[0001] The present invention relates to compositions for use in a method for treating ophthalmic
               disorders of humans or animals. The present compositions and methods are highly suitable
               for intra- and peri-ocular administration into the interior of an eye and provide
               therapeutic effects to the eye as they are effective in stabilizing, enhancing and/or
               improving a patient's vision. More specifically, the present invention relates to
               compositions for use in a method for treating ophthalmic diseases or disorders with
               an exudative and/or inflammatory condition. Even more specifically, the present invention
               relates to compositions for use in a method for treating retinal diseases or disorders,
               and more specifically ophthalmic diseases or disorders related to impaired retinal
               vessel permeability and/or integrity.
 
            [0002] Ophthalmic diseases or disorders in general terms can be divided into (i) front-of-eye
               diseases or disorders such as, for 20 example, corneal oedema, anterior uveitis, pterygium,
               corneal diseases or opacifications with an exudative or inflammatory component, conjunctivitis,
               allergy and laser induced exudation and (ii) back-of-eye diseases or disorders such
               as, for example, exudative eye diseases and more particularly exudative retinopathies,
               exudative macular degeneration, macular oedema, diabetic retinopathy, age-related
               macular degeneration or retinopathy of prematurity.
 
            [0003] The pathogenesis of exudative and/or inflammatory eye diseases or disorders, and
               more particularly of exudative retinopathies, involves blood-retinal barrier (BRB)
               alteration and inflammation. The retina essentially consists in neuronal matter, and
               the barrier between the retina and the choroidal vascular system, herein referred
               as BRB is quite similar to the blood-brain barrier. The BRB is made up of two compartments
               defined as follows: an inner barrier consisting of retinal vascular endothelial cells
               that line the blood vessels of the choroid and an outer barrier consisting of the
               retinal pigment epithelial (RPE) cells that separate the choroid from the retina.
               Functionally, the BRB is dependent on the integrity of the RPE, the retinal vasculature
               and associated glial cell layers which behave as an additional component preventing
               the direct access of blood vessels to the neuronal environment. The BRB functions
               to preserve the physiological environment of the neuronal retina. When the BRB is
               compromised, plasma leaks across the BRB into the retina thus contributing to pathological
               processes such as exudative retinopathies and vision impairment. Ailments associated
               with breakdown of the BRB in the posterior region of the retina include, for example,
               oedematous retinal conditions such as, myopic retinopathies, macular oedema such as
               clinical macular oedema or angiographic cystoid macular oedema arising from various
               aetiologies such as diabetes, exudative macular degeneration and macular oedema arising
               for example from laser treatment of the retina.
 
            [0004] Other conditions can lead to or be associated with exudative retinopathy. For example,
               myopic retinopathy is a condition that results from severe malformation of the retina
               in part due to overgrowth of the sclera. This deformation leads to restriction of
               the blood vessels network within the choroid, and ultimately to a process of compensatory
               neovascularisation. Nevertheless, the newly formed vessels appear fragile and prone
               to leakage and exudation, leading to exudative retinopathy.
 
            [0005] Similarly, macular oedema (e.g. clinical macular oedema or angiographic cystoid macular
               oedema) is a condition involving swelling of the macula and typically occurs as a
               result of aetiologies such as disease (e.g. diabetes), injury or eye surgery. Fluid
               collects within the layers of the macula, causing blurred, distorted central vision.
 
            [0006] In exudative macular degeneration (also known as "wet" or neovascular age-related
               macular degeneration (wet-AMD)) abnormal overgrowth of blood vessels from the choroid
               into the retina occurs, compromising the BRB. The abnormal blood vessels are fragile
               and prone to leakage.
 
            [0007] Diabetic retinopathy is a severe complication of diabetes. In the initial stage,
               capillary microaneurysm and dot haemorrhage are observed. Thereafter, microvascular
               obstruction and retinal oedema result from vascular hyperpermeability and neovascularization.
               In the last stage, retinal detachment is caused by the traction of connective tissues
               grown in the vitreous body. Further, iris rubeosis and neovascular glaucoma are observed,
               leading to blindness.
 
            [0008] Retinal ischemia or degeneration is another retinopathy. It may result, for example,
               from injury, trauma, tumours or be associated with various disorders such as occlusion
               of a blood vessel or elevated intraocular pressure which reduces availability of blood,
               oxygen or other nutrients to the retina or optic nerve thus leading to neuronal cell
               death (degeneration) and loss of vision. Such disorders include e.g. diabetes, atherosclerosis,
               venous capillary insufficiency, obstructive arterial and venous retinopathies (e.g.
               Retinal Venous Occlusion), glaucoma and senile macular degeneration.
 
            [0009] Treatment of such diseases currently focuses on removing or inhibiting vascular growth
               by laser treatment, drug therapy or a combination of both.
 
            [0010] Currently, the most widely used treatment for these disorders is laser therapy which
               is directed to removal, destruction or blockage of blood vessels via photodynamic
               therapy or laser photocoagulation. For example, focal laser treatment may be applied
               to micro-aneurysms identified in diabetic retinopathy. Laser therapy is believed to
               inhibit neovascularisation and to decrease the extent of oedema. However, a complication
               of laser treatment is inflammation that may lead to further oedema and destruction
               of large portion of retina with significant risk of vision alteration. In addition,
               laser treatment is not always a permanent cure as blood vessels may grow again, and
               micro-aneurysms may reoccur. Furthermore, laser treatment of abnormal blood vessels
               cannot be performed on vessels located in certain retinal areas, such as the central
               region of the macula.
 
            [0011] Drug compounds for treating these ophthalmic disorders have been proposed which have
               anti-angiogenic or angiostatic properties, such as corticosteroid (e.g. anecortave
               acetate, triamcinolone,...). However, corticosteroids have serious side effects that
               limit their use, for example increase of intra occular pressure (glaucoma) and cataract
               formation. Other products are directed against vascular endothelial growth factor
               (VEGF) such as Lucentis™ also named ranibizumab or Macugen™ also named pegaptanib
               sodium. However, to date there is insufficient evidence to indicate how successful
               these compounds will be.
 
            [0012] The present invention intends to provide improved compounds for use in a method for
               the treatment of ophthalmic disorders that at least slow the rate of development of
               said ophthalmic disorders and address the principal problem underlying these diseases
               (i.e. retinal vascular permeability and/or exudation of fluids from vessels and retinal
               microvessel rupture leading to focal hemmorhages). In one aspect of the present invention,
               are provided compounds for use in a method for treating ophthalmic disorders, and
               more specifically exudative and/or inflammatory ophthalmic disorders. In a more specific
               aspect of the present invention, are provided compounds for use in a method for treating
               back of the eye diseases and/or disorders, and more specifically retinal diseases,
               and even more specifically ophthalmic disorders related to impaired retinal vessel
               permeability and/or stability.
 
            [0013] In animals, proteases (e.g. kallikrein, plasmin, elastase, urokinase plasminogen
               activator, thrombin, human lipoprotein-associated coagulation inhibitor or coagulation
               factors) are involved in a broad range of biological pathways affecting blood flow
               and are thus essential in wound healing, extracellular matrix destruction, tissue
               reorganization, and in cascades leading to blood coagulation, fibrinolysis, and complement
               activation. Proteases are released by inflammatory cells for destruction of pathogens
               or foreign agents, and by normal and cancerous cells as they move through their surroundings.
               Overproduction or lack of regulation of proteases activity can have deleterious consequences
               leading to pathological conditions. For example, kallikreins are serine proteases
               found in both tissues and plasma, and it has been shown that plasma kallikrein is
               involved in contact-activated coagulation, fibrinolysis, hypotension, and inflammation
               (See 
Bhoola, et al., 1992, Pharmacological Reviews, 44, 1- 80).
 
            [0014] The activity of proteases is regulated by inhibitors. It has been shown that 10%
               of the proteins in blood serum are protease inhibitors (
Roberts et al., 1995, Critical Reviews in Eukaryotic Gene Expression, 5, 385-436). Inhibitors of proteases, and more particularly of specific serine proteases, therefore
               have received attention as potential drug targets for various pathological situations,
               such as ischemic diseases, bleeding episodes (e.g. fibrinolysis or fibrinogenolysis,
               excessive bleeding associated with thrombolytics, post-operative bleeding and inappropriate
               androgenesis). One such inhibitor for example, aprotinin (also called bovine pancreatic
               trypsin inhibitor) has been approved in the United States for prophylactic use in
               reducing perioperative blood loss and the need for transfusion in patients during
               coronary artery bypass graft (for a review see 
Engles, 2005, Am J Health Syst Pharm., 62, S9-14). The effectiveness of aprotinin is actually associated with its relatively non-specific
               abilities to inhibit a variety of serine proteases, including plasma kallikrein and
               plasmin. Kallikrein, a serine protease, is an enzyme that initiates the CAS cascade
               leading to activation of neutrophils, plasmin, coagulation, and various kinins. It
               is secreted as a zymogen (prekallikrein) that circulates as an inactive molecule until
               activated by a proteolytic event early in the contact activation cascade.
 
            [0015] Protease inhibitors are classified into a series of families based on extensive sequence
               homologies among the family members and the conservation of intrachain disulfide bridges
               (for review, see
 Laskowski and Kato, 1980, Ann. Rev. Biochem. 49, 593-626). Serine protease inhibitors of the Kunitz family (i.e. Kunitz type serine protease
               inhibitors) are characterized by their homology with aprotinin (bovine pancreatic
               trypsin inhibitor). The Kunitz type serine protease inhibitors, includes inhibitors
               of trypsin, chymotrypsin, elastase, kallikrein, plasmin, coagulation factors XIa and
               IXa, and cathepsin G. These inhibitors thus regulate a variety of physiological processes,
               including blood coagulation, fibrinolysis, complement activation, inflammation and
               tumor development. The Kunitz type serine protease inhibitors are generally basic,
               low molecular weight proteins comprising one or more, native or non native, inhibitory
               domains ("Kunitz domains"). The Kunitz domain is a folding domain of approximately
               50-60 residues, which forms a central anti-parallel beta sheet and a short C- terminal
               helix (see e.g. 
US 6,087,473). This characteristic domain comprises six cysteine residues that form three disulfide
               bonds, resulting in a double-loop structure. Between the u-terminal region and the
               first beta strand resides the active inhibitory binding loop. This binding loop is
               disulfide bonded through a Cys residue to the hairpin loop formed between the last
               two beta strands. Isolated Kunitz domains from a variety of proteinase inhibitors
               display an inhibitory activity (e.g., 
Petersen et al., 1996, Eur. J. Biochem. 125, 310-316; 
Wagner et al., 1992, Biochem. Biophys. Res. Comm. 186, 1138-1145). Linked Kunitz domains also have an inhibitory activity (see for example 
US 6,087, 473). Proteinase inhibitors comprising one or more Kunitz domains include tissue factor
               pathway inhibitor (TFPI), tissue factor pathway inhibitor 2 (TFPI-2), amyloid β-protein
               precursor (AβPP), aprotinin, and placental bikunin.
 
            [0016] The present invention is based on the discovery that inhibitors of serine proteases,
               such as, for example, kallikrein, can successfully be employed to treat ophthalmic
               disorders, and more specifically exudative and/or inflammatory ophthalmic disorders.
               According to one special embodiment, said inhibitors are peptides that inhibit serine
               proteases, such as, for example, kallikrein. Similarly, it has been shown that said
               inhibitors (e.g. said peptides) can successfully be employed to treat back of the
               eye diseases, and more specifically diseases related to impaired retinal vessel permeability
               and/or integrity (e.g. retinal degeneration). More specifically, the invention provides
               methods of using kallikrein inhibitors in a method for treating and/or preventing
               ophthalmic disorders and compositions for such use. The invention also relates to
               compositions for use in a method for reducing, inhibiting or preventing exudative
               and/or inflammatory conditions in the eye, and more particularly in the back of the
               eye.
 
            [0017] According to a first embodiment, the Invention provides an ophthalmic composition
               useful for intraocular placement in an eye of a patient comprising a therapeutically
               effective amount of at least one peptide that inhibits serine protease and an ophthalmically
               compatible solvent component.
 
            [0018] According to another embodiment, said ophthalmic composition further comprises a
               biocompatible polymeric component in an amount effective to delay release of the said
               peptide into the interior of the eye after the composition is intraocularly placed
               in the eye; and an ophthalmically compatible solvent component in an amount effective
               to solubilize the polymeric component, the composition being effective, after being
               intraocularly placed into the interior of the eye, to form a delayed release composition
               effective to delay the release of the said peptide in the eye relative to intraocular
               placement of a substantially identical composition without the polymeric component.
 
            [0019] According to another embodiment, the present invention relates to compositions for
               use in a method for the prophylactic or therapeutic treatment of ophthalmic disorders
               in a patient in need of such treatment that comprises the step of administering a
               composition comprising a therapeutically effective amount of at least one peptide
               that inhibits serine protease in said patient.
 
            [0020] According to another embodiment, the present invention relates to compositions for
               use in a method for reducing, inhibiting or preventing exudative and/or inflammatory
               conditions in the eye, and more particularly in the back of the eye, wherein said
               method comprises the step of administering a composition comprising a therapeutically
               effective amount of at least one peptide that inhibits serine protease in a patient
               in need thereof.
 
            [0021] According to another embodiment, the present invention relates to the use of at least
               one peptide that inhibits serine protease for the preparation of an ophthalmic composition
               useful for the prophylactic or therapeutic treatment of ophthalmic disorders in a
               patient, and more specifically those cited above.
 
            [0022] According to one specific embodiment, said serine protease in all the above is kallikrein.
 
            [0023] According to another specific embodiment, said serine protease in all the above is
               plasma kallikrein.
 
            [0024] According to another specific embodiment, said peptides of the Invention that inhibits
               serine protease are kallikrein inhibitors, more preferably Kunitz domain polypeptides.
 
