(19)
(11) EP 2 375 030 A2

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
12.10.2011  Patentblatt  2011/41

(21) Anmeldenummer: 11161246.1

(22) Anmeldetag:  06.04.2011
(51) Internationale Patentklassifikation (IPC): 
F02B 63/06(2006.01)
F02M 39/02(2006.01)
F04B 9/04(2006.01)
F02M 37/06(2006.01)
F02M 59/10(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME

(30) Priorität: 07.04.2010 DE 102010016357

(71) Anmelder: A. T. Süd GmbH
85101 Lenting (DE)

(72) Erfinder:
  • Neugärtner, Jörg
    93051 Regensburg (DE)
  • Scharlach, Albert
    85129 Oberdolling (DE)

(74) Vertreter: Cremer & Cremer 
Patentanwälte St.-Barbara-Straße 16
89077 Ulm
89077 Ulm (DE)

   


(54) Verbrennungskraftmaschine mit Kraftstoffpumpe


(57) Die vorliegende Erfindung betrifft eine Verbrennungskraftmaschine, der eine Kraftstoffpumpe zugeordnet ist. Weiterhin betrifft die vorliegende Erfindung ein Betriebsverfahren einer entsprechenden Verbrennungskraftmaschine mit Kraftstoffpumpe. Bei Kraftstoffpumpen treten aufgrund des zu erzeugenden hohen Drucks zunehmend Schwierigkeiten auf. Daher wird erfindungsgemäß die Kurbelwelle in die Designbetrachtungen einbezogen. Die Kurbelwelle, genauer der Kurbelwellenschaft, treibt erfindungsgemäß unmittelbar - ohne Zwischenelement - ein Antriebsglied der Kraftstoffpumpe an. Die in der Rotation des Kurbelwellenschafts vorhandene Antriebsenergie wird direkt auf die Kraftstoffpumpe weitergegeben. Es gibt eine Berührungslinie zwischen Kurbelwelle und Antriebsglied der Kraftstoffpumpe. Kurbelwelle und Kraftstoffpumpe lagern gegeneinander, beide Teile, Kurbelwelle und Kraftstoffpumpe, sind im Bereich des Kurbelwellenschafts in Berührkontakt. Diese Art des Antriebs löst viele Probleme, die bei einem Steuertriebantrieb nicht überwunden werden können.




Beschreibung


[0001] Die vorliegende Erfindung betrifft eine Verbrennungskraftmaschine, der eine Kraftstoffpumpe zugeordnet ist. Weiterhin betrifft die vorliegende Erfindung ein Betriebsverfahren einer entsprechenden Verbrennungskraftmaschine mit Kraftstoffpumpe.

[0002] Verbrennungskraftmaschinen gibt es in zahlreichen Ausgestaltungen, so zum Beispiel als Hubkolbenmotoren. Bei den Hubkolbenmotoren wird ein in seinem Volumen anpassbarer Brennraum durch eine Hubbewegung wenigstens eines Kolbens während des Arbeits- und Verbrennungsvorgangs in Abhängigkeit der Betriebsphase zur Energieumwandlung verwendet. Die Hubbewegung des Kolbens in seinem Zylinder, in der Regel sind mehrere Zylinder mit mehreren Kolben vorhanden, wird auf eine Kurbelwelle, insbesondere mittels Pleuel, übertragen. Der Hubkolbenmotor ist in der Regel blockartig gestaltet. Der Motorblock setzt sich aus einem Kurbelwellengehäuse und weiteren Blöcken oder Deckeln, wie einem Zylinderkopf, zusammen. In dem Kurbelwellengehäuse lagert die Kurbelwelle, sofern der Hubkolbenmotor mit einer innenliegenden Kurbelwelle aufgebaut ist. Das Kurbelwellengehäuse bietet zur Lagerung der Kurbelwelle ein Kurbelwellengestühl. Die Kurbelwelle selbst ist normalerweise gekröpft ausgeführt, das bedeutet, dass die Kurbelwelle sich segmentartig aus einzelnen Kurbelwellenwangen, Kurbelwellenschäften und Hubzapfen zusammensetzt. Solche Kurbelwellen sind in vielen Fällen entweder geschmiedet, gebaut oder gegossen. Der Kurbelwellenschaft ist ein Stück Kurbelwelle, das von Kurbelwellenwangen begrenzt die eine Kurbelwellenwange mit der nächsten Kurbelwellenwange verbindet. Durch den Kurbelwellenschaft, der auch gelegentlich als Kurbelwellenzapfen bezeichnet wird, verläuft die Drehachse der Kurbelwelle. Seitlich hiervon versetzt wird als Verbindungsstück zwischen weiteren Kurbelwellenwangen ein Hubzapfen angeordnet, an dem die Pleuel für die einzelnen Hubkolben angebunden sein können. Im seitlichen Profil sieht eine Kurbelwelle häufig wie eine gestufte Plattenanordnung aus. Die plattenartigen, häufig seitlich ausladenden Teile der Kurbelwelle werden als Kurbelwellenwangen bezeichnet. Dazwischen sind einzelne Kurbelwellenschäfte und Kurbelwellenzapfen angeordnet, die einen geringeren Durchmesser haben als die Kurbelwellenwangen. Die Kurbelwellenwangen werden ungleichförmig in Form von Kreissegmenten gebildet, sodass die Kurbelwellenwangen gleichzeitig als Ausgleichsgewichte zur Verfügung stehen können.

