   | aacgcaauuc               | ucgagucuau | ggcuccggcc           | 60  |
|------------|---------------------------------------------------|---------------|--------------|--------------------------|------------|----------------------|-----|
| 5          | gagaguugag                                        | ucuggacguc    | ccgagccgcc   | gccccaaac                | cucgagcggg |                      | 110 |
| 10         | <210> 267<br><211> 110<br><212> RNA<br><213> Homo | sapiens       |              |                          |            |                      |     |
|            | <400> 267<br>ccgccccggg                           | ccgcggcucc    | ugauugucca   | aacgcaauuc               | ucgagucuau | ggcuccggcc           | 60  |
|            | gagaguugag                                        | ucuggacguc    | ccgagccgcc   | gcccccaaac               | cucgagcggg |                      | 110 |
| 15         | <210> 268<br><211> 97<br><212> RNA<br><213> Homo  | sapiens       |              |                          |            |                      |     |
| 20         | <400> 268<br>acucaggggc                           | uucgccacug    | auuguccaaa   | cgcaauucuu               | guacgagucu | gcggccaacc           | 60  |
|            | gagaauugug                                        | gcuggacauc    | uguggcugag   | cuccggg                  |            |                      | 97  |
| 25         | <210> 269<br><211> 110<br><212> RNA<br><213> Homo | sapiens       |              |                          |            |                      |     |
|            | <400> 269                                         | 6211116112666 | CUCC2C2CC    | 1121151152525            |            | aacaccanac           | 60  |
| 30         |                                                   |               |              | uaucugacac<br>ccucacggau |            | ggcaccauge           | 110 |
| 35         | <210> 270<br><211> 110<br><212> RNA<br><213> Homo |               | ucuggguucu   | ceacacggau               |            |                      |     |
|            | <400> 270                                         | aanchaaaac    | alidaacciidd | cauacaaugu               | adauuucudu | anncannada           | 60  |
| 40         |                                                   |               |              | cuaccuggaa               |            | <b>500 C</b> 9000039 | 110 |
| <b>4</b> 5 | <210> 271<br><211> 110<br><212> RNA<br><213> Homo |               |              |                          |            |                      |     |
|            | <400> 271<br>gcugcuggaa                           | gguguaggua    | cccucaaugg   | cucaguagcc               | aguguagauc | cugucuuucg           | 60  |
| 50         | uaaucagcag                                        | cuacaucugg    | cuacuggguc   | ucugauggca               | ucuucuagcu |                      | 110 |
| 50         | <210> 272<br><211> 110<br><212> RNA<br><213> Homo | sapiens       |              |                          |            |                      |     |
| 55         | <400> 272<br>ccuggccucc                           | ugcagugcca    | cgcuccgugu   | auuugacaag               | cugaguugga | cacuccaugu           | 60  |

|    | gguagagugu                                       | caguuuguca | aauaccccaa | gugcggcaca | ugcuuaccag |            | 110      |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|----------|
| 5  | <210> 273<br><211> 81<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
| 10 | <400> 273<br>gggcuuucaa                          | gucacuagug | guuccguuua | guagaugauu | gugcauuguu | ucaaaauggu | 60       |
|    | gcccuaguga                                       | cuacaaagcc | c          |            |            |            | 81       |
| 15 | <210> 274<br><211> 60<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
| 20 | <400> 274<br>caaucuuccu                          | uuaucauggu | auugauuuuu | cagugcuucc | cuuuugugug | agagaagaua | 60       |
|    | <210> 275<br><211> 80<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
| 25 | <400> 275<br>aggacccuuc                          | cagagggccc | ccccucaauc | cuguugugcc | uaauucagag | gguugggugg | 60       |
|    | aggcucuccu                                       | gaagggcucu |            |            |            |            | 80       |
| 30 | <210> 276<br><211> 63<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
| 35 | <400> 276<br>aagaaauggu<br>cuu                   | uuaccguccc | acauacauuu | ugaauaugua | ugugggaugg | uaaaccgcuu | 60<br>63 |
| 40 | <210> 277<br><211> 86<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
|    | <400> 277<br>acugcuaacg                          | aaugcucuga | cuuuauugca | cuacuguacu | uuacagcuag | cagugcaaua | 60       |
| 45 | guauugucaa                                       | agcaucugaa | agcagg     |            |            |            | 86       |
| 50 | <210> 278<br><211> 69<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |          |
|    | <400> 278<br>ccaccacuua                          | aacguggaug | uacuugcuuu | gaaacuaaag | aaguaagugc | uuccauguuu | 60       |
| 55 | uggugaugg                                        |            |            |            |            |            | 69       |

| 5  | <210> 279<br><211> 73<br><212> RNA<br><213> Homo | sapiens       |              |            |            |             |    |
|----|--------------------------------------------------|---------------|--------------|------------|------------|-------------|----|
| 5  | <400> 279                                        | acıııllaacalı | ממששמותכוווו | пспаназенн | uaaaaguaag | Hachilecana | 60 |
|    | uuuuaguagg                                       |               | ggaagugcuu   | ucugugacuu | uaaaaguaag | ugcuuccaug  | 73 |
| 10 | 5 55                                             | J             |              |            |            |             |    |
|    | <210> 280<br><211> 68<br><212> RNA<br><213> Homo | sapiens       |              |            |            |             |    |
| 15 | <400> 280<br>ccuuugcuuu                          | aacauggggg    | uaccugcugu   | gugaaacaaa | aguaagugcu | uccauguuuc  | 60 |
|    | aguggagg                                         |               |              |            |            |             | 68 |
| 20 | <210> 281<br><211> 68<br><212> RNA<br><213> Homo | sapiens       |              |            |            |             |    |
|    | <400> 281                                        | aacauggagg    | cacuuacuau   | gacaugacaa | aaauaagugc | uuccauguuu  | 60 |
| 25 | gagugugg                                         |               |              | gacaagacaa |            |             | 68 |
| 30 | <210> 282<br><211> 82<br><212> RNA<br><213> Homo | sapiens       |              |            |            |             |    |
|    | <400> 282<br>gcuucgcucc                          | ccuccgccuu    | cucuucccgg   | uucuucccgg | agucgggaaa | agcuggguug  | 60 |
| 35 | agagggcgaa                                       | aaaggaugag    | gu           |            |            |             | 82 |
| 40 | <210> 283<br><211> 59<br><212> RNA<br><213> Homo | sapiens       |              |            |            |             |    |
|    | <400> 283<br>uuggccuccu                          | aagccaggga    | uuguggguuc   | gagucccacc | cgggguaaag | aaaggccga   | 59 |
| 45 | <210> 284<br><211> 86<br><212> RNA<br><213> Homo | sapiens       |              |            |            |             |    |
| 50 | <400> 284<br>uugguacuug                          | gagagaggug    | guccguggcg   | cguucgcuuu | auuuauggcg | cacauuacac  | 60 |
|    | ggucgaccuc                                       | uuugcaguau    | cuaauc       |            |            |             | 86 |
| 55 | <210> 285<br><211> 83<br><212> RNA<br><213> Homo | sapiens       |              |            |            |             |    |

|     | <400> 285<br>cugacuaugc                          | cuccccgcau | ccccuagggc | auugguguaa | agcuggagac | ccacugcccc | 60 |
|-----|--------------------------------------------------|------------|------------|------------|------------|------------|----|
| 5   | aggugcugcu                                       | ggggguugua | guc        |            |            |            | 83 |
| 10  | <210> 286<br><211> 98<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|     | <400> 286<br>auacagugcu                          | ugguuccuag | uaggugucca | guaaguguuu | gugacauaau | uuguuuauug | 60 |
| 15  | aggaccuccu                                       | aucaaucaag | cacugugcua | ggcucugg   |            |            | 98 |
|     | <210> 287<br><211> 95<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 20  | <400> 287<br>cucaucuguc                          | uguugggcug | gaggcagggc | cuuugugaag | gcggguggug | cucagaucgc | 60 |
|     | cucugggccc                                       | uuccuccagc | cccgaggcgg | auuca      |            |            | 95 |
| 25  | <210> 288<br><211> 75<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| ~ ~ | <400> 288<br>uggagugggg                          | gggcaggagg | ggcucaggga | gaaagugcau | acagccccug | gcccucucug | 60 |
|     | cccuuccguc                                       | cccug      |            |            |            |            | 75 |
| 35  | <210> 289<br><211> 94<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            | •  |
|     | <400> 289<br>cuuuggcgau                          | cacugccucu | cugggccugu | gucuuaggcu | cugcaagauc | aaccgagcaa | 60 |
| 40  |                                                  | cugcagagag |            |            |            |            | 94 |
| 45  | <210> 290<br><211> 94<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|     | <400> 290<br>gaguuugguu                          | uuguuugggu | uuguucuagg | uaugguccca | gggaucccag | aucaaaccag | 60 |
| 50  | gccccugggc                                       | cuauccuaga | accaaccuaa | gcuc       |            |            | 94 |
| 55  | <210> 291<br><211> 94<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|     | <400> 291                                        |            |            |            |            |            |    |

|    | uguuuugagc                                       | gggggucaag | agcaauaacg | aaaaauguuu | gucauaaacc | guuuuucauu | 60 |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|----|
|    | auugcuccug                                       | accuccucuc | auuugcuaua | uuca       |            |            | 94 |
| 5  | <210> 292<br><211> 93<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 10 | <400> 292<br>guagucagua                          | guuggggggu | gggaacggcu | ucauacagga | guugaugcac | aguuauccag | 60 |
|    | cuccuauaug                                       | augccuuucu | ucauccccuu | caa        |            |            | 93 |
| 15 | <210> 293<br><211> 67<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 20 | <400> 293<br>ucuccaacaa                          | uauccuggug | cugagugaug | acucaggcga | cuccagcauc | agugauuuug | 60 |
|    | uugaaga                                          |            |            |            |            |            | 67 |
| 25 | <210> 294<br><211> 94<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 294<br>cggggcggcc                          | gcucucccug | uccuccagga | gcucacgugu | gccugccugu | gagcgccucg | 60 |
| 30 | acgacagagc                                       | cggcgccugc | cccagugucu | gcgc       |            |            | 94 |
| 35 | <210> 295<br><211> 95<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 295<br>uuguaccugg                          | ugugauuaua | aagcaaugag | acugauuguc | auaugucguu | ugugggaucc | 60 |
| 40 | gucucaguua                                       | cuuuauagcc | auaccuggua | ucuua      |            |            | 95 |
|    | <210> 296<br><211> 99<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 45 | <400> 296<br>gaaacugggc                          | ucaaggugag | gggugcuauc | ugugauugag | ggacaugguu | aauggaauug | 60 |
|    | ucucacacag                                       | aaaucgcacc | cgucaccuug | gccuacuua  |            |            | 99 |
| 50 | <210> 297<br><211> 98<br><212> RNA<br><213> Homo | sapiens    |            |            | ·          |            |    |
| 55 | <400> 297<br>acccaaaccc                          | uaggucugcu | gacuccuagu | ccagggcucg | ugauggcugg | ugggcccuga | 60 |