            [0025] According to one specific embodiment, said peptide of the Invention that inhibits
               serine protease includes (or consists of) the amino acid sequence:
               
               
Xaa1 Xaa2 Xaa3 Xaa4 Cys Xaa6 Xaa7 Xaa8 Xaa9 Xaa10 Xaa11 Gly Xaa13 Cys Xaa15 Xaa16
                  Xaa17 Xaa18 Xaa19 Xaa20 Xaa21 Xaa22 Xaa23 Xaa24 Xaa25 Xaa26 Xaa27 Xaa28 Xaa29 Cys
                  Xaa31 Xaa32 Phe Xaa34 Xaa35 Gly Gly Cys Xaa39 Xaa40 Xaa41 Xaa42 Xaa43 Xaa44 Xaa45
                  Xaa46 Xaa47 Xaa48 Xaa49 Xaa50 Cys Xaa52 Xaa53 Xaa54 Cys Xaa56 Xaa57 Xaa58 (SEQ ID
                  NO:1), or a fragment or variant thereof, e.g. a fragment that binds and inhibits kallikrein.
                  For example, the peptide can have fewer than 80, 70, 65, 60, 58, 55 or 52 amino acids.
               "Xaas" refers to positions in a peptide sequence and are, independently from one another,
                  any amino acid.
 
            [0026] According to a specific embodiment, Xaa can by any amino acid except cysteine.
 
            [0027] According to other specific embodiments, one or more of the following apply:
               
               
Xaa1, Xaa2, Xaa3, Xaa4, Xaa56, Xaa57 or Xaa58 are, independently from one another,
                  any amino acid or absent;
               Xaa10 is an amino acid selected from the group consisting of Asp and Glu;
               Xaa11 is an amino acid selected from the group consisting of Asp, Gly, Ser, Val, Asn,
                  Ile, Ala and Thr;
               Xaa13 is an amino acid selected from the group consisting of Arg, His, Pro, Asn, Ser,
                  Thr, Ala, Gly, Lys and Gln;
               Xaa15 is an amino acid selected from the group consisting of Arg, Lys, Ala, Ser, Gly,
                  Met, Asn and Gln;
               Xaa16 is an amino acid selected from the group consisting of Ala, Gly, Ser, Asp and
                  Asn;
               Xaa17 is an amino acid selected from the group consisting of Ala, Asn, Ser, Ile, Gly,
                  Val, Gln and Thr;
               Xaa18 is an amino acid selected from the group consisting of His, Leu, Gln and Ala;
               Xaa19 is an amino acid selected from the group consisting of Pro, Gln, Leu, Asn and
                  Ile;
               Xaa21 is an amino acid selected from the group consisting of Trp, Phe, Tyr, His and
                  Ile;
               Xaa22 is an amino acid selected from the group consisting of Tyr and Phe;
               Xaa23 is an amino acid selected from the group consisting of Tyr and Phe;
               Xaa31 is an amino acid selected from the group consisting of Glu, Asp, Gln, Asn, Ser,
                  Ala, Val, Leu, Ile and Thr;
               Xaa32 is an amino acid selected from the group consisting of Glu, Gln, Asp Asn, Pro,
                  Thr, Leu, Ser, Ala, Gly and Val;
               Xaa34 is an amino acid selected from the group consisting of Thr, Ile, Ser, Val, Ala,
                  Asn, Gly and Leu;
               Xaa35 is an amino acid selected from the group consisting of Tyr, Trp and Phe;
               Xaa39 is an amino acid selected from the group consisting of Glu, Gly, Ala, Ser and
                  Asp;
               Xaa40 is an amino acid selected from the group consisting of Gly and Ala;
               Xaa43 is an amino acid selected from the group consisting of Asn and Gly;
               Xaa45 is an amino acid selected from the group consisting of Phe and Tyr;
               Xaa6, Xaa7, Xaa8, Xaa9, Xaa20, Xaa24, Xaa25, Xaa26, Xaa27, Xaa28, Xaa29, Xaa41, Xaa42,
                  Xaa44, Xaa46, Xaa47, Xaa48, Xaa49, Xaa50, Xaa52, Xaa53 and Xaa54 are, independently
                  from one another, any amino acid.
 
            [0028] According to another specific embodiment, each of the first and/or last four amino
               acids of SEQ ID NO:1 can optionally be present or absent and can be any amino acid,
               if present, e.g., any non-cysteine amino acid.
 
            [0029] According to another specific embodiment, each of the first and/or last three amino
               acids of SEQ ID NO:1 can optionally be present or absent and can be any amino acid,
               if present, e.g., any non-cysteine amino acid.
 
            [0030] According to another specific embodiment, it is possible to remove one, two, three,
               or four amino acids from the N-terminus of an amino acid sequence described herein,
               and/or one, two, three, four, or five amino acids from the C-terminus of an amino
               acid sequence described herein.
 
            [0031] According to another specific embodiment, the peptide of the Invention has a sequence
               with one or more of the following properties: Xaa11 is an amino acid selected from
               the group consisting of Asp, Gly, Ser or Val; Xaa13 is an amino acid selected from
               the group consisting of Pro, Arg, His or Asn; Xaa15 is an amino acid selected from
               the group consisting of Arg or Lys; Xaa16 is an amino acid selected from the group
               consisting of Ala or Gly; Xaa17 is an amino acid selected from the group consisting
               of Ala, Asn, Ser or Ile; Xaa18 is an amino acid selected from the group consisting
               of His, Leu or Gln; Xaa19 can be Pro, Gln or Leu; Xaa21 is an amino acid selected
               from the group consisting of Trp or Phe; Xaa31 is Glu; Xaa32 is an amino acid selected
               from the group consisting of Glu or Gln; Xaa34 is an amino acid selected from the
               group consisting of Ile, Thr or Ser; Xaa35 is Tyr; and Xaa39 is an amino acid selected
               from the group consisting of Glu, Gly or Ala.
 
            [0032] According to another specific embodiment, the peptide of the Invention includes the
               following amino acids: Xaa10 is Asp; Xaa11 is Asp; Xaa13 is an amino acid selected
               from the group consisting of Pro or Arg; Xaa15 is Arg; Xaa16 is an amino acid selected
               from the group consisting of Ala or Gly; Xaa17 is Ala; Xaa18 is His; Xaa19 is Pro;
               Xaa21 is Trp; Xaa31 is Glu; Xaa32 is Glu; Xaa34 is an amino acid selected from the
               group consisting of Ile or Ser; Xaa35 is Tyr; and Xaa39 is Gly.
 
            [0033] According to the present Invention, it is possible to use all or part of the peptides
               described herein. For example, peptides of the Invention can include binding domains
               for specific kallikrein epitopes. For example, the binding loops of Kunitz domains
               can be cyclized and used in isolation or can be grafted onto another domain, e.g.,
               a framework of another Kunitz domain.
 
            
            [0035] Additional examples of peptides according to the present Invention are those that
               differ (e.g., substitutions, insertions, or deletions) by at least one amino acid,
               but fewer than seven, six, five, four, three, or two amino acids differences relative
               to an amino acid sequence described herein, e.g., an amino acid sequence provided
               above. In one embodiment, fewer than three, two, or one differences are in one of
               the binding loops. For example, the first binding loop may have no differences relative
               to an amino acid sequence described herein, e.g., an amino acid sequence provided
               above. In another example, neither the first nor the second binding loop differs from
               an amino acid sequence described herein, e.g., an amino acid sequence provided above.
 
            
            
            [0038] According to another embodiment, said peptide of the Invention that inhibits serine
               protease includes (or consists of) the amino acid sequence:
               
               
Xaa-1 Xaa0 Xaa1 Xaa2 Xaa3 Xaa4 Cys Xaa6 Xaa7 Xaa8 Xaa9 Xaa10 Xaa11 Gly Xaa13 Cys Xaa15
                  Xaa16 Xaa17 Xaa18 Xaa19 Xaa20 Xaa21 Xaa22 Xaa23 Xaa24 Xaa25 Xaa26 Xaa27 Xaa28 Xaa29
                  Cys Xaa31 Xaa32 Phe Xaa34 Xaa35 Gly Gly Cys Xaa39 Xaa40 Xaa41 Xaa42 Xaa43 Xaa44 Xaa45
                  Xaa46 Xaa47 Xaa48 Xaa49 Xaa50 Cys Xaa52 Xaa53 Xaa54 Cys Xaa56 Xaa57 Xaa58 (SEQ ID
                  NO:44), or a fragment or variant thereof, e.g. a fragment that binds and inhibits
                  kallikrein wherein Xaa1 to Xaa58 are as defined above and Xaa-1 is Glu and Xaa0 is
                  Ala.
 
            [0039] According to preferred embodiment, the peptide of the Invention is SEQ ID NO:23 (
Markland et al., 1996, Biochemistry, 35, 8058-8067 ; 
Ley et al., 1996, Mol Divers, 2, 119-124 ; 
US 6,333,402).
 
            [0040] The present invention also extends to the use of variants of the above disclosed
               peptides, said variants being more specifically defined as substantially homologous
               to the peptides above disclosed. The term "substantially homologous", when used in
               connection with amino acid sequences, refers to sequences which are substantially
               identical to or similar in sequence, giving rise to a homology in conformation and
               thus to similar biological activity. The term is not intended to imply a common evolution
               of the sequences. Typically, "substantially homologous" sequences are at least 50%
               more preferably at least 80% identical in sequence, at least over any regions known
               to be involved in the desired activity. Most preferably, no more than five residues,
               other than at the termini, are different. Preferably, the divergence in sequence,
               at least in the aforementioned regions, is in the form of "conservative modifications".
               "Conservative modifications" are defined as (i) conservative substitutions of amino
               acids as hereafter defined; and (ii) single or multiple insertions or deletions of
               amino acids at the termini, at interdomain boundaries, in loops or in other segments
               of relatively high mobility (as indicated, e.g., by the failure to clearly resolve
               their structure upon X-ray diffraction analysis or NMR). Preferably, except at the
               termini, no more than about five amino acids are inserted or deleted at a particular
               locus, and the modifications are outside regions known to contain binding sites important
               to activity. Conservative substitutions are herein defined as exchanges within one
               of the following five groups:
               
               
                  - I. Small aliphatic, nonpolar or slightly polar residues: Ala, Ser, Thr (Pro, Gly)
 
                  - II. Polar, negatively charged residues: and their amides Asp, Asn, Glu, Gln
 
                  - III. Polar, positively charged residues: His, Arg, Lys
 
                  - IV. Large, aliphatic, nonpolar residues: Met, Leu, Ile, Val (Cys)
 
                  - V. Large, aromatic residues: Phe, Tyr, Trp.
 
               
 
            [0041] Residues Pro, Gly and Cys are parenthesized because they have special conformational
               roles. Cys participates in formation of disulfide, bonds. Gly imparts flexibility
               to the chain. Pro imparts rigidity to the chain and disrupts alpha helices. These
               residues may be essential in certain regions of the polypeptide, but substitutable
               elsewhere.
 
            [0042] Semi-conservative substitutions are defined to be exchanges between two of groups
               (I)-(V) above which are limited to supergroup (a), comprising (I), (II) and (III)
               above, or to supergroup (B), comprising (IV) and (V) above.
 
            [0043] The compounds are not limited to the side groups found in genetically encoded amino
               acids; rather, conservative substitutions are allowed. Lys can be replaced by Arg,
               ornithine, guanidolysine, and other side groups that carry a positive charge. Asn
               can be replaced by other small, neutral, hydrophilic groups, such as (but without
               limitation) Ser, O-methyl serine, Gln, alpha-amidoglycine, Ala, alpha-aminobutyric
               acid, and alpha-amino-gamma-hydroxybutyric acid (homoserine). His could be replaced
               with other amino acids having one or more of the properties: amphoteric, aromatic,
               hydrophobic, and cyclic. For example (without limitation), His could be replaced with
               methylhistidine, L-p-aminophenylalanine, L-m-(N,N,dimethylamino)phenylalanine, canavanine
               and N-methylasparagine.
 
            [0044] The Kunitz domains are quite small; if this should cause a pharmacological problem,
               such as excessively quick elimination from the circulation, two or more such domains
               may be joined by a linker. This linker is preferably a sequence of one or more amino
               acids. Peptide linkers have the advantage that the entire protein may then be expressed
               by recombinant DNA techniques. It is also possible to use a non-peptidyl linker, such
               as one of those commonly used to form immunogenic conjugates.
 
            [0045] Chemical polypeptide synthesis is a well-described and practiced in the art. In general,
               as is known in the art, such methods involve blocking or protecting reactive functional
               groups, such as free amino, carboxyl and thio groups. After polypeptide bond formation,
               the protective groups are removed (or de-protected). Thus, the addition of each amino
               acid residue requires several reaction steps for protecting and deprotecting. Current
               methods utilize solid phase synthesis, wherein the C-terminal amino acid is covalently
               linked to an insoluble resin particle large enough to be separated from the fluid
               phase by filtration. Thus, reactants are removed by washing the resin particles with
               appropriate solvents using an automated programmed machine. The completed polypeptide
               chain is cleaved from the resin by a reaction which does not affect polypeptide bonds.
 
            [0046] The term "and/or" wherever used in the present Invention includes the meaning of
               "and", "or" and "all or any other combination of the elements connected by said term".
               The terms "amino acids" and "residues" are synonyms and encompass natural amino acids
               as well as amino acid analogs (e.g. non-natural, synthetic and modified amino acids,
               including D or L optical isomers).
               The terms "polypeptide", "peptide" and "protein" are used herein interchangeably to
               refer to polymers of amino acid residues which comprise ten or more amino acids bonded
               via peptide bonds. The polymer can be linear, branched or cyclic and may comprise
               naturally occurring and/or amino acid analogs and it may be interrupted by non-amino
               acids. As a general indication, if the amino acid polymer is long (e.g. more than
               50 amino acid residues), it is preferably referred to as a polypeptide or a protein.
 
            [0047] As used herein, the term "treatment" or "treating" encompasses prophylaxis and/or
               therapy. Accordingly the compositions for use of the present invention are not limited
               to therapeutic applications and can be used in prophylaxis ones. Therefore "treating"
               or "treatment" of a state, disorder or condition includes: (i) preventing or delaying
               the appearance of clinical symptoms of the state, disorder or condition developing
               in a subject that may be afflicted with or predisposed to the state, disorder or condition
               but does not yet experience or display clinical or subclinical symptoms of the state,
               disorder or condition, (ii) inhibiting the state, disorder or condition, i.e., arresting
               or reducing the development of the disease or at least one clinical or subclinical
               symptom thereof, or (iii) relieving the disease, i.e. causing regression of the state,
               disorder or condition or at least one of its clinical or subclinical symptoms.
 
            [0048] According to a specific embodiment, the peptides of the present invention are PEGylated,
               i.e. a plurality of polyethylene glycol moieties are attached to the said peptide,
               especially those peptides that present available lysines and an N-terminus for modification
               with mPEG (see 
US20050089515).
 