[0003] In Abhängigkeit von der jeweiligen Stellung des Hubkolbens in seinem Zylinder muss ein Kraftstoff-Luft-Gemisch in den Brennraum einbringbar sein. Somit erfolgt bei den meisten Hubkolbenmotoren eine gepulste Kraftstoffeinleitung in den Brennraum, die nur zu ausgewählten Zeitpunkten zu erfolgen hat. Das bedeutet, dass eine Synchronisierung zwischen der relativen Lage der Kurbelwelle, also einem gewissen Drehwinkel der Kurbelwelle, und einer Kraftstoffförderung sichergestellt sein sollte. Die Kraftstoffförderung ist Teil einer Kraftstoffaufbereitungsanlage, die als Einspritzanlage ausgestaltet sein kann. Teile der Einspritzanlage sind eine Druckerzeugung wie eine Kraftstoffpumpe, ein entsprechendes Leitungssystem, häufig wenigstens eine Rücklaufleitung, in der Regel wenigstens ein Kraftstofffilter, wenigstens ein Einspritzventil und entsprechende Regelungen. Die Antriebsleistung der Kraftstoffpumpe kann aus vielen verschiedenen Quellen bezogen werden, z. B. kann eine elektrisch angetriebene Kraftstoffpumpe verwendet werden, die über ein Steuergerät angesteuert phasenweise, z. B. wenn das Kraftstoffdruckniveau in den Zuleitungen unter einen Mindestdruck absinkt, betrieben wird. Mechanisch betriebenen Kraftstoffpumpen wird jedoch im Kraftfahrzeugbau, sofern Verbrennungskraftmaschinen die Antriebsaggregate sind, der Vorzug gegeben.

Stand der Technik



[0004] Andere Konzepte, wie eine Kraftstoffpumpe einer Einspritzanlage angetrieben und synchronisiert werden kann, basieren darauf, dass die Kraftstoffpumpe mechanisch angetrieben durch ihren mechanischen Antrieb synchronisiert wird. So schlägt die DE 10 2007 056 418 A1 (Anmelderin: Continental Automotive GmbH; Anmeldetag: 23.11.2007) vor, eine Hochdruckpumpe mechanisch an die Turbinenwelle, die mit der Antriebswelle der Hochdruckpumpe in Verbindung steht, mechanisch anzukoppeln. Die Druckschrift beschreibt in prinzipiellen Darstellungen unterschiedliche Ausgestaltungen von Kraftstoffeinspritzsystemen, die eine Einzelzylindereinspritzung über einen Injektor pro Brennraum realisieren können. Die in der DE 10 2007 056 418 A1 dargestellten hydraulischen Anordnungen können zur Verdeutlichung dienen, welche Teile und Komponenten zu einer Einspritzanlage gehören. Der Offenbarungsumfang der DE 10 2007 056 418 A1 wird als Grundlage zur Erklärung eines Einspritzsystems herangezogen. In solchen Einspritzanlagen kann der Förderzeitpunkt der Hochdruckpumpe durch einen Nocken oder durch mehrere Nocken eingestellt werden, wie zum Beispiel in der DE 10 2008 008 438 A1 (Anmelderin: Continental Automotive GmbH; Anmeldetag: 11.02.2008) und der DE 10 2008 002 178 A1 (Anmelderin: Robert Bosch GmbH; Anmeldetag: 03.06.2008) dargestellt. Die Nockensteuerung kann dabei sowohl Teil einer Nockenwelle wie auch Teil eines Nebentriebs oder einer Nebentriebswelle, z. B. über einen Kettentrieb oder über eine Riementriebswelle, sein. Die Anzahl der Nocken ergibt sich aus der Drehgeschwindigkeit der Antriebswelle im Vergleich zur Kurbelwelle. Wird die Nockenwelle als Bezugswelle verwendet, so werden in der Regel zwei bis vier Nocken platziert, während bei einer Ausgleichswelle, die häufig mit doppelter Motorendrehzahl im Vergleich zur Kurbelwelle dreht, in der Regel nur ein bis zwei Nocken platziert werden. Wie bei solchen Anordnungen eine Kraftstoffpumpe angebunden werden kann, kann der JP 2 042 170 A (Anmelderin: Honda Motor Co Ltd.; Anmeldetag: 01.08.1988) entnommen werden.

[0005] Es ist weithin verbreitet, die Steuerung der Kraftstoffpumpe, insbesondere einer Hochdruckpumpe, auf eine spezielle Welle, wie z. B. oben diskutiert eine Ausgleichswelle, zu beziehen. Hiervon abweichend schlägt die DE 10 2006 006 823 B3 (Patentinhaberin: Siemens AG; Anmeldetag: 14.02.2006) vor, eine unmittelbare Phasenlage zwischen Kurbelwelle der Verbrennungskraftmaschine und einer Antriebswelle der Hochdruckpumpe einzustellen. Das dort Gelehrte ist zudem deswegen nahegelegt, weil, siehe zum Beispiel die DE 10 2008 007 025 A1 (Anmelderin: Continental Automotive GmbH; Anmeldetag: 31.01.2008), die Antriebswelle der Kraftstoffpumpe in Fachkreisen häufig als im Kurbelraum angeordnet bezeichnet wird. Die Antriebswelle der Hochdruckpumpe kann dabei in einer Drehrichtung drehbar im Kurbelraum gelagert sein.