|    | acgagggguc                                       | uggaggccug | gguuugaaua | ucgacagc   |            |            | 98 |
|----|--------------------------------------------------|------------|------------|------------|------------|------------|----|
| 5  | <210> 298<br><211> 86<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 10 | <400> 298<br>gucugucugc                          | ccgcaugccu | gccucucugu | ugcucugaag | gaggcagggg | cugggccugc | 60 |
|    | agcugccugg                                       | gcagagcggc | uccugc     |            |            |            | 86 |
| 15 | <210> 299<br><211> 68<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 299<br>ccauuacugu                          | ugcuaauaug | caacucuguu | gaauauaaau | uggaauugca | cuuuagcaau | 60 |
| 20 | ggugaugg                                         |            |            |            |            |            | 68 |
| 25 | <210> 300<br><211> 66<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 300<br>aaaaggugga                          | uauuccuucu | auguuuaugu | uauuuauggu | uaaacauaga | ggaaauucca | 60 |
|    | cguuuu                                           |            |            |            |            |            | 66 |
| 30 | <210> 301<br><211> 70<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 35 | <400> 301                                        | aucgaccgug | uuauauucac | uuuauuqacu | ucqaauaaua | caugguugau | 60 |
|    | cuuuucucag                                       |            | 3          | J          | -          | 33 3       | 70 |
| 40 | <210> 302<br><211> 75<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
| 45 | <400> 302<br>agacagagaa                          | gccaggucac | gucucugcag | uuacacagcu | cacgagugcc | ugcuggggug | 60 |
|    | gaaccugguc                                       | ugucu      |            |            |            |            | 75 |
| 50 | <210> 303<br><211> 67<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |    |
|    | <400> 303<br>guggcacuca                          | aacugugggg | gcacuuucug | cucucuggug | aaagugccgc | caucuuuuga | 60 |
| 55 | guguuac                                          |            |            |            |            |            | 67 |

| 5  | <210> 304<br><211> 67<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
|----|---------------------------------------------------|------------|------------|------------|------------|------------|-----|
|    | <400> 304<br>gugggccuca                           | aauguggagc | acuauucuga | uguccaagug | gaaagugcug | cgacauuuga | 60  |
| 10 | gcgucac                                           |            |            |            |            |            | 67  |
|    | <210> 305<br><211> 69<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 15 | <400> 305<br>gggauacuca                           | aaaugggggc | gcuuuccuuu | uugucuguac | ugggaagugc | uucgauuuug | 60  |
|    | ggguguccc                                         |            |            |            |            |            | 69  |
| 20 | <210> 306<br><211> 72<br><212> RNA<br><213> Homo  | sapiens    |            |            |            |            |     |
| 25 | <400> 306<br>uacaucggcc                           | auuauaauac | aaccugauaa | guguuauagc | acuuaucaga | uuguauugua | 60  |
|    | auugucugug                                        | ua         |            |            |            |            | 72  |
| 30 | <210> 307<br><211> 102<br><212> RNA<br><213> Homo | sapiens    |            |            | t          |            |     |
| 35 | <400> 307<br>auggagcugc                           | ucacccugug | ggccucaaau | guggaggaac | uauucugaug | uccaagugga | 60  |
| 55 | aagugcugcg                                        | acauuugagc | gucaccggug | acgcccauau | ca         |            | 102 |
| 40 | <210> 308<br><211> 101<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 308<br>gcauccccuc                           | agccuguggc | acucaaacug | ugggggcacu | uucugcucuc | uggugaaagu | 60  |
| 45 | gccgccaucu                                        | uuugaguguu | accgcuugag | aagacucaac | С          |            | 101 |
| 50 | <210> 309<br><211> 102<br><212> RNA<br><213> Homo | sapiens    |            |            |            |            |     |
|    | <400> 309<br>cgaggagcuc                           | auacugggau | acucaaaaug | ggggcgcuuu | ccuuuuuguc | uguuacuggg | 60  |
|    | aagugcuucg                                        | auuuuggggu | gucccuguuu | gaguagggca | uc         |            | 102 |
| 55 | <210> 310                                         |            |            |            |            |            |     |

|    | <211> 22<br><212> RNA<br><213> Homo sapiens              |    |
|----|----------------------------------------------------------|----|
| 5  | <400> 310<br>ugagguagua gguuguauag uu                    | 22 |
| 10 | <210> 311<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 311<br>ugagguagua gguugugug uu                     | 22 |
| 15 | <210> 312<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 312<br>ugagguagua gguuguaugg uu                    | 22 |
| 25 | <210> 313<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 313<br>agagguagua gguugcauag u                     | 21 |
| 30 | <210> 314<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 35 | <400> 314<br>ugagguagga gguuguauag u                     | 21 |
| 40 | <210> 315<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 315<br>ugagguagua gauuguauag uu                    | 22 |
| 45 | <210> 316<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 316<br>ugagguagua guuuguacag u                     | 21 |
| 55 | <210> 317<br><211> 19<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 317                                                |    |

|    | ugagguagua                                       | guuugugcu  |     | 19 |
|----|--------------------------------------------------|------------|-----|----|
| 5  | <210> 318<br><211> 21<br><212> RNA<br><213> Homo | sapiens    |     |    |
| 10 | <400> 318<br>uggaauguaa                          | agaaguaugu | a   | 21 |
|    | <210> 319<br><211> 21<br><212> RNA<br><213> Homo | sapiens    |     |    |
| 15 | <400> 319<br>uggaagacua                          | gugauuuugu | u   | 21 |
| 20 | <210> 320<br><211> 23<br><212> RNA<br><213> Homo | sapiens    |     |    |
| 25 | <400> 320<br>ucuuugguua                          | ucuagcugua | uga | 23 |
|    | <210> 321<br><211> 21<br><212> RNA<br><213> Homo | sapiens    |     |    |
| 30 | <400> 321<br>uaaagcuaga                          | uaaccgaaag | u   | 21 |
| 35 | <210> 322<br><211> 23<br><212> RNA<br><213> Homo | sapiens    |     |    |
|    | <400> 322<br>uacccuguag                          | auccgaauuu | gug | 23 |
| 40 | <210> 323<br><211> 22<br><212> RNA<br><213> Homo | sapiens    |     |    |
| 45 | <400> 323<br>uacccuguag                          | aaccgaauuu | gu  | 22 |
| 50 | <210> 324<br><211> 22<br><212> RNA<br><213> Homo | sapiens    |     |    |
|    | <400> 324<br>uagcagcaca                          | uaaugguuug | ug  | 22 |
| 55 | <210> 325<br><211> 22                            |            |     |    |

|    | <212> RNA<br><213> Homo sapiens                          |    |
|----|----------------------------------------------------------|----|
| 5  | <400> 325<br>uagcagcaca ucaugguuua ca                    | 22 |
| 10 | <210> 326<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 326<br>uagcagcacg uaaauauugg cg                    | 22 |
| 15 | <210> 327<br><211> 24<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 327<br>caaagugcuu acagugcagg uagu                  | 24 |
| 25 | <210> 328<br><211> 20<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 328<br>acugcaguga aggcacuugu                       | 20 |
| 30 | <210> 329<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 35 | <400> 329<br>uaaggugcau cuagugcaga ua                    | 22 |
|    | <210> 330<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 40 | <400> 330<br>ugugcaaauc uaugcaaaac uga                   | 23 |
| 45 | <210> 331<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 331<br>ugugcaaauc caugcaaaac uga                   | 23 |
|    | <210> 332<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 55 | <400> 332<br>uaaagugcuu auagugcagg ua                    | 22 |

| 5  | <210> 333<br><211> 22<br><212> RNA<br><213> Homo sapiens              |    |
|----|-----------------------------------------------------------------------|----|
|    | <400> 333<br>uagcuuauca gacugauguu ga                                 | 22 |
| 10 | <210> 334<br><211> 22<br><212> RNA<br><213> Homo sapiens              |    |
| 15 | <400> 334 aagcugccag uugaagaacu gu                                    | 22 |
| 20 | <210> 335<br><211> 21<br><212> RNA<br><213> Homo sapiens              |    |
|    | <400> 335<br>aucacauugc cagggauuuc c                                  | 21 |
| 25 | <210> 336<br><211> 23<br><212> RNA<br><213> Homo sapiens              |    |
| 30 | <400> 336<br>aucacauugc cagggauuac cac                                | 23 |
| 35 | <210> 337<br><211> 22<br><212> RNA<br><213> Homo sapiens<br><400> 337 |    |
|    | uggcucaguu cagcaggaac ag                                              | 22 |
| 40 | <210> 338<br><211> 22<br><212> RNA<br><213> Homo sapiens              |    |
| 45 | <400> 338<br>cauugcacuu gucucggucu ga                                 | 22 |
| 50 | <210> 339<br><211> 22<br><212> RNA<br><213> Homo sapiens<br><400> 339 |    |
|    | uucaaguaau ccaggauagg cu                                              | 22 |
| 55 | <210> 340<br><211> 21<br><212> RNA                                    |    |