            [0049] According to a specific embodiment, the ophthalmic disorders of the present invention
               are exudative and/or inflammatory ophthalmic disorders.
 
            [0050] According to a specific embodiment, the ophthalmic disorders of the present invention
               are disorders related to impaired retinal vessel permeability and/or integrity.
 
            [0051] According to another specific embodiment, the ophthalmic disorders of the present
               invention are disorders related to retinal microvessel rupture leading to focal hemmorhages.
 
            [0052] According to another embodiment, the ophthalmic disorders of the present invention
               are back of the eye diseases, and more specifically retinal diseases.
 
            [0053] According to another embodiment, the ophthalmic disorders of the present invention
               are front of the eye diseases.
 
            [0054] According to the present Invention the terms "disease" and "disorder" have the same
               meaning.
 
            [0055] Among the ophthalmic disorders (including exudative and/or inflammatory ophthalmic
               disorders, disorders related to impaired retinal vessel permeability and/or integrity,
               disorders related to retinal microvessel rupture leading to focal hemmorhages, back
               of the eye diseases, retinal diseases, and front of the eye diseases,) which can be
               treated or addressed in accordance with the present invention include, without limitation,
               the following: Age Related Macular Degeneration (ARMD), exudative macular degeneration
               (also known as "wet" or neovascular age-related macular degeneration (wet-AMD), macular
               oedema, aged disciform macular degeneration, cystoid macular oedema, palpebral oedema,
               retinal oedema, diabetic retinopathy, Acute Macular Neuroretinopathy, Central Serous
               chorioretinopathy, chorioretinopathy, Choroidal Neovascularization, neovascular maculopathy,
               neovascular glaucoma, obstructive arterial and venous retinopathies (e.g. Retinal
               Venous Occlusion or Retinal Arterial Occlusion), Central Retinal Vein Occlusion, Disseminated
               Intravascular Coagulopathy, Branch Retinal Vein Occlusion, Hypertensive Fundus Changes,
               Ocular Ischemic Syndrome, Retinal Arterial Microaneurysms, Coat's Disease, Parafoveal
               Telangiectasis, Hemi-Retinal Vein Occlusion, Papillophlebitis, Central Retinal Artery
               Occlusion, Branch Retinal Artery Occlusion, Carotid Artery Disease(CAD), Frosted Branch
               Angitis, Sickle Cell Retinopathy and other Hemoglobinopathies, Angioid Streaks, macular
               oedema occuring as a result of aetiologies such as disease (e.g. Diabetic Macular
               Oedema,), eye injury or eye surgery; retinal ischemia or degeneration produced for
               example by injury, trauma or tumours , uveitis, iritis, retinal vasculitis, endophthalmitis,
               panophthalmitis, metastatic ophthalmia, choroiditis, retinal pigment epithelitis,
               conjunctivitis, cyclitis, scleritis, episcleritis, optic neuritis, retrobulbar optic
               neuritis, keratitis, blepharitis, exudative retinal detachment, corneal ulcer, conjunctival
               ulcer, chronic nummular keratitis, Thygeson keratitis, progressive Mooren's ulcer,
               an ocular inflammatory disease caused by bacterial or viral infection, and by an ophthalmic
               operation, an ocular inflammatory disease caused by a physical injury to the eye,
               a symptom caused by an ocular inflammatory disease including itching, flare, oedema
               and ulcer, erythema, erythema exsudativum multiforme, erythema nodosum, erythema annulare,
               scleroedema, dermatitis, angioneurotic oedema, laryngeal oedema, glottic oedema, subglottic
               laryngitis, bronchitis, rhinitis, pharyngitis, sinusitis, laryngitis or otitis media.
 
            [0056] According to the present invention, the term "back-of-eye diseases" refers to diseases
               affecting among other the retina, macular, fovea in the posterior region of the eye.
               Examples of back-of-eye disease include macular oedema such as clinical macular oedema
               or angiographic cystoid macular oedema arising from various aetiologies such as diabetes,
               exudative macular degeneration and macular oedema arising from laser treatment of
               the retina, age-related macular degeneration, retinopathy of prematurity (also known
               as retrolental fibroplasia), retinal ischemia and choroidal neovascularization, retinal
               diseases (diabetic retinopathy, diabetic retinal oedema, retinal detachment, senile
               macular degeneration due to sub-retinal neovascularization, myopic retinopathy); inflammatory
               diseases; uveitis associated with neoplasms such as retinoblastoma or pseudoglioma;
               neovascularization following vitrectomy; vascular diseases (retinal ischemia, choroidal
               vascular insufficiency, choroidal thrombosis, retinopathies resulting from carotid
               artery ischemia); neovascularization of the optic nerve.
 
            [0057] According to the present invention, the term "front-of-eye" diseases refers to diseases
               affecting predominantly the tissues at the front-of-eye, such as the cornea, iris,
               ciliary body, conjunctiva etc. Examples of front-of-eye diseases include corneal neovascularization
               (due to inflammation, transplantation, developmental hypoplasia of the iris, corneal
               diseases or opacifications with an exudative or inflammatory component, neovascularization
               due to penetration of the eye or contusive ocular injury; chronic uveitis; anterior
               uveitis; inflammatory conditions resulting from surgeries such as LASIK, LASEK, refractive
               surgery, IOL implantation; irreversible corneal oedema as a complication of cataract
               surgery; oedema as a result of insult or trauma (physical, chemical, pharmacological,
               etc); inflammation; conjunctivitis (eg. persistent allergic, giant papillary, seasonal
               intermittent allergic, perennial allergic, toxic, conjunctivitis caused by infection
               by bacteria, viruses or Chlamydia); keratoconjunctivitis (vernal, atopic, Sicca);
               iridocyclitis; iritis; scleritis; episcleritis; infectious keratitis; superficial
               punctuate keratitis; keratoconus; posterior polymorphous dystrophy; Fuch's dystrophies
               (corneal and endothelial); aphakic and pseudophakic bullous keratopathy; corneal oedema;
               scleral disease; ocular cicatrcial pemphigoid; pars planitis; Posner Schlossman syndrome;
               Behçet's disease; Vogt-Koyanagi-Harada syndrome; hypersensitivity reactions; ocular
               surface disorders; conjunctival oedema; Toxoplasmosis chorioretinitis; inflammatory
               pseudotumor of the orbit; chemosis; conjunctival venous congestion; periorbital cellulitis;
               acute dacryocystitis; non-specific vasculitis; sarcoidosis; cytomegalovirus infection.
 
            [0058] In preferred embodiment, the Invention concerns back of the eye diseases.
 
            [0059] According to the present invention, the term "therapeutically effective amount" is
               used herein to refer to an amount of therapeutic agent either as an individual compound
               or in combination with other compounds that is sufficient to induce a therapeutic
               effect on the ailment which the compound is applied to. This phrase should not be
               understood to mean that the dose must completely eradicate the ailment. What constitutes
               a therapeutically effective amount will vary depending on, inter alia, the biopharmacological
               properties of the compound used in the methodology, the condition being treated, the
               frequency of administration, the mode of delivery, characteristics of the individual
               to be treated the severity of the disease and the response of the patient. These are
               the types of factors that a skilled pharmaceutical chemist will be aware of and will
               be able to account for when formulating compositions for a treatment as described
               herein.
 
            [0060] An effective quantity of the peptide of interest is preferably employed in the method
               of the invention. For ocular and extraocular formulations, the concentration of the
               peptide may be in the range of about 0.01% w/w to about 10% w/w. Typicaly, the concentration
               for this mode of delivery is in the range of about 0.025% w/w to about 2.5% w/w.
 
            [0061] The precise pharmaceutical formulation (i.e. ophthalmic composition) used in the
               method of the present invention will vary according to a wide range of commercial
               and scientific criteria. That is the skilled reader will appreciate that the above
               formulation of the invention described above may contain other agents.
 
            [0062] For example, the ophthalmic compositions used in the methods of the invention are
               preferably prepared using a physiological saline solution as a vehicle. The pH of
               the ophthalmic composition may be maintained at a substantially neutral pH (for example,
               about 7.4, in the range of about 6. 5 to about 7.4, etc.) with an appropriate buffer
               system as known to one skilled in the art (for example, acetate buffers, citrate buffers,
               phosphate buffers, borate buffers).
 
            [0063] Any diluent used in the preparation of the ophthalmic composition may preferably
               be selected so as not to unduly affect the biological activity of the composition.
               Examples of such diluents which are especially useful for injectable ophthalmic composition
               are water, the various saline, organic or inorganic salt solutions, Ringer's solution,
               dextrose solution, and Hank's solution.
 
            [0064] In addition, the ophthalmic composition used in the method of the invention may include
               additives such as other buffers, diluents, carriers, adjuvants or excipients. Any
               pharmacologically acceptable buffer suitable for application to the eye may be used,
               e.g., tris or phosphate buffers. Other agents may be employed in the formulation for
               a variety of purposes. For example, buffering agents, preservatives, co-solvents,
               surfactants, oils, humectants, emollients, chelating agents, stabilizers or antioxidants
               may be employed. Water soluble preservatives which may be employed include, but are
               not limited to, benzalkonium chloride, chlorobutanol, thimerosal, sodium bisulfate,
               phenylmercuric acetate, phenylmercuric nitrate, ethyl alcohol, methylparaben, polyvinyl
               alcohol, benzyl alcohol and phenylethyl alcohol. A surfactant may be Tween 80.
 
            [0065] Other vehicles that may be used include, but are not limited to, polyvinyl alcohol,
               povidone, hydroxypropyl methyl cellulose, poloxamers, carboxymethyl cellulose, hydroxyethyl
               cellulose, purified water, etc. Tonicity adjustors may be included, for example, sodium
               chloride, potassium chloride, mannitol, glycerin, etc. Antioxidants include, but are
               not limited to, sodium metabisulfite, sodium thiosulfate, acetylcysteine, butylated
               hydroxyanisole, butylated hydroxytoluene, etc. The indications, effective doses, formulations,
               contraindications, vendors etc, of the compounds in the ophthalmic composition are
               available or are known to one skilled in the art.
 
            [0066] These agents may be present in individual amounts of from about 0.001% to about 5%
               by weight and preferably about 0.01% to about 2%. Suitable water soluble buffering
               agents that may be employed are sodium carbonate, sodium borate, sodium phosphate,
               sodium acetate, sodium bicarbonate, etc., as approved by the US FDA for the desired
               route of administration. These agents may be present in amounts sufficient to maintain
               a pH of the system of between about 2 to about 9 and preferably about 4 to about 8.
               As such, the buffering agent may be as much as about 5% (w/w) of the total ophthalmic
               composition. Electrolytes such as, but not limited to, sodium chloride and potassium
               chloride may also be included in the formulation.
 
            [0067] The ophthalmic composition of the present invention for the treatment or prevention
               of ophthalmic disorders may be provided in the form of a single unit dose in a pre-prepared
               syringe, ready for administration.
 
            [0068] In performing the method of the invention, ophthalmic composition may be administered
               to a patient by any method that leads to delivery of the therapeutic agent (i.e. the
               peptide of the Invention) to the site of the ophthalmic condition (e.g. the location
               of an exudative retinopathy, inflammation or macular oedema). Any of the ophthalmic
               composition may be administered by an ocular route, such as topical, subconjunctival,
               sub-Tenon, intraocular, ocular implants etc.
 
            [0069] Administration of the ophthalmic composition for use in the method of the invention
               is preferably by intraocular injection, although other modes of administration may
               be effective. Typically, ophthalmic composition will be delivered intraocularly (by
               chemical delivery system or invasive device) to an individual. However, the invention
               is not limited to intraocular delivery in that it also includes topically (extraocular
               application) or systemically (e.g. oral or other parenteral route such as for example
               subcutaneous administration) provided that a sufficient amount of the peptide within
               cells or tissue located in an eye or adjacent an eye achieves contact with the site
               of the ophthalmic condition. Parenteral administration is used in appropriate circumstances
               apparent to the practitioner. Preferably, the ophthalmic compositions are administered
               in unit dosage forms suitable for single administration of precise dosage amounts.
 
            [0070] As mentioned above, delivery to areas within the eye, in situ can be accomplished
               by injection, cannula or other invasive device designed to introduce precisely metered
               amounts of a desired ophthalmic composition to a particular compartment or tissue
               within the eye (e.g. posterior chamber or retina). An intraocular injection may be
               into the vitreous (intravitreal), or under the conjunctiva (subconjunctival), or behind
               the eye (retrobulbar), into the sclera, or under the Capsule of Tenon (sub- Tenon),
               and may be in a depot form. Other intraocular routes of administration and injection
               sites and forms are also contemplated and are within the scope of the invention.
 
            [0071] Preferably, the intraocular injection is an intravitreal injection, preferably through
               self sealing gauge needles or other any suitably calibrated delivery device. Injection
               into the eye may be through the pars plana via the self-sealing needle.
 
            [0072] In one embodiment, the ophthalmic composition is intraocularly injected (eg, into
               the vitreous) to treat or prevent an ophthalmic condition. When administering the
               ophthalmic composition by intravitreal injection, the active agents should be concentrated
               to minimise the volume for injection. Preferably, the volume for injection is less
               than about 5 ml. Volumes such as this may require compensatory drainage of the vitreous
               fluid to prevent increases in intraocular pressure and leakage of the injected fluid
               through the opening formed by the delivery needle. More preferably, the volume injected
               is between about 1.0 ml and 0.05 ml. Most preferably, the volume for injection is
               approximately 0.1 ml.
 
            [0073] For injection, a concentration less than about 20 mg/ml may be injected, and any
               amount may be effective depending upon the factors previously described. Preferably
               a dose of less than 7 mg/ml is administered, with doses of less than 6 mg/ml, 5 mg/ml,
               4 mg/ml 3 mg/ml, 2 mg/ml and 1 mg/ml being more preferred. Sample concentrations include,
               but are not limited to, about 5 µg/ml to about 50 µg/ml; about 25 µg/ml to about 100
               µg/ml; about 100 µg/ml to about 200 µg/ml; about 200 µg/ml to about 500 µg/ml; about
               500 µg/ml to about 750 µg/ml; about 500 µg/ml up to 1 mg/ml etc.
 