[0006] Konstruktive Vorschläge lassen sich der JP 2008 038 848 A (Anmelderin: Yanmar Co Ltd.; Anmeldetag: 09.08.2006), dargestellt in auskonstruierter Weise, oder der DE 10 2008 000 711 A1 (Anmelderin: Robert Bosch GmbH; Anmeldetag: 17.03.2008), dargestellt in prinzipieller Darstellung, entnehmen. Die DE 10 2008 000 711 A1 möchte zur Synchronisierung ein Übersetzungsgetriebe zwischen Kurbelwelle und Antriebswelle der Kraftstoffpumpe einsetzen. Hierbei dominiert vermutlich die Auffassung, dass die Hochdruckpumpe nicht unmittelbar auf die Kurbelwelle synchronisiert werden kann. Im Ergebnis stellt die DE 10 2008 000 711 A1 eine Lösung vor, bei der der Bauraum für das Steuergetriebe der Verbrennungskraftmaschine ein zweites Mal nachgebildet wird, nämlich durch gekapselt gezeichnete Übersetzungsgetriebe.

[0007] Eine unmittelbare stirnseitige Anbindung der Kraftstoffpumpe an die Kurbelwelle lässt sich den Figuren der drei japanischen Patentanmeldungen JP 63 277 853 A (Anmelderin: Mitsubishi Heavy Ind Ltd.; Anmeldetag: 11.05.1987), JP 63 109 243 A (Anmelderin: Mitsubishi Heavy Ind Ltd.; Anmeldetag: 28.10.1986) und JP 2 301 660 A (Anmelderin: Yamaha Motor Corp.; Anmeldetag: 17.05.1989) entnehmen.

[0008] Eine servicefreundliche Anordnung von Motorenzubehör, die eine Kraftstoffpumpe an einem kompakten V-Typ-Verbrennungsmotor darstellen soll, ist in der GB 827 141 A (Inhaberin: Continental Motors Corporation; Anmeldetag: 17.07.1958) beschrieben. Kraftstoffeinspritzpumpen kommen gemäß der Offenlegungsschrift DE 23 61 024 A1 (Anmelderin: Daimler-Benz AG; Anmeldetag: 07.12.1973) in Antriebsverbindung mit einem Anschluss zu einem Nebenabtrieb eines Hubkolbenmotors mit Schwungrad für Nutzfahrzeuge zum Einsatz. Zur Reduktion des Bauraums werden in der Patentanmeldung AT 503 752 A2 (Anmelderin: AVL LIST GmbH; Anmeldetag: 10.05.2007) die Antriebswelle der Kraftstoffpumpe und die Antriebswelle der Ölpumpe an eine Brennkraftmaschine achsgleich angeordnet. Kompakte Bauweisen für Kraftstoffpumpenanordnungen an Verbrennungsmotoren lassen sich auch den Offenlegungsschriften DE 196 54 290 A1 (Anmelderin: Dolmar GmbH; Anmeldetag: 27.12.1996) für einen Rasentrimmer, DE 196 54 286 A1 (Anmelderin: Dolmar GmbH; Anmeldetag: 27.12.1996) für eine Motorsense und der Patentschrift DE 195 29 368 C1 (Inhaberin: Dolmar GmbH; Anmeldetag: 10.08.1995) für von Hand geführte Werkzeuge, wie Kettensägen, entnehmen. Dabei weist die Kraftstoffpumpe einen Winkelversatz zu einem Schraubenrad-Antrieb auf.

Aufgabenstellung



[0009] Motorenentwickler von Kraftfahrzeugmotoren und Komponentenentwickler einzelner Komponenten für Kraftfahrzeugmotoren dürfen eine Tendenz bei den europäischen Automobilherstellern beobachten, dass diese gerne auf einen und den gleichen Motor einer bestimmten Zylinderanzahl als Ausgangsmotor zurückgreifen wollen und dann dieser Motor anschließend in den zur Verfügung stehenden Motorraum des ausgewählten Kraftfahrzeuges einzupassen ist. Hierbei wird häufig die Orientierung des Motors je nach Bedarf gedreht und somit auch die Aufhängungspunkte des Motors angepasst. Zwar darf der eigentliche Motorblock gleich bleiben, jedoch sind aufgrund des veränderten Motorraums sämtliche, außenliegenden Aggregate, wie z. B. der Generator, anzupassen. Das Crashverhalten des Kraftfahrzeuges verändert sich, wenn die Aggregate neu arrangiert werden. Erst nach entsprechenden Versuchen wird festgestellt, dass mit dem Drehen des Motors und einer veränderten Aufhängung zahlreiche weitere Probleme in Kauf genommen worden sind. Obwohl dem Grunde nach alle Komponenten bekannt sind, verlängert sich die Entwicklungszeit. Es tauchen ungeahnte Probleme für die Entwicklungsingenieure während der Erprobungsphase auf.