|    | <213> Homo sapiens                                       |    |
|----|----------------------------------------------------------|----|
| 5  | <400> 340<br>uucaaguaau ucaggauagg u                     | 21 |
| 40 | <210> 341<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 10 | <400> 341<br>uucacagugg cuaaguuccg cc                    | 22 |
| 15 | <210> 342<br><211> 20<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 342<br>uucacagugg cuaaguucug                       | 20 |
|    | <210> 343<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 25 | <400> 343<br>aaggagcuca cagucuauug ag                    | 22 |
| 30 | <210> 344<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 344<br>cuagcaccau cugaaaucgg uu                    | 22 |
| 35 | <210> 345<br><211> 20<br><212> RNA<br><213> Homo sapiens |    |
| 40 | <400> 345<br>uagcaccauu ugaaaucagu                       | 20 |
| 45 | <210> 346<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 346<br>uagcaccauu ugaaaucggu ua                    | 22 |
| 50 | <210> 347<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 55 | <400> 347<br>uguaaacauc cucgacugga agc                   | 23 |

| 5  | <210> 348<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|----|----------------------------------------------------------|----|
|    | <400> 348<br>cuuucagucg gauguuugca gc                    | 22 |
| 10 | <210> 349<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 15 | <400> 349 uguaaacauc cuacacucag c                        | 21 |
| 20 | <210> 350<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 350 uguaaacauc cuacacucuc agc                      | 23 |
| 25 | <210> 351<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 30 | <400> 351<br>uguaaacauc cccgacugga ag                    | 22 |
| 35 | <210> 352<br><211> 20<br><212> RNA<br><213> Homo sapiens |    |
| 33 | <400> 352<br>uguaaacauc cuugacugga                       | 20 |
| 40 | <210> 353<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 45 | <400> 353<br>ggcaagaugc uggcauagcu g                     | 21 |
|    | <210> 354<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 354<br>uauugcacau uacuaaguug c                     | 21 |
| 55 | <210> 355<br><211> 19<br><212> RNA<br><213> Homo sapiens |    |

|    | <400> 355<br>gugcauugua g                          | guugcauug  | ı    | 19 |
|----|----------------------------------------------------|------------|------|----|
| 5  | <210> 356<br><211> 22<br><212> RNA<br><213> Homo s | sapiens    |      |    |
| 10 | <400> 356<br>uggcaguguc ι                          | uuagcugguu | gu 2 | 22 |
| 15 | <210> 357<br><211> 22<br><212> RNA<br><213> Homo s | sapiens    |      |    |
|    | <400> 357<br>aggcaguguc a                          | auuagcugau | ug 2 | 22 |
| 20 | <210> 358<br><211> 22<br><212> RNA<br><213> Homo S | sapiens    |      |    |
| 25 | <400> 358<br>aggcagugua g                          | guuagcugau | ug 2 | 22 |
| 30 | <210> 359<br><211> 22<br><212> RNA<br><213> Homo s | sapiens    |      |    |
|    | <400> 359<br>uauugcacuu g                          | gucccggccu | gu   | 22 |
| 35 | <210> 360<br><211> 22<br><212> RNA<br><213> Homo 5 | sapiens    |      |    |
| 40 | <400> 360<br>aaagugcugu ເ                          | ucgugcaggu | ag   | 22 |
| 45 | <210> 361<br><211> 22<br><212> RNA<br><213> Homo s | sapiens    |      |    |
|    | <400> 361<br>uucaacgggu a                          | auuuauugag | ca · | 22 |
| 50 | <210> 362<br><211> 22<br><212> RNA<br><213> Homo s | sapiens    |      |    |
| 55 | <400> 362<br>uuuggcacua g                          | gcacauuuuu | gc   | 22 |

| 5  | <210> 363<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|----|----------------------------------------------------------|----|
| 3  | <400> 363<br>ugagguagua aguuguauug uu                    | 22 |
| 10 | <210> 364<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 15 | <400> 364<br>aacccguaga uccgaucuug ug                    | 22 |
|    | <210> 365<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 365<br>cacccguaga accgaccuug cg                    | 22 |
| 25 | <210> 366<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 366<br>uacaguacug ugauaacuga ag                    | 22 |
| 30 | <210> 367<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 35 | <400> 367<br>uacaguacug ugauaacuga ag                    | 22 |
| 40 | <210> 368<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 368<br>agcagcauug uacagggcua uga                   | 23 |
| 45 | <210> 369<br><211> 20<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 369<br>ucaaaugcuc agacuccugu                       | 20 |
| 55 | <210> 370<br><211> 24<br><212> RNA<br><213> Homo sapiens |    |

|    | <400> 370<br>aaaagugcuu a                          | acagugcagg | uagc | 24 |
|----|----------------------------------------------------|------------|------|----|
| 5  | <210> 371<br><211> 21<br><212> RNA<br><213> Homo s | sapiens    |      |    |
| 10 | <400> 371<br>uaaagugcug a                          | acagugcaga | u    | 21 |
| 15 | <210> 372<br><211> 23<br><212> RNA<br><213> Homo s | sapiens    |      |    |
|    | <400> 372<br>agcagcauug u                          | uacagggcua | uca  | 23 |
| 20 | <210> 373<br><211> 23<br><212> RNA<br><213> Homo s | sapiens    |      |    |
| 25 | <400> 373<br>uggaguguga d                          | caaugguguu | ugu  | 23 |
| 30 | <210> 374<br><211> 22<br><212> RNA<br><213> Homo s | sapiens    |      |    |
|    | <400> 374<br>uuaaggcacg o                          | cggugaaugc | ca   | 22 |
| 35 | <210> 375<br><211> 23<br><212> RNA<br><213> Homo s | sapiens    |      |    |
| 40 | <400> 375<br>ucccugagac o                          | ccuuuaaccu | gug  | 23 |
|    | <210> 376<br><211> 22<br><212> RNA<br><213> Homo s | sapiens    |      |    |
| 45 | <400> 376<br>ucccugagac o                          | ccuaacuugu | ga   | 22 |
| 50 | <210> 377<br><211> 21<br><212> RNA<br><213> Homo s | sapiens    |      |    |
|    | <400> 377<br>cauuauuacu ເ                          | uuugguacgc | g    | 21 |
| 55 | <210> 378                                          |            |      |    |

|    | <211> 21<br><212> RNA<br><213> Homo sapiens              |        |    |
|----|----------------------------------------------------------|--------|----|
| 5  | <400> 378<br>ucguaccgug aguaaua                          | aug c  | 21 |
| 10 | <210> 379<br><211> 22<br><212> RNA<br><213> Homo sapiens |        |    |
|    | <400> 379<br>ucggauccgu cugagcu                          | ugg cu | 22 |
| 15 | <210> 380<br><211> 22<br><212> RNA<br><213> Homo sapiens |        |    |
| 20 | <400> 380<br>ucacagugaa ccggucu                          | cuu uu | 22 |
| 25 | <210> 381<br><211> 22<br><212> RNA<br><213> Homo sapiens |        |    |
|    | <400> 381<br>ucacagugaa ccggucu                          | cuu uc | 22 |
| 30 | <210> 382<br><211> 21<br><212> RNA<br><213> Homo sapiens |        |    |
| 35 | <400> 382<br>cuuuuugcgg ucugggc                          | uug c  | 21 |
| 40 | <210> 383<br><211> 20<br><212> RNA<br><213> Homo sapiens |        |    |
|    | <400> 383<br>cagugcaaug uuaaaag                          | ggc    | 20 |
| 45 | <210> 384<br><211> 22<br><212> RNA<br><213> Homo sapiens |        |    |
| 50 | <400> 384<br>cagugcaaug augaaag                          | ggc au | 22 |
| 55 | <210> 385<br><211> 22<br><212> RNA<br><213> Homo sapiens |        |    |
|    | <400> 385                                                |        |    |

|    | uaacagucua cagccauggu c                                  | cg · | 22 |
|----|----------------------------------------------------------|------|----|
| 5  | <210> 386<br><211> 22<br><212> RNA<br><213> Homo sapiens |      |    |
| 10 | <400> 386<br>uugguccccu ucaaccagcu g                     | gu   | 22 |
| 45 | <210> 387<br><211> 21<br><212> RNA<br><213> Homo sapiens |      |    |
| 15 | <400> 387<br>uugguccccu ucaaccagcu a                     | a :  | 21 |
| 20 | <210> 388<br><211> 21<br><212> RNA<br><213> Homo sapiens |      |    |
| 25 | <400> 388<br>ugugacuggu ugaccagagg g                     | g ·  | 21 |
|    | <210> 389<br><211> 23<br><212> RNA<br><213> Homo sapiens |      |    |
| 30 | <400> 389<br>uauggcuuuu uauuccuaug u                     | uga  | 23 |
| 35 | <210> 390<br><211> 22<br><212> RNA<br><213> Homo sapiens |      |    |
|    | <400> 390<br>uauggcuuuu cauuccuaug u                     | ug   | 22 |
| 40 | <210> 391<br><211> 23<br><212> RNA<br><213> Homo sapiens |      |    |
| 45 | <400> 391<br>acuccauuug uuuugaugau g                     | gga  | 23 |
| 50 | <210> 392<br><211> 22<br><212> RNA<br><213> Homo sapiens |      |    |
|    | <400> 392<br>uauugcuuaa gaauacgcgu a                     | ag   | 22 |
| 55 | <210> 393<br><211> 17                                    |      |    |

|    | <212> RNA<br><213> Homo sapiens                          |    |
|----|----------------------------------------------------------|----|
| 5  | <400> 393<br>agcugguguu gugaauc                          | 17 |
| 10 | <210> 394<br><211> 18<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 394<br>ucuacagugc acgugucu                         | 18 |
| 15 | <210> 395<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 395<br>agugguuuua cccuauggua g                     | 21 |
| 25 | <210> 396<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 396<br>aacacugucu gguaaagaug g                     | 21 |
| 30 | <210> 397<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 35 | <400> 397<br>uguaguguuu ccuacuuuau gga                   | 23 |
|    | <210> 398<br><211> 20<br><212> RNA<br><213> Homo sapiens |    |
| 40 | <400> 398<br>cauaaaguag aaagcacuac                       | 20 |
| 45 | <210> 399<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 399<br>ugagaugaag cacuguagcu ca                    | 22 |
|    | <210> 400<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 55 | <400> 400<br>uacaguauag augauguacu ag                    | 22 |