            [0074] Intravitreal injection may be achieved by a variety of methods well known in the
               art. For example, the eye may be washed with a sterilising agent such as Betadine®
               and the compound of the Invention is injected in an appropriate carrier with a fine
               gauge needle (e.g. 27 gauge) at a position in the eye such that the compound will
               settle to the posterior pole towards the ventral surface. It may be necessary to prepare
               the eye for injection by application of positive pressure prior to injection. In some
               cases, paracentesis may be necessary. Local anaesthetic or general anaesthetic may
               be necessary.
 
            [0075] The syringe used in practicing the method of this invention is suitably one which
               can accommodate a 21 to 30 gauge needle (eg a 23, 24, 25, 26 or 27 gauge needle) and
               is preferably of a small volume, for example 1.5 ml, or more preferably 0.5 ml. Although
               it is possible that the needle and syringe may be of the type where the needle is
               removable from the syringe, it is preferred that the arrangement is of a unitary syringe/needle
               construction. This would clearly limit the possibility of disengagement of the needle
               from the syringe. It is also preferred that the arrangement be tamper evident. The
               formulations of the present invention may therefore be provided in the form of a single
               unit dose in a pre-prepared syringe, ready for administration.
 
            [0076] A suitable style of syringe is, for example, sold under the name of Uniject® manufactured
               by Becton Dickinson and Company. In this style of syringe, the material is expelled
               through the needle into the eye by pressure applied to the sides of a pliable reservoir
               supplying the needle, rather than by a plunger. As the name implies, the construction
               of the reservoir and needle forms a single unit.
 
            [0077] Topical application of ophthalmic composition of the invention for the treatment
               or prevention of ophthalmic disorders may be as ointment, gel or eye drops. Preferably
               a penetrating composition comprising the peptide(s) is used. The topical ophthalmic
               composition may further be an 
in situ gellable aqueous formulation. Such a formulation comprises a gelling agent in a concentration
               effective to promote gelling upon contact with the eye or with lacrimal fluid in the
               exterior of the eye. Suitable gelling agents include, but are not limited to, thermosetting
               polymers such as tetra-substituted ethylene diamine block copolymers of ethylene oxide
               and propylene oxide (e.g., poloxamine); polycarbophil; and polysaccharides such as
               gellan, carrageenan (e.g., kappa-carrageenan and iota-carrageenan), chitosan and alginate
               gums.
 
            [0078] The phrase "in situ gellable" as used herein embraces not only liquids of low viscosity
               that form gels upon contact with the eye or with lacrimal fluid in the exterior of
               the eye, but also more viscous liquids such as semi-fluid and thixotropic gels that
               exhibit substantially increased viscosity or gel stiffness upon administration to
               the eye.
 
            [0079] To prepare a topical ophthalmic composition for the treatment of ophthalmic disorders,
               a therapeutically effective amount of the ophthalmic composition of the invention
               is placed in an ophthalmological vehicle as is known in the art. For example, topical
               ophthalmic formulations containing steroids are disclosed in 
US 5,041,434, whilst sustained release ophthalmic formulations of an ophthalmic drug and a high
               molecular weight polymer to form a highly viscous gel have been described in 
US 4,271,143 and 
US 4,407,792. Further 
GB 2007091 describes an ophthalmic composition in the form of a gel comprising an aqueous solution
               of a carboxyvinyl polymer, a water-soluble basic substance and an ophthalmic drug.
               Alternatively, 
US 4,615,697, discloses a controlled release composition and method of use based on a bioadhesive
               and a treating agent, such as an anti-inflammatory agent.
 
            [0080] The amount of the peptide (s) to be administered and the concentration of the compound
               in the topical ophthalmic composition used in the method depend upon the diluent,
               delivery system or selected device, the clinical condition of the patient, the side
               effects and the stability of the compound in the formulation. Thus, the physician
               employs the appropriate preparation containing the appropriate concentration of the
               peptide(s) and selects the amount of formulation administered, depending upon clinical
               experience with the patient in question or with similar patients.
 
            [0081] Where the formulation contains two or more active agents (eg two or more peptides,
               or a peptide and another agent such as a tetracycline derivative etc), the active
               agents may be administered as a mixture, as an admixture, in the same ophthalmic composition,
               in separate formulations, in extended release formulations, liposomes, microcapsules,
               or any of the previously described embodiments. The ophthalmic composition may be
               administered topically, or may be injected into the eye, or one active agent may be
               administered topically and the other agent(s) may be injected.
 
            [0082] The ophthalmic composition may be also administered as a slow release formulation,
               with a carrier formulation such as microspheres, microcapsules, liposomes, etc., as
               a topical ointment or solution, an intravenous solution or suspension, or in an intraocular
               injection, as known to one skilled in the art to treat or prevent ophthalmic disorders.
 
            [0083] A time-release drug delivery system may be administered intraocularly to result in
               sustained release of the agent over a period of time. The ophthalmic composition may
               be in the form of a vehicle, such as a micro- or macro-capsule or matrix of biocompatible
               polymers such as polycaprolactone, polyglycolic acid, polylactic acid, polyanhydrides,
               polylactide-co-glycolides, polyamino acids, polyethylene oxide, acrylic terminated
               polyethylene oxide, polyamides, polyethylenes, polyacrylonitriles, polyphosphazenes,
               poly(ortho esters), sucrose acetate isobutyrate (SAIB), and other polymers such as
               those disclosed in 
US Patents Nos. 6,667,371; 
6,613,355; 
6,596,296; 
6,413,536; 
5,968,543; 
4,079,038; 
4,093,709; 
4,131,648; 
4,138,344; 
4,180,646; 
4,304,767; 
4,946,931, or lipids that may be formulated as microspheres or liposomes. A microscopic or
               macroscopic ophthalmic composition may be administered through a needle, or may be
               implanted by suturing within the eye, for example, within the lens capsule. Delayed
               or extended release properties may be provided through various formulations of the
               vehicle (coated or uncoated microsphere, coated or uncoated capsule, lipid or polymer
               components, unilamellar or multilamellar structure, and combinations of the above,
               etc.). The formulation and loading of microspheres, microcapsules, liposomes, etc.
               and their ocular implantation are standard techniques known by one skilled in the
               art, for example, the use a ganciclovir sustained-release implant to treat cytomegalovirus
               retinitis, disclosed in 
Vitreoretinal Surgical Techniques, Peyman et al., Eds. (Martin Dunitz, London 2001,
                  chapter 45); 
Handbook of Pharmaceutical Controlled Release Technology, Wise, Ed. (Marcel Dekker,
                  New York 2000). For example, a sustained release intraocular implant may be inserted through the
               pars plans for implantation in the vitreous cavity.
 
            [0084] The invention also provides a composition for use in a method for the treatment or
               prophylaxis of ophthalmic disorders with exudative/inflammatory conditions (e.g. exudative
               retinopathies), and/or ophthalmic disorders related to impaired retinal vessel permeability
               and/or integrity, said method comprising the step of administering an ophthalmic composition
               comprising a therapeutically effective amount of at least one peptide of the Invention
               in a biocompatible, biodegradable matrix, for example in the form of a gel or polymer
               which is preferably suited for insertion into the retina or into a cavity of the eye,
               anterior or posterior, as an implant. In the case that the composition is delivered
               as an implant, it may be incorporated in any known biocompatible biodegradable matrix
               as a liquid, or in the form, for example, of a micelle using known chemistry or as
               microparticles.
 
            [0085] Slow or extended-release delivery systems include any of a number of biopolymers
               (biological-based systems), systems employing liposomes, colloids, resins, and other
               polymeric delivery systems or compartmentalized reservoirs, can be utilized with the
               compositions described herein to provide a continuous or long term source of therapeutic
               compound.
 
            [0086] In any slow release device prepared, the said peptide(s) is preferably present in
               an amount of about 10% to 90% by weight of the implant. More preferably, the peptide(s)
               is from about 50% to about 80% by weight of the implant. In a preferred embodiment,
               the peptide(s) comprises about 50% by weight of the implant. In a particularly preferred
               embodiment, the peptide(s) comprises about 70% by weight of the implant.
 
            [0087] In one form, implants for use in the method of the present invention are formulated
               with peptide(s) entrapped within the bio-erodible polymer matrix. Release of the agent
               is achieved by erosion of the polymer followed by exposure of previously entrapped
               agent particles to the vitreous, and subsequent dissolution and release of agent.
               The release kinetics achieved by this form of drug release are different than that
               achieved through formulations which release drug through polymer swelling, such as
               with hydrogels such as methylcellulose. In that case, the drug is not through polymer
               erosion, but through polymer swelling, which releases drug as liquid diffuses through
               the pathways exposed. The parameters which determine the release kinetics include
               the size of the drug particles, the water solubility of the drug, the ratio of drug
               to polymer, the method of manufacture, the surface area exposed, and the erosion rate
               of the polymer.
 
            [0088] Exemplary biocompatible, non-biodegradable polymers of particular interest include
               polycarbamates or polyureas, particularly polyurethanes, polymers which may be cross-linked
               to produce non- biodegradable polymers such as cross-linked poly(vinyl acetate) and
               the like. Also of particular interest are ethylene- vinyl ester copolymers having
               an ester content of 4% to 80% such as ethylene-vinyl acetate (EVA) copolymer, ethylene-vinyl
               hexanoate copolymer, ethylene-vinyl propionate copolymer, ethylene-vinyl butyrate
               copolymer, ethylene-vinyl pentantoate copolymer, ethylene-vinyl trimethyl acetate
               copolymer, ethylene-vinyl diethyl acetate copolymer, ethylene-vinyl 3-methyl butanoate
               copolymer, ethylene-vinyl 3-3-dimethyl butanoate copolymer, and ethylene-vinyl benzoate
               copolymer.
 
            [0089] Additional exemplary naturally occurring or synthetic non-biodegradable polymeric
               materials include poly(methylmethacrylate), poly(butylmethacrylate), plasticized poly(vinylchloride),
               plasticized poly(amides), plasticized nylon, plasticized soft nylon, plasticized poly(ethylene
               terephthalate), natural rubber, silicone, poly(isoprene), poly(isobutylene), poly(butadiene),
               poly(ethylene), poly(tetrafluoroethylene), poly(vinylidene chloride), poly(acrylanitrile,
               cross-linked poly(vinylpyrrolidone), poly(trifluorochloroethylene), chlorinated poly(ethylene),
               poly(4,4'- isopropylidene diphenylene carbonate), vinylidene chloride-acrylonitrile
               copolymer, vinyl chloridediethyl fumarate copolymer, silicone, silicone rubbers (especially
               the medical grade), poly(dimethylsiloxanes), ethylene- propylene rubber, silicone-carbonate
               copolymers, vinylidene chloride- vinyl chloride copolymer, vinyl chloride-acrylonitrile
               copolymer, vinylidene chloride-acrylonitrile copolymer, poly(olefins), poly(vinyl-olefins),
               poly(styrene), poly(halo-olefins), poly(vinyls), poly(acrylate), poly(methacrylate),
               poly(oxides), poly(esters), poly(amides), and poly(carbonates).
 
            [0090] Diffusion of the peptide(s) from the implant may also be controlled by the structure
               of the implant. For example, diffusion of the peptide(s) from the implant may be controlled
               by means of a membrane affixed to the polymer layer comprising the drug. The membrane
               layer will be positioned intermediate to the polymer layer comprising the peptide(s)
               and the desired site of therapy. The membrane may be composed of any of the biocompatible
               materials indicated above, the presence of agents in addition to the peptide(s) present
               in the polymer, the composition of the polymer comprising the peptide(s), the desired
               rate of diffusion and the like. For example, the polymer layer will usually comprise
               a very large amount of peptide(s) and will typically be saturated. Such peptide(s)
               -saturated polymers may generally release the peptide(s) at a very high rate. In this
               situation, the release of the peptide(s) may be slowed by selecting a membrane which
               is of a lower peptide(s) permeability than the polymer. Due to the lower peptide(s)
               permeability of the membrane, the peptide(s) will remain concentrated in the polymer
               and the overall rate of diffusion will be determined by the peptide(s) permeability
               of the membrane. Therefore, the rate of release of the peptide(s) from the implant
               is reduced, providing for a more controlled and extended delivery of the peptide(s)
               to the site of therapy.
 
            [0091] The skilled reader will appreciate that the duration over which any of the ophthalmic
               compositions used in the method of the invention will dwell in the ocular environment
               will depend, inter alia, on such factors as the physicochemical and/or pharmacological
               properties of the compounds employed in the formulation, the concentration of the
               compound employed, the bioavailability of the compound, the disease to be treated,
               the mode of administration and the preferred longevity of the treatment. Where that
               balance is struck will often depend on the longevity of the effect required in the
               eye and the ailment being treated.
 
            [0092] The frequency of treatment according to the method of the invention is determined
               according to the disease being treated, the deliverable concentration of the peptide(s)
               and the method of delivery. If delivering the peptide(s) by intravitreal injection,
               the dosage frequency may be monthly. Preferably, the dosage frequency is every three
               months. The frequency of dosage may also be determined by observation, with the dosage
               being delivered when the previously delivered peptide(s) is visibly cleared. Once
               a therapeutic result is achieved, the peptide(s) can be tapered or discontinued. Occasionally,
               side effects warrant discontinuation of therapy. In general, an effective amount of
               the compound is that which provides either subjective relief of symptoms or an objectively
               identifiable improvement as noted by the clinician or other qualified observer.
 
            [0093] Ophthalmic compositions prepared for use in the method of the present invention to
               prevent or treat ophthalmic disorders will preferably have dwell times from hours
               to many months and possibly years, although the latter time period requires special
               delivery systems to attain such a duration. Illustrative forms of such delivery systems
               are disclosed elsewhere in this specification (eg below). Most preferably the formulations
               for use in the method of the invention will have a dwell time (ie duration in the
               eye) of hours (i.e. 1 to 24 hours), days (i.e. 1, 2, 3, 4, 5, 6 or 7 days) or weeks
               (i.e. 1, 2, 3, 4 weeks). Alternatively, the formulation will have a dwell time of
               at least a few months such as, 1 month, 2 months, 3 months, with dwell times of greater
               than 4, 5, 6, 7 to 12 months being achievable.
 
            [0094] The methods of treatment or prophylaxis of ophthalmic conditions of the present invention
               may be performed alone, or in combination with one or more other therapies such as
               photodynamic therapy, laser surgery, laser photocoagulation or one or more biological
               or pharmaceutical treatments.
 