Erfindungsbeschreibung



[0010] Die erfindungsgemäße Aufgabe wird durch einen Hubkolbenmotor nach Anspruch 1 gelöst. Wie ein solcher Hubkolbenmotor betrieben werden kann, lässt sich Anspruch 11 entnehmen. Vorteilhafte Weiterbildungen lassen sich den abhängigen Ansprüchen entnehmen.

[0011] Der Hubkolbenmotor ist ein blockartiger Motor, der vorzugsweise mit mehreren Kolben in verschiedenen Zylindern ausgestattet ist. Im Inneren des Hubkolbenmotors ist eine Kurbelwelle angeordnet. Es handelt sich somit um einen Hubkolbenmotor mit innenliegender Kurbelwelle. Damit die Kurbelwelle innenliegend angeordnet sein kann, bietet der Hubkolbenmotor ein Kurbelwellengehäuse. Das Kurbelwellengehäuse befindet sich in der Regel in dem dem Boden zugewandten Bereich des Hubkolbenmotors, also unten. Mit anderen Worten, die Kurbelwelle befindet sich im Nahbereich des Motorsumpfes. Oberhalb einer solchen Kurbelwelle befinden sich die Zylinder mit ihren durch die einzelnen Hubkolben - zumindest zu einer Seite - begrenzten Brennräumen. In Abhängigkeit des Brennvorgangs im Brennraum verändert der Hubkolben seine relative Lage im Zylinder. Der Hubkolben führt eine Abwärts- oder Aufwärtsbewegung durch. Der Hubkolben folgt somit einer Hubbewegung.

[0012] Die Kurbelwelle setzt sich aus einzelnen Segmenten oder Abschnitten zusammen. Ein Teil der Kurbelwelle ist die Kurbelwellenwange. Zwischen zwei Kurbelwellenwangen existieren Verbindungsstücke, zum Beispiel ein Kurbelwellenschaft. Bei Hubkolbenmotoren mit mehreren Zylindern hat die Kurbelwelle vorteilhafterweise ebenfalls mehrere Kurbelwellenwangen. Durch die Gewichtsverlagerungen innerhalb der Kurbelwellenwange können die Kurbelwellenwangen gleichzeitig Ausgleichsgewichte für den Hubkolbenmotor bieten.

[0013] Abgewandt von den Hubkolben, es kann auch gesagt werden, auf der gegenüberliegenden Seite des Brennraums, haben Verbrennungskraftmaschinen pro Zylinder in der Regel mehrere Gaswechselventile, die zur Kraftstoff-Luft-Gemisch-Aufbereitung in dem Brennraum oder in den Brennräumen des Hubkolbenmotors beitragen sollen. Ein oder mehrere Einspritzventile münden vor oder in dem Brennraum. Je nach verwendetem Kraftstoff, ob Dieselkraftstoff oder Benzinkraftstoff verwendet wird, wird auch von einem Dieselmotor oder von einem Otto-Motor gesprochen. Damit der Kraftstoff in dem richtigen Mischungsverhältnis in ausreichender Menge, jedoch nicht zu fett, zur Verfügung steht, ist dem Hubkolbenmotor eine Kraftstoffaufbereitungsvorrichtung zugeordnet. Ein Teil der Kraftstoffaufbereitungsvorrichtung ist eine Kraftstoffpumpe, die in der Regel aufgrund des herzustellenden Drucks auch als Hochdruckpumpe bezeichnet werden kann. Eine solche Kraftstoffpumpe sorgt dafür, dass der Kraftstoff unter Druck gesetzt werden kann. Es sind Drücke in einem Druckbereich von mehr als 1800 bar, z. B. im Bereich von 2200 bar, durchaus üblich. Bei Otto-Motoren sind niedrigere Drücke üblich. Zur Regelung des Kraftstoffaufbereitungsvorgangs bietet die Kraftstoffaufbereitungsvorrichtung eine oder mehrere Zuleitungen und wenigstens eine Rückleitung für den Kraftstoff. Der Kurbelwellenschaft kann als Antriebsfläche für ein Antriebselement der Kraftstoffpumpe, wie einen Rollenstößel oder einen Hubkolben der Kraftstoffpumpe, genutzt werden. Der Kurbelwellenschaft ist daher ein Antriebselement für die Kraftstoffpumpe. Erfindungsgemäß erfolgt eine unmittelbare Übertragung der Antriebsenergie für die Kraftstoffpumpe von dem Kurbelwellenschaft auf die an ihr angelagerte Kraftstoffpumpe. Die Kraftstoffpumpe steht unmittelbar im Eingriff mit dem Kurbelwellenschaft. Es wird auf Übersetzungsgetriebe und Getriebeketten verzichtet. Der Hubkolbenmotor bewahrt in seinem Inneren die Kraftstoffpumpe, die ihre Antriebsleistung durch eine Anlagerung an dem Kurbelwellenschaft erfährt.

[0014] Die Kurbelwelle, genauer der Kurbelwellenschaft, treibt unmittelbar - ohne Zwischenelement - ein Antriebsglied der Kraftstoffpumpe an. Die in der Rotation des Kurbelwellenschafts vorhandene Antriebsenergie wird direkt auf die Kraftstoffpumpe weitergegeben. Es gibt eine Berührungslinie zwischen Kurbelwelle und Antriebsglied der Kraftstoffpumpe. Kurbelwelle und Kraftstoffpumpe lagern gegeneinander, beide Teile, Kurbelwelle und Kraftstoffpumpe, sind im Bereich des Kurbelwellenschafts in Berührkontakt.