| 5  | <210> 401<br><211> 24<br><212> RNA<br><213> Homo sapiens |    |
|----|----------------------------------------------------------|----|
|    | <400> 401<br>guccaguuuu cccaggaauc ccuu                  | 24 |
| 10 | <210> 402<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 15 | <400> 402<br>ugagaacuga auuccauggg uu                    | 22 |
| 20 | <210> 403<br><211> 20<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 403<br>gugugggaa augcuucugc                        | 20 |
| 25 | <210> 404<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 30 | <400> 404<br>ucagugcacu acagaacuuu gu                    | 22 |
| 35 | <210> 405<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 405<br>ucagugcauc acagaacuuu gu                    | 22 |
| 40 | <210> 406<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 45 | <400> 406<br>ucuggcuccg ugucuucacu cc                    | 22 |
| 50 | <210> 407<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 407<br>ucucccaacc cuuguaccag ug                    | 22 |
| 55 | <210> 408<br><211> 22<br><212> RNA                       |    |

|    | <213> Homo Sapiens                                       |    |
|----|----------------------------------------------------------|----|
| 5  | <400> 408<br>acuagacuga agcuccuuga gg                    | 22 |
| 10 | <210> 409<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 409<br>ucagugcaug acagaacuug g                     | 21 |
| 15 | <210> 410<br><211> 20<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 410<br>uugcauaguc acaaaaguga                       | 20 |
|    | <210> 411<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 25 | <400> 411 uagguuaucc guguugccuu cg                       | 22 |
| 30 | <210> 412<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 412<br>aaucauacac gguugaccua uu                    | 22 |
| 35 | <210> 413<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 40 | <400> 413<br>uuaaugcuaa ucgugauagg gg                    | 22 |
| 45 | <210> 414<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 414 aacauucaac gcugucggug agu                      | 23 |
| 50 | <210> 415<br><211> 24<br><212> RNA<br><213> Homo sapiens |    |
| 55 | <400> 415<br>aacauucauu gcugucggug gguu                  | 24 |

| 5  | <210> 416<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|----|----------------------------------------------------------|----|
|    | <400> 416<br>aacauucaac cugucgguga gu                    | 22 |
| 10 | <210> 417<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 15 | <400> 417<br>uuuggcaaug guagaacuca ca                    | 22 |
| 20 | <210> 418<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 418<br>ugguucuaga cuugccaacu a                     | 21 |
| 25 | <210> 419<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 30 | <400> 419<br>uauggcacug guagaauuca cug                   | 23 |
| 35 | <210> 420<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 33 | <400> 420<br>uggacggaga acugauaagg gu                    | 22 |
| 40 | <210> 421<br><211> 18<br><212> RNA<br><213> Homo sapiens |    |
| 45 | <400> 421<br>uggagagaaa ggcaguuc                         | 18 |
|    | <210> 422<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 422<br>caaagaauuc uccuuuuggg cuu                   | 23 |
| 55 | <210> 423<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |

|    | <400> 423<br>ucgugucuug uguugcagcc g                     | 21 |
|----|----------------------------------------------------------|----|
| 5  | <210> 424<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 10 | <400> 424 caucccuugc augguggagg gu                       | 22 |
| 15 | <210> 425<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 425<br>gugccuacug agcugauauc agu                   | 23 |
| 20 | <210> 426<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 25 | <400> 426<br>ugauauguuu gauauauuag gu                    | 22 |
| 30 | <210> 427<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 427 caacggaauc ccaaaagcag cu                       | 22 |
| 35 | <210> 428<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 40 | <400> 428<br>cugaccuaug aauugacagc c                     | 21 |
| 45 | <210> 429<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 429<br>aacuggccua caaaguccca g                     | 21 |
| 50 | <210> 430<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 55 | <400> 430<br>uguaacagca acuccaugug ga                    | 22 |

| 5  | <210> 431<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
|----|----------------------------------------------------------|----|
| 5  | <400> 431<br>uagcagcaca gaaauauugg c                     | 21 |
| 10 | <210> 432<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 15 | <400> 432<br>uagguaguuu cauguuguug g                     | 21 |
|    | <210> 433<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 433<br>uagguaguuu ccuguuguug g                     | 21 |
| 25 | <210> 434<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 434<br>uucaccaccu ucuccaccca gc                    | 22 |
| 30 | <210> 435<br><211> 19<br><212> RNA<br><213> Homo sapiens |    |
| 35 | <400> 435<br>gguccagagg ggagauagg                        | 19 |
| 40 | <210> 436<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 436 cccaguguuc agacuaccug uuc                      | 23 |
| 45 | <210> 437<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 437<br>uacaguaguc ugcacauugg uu                    | 22 |
| 55 | <210> 438<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |

|    | <400> 438<br>cccaguguuu aq                          | gacuaucug | uuc 2 | 23 |
|----|-----------------------------------------------------|-----------|-------|----|
| 5  | <210> 439<br><211> 22<br><212> RNA<br><213> Homo sa | apiens    |       |    |
| 10 | <400> 439<br>uaacacuguc u                           | gguaacgau | gu Ž  | 22 |
| 15 | <210> 440<br><211> 24<br><212> RNA<br><213> Homo sa | apiens    |       |    |
|    | <400> 440<br>cucuaauacu go                          | ccugguaau | gaug  | 24 |
| 20 | <210> 441<br><211> 22<br><212> RNA<br><213> Homo 56 | apiens    |       |    |
| 25 | <400> 441<br>aauacugccg g                           | guaaugaug | ga Z  | 22 |
| 30 | <210> 442<br><211> 22<br><212> RNA<br><213> Homo sa | apiens    |       |    |
|    | <400> 442<br>agagguauag g                           | gcaugggaa | ga 2  | 22 |
| 35 | <210> 443<br><211> 22<br><212> RNA<br><213> Homo sa | apiens    |       |    |
| 40 | <400> 443<br>gugaaauguu ua                          | aggaccacu | ag 2  | 22 |
|    | <210> 444<br><211> 22<br><212> RNA<br><213> Homo sa | apiens    |       |    |
| 45 | <400> 444<br>uucccuuugu ca                          | ·         | cu 2  | 22 |
| 50 | <210> 445<br><211> 22<br><212> RNA<br><213> Homo sa | apiens    |       |    |
|    | <400> 445<br>uccuucauuc ca                          |           | ug 2  | 22 |
| 55 | <210> 446                                           |           |       |    |

|    | <211> 22<br><212> RNA<br><213> Homo sapiens              |    |
|----|----------------------------------------------------------|----|
| 5  | <400> 446<br>uggaauguaa ggaagugugu gg                    | 22 |
| 10 | <210> 447<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 447<br>auaagacgag caaaaagcuu gu                    | 22 |
| 15 | <210> 448<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 448<br>cugugcgugu gacagcggcu g                     | 21 |
| 25 | <210> 449<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 449<br>uucccuuugu cauccuucgc cu                    | 22 |
| 30 | <210> 450<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 35 | <400> 450<br>uaacagucuc cagucacggc c                     | 21 |
| 40 | <210> 451<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 451<br>accaucgacc guugauugua cc                    | 22 |
| 45 | <210> 452<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 452<br>acagcaggca cagacaggca g                     | 21 |
| 55 | <210> 453 <211> 21 <212> RNA <213> Homo sapiens          |    |
|    | <400> 453                                                |    |

|    | augaccuaug                                       | aauugacaga | C    | 21 |
|----|--------------------------------------------------|------------|------|----|
| 5  | <210> 454<br><211> 21<br><212> RNA<br><213> Homo | sapiens    |      |    |
| 10 | <400> 454<br>uaaucucagc                          | uggcaacugu | g    | 21 |
|    | <210> 455<br><211> 24<br><212> RNA<br><213> Homo | sapiens    |      |    |
| 15 | <400> 455<br>uacugcauca                          |            | ggau | 24 |
| 20 | <210> 456<br><211> 21<br><212> RNA<br><213> Homo | sapiens    |      |    |
| 25 | <400> 456<br>uugugcuuga                          | ucuaaccaug | u .  | 21 |
|    | <210> 457<br><211> 21<br><212> RNA<br><213> Homo | sapiens    |      |    |
| 30 | <400> 457<br>ugauugucca                          | aacgcaauuc | u    | 21 |
| 35 | <210> 458<br><211> 21<br><212> RNA<br><213> Homo | sapiens    |      |    |
|    | <400> 458<br>ccacaccgua                          | ucugacacuu | u    | 21 |
| 40 | <210> 459<br><211> 23<br><212> RNA<br><213> Homo | sapiens    |      |    |
| 45 | <400> 459<br>agcuacauug                          | ucugcugggu | uuc  | 23 |
| 50 | <210> 460<br><211> 24<br><212> RNA<br><213> Homo | sapiens    |      |    |
|    | <400> 460<br>agcuacaucu                          | ggcuacuggg | ucuc | 24 |
| 55 | <210> 461<br><211> 21                            |            |      |    |

|    | <212> RNA<br><213> Homo sapiens                          |    |
|----|----------------------------------------------------------|----|
| 5  | <400> 461<br>ugucaguuug ucaaauaccc c                     | 21 |
| 10 | <210> 462<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 462<br>caagucacua gugguuccgu uua                   | 23 |
| 15 | <210> 463<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 463<br>agggccccc cucaauccug u                      | 21 |
| 25 | <210> 464<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 464<br>ugguuuaccg ucccacauac au                    | 22 |
| 30 | <210> 465<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 35 | <400> 465<br>cagugcaaua guauugucaa agc                   | 23 |
|    | <210> 466<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 40 | <400> 466<br>uaagugcuuc cauguuuugg uga                   | 23 |
| 45 | <210> 467<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 467<br>acuuuaacau ggaagugcuu ucu                   | 23 |
|    | <210> 468<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 55 | <400> 468 uaagugcuuc cauguuuuag uag                      | 23 |