            [0095] Laser treatment takes a number of forms, depending on the nature of the ophthalmic
               disorder. Disorders such as myopia may be treated with laser surgery to reshape the
               cornea (eg. LASIK® surgery), whilst a widely used treatment for disorders such as
               AMD is laser therapy which is directed to removal or blockage of blood vessels via
               photodynamic therapy or laser photocoagulation. Laser therapy may further be used
               to treat or remove neoplasm such as retinoblastomas or pseudogliomas.
 
            [0096] Photocoagulation involves the use of a laser to seal leaking blood vessels, slow
               the growth of abnormal blood vessels and/or destroy new blood vessels within the eye.
               In addition, the laser can be used to seal the retina to the eye, helping to prevent
               retinal detachment. For example, focal laser treatment may be applied to microaneurysms
               identified in diabetic retinopathy.
 
            [0097] Photodynamic therapy involves the use of a photoactive drug (eg Visudyne®) and a
               laser to destroy abnormal blood vessels. Visudyne® is injected into the blood and
               activated with a laser, effectively destroying the blood vessels. This treatment may
               require several sessions to be effective. A wide range of theories have been proposed
               to explain the beneficial effects of retinal laser photocoagulation in delaying retinal
               angiogenesis, however, the underlying molecular mechanism remains to be elucidated.
 
            [0098] The therapeutic effects of laser photocoagulation are thought to be due to the destruction
               of photoreceptors, the highest oxygen consumers in the retina. Subsequently, these
               photoreceptors are replaced by glial cells allowing increased oxygen diffusion from
               the choroid to the inner retina thereby relieving inner retinal hypoxia. This improved
               oxygenation triggers a two-pronged cascade of events where: (1) constriction of the
               retinal arteries results in decreased hydrostatic pressure in capillaries and the
               constriction of capillaries and venules; and (2) the cellular production of VEGF is
               inhibited. Together, these effects are believed to ultimately result in the inhibition
               of neovascularization and a decrease in oedema. Cell proliferation and regulation
               of cellular proteins are induced by the laser photocoagulation, and their therapeutic
               effect might be an essential part of the physiological response.
 
            [0099] However, a complication of laser treatment (either photodynamic laser therapy or
               laser photocoagulation) is inflammation, leading to further oedema. This may also
               occur after laser therapy to remove or treat ocular neoplasm. In addition, laser treatment
               is not always a permanent cure as the blood vessels may begin to grow again, and microaneurysms
               may reform. Furthermore, laser treatment of abnormal blood vessels cannot be performed
               on vessels located in certain regions of the retina, such as the central region of
               the macula.
 
            [0100] Therefore, in an embodiment of the invention, where laser treatment of the retina
               is indicted, administration of an ophthalmic composition of the Invention may be carried
               out by injection before or after the laser treatment. Administration of the peptide(s)
               of the Invention may reduce, eliminate or prevent oedema before or after laser therapy
               and may therefore reduce or eliminate one of the side effects of laser therapy.
 
            [0101] In another embodiment, the Invention resides in compositions for use in a method
               for reducing ocular irritation wherein the method comprises the step of administering
               to a patient an ophthalmic composition of the Invention to a patient following corneal
               surgery (e.g., LASIK® surgery, photorefractive
               keratectomy (PRK), or other corneal procedures). Such treatment reduces or inhibits
               the exudation of fluids in the eye which may cloud the cornea or the vitreous.
 
            [0102] In addition to the other compounds previously described, ophthalmic composition of
               the invention may further comprise anti-angiogenic agents designed to block the actions
               of VEGF on endothelial cells in combined therapies. Examples of agents that can be
               employed in the method of the invention are: (a) Lucentis® developed by Genentech;
               and (b) Macugen® developed by Eyetech Pharmaceuticals. Lucentis® and Macugen® are
               compounds that are injected into the vitreous and are potent anti-angiogenic compounds.
 
            [0103] In another aspect of the invention, the ophthalmic composition of the invention may
               further comprise a compound selected in the group consisting of a glucocorticoid (e.g.
               prednisolone, prednisone), an oestrogen (e.g. oestrodiol), an androgen (e.g. testosterone)
               retinoic acid derivatives (e. g. 9-cis-retinoic acid, 13- trans-retinoic acid, all-trans
               retinoic acid), a vitamin D derivative (e. g. calcipotriol, calcipotriene), a non-
               steroidal anti-inflammatory agent, a vitamin D derivative, an anti- infective agent,
               a protein kinase C inhibitor, a MAP kinase inhibitor, an anti-apoptotic agent, a growth
               factor, a nutrient vitamin, an unsaturated fatty acid, and/or ocular anti- infective
               agents, for the treatment of the ophthalmic disorders set forth herein. In still other
               embodiments of the invention, a mixture of these agents may be used. Ocular anti-infective
               agents that may be used include, but are not limited to, penicillins (ampicillin,
               aziocillin, carbenicillin, dicloxacillin, methicillin, nafcillin, oxacillin, penicillin
               G, piperacillin, and ticarcillin), cephalosporins (cefamandole, cefazolin, cefotaxime,
               cefsulodin, ceftazidime, ceftriaxone, cephalothin, and moxalactam), aminoglycosides
               (amikacin, gentamicin, netilmicin, tobramycin, and neomycin), miscellaneous agents
               such as aztreonam, bacitracin, ciprofloxacin, clindamycin, chloramphenicol, cotrimoxazole,
               fusidic acid, imipenem, metronidazole, teicoplanin, and vancomycin), antifungals (amphotericin
               B, clotrimazole, econazole, fluconazole, flucytosine, itraconazole, ketoconazole,
               miconazole, natamycin, oxiconazole, and terconazole), antivirals (acyclovir, ethyldeoxyuridine,
               foscarnet, ganciclovir, idoxuridine, trifluridine, vidarabine, and (S)-1- (3-dydroxy-2-phosphonyluethoxypropyl)
               cytosine (HPMPC)), antineoplastic agents (cell cycle (phase) nonspecific agents such
               as alkylating agents (chlorambucil, cyclophosphamide, mechlorethamine, melphalan,
               and busulfan), anthracycline antibiotics (doxorubicin, daunomycin, and dactinomycin),
               cisplatin, and nitrosoureas), antimetabolites such as antipyrimidines (cytarabine,
               fluorouracil and azacytidine), antifolates (methotrexate), antipurines (mercaptopurine
               and thioguanine), bleomycin, vinca alkaloids (vincrisine and vinblastine), podophylotoxins
               (etoposide (VP-16)), and nitrosoureas (carmustine, (BCNU)), immunosuppressant agents
               such as cyclosporin A and SK506, and anti-inflammatory or suppressive agents (inhibitors),
               and inhibitors of proteolytic enzymes such as plasminogen activator inhibitors. Doses
               for topical and subconjunctival administration of the above agents, as well as intravitreal
               dose and vitreous half-life may be found in 
Intravitreal Surgery Principles and Practice, Peyman G A and Shulman, J Eds., 2nd
                  edition, 1994, Appleton- Longe.
 
            [0104] According to another embodiment, the invention provides compositions comprising serine
               protease inhibitors for use in a method for treating and/or preventing ophthalmic
               disorders. According to another embodiment, the invention provides compositions comprising
               kallikrein inhibitors in a method for treating and/or preventing ophthalmic disorders
               and compositions for such use. Examples of said inhibitors are peptides such as those
               disclosed above, or inhibitors selected among direct and indirect inhibitors. The
               term "direct inhibitor" as used herein, refers to an agent able to interfere with
               the production of bradykinin and/or kallidin. It relates to an agent able to decrease
               (e.g. by at least 10%, 20%, or 30% or more) the activity of kallikrein either 
in vitro or 
in vivo after administration to a mammal, such as a human. According to a more preferred
               embodiment, said direct inhibitor is an agent which decreases (e.g. by at least 10%,
               20%, or 30%, preferably 50%, more preferably 75% or 85%, and most preferably 95%)
               the kininogenase activity of kallikrein. These functional characterisations of the
               direct inhibitor can be tested using well known assay methods, such as for example
               those disclosed in 
Gallimore et al, 1979, Thromb Res 16, 695-703; 
Kondo et al., 1984, Endocrinol Jpn. , 31, 635-643. "Partial inhibitor" refers to a compound which acts as the inhibitor but that produces
               a weak maximum inhibitory response. This term is well known in the art. Exemplary
               kallikrein inhibitors (e.g. plasma kallikrein inhibitors) include those described
               in 
US 6,333,402, 
US 6,057,287, 
US 6,010,880 or 
Zhang et al., 2006, Med Chem., 2, 545-553.
 
            [0105] The term "indirect inhibitor" as used herein, refers for example to an agent able
               to interfere specifically with the kallikrein gene expression, and more particularly
               with the kallikrein mRNA. According to one embodiment of the present invention, the
               said inhibitor or partial inhibitor is selected in the group consisting of antisense
               RNA, siRNA, ribozyme, miRNA, shRNA, i.e. compounds that reduce the expression levels
               of said kallikrein, preferably plasma kallikrein. According to another embodiment,
               the term "indirect inhibitor" as used herein, refers to an anti-kallikrein or anti-prekallikrein
               antibody. The term "antibody" as used herein refers to an immunoglobulin molecule
               or immunologically active portion thereof, i.e., an antigen-binding portion. Examples
               of immunologically active portions of immunoglobulin molecules include scFV and dcFV
               fragments, Fab and F (ab') 2 fragments which can be generated by treating the antibody
               with an enzyme such as papain or pepsin, respectively. The antibody can be a polyclonal,
               monoclonal, recombinant, e.g. a chimeric or humanized, fully human, non-human, e.g.
               murine or single chain antibody. The antibody can be coupled to a toxin or imaging
               agent. Additionally, chimeric, humanized, and completely human antibodies are also
               within the scope of the invention. Chimeric, humanized, but most preferably, completely
               human antibodies are desirable for applications which include repeated administration,
               e. g., therapeutic treatment of human patients. These terms and methods for producing
               these antibodies by recombinant DNA techniques are widely known in the art (see for
               example 
EP184187, 
EP171496, 
EP173494, 
WO 86/01533, 
US 4,816,567).
 
            [0106] Those skilled in the art will appreciate that the invention described herein is susceptible
               to variations and modifications other than those specifically described. The invention
               includes all such variation and modifications. The invention also includes all of
               the steps, features, formulations and compounds referred to or indicated in the specification,
               individually or collectively and any and all combinations or any two or more of the
               steps or features.
 
            [0107] The present invention is not to be limited in scope by the specific embodiments described
               herein, which are intended for the purpose of exemplification only. Functionally equivalent
               products, formulations and methods are clearly within the scope of the invention as
               described herein.
 
            [0108] The invention described herein may include one or more range of values (eg size,
               concentration etc). A range of values will be
               understood to include all values within the range, including the values defining the
               range, and values adjacent to the range which lead to the same or substantially the
               same outcome as the values immediately adjacent to that value which defines the boundary
               to the range.
 
            EXAMPLES
Figures :
[0109] 
               
               Figure 1 - Effect of intra-vitreous SEQ.ID.N°23 on OCT-measured maximal retinal thickness in
                  a pig model of RVO.
                  Maximal retina thickness was determined 24h after RVO from Optical Coherence Tomography
                  images. Values are mean ± s.e.mean. Comparison of values was performed by a one-way
                  ANOVA following by a student t-test.
               Figure 2 - Effect of intra-vitreous SEQ.ID.N°23 on the development of extra-cellular retinal
                  oedema in a pig model of RVO.
 
            [0110] The amount of Evans Blue dye concentration into the retinal tissue reflects plasma
               extravasation and the extent of oedema. Control values represent retina Evans Blue
               Dye content of 2 eyes that were left non-operated and non-treated whilst sham-operated
               eyes (n=4) were submitted to the surgical procedure but without occlusion (See Methods).
               Values are mean ± s.e.mean. Comparison of values was performed by a one-way ANOVA
               following by a student t-test. **, p<0.01
 
            Example 1
Materials and Methods
Pig preparation
[0111] Mixed breed (Large White x Landrace x Pietrain) female pigs weighing 50 to 60 kg
               aged of 5 to 6 months were used. Following intramuscular injection of ketamine (10
               mg/kg), azaperone (2 mg/kg) and atropine (0.02 mg/kg), anesthesia was induced by intravenous
               sodium thiopental (10 mg/kg). After tracheal intubation, anesthesia was maintained
               with isoflurane (1-2% in 100% O
2) using a Hallowell ventilator (15 to 20 rpm; pressure at 20 cmH
2O).
 
            [0112] Three-lead ECG (lead II configuration), body temperature, arterial blood pressure
               and blood gases were continuously monitored.
 
            Procedure of Retinal Vein Occlusion (RVO)
[0113] Pupil was dilated by tropicamide. Cunjunctival disinsertion was followed by a 0.9
               mm sclerotomy, 3 mm from the limbus. The fundus was observed using a plano-concave
               lens and the axial light of the operating microscope (Microscope OPMI 6 - C, Zeiss,
               Germany). Branch retinal vein occlusion (RVO) of the major temporal vein was performed
               by transvitreal cauterization using a 300 micron probe (GN 300, Aesculap, Tuttlingen,
               Germany). Completion of the occlusion was assessed by the complete arrest of blood
               flow upstream of the occlusion site. Both eyes were submitted to RVO.
 
            [0114] Sham-operation was performed in two pigs (4 eyes) as follows pupil was dilated by
               tropicamide. Cunjunctival disinsertion was followed by a 0.9 mm sclerotomy, 3 mm from
               the limbus. The fundus was observed using a plano-concave lens and the axial light
               of the operating microscope (Microscope OPMI 6 - C, Zeiss, Germany).
 
            [0115] One pig was non-operated and non-treated.
 
            Drug Treatments
The number of animals tested has been increased.
[0116] Animals that were submitted to RVO were randomised to receive either the vehicle
               or the drug (10 to 14 pigs/group). Accordingly, 100µl of SEQ ID N°23 in solution (dosage
               of 21.2 µg/eye) or of the corresponding vehicle (saline) was injected intra-vitreally,
               immediately following RVO.
 
            [0117] SEQ ID N°23 (also named DX 88 in Figures) is a peptide of the following sequence:
               

 
            Measurement of Retinal Maximal Thickness and Oedema
[0118] Twenty four hours later, the animals will be anesthetized again, and a 40MHz ultrasonographic
               examination of the posterior retina will be performed. The scan will be oriented so
               as to encompass the normal and edematous retina. This will ensure an optimal placement
               of the OCT scan. Optical coherence tomography (
Stratus OCT, Zeiss Humphrey, Dublin, CA) will document the maximal thickening of the central retina and/or the presence of
               subretinal fluid.
 