[0015] Die Lager der Kurbelwelle sind für die Leistungen, die der Hubkolbenmotor zur Verfügung stellen soll, ausgelegt. Der Hubkolbenmotor operiert vorzugsweise mit Kraftstoff, der unter hohen Druck gesetzt ist. Ungleichförmige Belastungen, die aufgrund von impulsartigen Fördervorgängen in der Kraftstoffpumpe hervorgerufen werden, haben bei einer Einleitung der Antriebsleistung mit Hilfe eines Kurbelwellenschafts in der Form von mechanischen Belastungen für die Lager der Kurbelwelle nur einen sehr geringen Einfluss auf die Standzeiten des Hubkolbenmotors.

[0016] Ein entsprechender Hubkolbenmotor, wie zuvor beschrieben, zeichnet sich durch seine kompakte Gestaltung aus. Der Hubkolbenmotor kann dadurch betrieben werden, dass die Arbeitsenergie der Kurbelwelle vorteilhaft zum Teil für die Kraftstoffaufbereitung genutzt wird. Hierfür wird die Förderleistung von dem Kurbelwellenschaft abgegriffen. Der Hubkolbenmotor wandelt kalorische Energie unter Nutzung einer Kraftstoff-Luft-Verbrennung in Rotationsenergie einer Kurbelwelle. Für den Verbrennungsvorgang gibt es wenigstens einen Brennraum, der über einen Hubkolben Bewegungsenergie auf eine Kurbelwelle aufbringen kann. Die Kurbelwelle liegt im Inneren des Hubkolbenmotors. Die Kurbelwelle ist segmentartig gestaltet. Ein Segment umfasst die Kurbelwellenwange. Weiterhin gibt es wenigstens einen Kurbelwellenschaft. Die Förderleistung an der Kraftstoffpumpe dient dazu, einen Druck aufzubauen. Die Antriebsenergie muss nicht umständlich durch den gesamten Motor umgelenkt werden. Mit Hilfe der Gestaltung des Kurbelwellenschafts oder einer Kontur auf oder an dem Kurbelwellenschaft kann rotationsgesteuert die Energie für die Kraftstoffförderung an die Kraftstoffpumpe abgegeben werden.

[0017] Vorteilhafte Weiterbildungen lassen sich den nachfolgenden Ausführungen entnehmen, die für sich allein gesehen, ebenfalls eigenständigen erfinderischen Beitrag zeigen können.

[0018] Eine Antriebsebene der Kraftstoffpumpe läuft durch den Kurbelwellenschaft. Somit kann eine Oberfläche des Kurbelwellenschafts gleichzeitig als Antriebsebene bzw. als Antriebskreis für die Kraftstoffpumpe genutzt werden. Vorteilhaft ist die Verwendung einer Kontur an oder auf dem Kurbelwellenschaft, die als Antriebsebene dient.

[0019] Die Kurbelwelle dreht um eine Kurbelwellenachse. Die Kurbelwellenachse erstreckt sich in den Kurbelwellenschäften, sofern mehrere vorhanden sind. Die Kurbelwelle hat zumindest aber einen Schaft. Die Hubkolben des Hubkolbenmotors stehen quer ab zu der Längserstreckung der Kurbelwelle. Die Hubkolben folgen ihrer Hubbewegung in einem Winkel zur Kurbelwelle. Die Anlagerung der Kraftstoffpumpe erfolgt seitlich zur Kurbelwellenachse. Der Berührungspunkt zwischen Kraftstoffpumpe und Kurbelwelle liegt somit nicht auf der Kurbelwellenachse. Etwas versetzt zur Kurbelwellenachse befindet sich die Antriebsstelle zur Kraftstoffpumpe innerhalb der Kurbelwelle, also an einer Oberfläche der Kurbelwelle. Die Antriebskraft, die wenigstens teilweise für die Kraftstoffpumpe genutzt werden kann, kann in unterschiedliche Kraftkomponenten aufgeteilt werden. Eine Antriebskraft für die Kraftstoffpumpe erstreckt sich im rechten Winkel zur Kurbelwellenachse. Die Rotationsbewegung der Kurbelwelle lässt sich hierdurch vorteilhaft für den Antrieb der Kraftstoffpumpe nutzten. Es können Oberflächenprofile in den Kurbelwellenschaft eingearbeitet sein, sodass keine zusätzlichen Nocken an einem Ende der Kurbelwelle eingearbeitet sein müssen. Sondern ein mittleres Teil der Kurbelwelle selbst ist so gefertigt, dass es als Steuerrad für den Antrieb der Kraftstoffpumpe genutzt werden kann.