| 5  | <210> 469<br><211> 22<br><212> RNA<br><213> Homo sapiens              |    |
|----|-----------------------------------------------------------------------|----|
|    | <400> 469<br>uuuaacaugg ggguaccugc ug                                 | 22 |
| 10 | <210> 470<br><211> 23<br><212> RNA<br><213> Homo sapiens              |    |
| 15 | <400> 470<br>uaagugcuuc cauguuucag ugg                                | 23 |
| 20 | <210> 471<br><211> 23<br><212> RNA<br><213> Homo sapiens              |    |
|    | <400> 471 uaagugcuuc cauguuugag ugu                                   | 23 |
| 25 | <210> 472<br><211> 23<br><212> RNA<br><213> Homo sapiens              |    |
| 30 | <400> 472<br>aaaagcuggg uugagagggc gaa                                | 23 |
| 35 | <210> 473<br><211> 21<br><212> RNA<br><213> Homo sapiens<br><400> 473 |    |
|    | uaagccaggg auuguggguu c                                               | 21 |
| 40 | <210> 474<br><211> 22<br><212> RNA<br><213> Homo sapiens              |    |
| 45 | <400> 474<br>gcacauuaca cggucgaccu cu                                 | 22 |
| 50 | <210> 475<br><211> 23<br><212> RNA<br><213> Homo sapiens              |    |
|    | <400> 475<br>cgcauccccu agggcauugg ugu                                | 23 |
| 55 | <210> 476 <211> 22 <212> RNA                                          |    |

|    | <213> Homo sapiens                                       |    |
|----|----------------------------------------------------------|----|
| 5  | <400> 476<br>ccacugcccc aggugcugcu gg                    | 22 |
| 10 | <210> 477<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 477<br>ccuaguaggu guccaguaag u                     | 21 |
| 15 | <210> 478<br><211> 20<br><212> RNA<br><213> Homo sapiens |    |
| 20 | <400> 478<br>ccucugggcc cuuccuccag                       | 20 |
|    | <210> 479<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 25 | <400> 479 cuggcccucu cugcccuucc gu                       | 22 |
| 30 | <210> 480<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 480<br>gcaaagcaca cggccugcag aga                   | 23 |
| 35 | <210> 481<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 40 | <400> 481<br>gccccugggc cuauccuaga a                     | 21 |
| 45 | <210> 482<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 482<br>ucaagagcaa uaacgaaaaa ugu                   | 23 |
| 50 | <210> 483<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 55 | <400> 483 uccagcuccu auaugaugcc uuu                      | 23 |

| 5  | <210> 484<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|----|----------------------------------------------------------|----|
|    | <400> 484<br>uccagcauca gugauuuugu uga                   | 23 |
| 10 | <210> 485<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 15 | <400> 485<br>ucccuguccu ccaggagcuc a                     | 21 |
| 20 | <210> 486<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 486<br>uccgucucag uuacuuuaua gcc                   | 23 |
| 25 | <210> 487<br><211> 24<br><212> RNA<br><213> Homo sapiens |    |
| 30 | <400> 487<br>ucucacacag aaaucgcacc cguc                  | 24 |
| 35 | <210> 488<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 488<br>ugcugacucc uaguccaggg c                     | 21 |
| 40 | <210> 489<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
| 45 | <400> 489<br>ugucugcccg caugccugcc ucu                   | 23 |
|    | <210> 490<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 50 | <400> 490<br>aauugcacuu uagcaauggu ga                    | 22 |
| 55 | <210> 491<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |

|    | <400> 491<br>acauagagga aauuccacgu uu                    | 22 |
|----|----------------------------------------------------------|----|
| 5  | <210> 492<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 10 | <400> 492<br>aauaauacau gguugaucuu u                     | 21 |
| 15 | <210> 493<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 493<br>gccugcuggg guggaaccug g                     | 21 |
| 20 | <210> 494<br><211> 21<br><212> RNA<br><213> Homo sapiens |    |
| 25 | <400> 494<br>gugccgccau cuuuugagug u                     | 21 |
| 30 | <210> 495<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 495<br>aaagugcugc gacauuugag cgu                   | 23 |
| 35 | <210> 496<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 40 | <400> 496<br>acucaaaaug ggggcgcuuu cc                    | 22 |
| 45 | <210> 497<br><211> 23<br><212> RNA<br><213> Homo sapiens |    |
|    | <400> 497<br>gaagugcuuc gauuuugggg ugu                   | 23 |
| 50 | <210> 498<br><211> 22<br><212> RNA<br><213> Homo sapiens |    |
| 55 | <400> 498<br>uuauaauaca accugauaag ug                    | 22 |

| 5  | <210> 499<br><211> 20<br><212> DNA<br><213> Artificial Sequence  |    |
|----|------------------------------------------------------------------|----|
|    | <220> <223> Description of Artificial Sequence: Synthetic primer |    |
| 10 | <400> 499<br>aactttgtct tgggggacac                               | 20 |
| 15 | <210> 500<br><211> 20<br><212> DNA<br><213> Artificial Sequence  |    |
|    | <220> <223> Description of Artificial Sequence: Synthetic primer |    |
| 20 | <400> 500<br>gaggggagga tctgtttcc                                | 20 |
| 25 | <210> 501<br><211> 23<br><212> DNA<br><213> Artificial Sequence  |    |
|    | <220> <223> Description of Artificial Sequence: Synthetic primer |    |
| 30 | <400> 501<br>ccaggagctc aggaagaaga gat                           | 23 |
| 35 | <210> 502<br><211> 25<br><212> DNA<br><213> Artificial Sequence  |    |
|    | <220> <223> Description of Artificial Sequence: Synthetic primer |    |
| 40 | <400> 502<br>ccctctgagg catctgattg ggttt                         | 25 |
| 45 | <210> 503<br><211> 26<br><212> DNA<br><213> Artificial Sequence  |    |
| 50 | <220> <223> Description of Artificial Sequence: Synthetic primer |    |
|    | <400> 503<br>gcatctagag caccccagag gagtgt                        | 26 |
| 55 | <210> 504<br><211> 26<br><212> DNA                               |    |

|    | <213> Artificial Sequence                                                 |    |
|----|---------------------------------------------------------------------------|----|
| 5  | <220> <223> Description of Artificial Sequence: Synthetic primer          |    |
|    | <400> 504<br>gcatctagac aagcaccatg cggttc                                 | 26 |
| 10 | <210> 505<br><211> 26<br><212> DNA<br><213> Artificial Sequence           |    |
| 15 | <220> <223> Description of Artificial Sequence: Synthetic primer          |    |
| 20 | <400> 505<br>tactctagac caggagctca ggaaga                                 | 26 |
|    | <210> 506<br><211> 27<br><212> DNA<br><213> Artificial Sequence           |    |
| 25 | <220> <223> Description of Artificial Sequence: Synthetic primer          |    |
| 30 | <400> 506<br>mcattctaga tgaggcatct gattggg                                | 27 |
| 35 | <210> 507<br><211> 31<br><212> RNA<br><213> Artificial Sequence           |    |
|    | <220> <223> Description of Artificial Sequence: Synthetic oligonucleotide |    |
| 40 | <400> 507<br>cuagaaaugu uuagguuacu aaaacagggu g                           | 31 |
|    |                                                                           |    |

### 45 Claims

50

55

- 1. A method of diagnosing or prognosticating cancer and/or a myeloproliferative disorder in a subject, comprising:
  - i) determining the level of at least one miR gene product in a sample from the subject; and
  - ii) comparing the level of the at least one miR gene product in the sample to a control, wherein an increase in the level of the at least one miR gene product in the sample from the subject, relative to that of the control, is diagnostic or prognostic of cancer and/or a myeloproliferative disorder, and

wherein the at least one miR gene product is selected from the group consisting of miR-126.

2. A method of treating a cancer and/or a myeloproliferative disorder in a subject, comprising administering to the subject an effective amount of a compound for inhibiting expression of at least one miR gene product, wherein the at least one miR gene product is selected from the group consisting of miR-126.

- 3. The method of claim 1 or 2, wherein the at least one miR gene product comprises the group consisting of miR-101, miR-126, miR-106, miR-20 and miR-135.
- 4. The method of claim 1 or 2, wherein the cancer and/or a myeloproliferative disorder is a cancer.
- 5. The method of claim 4, wherein the cancer is a leukemia.
- 6. The method of claim 5, wherein the leukemia is acute myeloid leukemia.
- 10 7. The method of claim 6, wherein the acute myeloid leukemia is acute megakaryoblastic leukaemia.
  - 8. The method of claim 4, wherein the cancer is multiple myeloma.
  - 9. The method of claim 1 or 2, wherein the cancer and/or a myeloproliferative disorder is a myeloproliferative disorder.
  - **10.** The method of claim 9, wherein the myeloproliferative disorder is selected from the group consisting of essential thrombocytemia (ET), polycythemia vera (PV), myelodisplasia, myelofibrosis and chronic myelogenous leukemia (CML).
- 20 **11.** The method of Claim 1, wherein the control is selected from the group consisting of:
  - i) a reference standard;
  - ii) the level of the at least one miR gene product from a subject that does not have cancer and/or a myeloproliferative disorder; and
  - iii) the level of the at least one miR gene product from a sample of the subject that is non-cancerous and/or does not exhibit a myeloproliferative disorder.
  - 12. The method of Claim 1 or 2, wherein the subject is a human.
- 13. A pharmaceutical composition for treating a cancer and/or a myeloproliferative disorder comprising an effective amount of a compound for inhibiting expression of at least one miR gene product and a pharmaceutically-acceptable carrier, wherein the at least one miR gene product is selected from the group consisting of miR-126.
- **14.** The pharmaceutical composition of Claim 13, wherein the at least one miR gene product comprises the group consisting of miR-101, miR-126, miR-106, miR-20 and miR-135.
  - **15.** The pharmaceutical composition of claim 13, wherein the pharmaceutical composition further comprises at least one anti-cancer agent.