            [0119] After OCT measurement, each animal received Evans Blue dye at 45 mg/kg i.v. and venous
               blood samples (approximately 1 ml) were obtained at 15 minutes intervals for 2 hours.
               These blood samples were centrifuged at 12,000 rpm for 15 min. After the dye had circulated
               for 2 hours, the animals were infused for 10 minutes via the left cardiac ventricle
               with citrate buffer (0.05 M, pH 3.5) and blood was collected from the right cardiac
               ventricle. The whole infusion volume was 51 over 10 minutes. After infusion, both
               eyes were enucleated and bisected at equator. The retinas were carefully dissected
               out. Retina were prepared, weighed and desiccated in Speed-Vac for 5 hours. Evans
               Blue dye was extracted by incubating each retina in 500 µl formamide for 18 hours
               at 70°C. The supernatant was filtered through Ultrafree-MC at 3,000 rpm for 2 hours.
               Evans Blue dye concentration in plasma samples and in retina tissue was measured by
               spectrophotometry at both 620 nm and 740 nm.
 
            [0120] Thus, in an embodiment of the present invention, a model of RVO in the pig is described
               which allows evaluation of drugs on retinal thickness and oedema. An example is given
               with the evaluation of SEQ ID N°23 in this model.
 
            Example 2 Effect of SEQ.ID.N°23 in a pig model of acute macular oedema induced by
                  RVO
[0121] At 24h, spontaneous reperfusion of retinal vein was observed in 10% and 30% of vehicle-
               and SEQ ID N°23-treated eyes, respectively (See Table 1 below).
 
            [0122] Evans Blue dye retinal concentration, which represents the extent of extra-cellular
               oedema, was markedly increased 24h following RVO (Figure 2). This was significantly
               (p<0.01) reduced by 47% in SEQ.ID.N°23-treated pigs (Figure 1).
 
            [0123] After repeated experiments, we concluded that in the animal model selected, the peptide
               SEQ ID N°23 did not modify the increase of maximal retinal thickness as measured by
               OCT (Figure 1). We concluded that the method of measurement used was actually not
               adapted to the present animal model. Our interpretation is that SEQ.ID.N°23 specifically
               targets vascular leakage which appears to be minor in respect to the ischemic oedema
               component in the pig RVO model. In addition, OCT images revealed that the retina presents
               an irregular thickening and bumpy surface after RVO occlusion that makes OCT-based
               measurements poorly reliable.
               
               
Table 1 - Effect of SEQ.ID.N°23 on the rate of spontaneous retinal vein reperfusion 24h after
                  RVO in the pig
                  
                     
                        
                           
                           
                           
                        
                        
                           
                              |   | 
                              Number of pigs/eyes-submitted to RVO | 
                              Number (%) of reperfused retinal vein at 24h | 
                           
                        
                        
                           
                              | Vehicle | 
                              10/20 | 
                              2 (10%) | 
                           
                           
                              | SEQ.ID.N°23 | 
                              13/26 | 
                              8 (30%) | 
                           
                        
                     
                   
                 
            SEQUENCE LISTING
[0124] 
               
               <110> Dyax Corp.
               <120> Compositions and Methods for Treating Ophthalmic Disorders
               <130> N1372 EP/1 S3
               <150> EP 06 36 0008.4
                  <151> 2006-03-16
                  <150> EP 06 29 1516.0
                  <151> 2006-09-26
               <160> 44
               <170> PatentIn version 3.3
               <210> 1
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <220>
                  <221> misc_feature
                  <222> (1)..(4)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (6)..(11)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (13)..(13)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (15)..(29)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (31)..(32)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (34)..(35)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (39)..(50)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (52)..(54)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (56)..(58)
                  <223> Xaa can be any naturally occurring amino acid
               <400> 1
                  

               <210> 2
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 2
                  

               <210> 3
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <220>
                  <221> misc_feature
                  <222> (10)..(11)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (13)..(13)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (15)..(19)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (21)..(21)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (31)..(32)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (34)..(35)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (39)..(39)
                  <223> Xaa can be any naturally occurring amino acid
               <400> 3
                  

               <210> 4
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 4
                  

               <210> 5
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 5
                  

               <210> 6
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 6
                  

               <210> 7
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 7
                  

               <210> 8
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 8
                  

                  

               <210> 9
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 9
                  

               <210> 10
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 10
                  

                  

               <210> 11
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 11
                  

               <210> 12
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 12
                  

                  

               <210> 13
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 13
                  

               <210> 14
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 14
                  

               <210> 15
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 15
                  

               <210> 16
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 16
                  

               <210> 17
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 17
                  

               <210> 18
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 18
                  

               <210> 19
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 19
                  

                  

               <210> 20
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 20
                  

               <210> 21
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 21
                  

                  

               <210> 22
                  <211> 58
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 22
                  

               <210> 23
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 23
                  

               <210> 24
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <220>
                  <221> misc_feature
                  <222> (12)..(13)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (15)..(15)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (17)..(21)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (23)..(23)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (33)..(34)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> mist_feature
                  <222> (36)..(37)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (41)..(41)
                  <223> Xaa can be any naturally occurring amino acid
               <400> 24
                  

               <210> 25
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <223> artificial sequence
               <400> 25
                  

               <210> 26
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 26
                  

               <210> 27
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 27
                  

               <210> 28
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 28
                  

               <210> 29
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 29
                  

               <210> 30
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 30
                  

               <210> 31
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 31
                  

                  

               <210> 32
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 32
                  

               <210> 33
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 33
                  

                  

               <210> 34
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 34
                  

               <210> 35
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 35
                  

               <210> 36
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 36
                  

               <210> 37
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 37
                  

               <210> 38
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 38
                  

               <210> 39
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 39
                  

               <210> 40
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 40
                  

                  

               <210> 41
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 41
                  

               <210> 42
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 42
                  

                  

               <210> 43
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <400> 43
                  

               <210> 44
                  <211> 60
                  <212> PRT
                  <213> Artificial
               <220>
                  <221> source
                  <223> /note="description of artificial sequence: artificial sequence"
               <220>
                  <221> misc_feature
                  <222> (1)..(6)
                  <223> Xaa can be any naturally occurring amino acid
               <220> <221> misc_feature
                  <222> (8)..(13)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (15)..(15)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (17)..(31)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (33)..(34)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (36)..(37)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (41)..(52)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (54)..(56)
                  <223> Xaa can be any naturally occurring amino acid
               <220>
                  <221> misc_feature
                  <222> (58)..(60)
                  <223> Xaa can be any naturally occurring amino acid
               <400> 44
                  

 
          
         
            
            1. A composition comprising at least one plasma kallikrein inhibitor for use in the treatment
               of an ophthalmic disorder.
 
            2. The composition for use according to claim 1, wherein the opthalmic disorder is a
               disorder selected from the group consisting of: an exudative and/or inflammatory opthalmic
               disorder, a disorder related to impaired retinal vessel permeability and/or integrity,
               a disorder related to retinal microvessel rupture leading to focal hemorrhages, a
               back of the eye disease, a retinal disease, and a front of the eye disease.
 
            3. The composition for use according to claim 1 or 2, wherein the opthalmic disorder
               is a disorder selected from the group consisting of: Age Related Macular Degeneration
               (ARMD), exudative macular degeneration, macular oedema, aged disciform macular degeneration,
               cystoid macular oedema, palpebral oedema, retinal oedema, diabetic retinopathy, Acute
               Macular Neuroretinopathy, Central Serous Chorioretinopathy, chorioretinopathy, Choroidal
               Neovascularization, neovascular maculopathy, neovascular glaucoma, obstructive Arterial
               and venous retinopathies (such as Retinal Venous Occlusion or Retinal Arterial Occlusion),
               Central Retinal Vein Occlusion, Disseminated Intravascular Coagulopathy, Branch Retinal
               Vein Occlusion, Hypertensive Fundus Changes, Ocular Ischemic Syndrome, Retinal Arterial
               Microaneurysms, Coat's Disease, Parafoveal Telangiectasis, Hemi-Retinal Vein Occlusion,
               Papillophlebitis, Central Retinal Artery Occlusion, Branch Retinal Artery Occlusion,
               Carotid Artery Disease (CAD), Frosted Branch Angitis, Sickle Cell Retinopathy and
               other Hemoglobinopathies, Angioid Streaks, Diabetic Macular Oedema, eye injury or
               eye surgery; retinal ischemia or degeneration produced for example by injury, trauma
               or tumours, uveitis, iritis, retinal vasculitis, endophthalmitis, panophthalmitis,
               metastatic ophthalmia, choroiditis, retinal pigment epithelitis, conjunctivitis, cyclitis,
               scleritis, episcleritis, optic neuritis, retrobulbar optic neuritis, keratitis, blepharitis,
               exudative retinal detachment, corneal ulcer, conjunctival ulcer, chronic nummular
               keratitis, Thygeson keratitis, progressive Mooren's ulcer, an ocular inflammatory
               disease caused by bacterial or viral infection, by an ophthalmic operation, by a physical
               injury to the eye, clinical macular oedema, angiographic cystoid macular oedema arising
               from various aetiologies such as diabetes, exudative macular degeneration, macular
               oedema arising from laser treatment of the retina, age-related macular degeneration,
               retinopathy of prematurity, retinal ischemia and choroidal neovascularization, retinal
               diseases (diabetic retinopathy, diabetic retinal oedema, retinal detachment, senile
               macular degeneration due to sub-retinal neovascularization, myopic retinopathy); inflammatory
               diseases; uveitis associated with neoplasms such as retinoblastoma or pseudoglioma;
               neovascularization following vitrectomy; vascular diseases (retinal ischemia, choroidal
               vascular insufficiency, choroidal thrombosis, retinopathies resulting from carotid
               artery ischemia); neovascularization of the optic nerve, corneal neovascularization
               (due to inflammation, transplantation, developmental hypoplasia of the iris, corneal
               diseases or opacifications with an exudative or inflammatory component, neovascularization
               due to penetration of the eye or contusive ocular injury; chronic uveitis; anterior
               uveitis; inflammatory conditions resulting from surgeries such as LASIK, LASEK, refractive
               surgery, IOL implantation; irreversible corneal oedema as a complication of cataract
               surgery; oedema as a result of insult or trauma (physical, chemical, pharmacological);
               inflammation; conjunctivitis (such as persistent allergic, giant papillary, seasonal
               intermittent allergic, perennial allergic, topic, conjunctivitis caused by infection
               by bacteria, viruses or Chlamydia); keratoconjunctivitis (vernal, atopic, Sicca);
               iridocyclitis; iritis; scleritis; episcleritis; infectious keratitis; superficial
               punctuate keratitis; keratoconus; posterior polymorphous dystrophy; Fuch's dystrophies
               (corneal or endothelial); aphakic and pseudophakic bullous keratopathy; corneal oedema;
               scleral disease; ocular cicatrcial pemphigoid; pars planitis; Posner Schlossman syndrome;
               Behcet's disease; Vogt-Koyanagi-Harada syndrome; hypersensitivity reactions; ocular
               surface disorders; conjunctival oedema; Toxoplasmosis chorioretinitis; inflammatory
               pseudotumor of the orbit; chemosis; conjunctival venous congestion; periorbital cellulitis;
               acute dacryocystitis; non-specific vasculitis; sarcoidosis; and cytomegalovirus infection.
 
            4. The composition for use according to any one of claims 1 to 3, wherein said inhibitor
               is a Kunitz domain polypeptide inhibitor.
 
            5. The composition for use according to any one of claims 1 to 4, wherein said inhibitor
               is a peptide comprising the amino acid sequence: Xaa1 Xaa2 Xaa3 Xaa4 Cys Xaa6 Xaa7
               Xaa8 Xaa9 Xaa10 Xaa11 Gly Xaa13 Cys Xaa15 Xaa16 Xaa17 Xaa18 Xaa19 Xaa20 Xaa21 Xaa22
               Xaa23 Xaa24 Xaa25 Xaa26 Xaa27 Xaa28 Xaa29 Cys Xaa31 Xaa32 Phe Xaa34 Xaa35 Gly Gly
               Cys Xaa39 Xaa40 Xaa41 Xaa42 Xaa43 Xaa44 Xaa45 Xaa46 Xaa47 Xaas48 Xaa49 Xaa50 Cys Xaa52
               Xaa53 Xaa54 Cys Xaa56 Xaa57 Xaa58 (SEQ ID NO:1) with Xaas being, independently from
               one another, any amino acid.
 
            6. The composition for use according to claim 5, wherein one or more of the following
               apply:
               
               
Xaa1, Xaa2, Xaa3, Xaa4, Xaa56, Xaa57 or Xaa58 are, independently from one another,
                  any amino acid or absent;
               
               Xaa10 is an amino acid selected from the group consisting of Asp and Glu;
               
               Xaa11 is an amino acid selected from the group consisting of Asp, Gly, Ser, Val, Asn,
                  Ile, Ala and Thr;
               
               Xaa13 is an amino acid selected from the group consisting of Arg, His, Pro, Asn, Ser,
                  Thr, Ala, Gly, Lys and Gln;
               
               Xaa15 is an amino acid selected from the group consisting of Arg, Lys, Ala, Ser, Gly,
                  Met, Asn and Gln;
               
               Xaa16 is an amino acid selected from the group consisting of Ala, Gly, Ser, Asp and
                  Asn;
               
               Xaa17 is an amino acid selected from the group consisting of Ala, Asn, Ser, Ile, Gly,
                  Val, Gln and Thr;
               
               Xaa18 is an amino acid selected from the group consisting of His, Leu, Gln and Ala;
               
               Xaa19 is an amino acid selected from the group consisting of Pro, Gln, Leu, Asn and
                  Ile;
               
               Xaa21 is an amino acid selected from the group consisting of Trp, Phe, Tyr, His and
                  Ile;
               
               Xaa22 is an amino acid selected from the group consisting of Tyr and Phe;
               
               Xaa23 is an amino acid selected from the group consisting of Tyr and Phe;
               
               Xaa31 is an amino acid selected from the group consisting of Glu, Asp, Gln, Asn, Ser,
                  Ala, Val, Leu, Ile and Thr;
               
               Xaa32 is an amino acid selected from the group consisting of Glu, Gln, Asp Asn, Pro,
                  Thr, Leu, Ser, Ala, Gly and Val;
               
               Xaa34 is an amino acid selected from the group consisting af Thr, Ile, Ser, Val, Ala,
                  Asn, Gly and Leu;
               
               Xaa35 is an amino acid selected from the group consisting of Tyr, Trp and Phe;
               
               Xaa39 is an amino acid selected from the group consisting of Glu, Gly, Ala, Ser and
                  Asp;
               
               Xaa40 is an amino acid selected from the group consisting of Gly and Ala;
               
               Xaa43 is an amino acid selected from the group consisting of Asn and Gly;
               
               Xaa45 is an amino acid selected from the group consisting of Phe and Tyr;
               
               Xaa6, Xaa7, Xaa8, Xaa9, Xaa20, Xaa24, Xaa25, Xaa26, Xaa27, Xaa28, Xaa29, Xaa41, Xaa42,
                  Xaa44, Xaa46, Xaa47, Xaa48, Xaa49, Xaa50, Xaa52, Xaa53 and Xaa54 are, independently
                  from one another, any amino acid.
  