[0020] Zum Antrieb der Kraftstoffpumpe kann ein Umfang auf dem Kurbelwellenschaft genutzt werden. Vorteilhafterweise fallen Umfang und Oberfläche des Kurbelwellenschafts zusammen. Der Abschnitt der Oberfläche, der als Umfang zum Antrieb der Kraftstoffpumpe genutzt wird, sollte einen gewissen (Mindest-)Durchmesser einfassen. Für eine besonders leichte Umsetzung der Erfindung kann der größte Durchmesser, also der breiteste Durchmesser, des Kurbelwellenschafts benutzt werden. Wird ein Punkt auf dem Kurbelwellenschaft während der Rotationsbewegung der Kurbelwelle verfolgt, so beschreibt dieser Punkt einen Durchmesser durch seine kreisförmige Bewegung. Der äußere Umfang, der parallel zur Oberfläche des Kurbelwellenschafts verläuft, kann bei einer solchen Gestaltung zum Antrieb der Kraftstoffpumpe genutzt werden. Sollte die Kraftstoffpumpe eine nockengetriebene bzw. nockengesteuerte Kraftstoffpumpe sein, so muss nur während des Schleifvorgangs der Kurbelwelle ein solcher Nocken in die seitliche Oberfläche des Kurbelwellenschafts eingearbeitet sein.

[0021] Die Kurbelwelle muss ausreichend gelagert sein. Hierfür bietet das Kurbelwellengehäuse ein Kurbelwellengestühl. An ausgewählten Stellen wird die Kurbelwelle durch das Kurbelwellengestühl gelagert. Die Kurbelwelle wird durch das Kurbelwellengestühl getragen. Dabei muss das Kurbelwellengestühl nicht vollständig massiv ausgestaltet sein. Das Kurbelwellengestühl muss ausreichend fest sein, um die Kräfte der Kurbelwelle aufnehmen zu können, das Kurbelwellengestühl kann jedoch auch einzelne Öffnungen haben.

[0022] Die Kurbelwelle wird wenigstens teilweise durch ein Kurbelwellengestühl getragen. Zumindest in einem Tragarm des Kurbelwellengestühls ist eine Öffnung eingelassen. Die Öffnung ist so dimensioniert, dass eine Kraftstoffpumpe durch das Kurbelwellengestühl durchgreifen kann bzw. in ihm teilweise eingeschlossen sein kann und sich an dem Kurbelwellenschaft anlagern kann. Diese Anordnung trägt zur geschützten Lagerung der Kraftstoffpumpe bei. Das Lager der Kurbelwelle ist ausreichend stabil, obwohl das Kurbelwellengestühl eine Öffnung aufweist. Die vorgestellte Lösung steigert den Integrationsgrad des Hubkolbenmotors.

[0023] In einer besonders vorteilhaften Weiterbildung ist der Kurbelwellenschaft nicht über seine gesamte Oberfläche hinweg gleichmäßig, z. B. gleichmäßig gerundet, sondern er weist an einer Stelle wenigstens einen Überstand auf. Der Überstand kann als eingearbeitete Nocke oder als eingearbeitete Stufe gestaltet sein. Die Steuerungskontur lässt sich genauso mit Hilfe einer Vertiefung realisieren. Die Steuerungskontur kann sowohl als konvexe als auch als konkave Oberfläche gestaltet sein. Die Nocke ist so in den Kurbelwellenschaft eingearbeitet, dass durch die Rotationsbewegung der Kurbelwelle bzw. durch die Rotationsbewegung des Kurbelwellenschafts eine Hubbewegung auf die Kraftstoffpumpe ausgeübt werden kann. Dafür steht der Überstand ein wenig aus dem restlichen Kurbelwellenschaft heraus. Die Kurbelwelle wird standardmäßig bei der Herstellung geschliffen. Während des Schleifvorgangs kann im gleichen Bearbeitungsschritt die Stufe bzw. die Nocke eingearbeitet werden.

[0024] Als besonders geeignet haben sich Kraftstoffsteckpumpen erwiesen, solche Pumpen gibt es als Einkolbenhochdruckpumpen. Die Kraftstoffsteckpumpe hat einen sehr kleinen Durchmesser, z. B. 15 mm oder 17 mm, zumindest an dem Antriebselement der Kraftstoffpumpe. Das Kurbelwellengestühl ist bei vielen Motoren breiter. Somit kann die Kraftstoffsteckpumpe im Kurbelwellengestühl stecken. Das Kurbelwellengestühl bietet für die innenliegende Kraftstoffpumpe umschließendes Material, sodass auf der einen Seite die Kraftstoffpumpe vor den übrigen rotierenden Teilen geschützt ist und auf der anderen Seite keine unnötige Durchbiegung der Kurbelwelle aufgrund von zu schwachen Lagern droht. Typische Breiten der Lager für Kurbelwellen, die z. B. einen Durchmesser von 70 mm im Bereich ihrer Schäfte haben, sind z. B. 16 mm. Die Integration der Kraftstoffpumpe erfolgt bei einer solchen Ausgestaltung über ein Teilsegment im Umfang und nicht über die gesamte Breite des Lagers. Für die Integration einer Pumpe, die Kraftstoff mit einem Druck von 2200 bar liefern kann, hat sich ein Rollentassenstößel mit einer Rollenbreite von ca. 14 mm bis ca. 15 mm Breite als ausreichend dimensioniert erwiesen. Das bedeutet, die Kraftstoffpumpe lässt sich in dem Lagerschild, dem Kurbelwellengestühl, integrieren, selbst bei so geringen Durchmessern wie 70 mm.