144

55

5

15

25

40

45

50

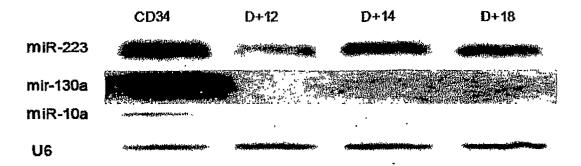
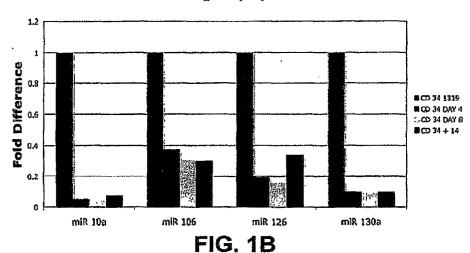
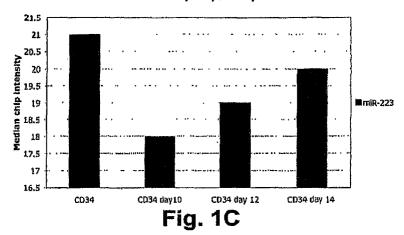
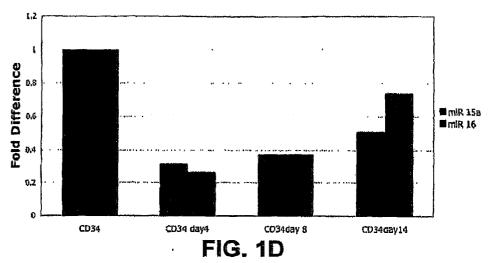





FIG. 1A


### RT-PCR miRNA expression in differentiated megakaryocytes



#### mIR-223 array temporal expression



### miR-15a/16-1 expression in differentiated megakaryocytes by RT-PCR



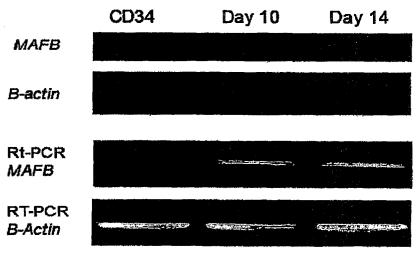
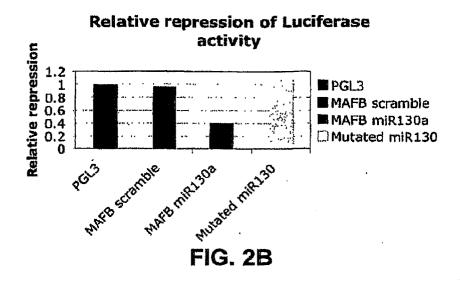




FIG. 2A



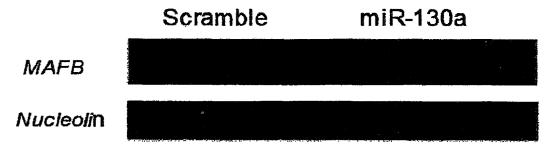
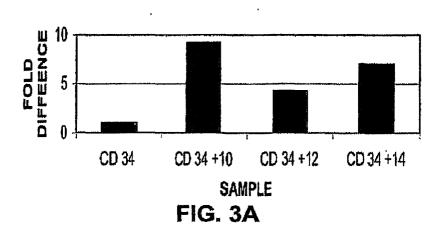
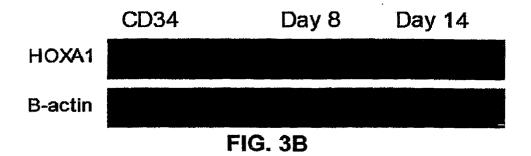





FIG. 2C HOX A1 GENE EXPRESSION





### Relative repression of luciferase activity

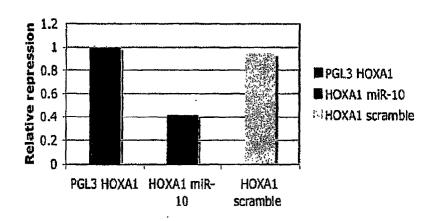
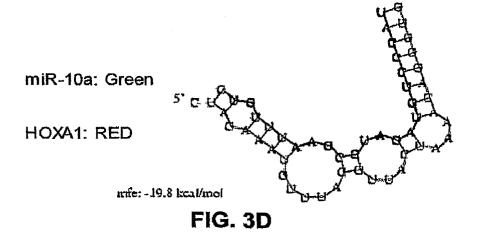
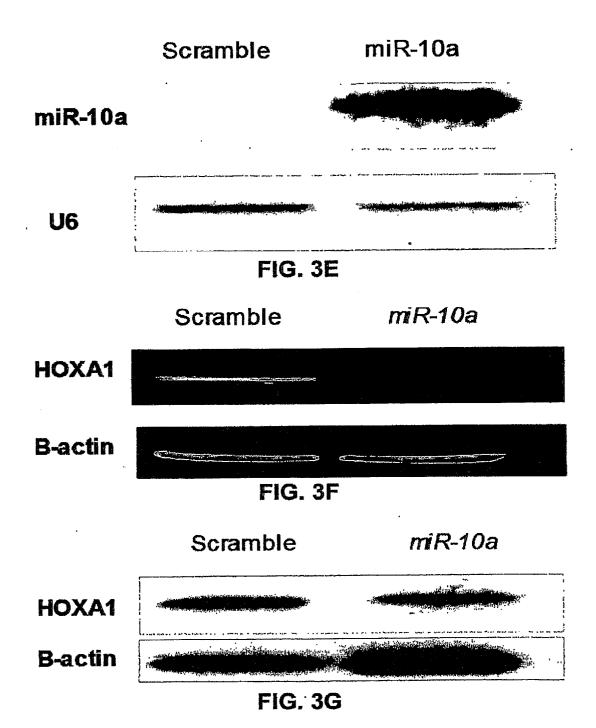





FIG. 3C





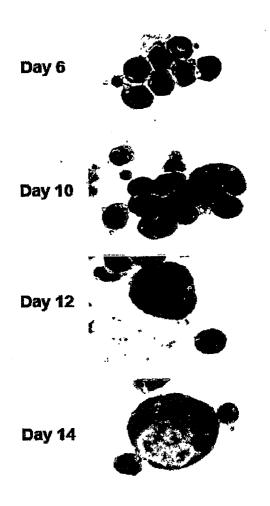



FIG. 4A

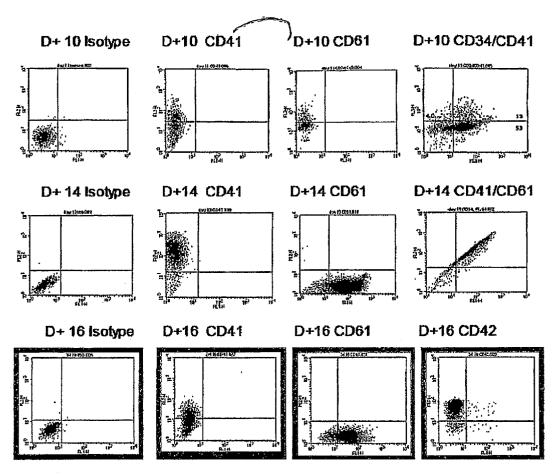
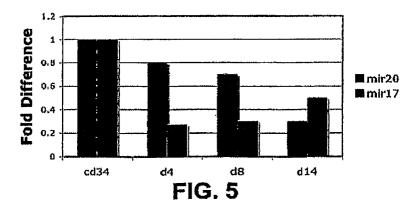
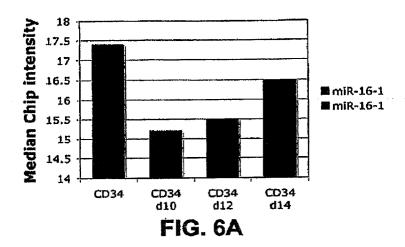
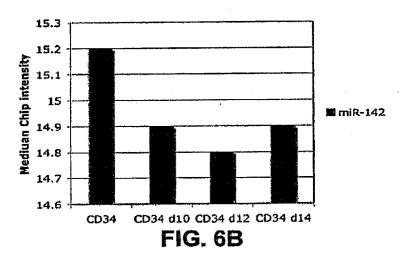





FIG. 4B


miR-17/20 expression in differentiated megakaryocytes



miR-16-1 temporal array expression



miR-142 temporal expression



## miR-181b temporal array expression

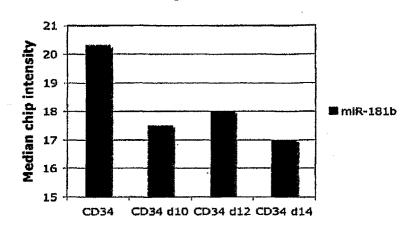
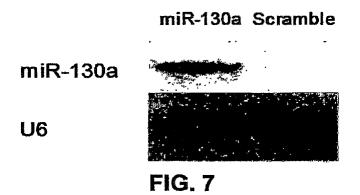
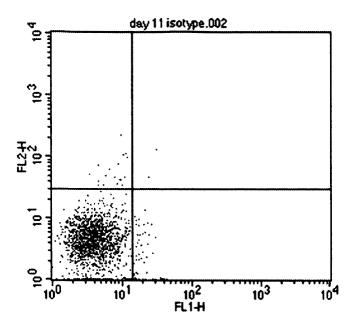





FIG. 6C



# D+10 Isotype



# D+ 14 Isotype

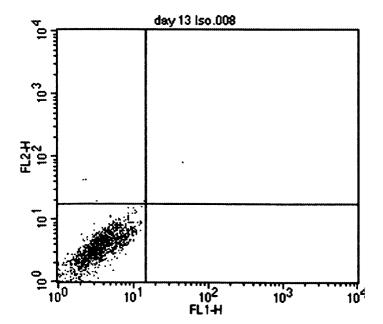
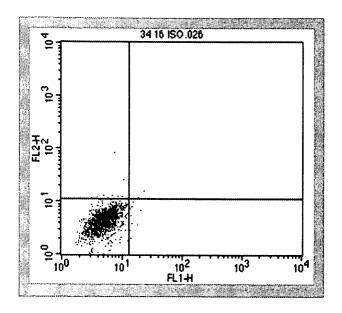