            
            8. The composition for use according to any one of claims 1 to 7, wherein said inhibitor
               is a peptide comprising Glu Ala Met His Ser Phe Cys Ala Phe Lys Ala Asp Asp Gly Pro
               Cys Arg Ala Ala His Pro Arg Trp Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu Glu Phe Ile
               Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser Leu Glu Glu Cys Lys Lys Met Cys
               Thr Arg Asp (SEQ ID NO:23).
 
            9. The composition for use according to any one of claims 1 to 8, which comprises a physiological
               saline solution.
 
            10. The composition for use according to any one of claims 1 to 9, wherein the composition
               is designed for administration in combination with a second therapy.
 
            11. The composition for use according to claim 10, wherein the second therapy is selected
               from the group consisting of: photodynamic therapy, laser surgery, laser photocoagulation,
               a biological treatment, and a pharmaceutical treatment.
 
            12. The composition for use according to any one of claims 1 to 11, wherein the disorder
               is exudative retinopathy, myophic retinopathy, macular oedema, exudative macular degeneration,
               diabetic retinopathy, or retinal ischemia, and the composition comprises an anti-angiogenic
               agent.
 
            13. The composition for use according to claim 12, wherein the anti-angiogenic agent blocks
               the action of VEGF on endothelial cells.
 
            14. The composition for use according to claims 1-13, wherein the composition is for intravitreal
               injection.
 
            15. The composition for use according to claim 14, wherein the inhibitor is for administration
               at a concentration of: less than 20 mg/ml, less than 7 mg/ml, less than 6 mg/ml, less
               than 5 mg/ml, less than 4 mg/ml, less than 3 mg/ml, less than 2 mg/ml, or less than
               1 mg/ml, 5 µg/ml to 50 µg/ml, 35 µg/ml to 100 µg/ml, 100 µg/ml to 200 µg/ml, 200 µg/ml
               to 500 µg/ml, 500 µg/ml to 750 µg/ml, or 500 µg/ml to 1 mg/ml, or 21.2 µg/eye.
 
          
         
            
            1. Zusammensetzung, umfassend wenigstens einen Plasmakallikrein-Inhibitor, zur Verwendung
               bei der Behandlung einer ophthalmischen Störung.
 
            2. Zusammensetzung zur Verwendung gemäß Anspruch 1, wobei die ophthalmische Störung eine
               Störung ist, ausgewählt aus der Gruppe, bestehend aus: einer exsudativen und/oder
               inflammatorischen ophthalmischen Störung, einer Störung im Zusammenhang mit eingeschränkter
               Permeabilität und/oder Integrität von Netzhautgefäßen, einer Störung im Zusammenhang
               mit einer Ruptur von Netzhautmikrogefäßen, die zu fokalen Blutungen führt, einer Erkrankung
               der Augenrückseite und einer Erkrankung der Augenvorderseite.
 
            3. Zusammensetzung zur Verwendung gemäß Anspruch 1 oder 2, wobei die ophthalmische Störung
               eine Störung ist, ausgewählt aus der Gruppe, bestehend aus:
               altersbedingter Makuladegeneration (ARMD), exsudativer Makuladegeneration, Makulaödem,
               altersbedingter disciformer Makuladegeneration, cystoidem Makulaödem, Lidödem (palpebral
               oedema), Netzhautödem, diabetischer Retinopathie, akuter Makulaneuroretinopathie,
               zentraler seröser Chorioretinopathie, Chorioretinopathie, choroidaler Neovaskularisation,
               neovaskulärer Makulopathie, neovaskulärem Glaukom, obstruktiven arteriellen und venösen
               Retinopathien (wie beispielsweise Netzhautvenenverschluss oder Netzhautarterienverschluss,
               zentralem Netzhautvenenverschluss), disseminierter intravaskulärer Koagulopathie,
               retinalem Venenastverschluss (branch retinal vein occlusion), hypertensiven Fundusveränderungen,
               okularem Ischämiesyndrom, Netzhautarterien-Mikroaneurysmen, Morbus Coats (Coat's disease),
               parafovealer Teleangiektasie, hemiretinalem Venenverschluss, Papillophlebitis, zentralem
               Netzhautarterienverschluss, retinalem Arterienastverschluss (branch retinal artery
               occlusion), Carotidarterienerkrankung (Carotid Artery Disease; CAD), "Frosted Branch"-Angiitis,
               Sichelzellretinopathie und anderen Hämoglobinopathien, Angioid Streaks, diabetischem
               Makulaödem, Augenverletzung oder Augenoperation; Netzhautischämie oder -degeneration,
               beispielsweise entstanden durch Verletzung, Trauma oder Tumore, Uveitis, Iritis, Netzhautvaskulitis,
               Endophthalmitis, Panophthalmitis, metastatischer Ophthalmie, Choroiditis, Netzhautpigmentepithelitis,
               Konjunktivitis, Cyclitis, Scleritis, Episcleritis, Optikusneuritis, retrobulbärer
               Optikusneuritis, Keratitis, Blepharitis, exsudativer Netzhautablösung, Hornhautulkus,
               Bindehautulkus, chronischer nummulärer Keratitis, Thygeson-Keratitis, progressivem
               Ulkus Mooren, einer okularen inflammatorischen Erkrankung, verursacht durch bakterielle
               oder virale Infektion, durch eine Augenoperation, durch eine physische Verletzung
               des Auges, klinisches Makulaödem, angiographisches cystoides Makulaödem, entstanden
               aus verschiedenen Ätiologien, wie beispielsweise Diabetes, exsudativer Makuladegeneration,
               Makulaödem, entstanden aus Laserbehandlung der Netzhaut, altersbedingter Makuladegeneration,
               Frühgeborenenretinopathie, Netzhautischämie und choroidaler Neovaskularisation, Netzhauterkrankungen
               (diabetische Retinopathie, diabetisches Netzhautödem, Netzhautablösung, altersbedingte
               Makuladegeneration aufgrund subretinaler Neovaskularisation, myopische Retinopathie);
               inflammatorischen Erkrankungen; Uveitis, assoziiert mit Neoplasmen, wie beispielsweise
               Retinoblastom oder Pseudogliom; Neovaskularisation im Anschluss an Vitrektomie; vaskulären
               Erkrankungen (Netzhautischämie, choroidaler Gefäßinsuffizienz, choroidaler Thrombose,
               Retinopathien, resultierend aus Carotidarterienischämie); Neovaskularisation des Sehnervs,
               kornealer Neovaskularisation (aufgrund von Entzündung, Transplantation, entwicklungsbedingter
               Irishypoplasie, Hornhauterkrankungen oder -trübungen mit einer exsudativen oder inflammatorischen
               Komponente, Neovaskularisation aufgrund von Penetration des Auges oder kontusiver
               Augenverletzung; chronischer Uveitis; vorderer Uveitis; inflammatorischen Bedingungen,
               resultierend aus Operationen, wie beispielsweise LASIK, LASEK, refraktiver Chirurgie,
               IOL-Implantation; irreversiblem Hornhautödem als Komplikation von Kataraktoperation;
               Ödem infolge eines Insults oder Traumas (physisch, chemisch, pharmakologisch); Entzündung;
               Konjunktivitis (wie beispielsweise persistenter allergischer, gigantopapillärer (giant
               papillary), saisonal intermittierender allergischer, ganzjähriger allergischer, toxischer
               Konjunktivitis, verursacht durch Infektion durch Bakterien, Viren oder Chlamydien);
               Keratokonjunktivitis (vernale, atopische, sicca); Iridocyclitis; Iritis; Scleritis;
               Episcleritis; infektiöser Keratitis; Keratitis superficialis punctata; Keratokonus;
               polymorpher posteriorer Hornhautdystrophie; Fuchs-Dystrophien (corneale oder endotheliale);
               aphakischer und pseudophakischer bullöser Keratopathie; Hornhautödem; Lederhauterkrankung
               (scleral disease); okulärem vernarbendem Pemphigoid; Pars planitis; Posner-Schlossmann-Syndrom;
               Morbus Behçet; Vogt-Koyanagi-Harada-Syndrom; Überempfindlichkeitsreaktionen; Erkrankungen
               der Augenoberfläche; Bindehautödem; Toxoplasmosis chorioretinitis; inflammatorischem
               Pseudotumor der Augenhöhle; Chemosis; Stauung der Bindehautvenen (conjunctival venous
               congestion); periorbitaler Zellulitis; akuter Dacryocystitis; unspezifischer Vaskulitis;
               Sarkoidose; und Cytomegalovirusinfektion.
 
            4. Zusammensetzung zur Verwendung gemäß irgendeinem der Ansprüche 1 bis 3, wobei der
               Inhibitor ein Kunitz-Domänen-Polypeptidinhibitor ist.
 
            5. Zusammensetzung zur Verwendung gemäß irgendeinem der Ansprüche 1 bis 4, wobei der
               Inhibitor ein Peptid ist, umfassend die Aminosäuresequenz: Xaa1 Xaa2 Xaa3 Xaa4 Cys
               Xaa6 Xaa7 Xaa8 Xaa9 Xaa10 Xaa11 Gly Xaa13 Cys Xaa15 Xaa16 Xaa17 Xaa18 Xaa19 Xaa20
               Xaa21 Xaa22 Xaa23 Xaa24 Xaa25 Xaa26 Xaa27 Xaa28 Xaa29 Cys Xaa31 Xaa32 Phe Xaa34 Xaa35
               Gly Gly Cys Xaa39 Xaa40 Xaa41 Xaa42 Xaa43 Xaa44 Xaa45 Xaa46 Xaa47 Xaa48 Xaa49 Xaa50
               Cys Xaa52 Xaa53 Xaa54 Cys Xaa56 Xaa57 Xaa58 (SEQ ID NO: 1), wobei die Xaas unabhängig
               voneinander irgendeine Aminosäure sind.
 
            6. Zusammensetzung zur Verwendung gemäß Anspruch 5, wobei ein oder mehrere der folgenden
               anwendbar sind:
               
               
Xaa1, Xaa2, Xaa3, Xaa4, Xaa56, Xaa57 oder Xaa58 sind unabhängig voneinander irgendeine
                  Aminosäure oder liegen nicht vor;
               
               Xaa10 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Asp und Glu;
               
               Xaa11 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Asp, Gly, Ser,
                  Val, Asn, Ile, Ala und Thr;
               
               Xaa13 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Arg, His, Pro,
                  Asn, Ser, Thr, Ala, Gly, Lys und Gln;
               
               Xaa15 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Arg, Lys, Ala,
                  Ser, Gly, Met, Asn und Gln;
               
               Xaa16 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Ala, Gly, Ser,
                  Asp und Asn;
               
               Xaa17 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Ala, Asn, Ser,
                  Ile, Gly, Val, Gln und Thr;
               
               Xaa18 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus His, Leu, Gln
                  und Ala;
               
               Xaa19 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Pro, Gln, Leu,
                  Asn und Ile;
               
               Xaa21 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Trp, Phe, Tyr,
                  His und Ile;
               
               Xaa22 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Tyr und Phe;
               
               Xaa23 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Tyr und Phe;
               
               Xaa31 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Glu, Asp, Gln,
                  Asn, Ser, Ala, Val, Leu, Ile und Thr;
               
               Xaa32 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Glu, Gln, Asp,
                  Asn, Pro, Thr, Leu, Ser, Ala, Gly und Val;
               
               Xaa34 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Thr, Ile, Ser,
                  Val, Ala, Asn, Gly und Leu;
               
               Xaa35 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Tyr, Trp und Phe;
               
               Xaa39 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Glu, Gly, Ala,
                  Ser und Asp;
               
               Xaa40 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Gly und Ala;
               
               Xaa43 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Asn und Gly;
               
               Xaa45 ist eine Aminosäure, ausgewählt aus der Gruppe, bestehend aus Phe und Tyr;
               
               Xaa6, Xaa7, Xaa8, Xaa9, Xaa20, Xaa24, Xaa25, Xaa26, Xaa27, Xaa28, Xaa29, Xaa41, Xaa42,
                  Xaa44, Xaa46, Xaa47, Xaa48, Xaa49, Xaa50, Xaa52, Xaa53 und Xaa54 sind unabhängig voneinander
                  irgendeine Aminosäure.
  
            
            8. Zusammensetzung zur Verwendung gemäß irgendeinem der Ansprüche 1 bis 7, wobei der
               Inhibitor ein Peptid ist, umfassend Glu Ala Met His Ser Phe Cys Ala Phe Lys Ala Asp
               Asp Gly Pro Cys Arg Ala Ala His Pro Arg Trp Phe Phe Asn Ile Phe Thr Arg Gln Cys Glu
               Glu Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser Leu Glu Glu Cys Lys
               Lys Met Cys Thr Arg Asp (SEQ ID NO: 23).
 
            9. Zusammensetzung zur Verwendung gemäß irgendeinem der Ansprüche 1 bis 8, die eine physiologische
               Salzlösung umfasst.
 
            10. Zusammensetzung zur Verwendung gemäß irgendeinem der Ansprüche 1 bis 9, wobei die
               Zusammensetzung für die Verabreichung in Kombination mit einer zweiten Therapie ausgestaltet
               ist.
 
            11. Zusammensetzung zur Verwendung gemäß Anspruch 10, wobei die zweite Therapie aus der
               Gruppe ausgewählt ist, bestehend aus: photodynamischer Therapie, Laserchirurgie, Laserphotokoagulation,
               einer biologischen Behandlung und einer pharmazeutischen Behandlung.
 