[0025] Durch den Hubkolbenmotor können verschiedene Achsen durchgezogen werden. Eine solche Achse kann sich durch die Längserstreckung der Kurbelwelle erstrecken. Eine weitere Achsenorientierung kann als Radius der Kurbelwellenwange oder des Kurbelwellenschafts angesehen werden. Zu diesen unterschiedlichen Achsen abgewinkelt lässt sich die Kraftstoffpumpe anordnen, wobei die Kraftstoffpumpe von der Kurbelwellenschaftoberfläche startend in eine eigene Richtung sich erstreckt. Hierzu wird ein vorteilhafter Winkel wie z. B. 45° gewählt. Vibrationen und Erschütterungen wirken bei geschickter Wahl der Achse der Kraftstoffpumpe auf die Kraftstoffpumpe deutlich geringer ein als bei der Orientierung, wenn die Kraftstoffpumpe entlang einer Hauptachse des Hubkolbenmotors ausgerichtet wäre.

[0026] Die Kraftstoffpumpe kann mehrteilig aufgebaut sein. Der eigentliche Kern der Kraftstoffpumpe, sozusagen das Pumpenkerngehäuse, in dem sich der Hochdruckteil der Pumpe befindet, kann über einen Hebel an dem Kurbelwellenschaft angebunden sein. Der Hebel selbst sollte durch einzelne Federn vorgespannt sein. Mit Hilfe des Hebels kann die Antriebsleistung aus dem Kurbelwellenschaft umgelenkt an das Pumpenkerngehäuse herangeführt werden.

[0027] Der Hubkolbenmotor ist soweit integriert, dass die Kraftstoffpumpe bei einer besonders vorteilhaften Anordnung von außen nicht mehr unmittelbar zu sehen ist (außer natürlich die von außen heranzuführenden Kraftstoffanschlüsse wie Zuleitung und Ableitung). Sämtliche Teile der Kraftstoffpumpe befinden sich also in dem Motorblock des Hubkolbenmotors. Als Installationsort bzw. Montageort, der besonders vorteilhaft ist, kann eine Stelle in dem Kurbelwellengehäuse gewählt werden.

[0028] Die vorliegende Erfindung zeichnet sich in vieler Hinsicht positiv aus. So trägt die Integration der Kraftstoffpumpe in das Motorgehäuse dazu bei, dass die Bauteilanzahl und die Anzahl der Einzelteile reduziert werden. Einer oder mehrere zusätzliche Nocken sowie ein gesondertes Ketten-, Zahnrad- oder Riementriebselement können entfallen. Dies trägt nicht nur zu Kostenreduktion, sondern auch zur Verbesserung der Gesamtdynamik des Motors bei. Sofern auf ein gesondertes Ketten-, Zahnrad- oder Riementriebselement verzichtet werden kann, wird der Leistungsverlust, der aufgrund von Reibung aufzubringen ist, reduziert. Zusätzliche Antriebskräfte sind nicht mehr aufzubringen. Die Nockenwellen können im Vergleich zu Systemen, bei denen die Kraftstoffpumpe durch eine Nockenwelle synchronisiert wird, mit geringer dimensionierten Lagern ausgelegt werden. So wird je nach Auslegung der Kräfteverteilung der Raum dafür eröffnet, dass Gehäuse und Lager im Zylinderkopf sowie Deckel und Rahmen durchgehend in Kunststoff umgesetzt werden können. Die Auslegung als Kunststoffteile ist ein weiterer Beitrag zur Gewichtsreduktion. Als weitere Folge können zumindest teilweise die druckölversorgten Bauteile in ihrer Zahl reduziert werden, was wiederum zu einer Vereinfachung des Motors beiträgt. Je nach Gestaltung der Anordnung zwischen Kraftstoffpumpe und Kurbelwellenwange kann im Bereich des Ausgleichswellentrieb zusätzlicher Platz gewonnen werden, indem dieser für einen Kraftstoffpumpenantrieb nicht mehr zu beanspruchen ist. Die Übertragung des Hubes mittels Übertragungselementes auf die Pumpe kann eine bauraumoptimale Lösung sowie die Reduzierung bzw. Überbrückung filigraner Strukturen im Gehäuse des Motors ermöglichen. Eine Übersetzung bzw. Untersetzung ermöglicht eine Anpassung von Hub- und Flächenkräften bei der Übertragung der Antriebsleistung. Die Einbringung von weiteren Funktionselementen ist grundsätzlich möglich, z. B. können Schalttassen oder Kipphebelabschaltungen zusätzlich integriert werden. Für einen besonders vorteilhaften Kraftstoffpumpenaufbau sollte die Pumpe selbst in die folgenden Baugruppen unterteilbar sein: Abtriebselement wie Rollentassenstößel, Übertragungselement wie Pumpenstößel, Hochdruckpumpeneinheit und Hochdruckpumpenteil mit VCV und Druckraum.

[0029] Weiterhin ergeben sich auch Vorteile bei der Herstellung. So können die Herstellung, die Montage und damit Justage der Pumpeneinheiten vereinfacht werden. Die Bearbeitung des Kurbelgehäuses (insbesondere Lagerschalen und Kurbelwellenlagerung) kann während eines Bearbeitungsschrittes, also zeitgleich, mit der Bearbeitung des Pumpenabtriebes erfolgen. Die Bearbeitung kann mit sehr hoher (auch notwendiger) Präzision durchgeführt werden. Die Ölversorgung des Abtriebes für die Kraftstoffpumpe kann in einer Ausgestaltung direkt aus dem Lager bzw. Kurbelgehäuseschmierkreislauf erfolgen.