Fig. 4B

## D+ 16 Isotype



## D+10 CD41

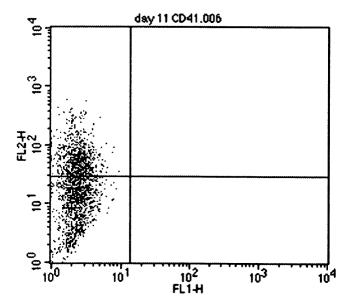



Fig. 4B

### D+14 CD41



### D+16 CD41

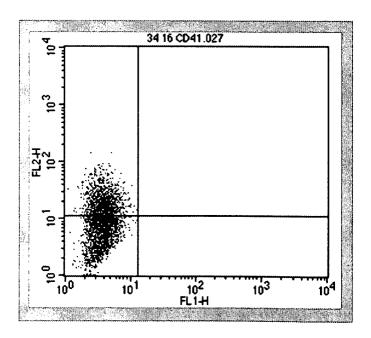
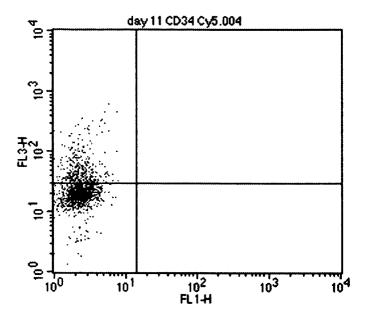




Fig. 4B

## D+10 CD61



# D+14 CD61

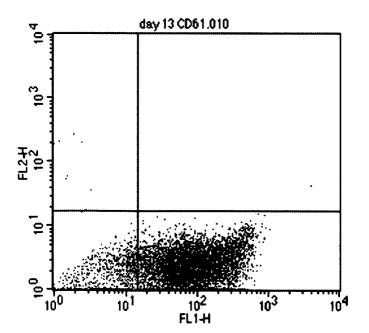
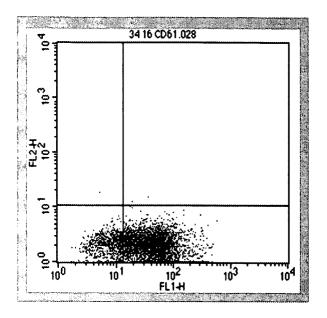




Fig. 4B

### D+16 CD61



### D+10 CD34/CD41

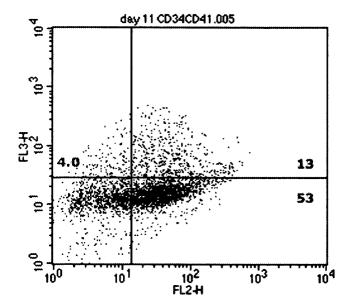
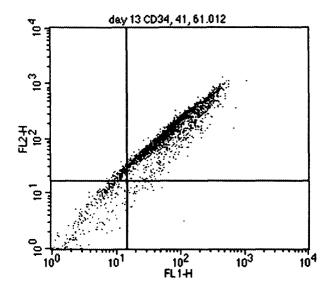




Fig. 4B

## D+14 CD41/CD61



## D+16 CD42

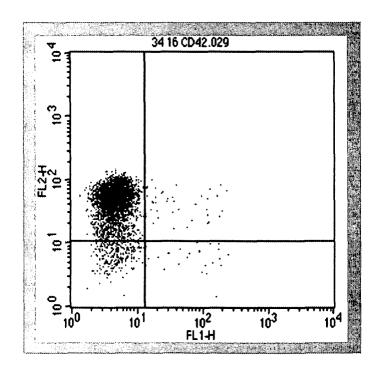



Fig. 4B

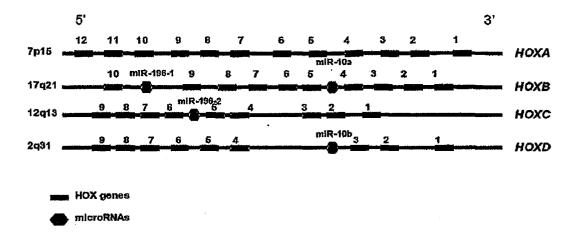
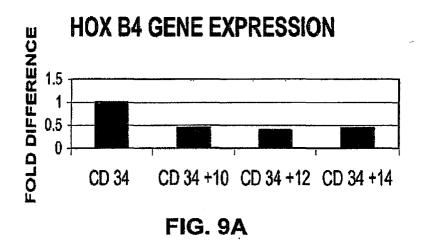
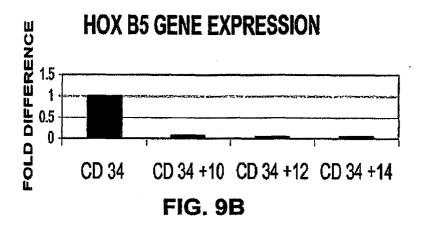





FIG. 8





## miRNA expression in AMKL cell lines

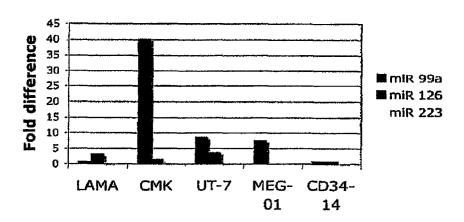



FIG. 10



#### **EUROPEAN SEARCH REPORT**

Application Number EP 11 15 1749

| ategory                      | Citation of document with indication                                                                                               | n, where appropriate,                                                                                           | Relevant                                                  | CLASSIFICATION OF THE APPLICATION (IPC) |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|
| X                            | wO 2005/118806 A2 (AMBI<br>DAVID; CONRAD RICK; DEV                                                                                 | ROE ERIČ; GOLDRICK                                                                                              | 1,2,4-6,<br>9,11,12                                       | INV.                                    |
| Y                            | MARIA) 15 December 2005<br>* the whole document *<br>* p. 2, 11. 26-27, p. 20<br>1. 3; Example 30, p. 99                           | 0, 1. 26 - p. 21,                                                                                               | 3,7,8,<br>10,13-15                                        |                                         |
| Х,Р                          | WO 2006/137941 A2 (AMBIDAVID [US]; FORD LANCE JARVI) 28 December 2006                                                              | [US]; CHĒNG ANGIE;                                                                                              | 1,2,4,5,<br>9,11-13                                       |                                         |
| Y,P                          | * the whole document *  * p. 15, l. 6 - p. 16, 19-29, p. 20, ll. 16-28 p. 25, ll. 9-23 *                                           | l. 19, p. 17, ll.                                                                                               | 3,6-8,<br>10,14,15                                        |                                         |
| Ξ                            | WO 2007/081680 A2 (UNIV<br>FOUND [US]; CROCE CARLO<br>GEORGE A [US) 19 July 20<br>* the whole document *                           | M [US]; CALIN<br>007 (2007-07-19)                                                                               | 1,2,4,<br>11-13,15                                        |                                         |
|                              | * p. 3, l. 25 - p. 4, l<br>p. 9, l. 8, p. 10, ll.<br>* p. 11, ll. 21-25, p. 8<br>l. 14 *                                           | 14-19 *                                                                                                         |                                                           | TECHNICAL FIELDS SEARCHED (IPC)         |
| (                            | WO 2005/078139 A2 (UNIV CROCE CARLO M [US]; LIU CALIN GE) 25 August 2000 * the whole document * para. 46-47, 53, claim             | CHANG-GONG [US];<br>5 (2005-08-25)                                                                              | 1-15                                                      |                                         |
|                              |                                                                                                                                    | -/                                                                                                              |                                                           |                                         |
|                              |                                                                                                                                    |                                                                                                                 |                                                           |                                         |
|                              | The present search report has been dr                                                                                              | awn up for all claims                                                                                           |                                                           |                                         |
|                              | Place of search                                                                                                                    | Date of completion of the search                                                                                |                                                           | Examiner                                |
|                              | Munich                                                                                                                             | 8 July 2011                                                                                                     | Sau                                                       | er, Tincuta                             |
| X : part<br>Y : part<br>docu | ATEGORY OF CITED DOCUMENTS  icularly relevant if taken alone icularly relevant if combined with another iment of the same category | T : theory or principle E : earlier patent doo after the filing dat D : document cited ir L : document cited fo | ument, but publise<br>the application<br>or other reasons | shed on, or                             |
| A : tech                     | nological background<br>-written disclosure                                                                                        | & : member of the sa                                                                                            |                                                           | . corresponding                         |



#### **EUROPEAN SEARCH REPORT**

Application Number

EP 11 15 1749

| Category                       | Citation of document with indication of relevant passages                                                                                                                                                                                                                     | on, where appropriate,                                                                                                        | Relevant<br>to claim                                 | CLASSIFICATION OF THE APPLICATION (IPC) |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------|
| Y                              | ARNAULD C VERSCHUUR: "megakaryoblastic leukem INTERNET CITATION, May 2004 (2004-05), pag XP002643496, Retrieved from the Inte URL:http://www.orpha.ne AMLM7.pdf [retrieved on 2011-06-2 * the whole document *                                                                | nia",<br>ges 1-5,<br>ernet:<br>et/data/patho/GB/uk-                                                                           | 1-15                                                 |                                         |
| X,P                            | GARZON RAMIRO ET AL: "fingerprints during hum megakaryocytopoiesis", PROCEEDINGS OF THE NATI SCIENCES, NATIONAL ACAD WASHINGTON, DC; US, vol. 103, no. 13, 28 March 2006 (2006-03-5078-5083, XP002465978, ISSN: 0027-8424, DOI: DOI:10.1073/PNAS.060058* the whole document * | ONAL ACADEMY OF DEMY OF SCIENCES, 28), pages                                                                                  | 1-15                                                 | TECHNICAL FIELDS<br>SEARCHED (IPC)      |
|                                | The present search report has been d                                                                                                                                                                                                                                          | rawn up for all claims                                                                                                        |                                                      |                                         |
|                                | Place of search Munich                                                                                                                                                                                                                                                        | Date of completion of the search  8 July 2011                                                                                 | Sau                                                  | Examiner<br>er, Tincuta                 |
| X : parti<br>Y : parti<br>docu | ATEGORY OF CITED DOCUMENTS  ioularly relevant if taken alone ioularly relevant if combined with another ument of the same category inological background                                                                                                                      | T : theory or principle E : earlier patent doou<br>after the filing date<br>D : document cited in t<br>L : document cited for | ment, but publis<br>the application<br>other reasons | hed on, or                              |
|                                | -written disclosure<br>rmediate document                                                                                                                                                                                                                                      | & : member of the san<br>document                                                                                             |                                                      |                                         |

#### ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 11 15 1749

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-07-2011

| Patent document<br>cited in search report | Publication<br>date | Patent family<br>member(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Publication date                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WO 2005118806 A2                          | 15-12-2005          | AU 2005250432 A1 CA 2572450 A1 EP 1771563 A2 EP 2065466 A2 EP 2290067 A2 EP 2290068 A2 EP 2290069 A2 EP 2290070 A2 EP 2290071 A2 EP 2290072 A2 EP 2290073 A2 EP 2290074 A2 EP 2290075 A2 EP 2290075 A2 EP 2290076 A2 JP 2008500837 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15-12-2005<br>15-12-2005<br>11-04-2007<br>03-06-2009<br>02-03-2011<br>02-03-2011<br>02-03-2011<br>02-03-2011<br>02-03-2011<br>02-03-2011<br>02-03-2011<br>02-03-2011<br>02-03-2011<br>02-03-2011<br>02-03-2011<br>02-03-2011                                                                                                                                                           |
| WO 2006137941 A2                          | 28-12-2006          | AU 2005333165 A1 CA 2587189 A1 EP 1838852 A2 EP 2292755 A1 EP 2292756 A1 EP 2302051 A1 EP 2281886 A1 EP 2302052 A1 EP 2302053 A1 EP 2302054 A1 EP 2298894 A1 EP 2281887 A1 EP 2281888 A1 EP 2281888 A1 EP 2281887 A1 EP 2281888 A1 EP 2281889 A1 EP 2302056 A1 EP 2281889 A1 EP 2302056 A1 | 28-12-2006<br>28-12-2006<br>03-10-2007<br>09-03-2011<br>30-03-2011<br>23-03-2011<br>30-03-2011<br>30-03-2011<br>30-03-2011<br>23-03-2011<br>23-03-2011<br>23-02-2011<br>27-04-2011<br>27-04-2011<br>09-02-2011<br>30-03-2011<br>16-02-2011<br>30-03-2011<br>16-02-2011<br>16-02-2011<br>18-05-2011<br>12-06-2008<br>19-08-2010<br>09-07-2009<br>24-07-2008<br>17-07-2008<br>28-02-2008 |
| WO 2007081680 A2                          | 19-07-2007          | AU 2007205257 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19-07-2007                                                                                                                                                                                                                                                                                                                                                                             |

© For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

FORM P0459

#### ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 11 15 1749

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

08-07-2011

| WO 2007081680 A2 CA 2635616 A1 CN 101384273 A EP 1968622 A2 JP 2009521952 A US 2008306018 A1 US 2010197774 A1  WO 2005078139 A2 25-08-2005 CA 2554818 A1 EP 1713938 A2 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EP 1713938 A2                                                                                                                                                          |
| EP 2295604 A2<br>US 2006105360 A1<br>US 2010203544 A1<br>US 2010234241 A1                                                                                              |

FORM P0459

© For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

#### EP 2 369 011 A1

#### REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

#### Patent documents cited in the description

- US 60743585 B [0001]
- US 5427916 A **[0085]**
- US 20020086356 A, Tuschl [0113]
- US 20040014113 A, Yang [0113]
- US 5252479 A [0121]
- US 5139941 A [0121]
- WO 9413788 A [0121]
- WO 9324641 A [0121]
- US 20020173478 A, Gewirtz [0132]

- US 20040018176 A, Reich [0132]
- US 5849902 A, Woolf **[0135]**
- US 4987071 A, Cech [0137]
- US 4235871 A [0147]
- US 4501728 A [0147]
- US 4837028 A [0147]
- US 5019369 A [0147]
- US 4920016 A [0150]

#### Non-patent literature cited in the description

- BARTEL, D.P. Cell, 2004, vol. 116, 281-297 [0003]
- AMBROS, V. Nature, 2004, vol. 431, 350-355 [0003]
- XU, P. et al. Curr. Biol., 2003, vol. 13, 790-795 [0003]
- CHENG, A.M. et al. Nucl. Acids Res., 2005, vol. 33, 1290-1297 [0003]
- POY, M.N. et al. *Nature*, 2004, vol. 432, 226-230 [0003]
- DRESIOS, J. et al. Proc. Natl. Acad. Sci. USA, 2005, vol. 102, 1865-1870 [0003]
- CALIN, G.A et al. Proc. Natl. Acad. Sci. USA, 2002, vol. 99, 1554-15529 [0003] [0005]
- CALIN, G.A. et al. Proc. Natl. Acad. Sci. USA, 2004, vol. 101, 11755-11760 [0003]
- HE, L. et al. *Nature*, 2005, vol. 435, 828-833 [0003] [0005]
- LU, J. et al. Nature, 2005, vol. 435, 834-838 [0003]
- CHEN, C.Z. et al. Science, 2004, vol. 303, 83-86 [0004]
- MONTICELLI, S. et al. Genome Biology, 2005, vol. 6, R71 [0004]
- FELLI, N. et al. Proc. Natl. Acad. Sci. USA., 2005, vol. 102, 18081-18086 [0004]
- FAZI, F. et al. Cell, 2005, vol. 123, 819-831 [0004]
- METZLER M. et al. Genes Chromosomes and Cancer, 2004, vol. 39, 167-169 [0005]
- Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1989 [0080] [0081]
- RIGBY et al. J. Mol. Biol, 1977, vol. 113, 237-251 [0083]
- FIENBERG et al. Anal. Biochem., 1983, vol. 132, 6-13 [0083]
- HANAMURA, I. et al. Jpn. J. Cancer Res., 2001, vol. 92 (6), 638-644 [0095]
- ZHANG, X. et al. J. Biol. Chem., 2002, vol. 278 (9), 7580-7590 [0099]

- ZENG et al. Molecular Cell, 2002, vol. 9, 1327-1333 [0114]
- TUSCHL. Nat. Biotechnol, 2002, vol. 20, 446-448 [0114]
- BRUMMELKAMP et al. Science, 2002, vol. 296, 550-553 [0114]
- MIYAGISHI et al. Nat. Biotechnol., 2002, vol. 20, 497-500 [0114]
- PADDISON et al. Genes Dev., 2002, vol. 16, 948-958 [0114]
- LEE et al. Nat. Biotechnol., 2002, vol. 20, 500-505 [0114]
- PAUL et al. Nat. Biotechnol., 2002, vol. 20, 505-508
   [0114]
- RABINOWITZ, J.E. et al. J. Virol., 2002, vol. 76, 791-801 [0119]
- DORNBURG. Gene Therapy, 1995, vol. 2, 301-310
   [0120]
- **EGLITIS.** *Biotechniques*, 1988, vol. 6, 608-614 **[0120]**
- MILLER. Hum. Gene Therapy, vol. 1, 5-14 [0120]
- ANDERSON. Nature, 1998, vol. 392, 25-30 [0120]
- XIA et al. Nat. Biotech., 2002, vol. 20, 1006-1010 [0121]
- SAMULSKI et al. *J. Virol.*, 1987, vol. 61, 3096-3101 [0121]
- FISHER et al. J. Virol., 1996, vol. 70, 520-532 [0121]
- SAMULSKI et al. *J. Virol.*, 1989, vol. 63, 3822-3826 [0121]
- STEIN; CHENG. Science, 1993, vol. 261, 1004 [0135]
- WERNER; UHLENBECK. Nucleic Acids Res., 1995, vol. 23, 2092-96 [0137]
- HAMMANN et al. Antisense and Nucleic Acid Drug Dev., 1999, vol. 9, 25-31 [0137]

#### EP 2 369 011 A1

- **SZOKA et al.** *Ann. Rev. Biophys. Bioeng.,* 1980, vol. 9, 467 [0147]
- GABIZON et al. *Proc. Natl. Acad. Sci., U.S.A.,* 1988, vol. 18, 6949-53 [0153]
- Remington's Pharmaceutical Science. Mack Publishing Company, 1985 [0158]
- TAJIMA, S. et al. J. Exp. Med, 1996, vol. 184, 1357-1364 [0178]
- LIU, C.G. et al. Proc. Natl. Acad. Sci. USA, 2002, vol. 101, 9740-9744 [0180]
- CHEN, C. et al. Nucl. Acid's Res., 2005, vol. 33, e179
   [0188]
- **ELAGIB, K.E. et al.** *Blood,* 2003, vol. 101, 4333-4341 **[0205]**
- ATHANASOIU, M. et al. Cell Growth Differ., 1996, vol. 7, 1525-1534 [0205]
- CASELLA, I. et al. *Blood*, 2003, vol. 101, 1316-1323 [0205]
- **HOCK, H. et al.** *Genes Dev.*, 2004, vol. 18, 2336-2341 [0205]

- BEGLEY, C.G.; GREEN, A.R. Blood, 1999, vol. 93, 2760-2770 [0205]
- JACKERS, P. et al. J. Biol. Chem., 2004, vol. 279, 52183-52190 [0205]
- LANNUTTI, B.J. et al. Exp. Hematol., 2003, vol. 12, 1268-1274 [0205]
- **SEVINSKY, J.R. et al.** *Mol. Cell. Biol.,* 2004, vol. 24, 4534-4545 **[0210]**
- MANSFIELD, J.H. et al. Nature, 2004, vol. 36, 1079-1083 [0214]
- TANZER, A. et al. J. Exp. Zool. B Mol. Dev. Evol., 2005, vol. 304B, 75-85 [0214]
- YEKTA, S. et al. Science, 2004, vol. 304, 594-596 [0218]
- LIM, L.P. et al. *Nature*, 2005, vol. 433, 769-771 [0218]
- PILLAI, R. RNA, 2005, vol. 11, 1753-1761 [0218]
- NAKAO, M. et al. Oncogene, 2004, vol. 125, 709-719 [0220]
- **SONG, W.J. et al.** *Nat. Genet.*, 1999, vol. 23, 166-175 [0220]