            12. Zusammensetzung zur Verwendung gemäß irgendeinem der Ansprüche 1 bis 11, wobei die
               Störung exsudative Retinopathie, myopische Retinopathie, Makulaödem, exsudative Makuladegeneration,
               diabetische Retinopathie oder Netzhautischämie ist und die Zusammensetzung ein Antiangiogenesemittel
               umfasst.
 
            13. Zusammensetzung zur Verwendung gemäß Anspruch 12, wobei das Antiangiogenesemittel
               die Wirkung von VEGF auf Endothelzellen blockiert.
 
            14. Zusammensetzung zur Verwendung gemäß den Ansprüchen 1-13, wobei die Zusammensetzung
               für intravitreale Injektion ist.
 
            15. Zusammensetzung zur Verwendung gemäß Anspruch 14, wobei der Inhibitor zur Verabreichung
               in einer Konzentration von: weniger als etwa 20 mg/ml, weniger als 7 mg/ml, weniger
               als 6 mg/ml, weniger als 5 mg/ml, weniger als 4 mg/ml, weniger als 3 mg/ml, weniger
               als 2 mg/ml oder weniger als 1 mg/ml, 5 µg/ml bis 50 µg/ml, 35 µg/ml bis 100 µg/ml,
               100 µg/ml bis 200 µg/ml, 200 µg/ml bis 500 µg/ml, 500 µg/ml bis 750 µg/ml, oder 500
               µg/ml bis 1 mg/ml oder 21,2 µg/Auge ist.
 
          
         
            
            1. Composition comprenant au moins un inhibiteur de kallikréine plasmatique pour une
               utilisation dans le traitement d'un trouble ophtalmique.
 
            2. Composition pour une utilisation selon la revendication 1, dans laquelle le trouble
               ophtalmique est un trouble sélectionné dans le groupe constitué d'un trouble ophtalmique
               exsudatif et/ou inflammatoire, d'un trouble lié à l'altération de la perméabilité
               et/ou de l'intégrité des vaisseaux rétiniens, d'un trouble lié à une rupture de micro-vaisseaux
               rétiniens menant à des hémorragies focales, à une maladie du dos de l'oeil, à une
               maladie rétinienne et à une maladie du devant de l'oeil.
 
            3. Composition pour une utilisation selon la revendication 1 ou 2, dans lequel le trouble
               ophtalmique est un trouble sélectionné dans le groupe constitué de : dégénérescence
               maculaire liée à l'âge (DMLA), dégénérescence maculaire exsudative, oedème maculaire,
               dégénérescence maculaire disciforme des personnes âgées, oedème maculaire cystoïde,
               oedème palpébral, oedème rétinien, rétinopathie diabétique, neuro-rétinopathie maculaire
               aiguë, choriorétinopathie séreuse centrale, choriorétinopathie, néovascularisation
               choroïdienne, maculopathie néocasculaire, glaucome néovasculaire, rétinopathies artérielles
               et veineuses obstructives (telles que l'occlusion veineuse rétinienns ou l'occlusion
               artérielle rétinienne), occlusion de la veine rétinienne centrale, coagulopathie intravasculaire
               disséminée, occlusion des veines rétiniennes ramifiées, changements de fond hypertensifs,
               syndrome ischémique oculaire, micro-anévrismes artériels de la rétine, maladie de
               Coat, télangiectasies parafovéales, occlusion de la veine hémi-rétinienne, papillophlébite,
               occlusion de l'artère rétinienne centrale, occlusion de l'artère rétinienne ramifiée,
               maladie de la carotide (CAD), angéite givrée, rétinopathie de drépanocytes et autres
               hémoglobinopathies, stries angioïdes, oedème maculaire diabétique, lésion oculaire
               ou chirurgie oculaire ; ischémie ou dégénérescence rétinienne produite, par exemple,
               par une lésion, un traumatisme ou des tumeurs, uvéite, iritis, vascularite rétinienne,
               endophtalmie, panophtalmie, ophtalmie métastatique, choroïdite, épithélite pigmentaire
               rétinienne, conjonctivite, cyclite, sclérite, épisclérite, névrite optique, névrite
               optique rétrobulbaire, kératite, blépharite, détachement rétinien exsudatif, ulcère
               cornéen, ulcère conjonctival, kératite nummulaire chronique, kératite de Thygeson,
               ulcère de Mooren progressif, maladie inflammatoire oculaire provoquée par une infection
               bactérienne ou virale, par une opération ophtalmique, par une lésion physique à l'oeil,
               oedème maculaire clinique, oedème maculaire cystoïde angiographique relevant de diverses
               étiologies telles que le diabète, dégénérescence maculaire exsudative, oedème maculaire
               relevant d'un traitement au laser de la rétine, dégénérescence maculaire liée à l'âge,
               rétinopathie de prématurité, ischémie rétinienne et néovascularisation choroïdienne,
               maladies rétiniennes (rétinopathie diabétique, oedème rétinien diabétique, détachement
               rétinien, dégénérescence maculaire sénile due à une néovascularisation sous-rétinienne,
               rétinopathie myopique) ; maladies inflammatoires ; uvéite associée à des néoplasmes
               tels que le rétinoblastome ou le pseudogliome ; néovascularisation suivant une vitrectomie
               ; maladies vasculaires (ischémie rétinienne, insuffisance vasculaire choroïdienne,
               thrombose choroïdienne, rétinopathies résultant d'une ischémie de la carotide) ; néovascularisation
               du nerf optique, néovascularisation cornéenne (due à une inflammation, transplantation,
               hypoplasie du développement de l'iris, maladies ou opacifications cornéennes avec
               un composant exsudatif ou inflammatoire, néovascularisation due à la pénétration de
               l'oeil ou à une lésion oculaire contendante ; uvéite chronique ; uvéite antérieure
               ; conditions inflammatoires résultant de chirurgies telles que LASIK, LASEK, une chirurgie
               réfringente, une implantation IOL; oedème cornéen irréversible tel qu'une complication
               de chirurgie de la cataracte ; oedème à la suite d'une agression ou d'un traumatisme
               (physique, chimique, pharmacologique) ; inflammation; conjonctivite (telle qu'une
               conjonctivite allergique persistante, papillaire géante, allergique intermittente
               saisonnière, allergique perpétuelle, toxique, conjonctivite provoquée par une infection
               par des bactéries, des virus ou une Chlamydia) ; kératoconjonctivite (vernale, atopique,
               Sicca) ; iridocyclite ; iritis ; sclérite ; épisclérite ; kératite infectieuse; kératite
               ponctuée superficielle ; kératocône ; dystrophie polymorphe postérieure ; dystrophies
               de Fuch (cornéennes ou endothéliales) ; kératopathie bulleuse aphaque ou pseudo-aphaque
               ; oedème cornéen ; maladie sclérale ; pemphigoïde cicatricielle oculaire ; pars planitis
               ; syndrome de Posner Schlossman ; maladie de Behçet; syndrome de Vogt-Koyanagi-Harada
               ; réactions d'hypersensibilité ; troubles oculaires superficiels ; oedème conjonctival
               ; toxoplasmose choriorétinite ; pseudotumeur inflammatoire de l'orbite ; chémosis
               ; congestion veineuse conjonctivale ; cellulite périorbitale ; dacryocystite aiguë
               ; vascularite non spécifique ; sarcoïdose ; et infection par le cytomégalovirus.
 
            4. Composition pour une utilisation selon l'une quelconque des revendications 1 à 3,
               dans laquelle ledit inhibiteur est un inhibiteur de polypeptide du domaine de Kunitz.
 
            5. Composition pour une utilisation selon l'une quelconque des revendications 1 à 4,
               dans laquelle ledit inhibiteur est un peptide comprenant la séquence d'acides aminés
               : Xaa1 Xaa2 Xaa3 Xaa4 Cys Xaa6 Xaa7 Xaa8 Xaa9 Xaa10 Xaa11 Gly Xaa13 Cys Xaa15 Xaa16
               Xaa17 Xaa18 Xaa19 Xaa20 Xaa21 Xaa22 Xaa23 Xaa24 Xaa25 Xaa26 Xaa27 Xaa28 Xaa29 Cys
               Xaa31 Xaa32 Phe Xaa34 Xaa35 Gly Gly Cys Xaa39 Xaa40 Xaa41 Xaa42 Xaa43 Xaa44 Xaa45
               Xaa46 Xaa47 Xaa48 Xaa49 Xaa50 Cys Xaa52 Xaa53 Xaa54 Cys Xaa56 Xaa57 Xaa58 (SEQ ID
               n° : 1), les Xaa étant, indépendamment les uns des autres, un quelconque acide aminé.
 
            6. Composition pour une utilisation selon la revendication 5, dans laquelle une ou plusieurs
               des conditions suivantes s'applique(nt) :
               
               
Xaa1, Xaa2, Xaa3, Xaa4, Xaa56, Xaa57 ou Xaa58 sont, indépendamment les uns des autres,
                  un quelconque acide aminé ou absents ;
               
               Xaa10 est un acide aminé choisi dans le groupe constitué par Asp et Glu ;
               
               Xaa11 est un acide aminé choisi dans le groupe constitué par Asp, Gly, Ser, Val, Asn,
                  Ile, Ala et Thr ;
               
               Xaa13 est un acide aminé choisi dans le groupe constitué par Arg, His, Pro, Asn, Ser,
                  Thr, Ala, Gly, Lys et Gln ;
               
               Xaa15 est un acide aminé choisi dans le groupe constitué par Arg, Lys, Ala, Ser, Gly,
                  Met, Asn et Gln ;
               
               Xaa16 est un acide aminé choisi dans le groupe constitué par Ala, Gly, Ser, Asp et
                  Asn ;
               
               Xaa17 est un acide aminé choisi dans le groupe constitué par Ala, Asn, Ser, Ile, Gly,
                  Val, Gln et Thr ;
               
               Xaa18 est un acide aminé choisi dans le groupe constitué par His, Leu, Gln et Ala
                  ;
               
               Xaa19 est un acide aminé choisi dans le groupe constitué par Pro, Gln, Leu, Asn et
                  Ile ;
               
               Xaa21 est un acide aminé choisi dans le groupe constitué par Trp, Phe, Tyr, His et
                  Ile ;
               
               Xaa22 est un acide aminé choisi dans le groupe constitué par Tyr et Phe ;
               
               Xaa23 est un acide aminé choisi dans le groupe constitué par Tyr et Phe ;
               
               Xaa31 est un acide aminé choisi dans le groupe constitué par Glu, Asp, Gln, Asn, Ser,
                  Ala, Val, Leu, Ile et Thr ;
               
               Xaa32 est un acide aminé choisi dans le groupe constitué par Glu, Gln, Asp, Asn, Pro,
                  Thr, Leu, Ser, Ala, Gly et Val ;
               
               Xaa34 est un acide aminé choisi dans le groupe constitué par Thr, Ile, Ser, Val, Ala,
                  Asn, Gly et Leu ;
               
               Xaa35 est un acide aminé choisi dans le groupe constitué par Tyr, Trp et Phe ;
               
               Xaa39 est un acide aminé choisi dans le groupe constitué par Glu, Gly, Ala, Ser et
                  Asp;
               
               Xaa40 est un acide aminé choisi dans le groupe constitué par Gly et Ala ;
               
               Xaa43 est un acide aminé choisi dans le groupe constitué par Asn et Gly ;
               
               Xaa45 est un acide aminé choisi dans le groupe constitué par Phe et Tyr ;
               
               Xaa6, Xaa7, Xaa8, Xaa9, Xaa20, Xaa24, Xaa25, Xaa26, Xaa27, Xaa28, Xaa29, Xaa41, Xaa42,
                  Xaa44, Xaa46, Xaa47, Xaa48, Xaa49, Xaa50, Xaa52, Xaa53 et Xaa54 sont, indépendamment
                  les uns des autres, un quelconque acide aminé.
  
            
            8. Composition pour une utilisation selon l'une quelconque des revendications 1 à 7,
               dans laquelle ledit inhibiteur est un peptide comprenant Glu Ala Met His Ser Phe Cys
               Ala Phe Lys Ala Asp Asp Gly Pro Cys Arg Ala Ala His Pro Arg Trp Phe Phe Asn Ile Phe
               Thr Arg Gln Cys Glu Glu Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser
               Leu Glu Glu Cys Lys Lys Met Cys Thr Arg Asp (SEQ ID n° : 23).
 
            9. Composition pour une utilisation selon l'une quelconque des revendications 1 à 8,
               qui comprend une solution saline physiologique.
 
            10. Composition pour une utilisation selon l'une quelconque des revendications 1 à 9,
               dans laquelle la composition est conçue pour une administration en combinaison avec
               une seconde thérapie.
 
            11. Composition pour une utilisation selon la revendication 10, dans laquelle la seconde
               thérapie est choisie dans le groupe constitué d'une thérapie photodynamique, d'une
               chirurgie au laser, d'une photocoagulation au laser, d'un traitement biologique et
               d'un traitement pharmaceutique.
 
            12. Composition pour une utilisation selon l'une quelconque des revendications 1 à 11,
               dans laquelle le trouble est une rétinopathie exsudative, une rétinopathie myopique,
               un oedème maculaire, une dégénérescence maculaire exsudative, une rétinopathie diabétique
               ou une ischémie rétinienne et la composition comprend un agent anti-angiogénique.
 
            13. Composition pour une utilisation selon la revendication 12, dans laquelle l'agent
               anti-angiogénique bloque l'action du VEGF sur les cellules endothéliales.
 
            14. Composition pour une utilisation selon les revendications 1 à 13, dans laquelle la
               composition est destinée à une injection-intra-vitréenne.
 
            15. Composition pour une utilisation selon la revendication 14, dans laquelle l'inhibiteur
               est destiné à une administration à une concentration de moins de 20 mg/ml, de moins
               de 7 mg/ml, de moins de 6 mg/ml, de moins de 5 mg/ml, de moins de 4 mg/ml, de moins
               de 3 mg/ml, de moins de 2 mg/ml ou de moins de 1 mg/ml, de 5 µg/ml à 50 µg/ml, de
               35 µg/ml à 100 µg/ml, de 100 µg/ml à 200 µg/ml, de 200 µg/ml à 500 µg/ml, de 500 µg/ml
               à 750 µg/ml ou de 500 µg/ml à 1 mg/ml, ou de 21,2 µg/oeil.