[0030] Vorteilhaft für die Ölversorgung ist ebenfalls die Ausgestaltung des Kurbelwellengestühls mit Öffnungen. Öffnungen ergeben weiterhin eine hohe Stabilität des Kurbelwellengestühls zur Aufnahme von vibronischen Kräften, die gegebenenfalls aus der Rotation der Kurbelwelle generiert werden. Öffnungen dienen zudem einer vorteilhaften Gewichtsreduktion. Schwingungskräfte, Querkräfte oder radial zur Kurbelwelle wirkende Fliehkräfte können im laufenden Motorbetrieb entstehen. Kraftwirkungen sind entlang der Öffnungen insbesondere materialschonend abzuleiten. Vorzugsweise ist mindestens eine Öffnung zur Aufnahme einer Kraftstoffpumpe eingelassen. Eine weitere Öffnung kann Kraftstoffleitungen aufnehmen. Die Kräfte werden um die Kraftstoffpumpe herum abgeleitet, sodass die Kraftstoffpumpe bezüglich Kräften, die keine Pumpenantriebskräfte sind, lastfrei bleibt und sich so eine hohe Lebensdauer der Dichtungen der Kraftstoffpumpe ergibt. Die Größe der Öffnung ist an eine Abmessung der Kraftstoffpumpe angepasst. Ein maximaler Durchmesser der Öffnung ist größer als ein Kraftstoffpumpendurchmesser, insbesondere in einem Steckbereich der Kraftstoffpumpe. Die Öffnung umschließt einen Teilbereich eines Gehäuses einer eingesetzten Kraftstoffpumpe. Durch Einpassung eines Kraftstoffpumpengehäusesegments in die Öffnung werden insbesondere Hebelkräfte, die bei der Pumpenbetätigung auf das Pumpengehäuse wirken können, auf die Wandung der Öffnung und damit vorzugsweise auf das Kurbelwellengestühl abgeführt. Die Einfassung der Öffnung stellt ein Gegenlager zur Betätigung der Kraftstoffpumpe dar. Eine Durchgriffsöffnung kann entweder rundlich oder rechteckig ausgestaltet sein. Insbesondere eine konisch eingelassene Öffnung kann einen präzisen Sitz einer entsprechend gegengleich ausgeformten Kraftstoffpumpe ermöglichen. Eine Kraftstoffpumpe ist nach einem Aspekt auch bajonettartig oder in einem Gewindegang oder mit einem Klammermechanismus in einer Öffnung des Kurbelwellengestühls zu halten. Das Kurbelwellengestühl bildet ein Widerlager für die Kraftstoffpumpe.

[0031] Die Kurbelwelle kann mehrere Segmente von Kurbelwellenschäften aufweisen. Eine Öffnung zur Aufnahme der Kraftstoffpumpe ist vorzugsweise auf ein Segment des Kurbelwellenschafts gerichtet. Das Segment kann sich an einem Ende einer Kurbelwelle befinden, das dem Kurbelwellengehäuse zugeordnet ist. Sehr bauraumgünstig sind aber auch Anordnungen mit einer oder mehreren Kraftstoffpumpen zum Antrieb an einem oder mehreren Segmenten des Kurbelwellenschafts, die sich in einem Mittenbereich der Kurbelwelle, insbesondere zwischen zwei Kurbelwellenwangen, befinden. Durch Einbau von zwei Kraftstoffpumpen kann die Pumpleistung erhöht und außerdem die Betriebssicherheit verbessert werden.

[0032] Die Kraftstoffpumpe ist als Modul, d. h. ohne störanfälliges Zusammenfügen von Einzelteilen, schnell, betriebssicher und wartungsfreundlich installierbar. Druckbereichsoptimierte Kraftstoffpumpen kommen typenbezogen bei Hubkolbenmotoren zum Einsatz. Zur Installation in einem Dieselmotor werden vorzugsweise Kraftstoffpumpen verwendet, die Drücke von mehr als 1700 bar erzeugen können. Allerdings können zur Einhaltung von Partikel-Grenzwerten auch Drücke von mehr als 2200 bar, wie z. B. im Bereich von 2400 bar, nützlich sein. Eine Kraftstoffaufladung in einem niedrigeren Druckbereich von weniger als 500 bar bietet bei einem Benzinmotor, wie einem Otto-Motor, günstige Betriebsbedingungen. Ein verbrauchsgünstiger Betrieb von Otto-Motoren ist bspw. ab 130 bar Kraftstoffdruck mit Kraftstoffpumpen zu erzielen. Niedrige Abgaswerte ergeben sich auch bei einer Krafttstoffaufladung im Bereich von 250 bar. Zur Erzeugung geeigneter Drücke können auch Kraftstoffpumpenmodule, die für eine angemessene Druckhöhe wie z. B. 350 bar ausgelegt sind, eingesetzt werden. Derartige Kraftstoffpumpen werden für leistungsstarke Hubkolbenmotoren auch über eine angemessene Kraftstoffförderleistung verfügen. Dabei können insbesondere in dem ausgewählten Druckbereich für den jeweiligen Hubkolbenmotor gültige Abgasgrenzwerte eingehalten werden. An einem Antriebselement der Kraftstoffpumpe kann ein reibungsmindernder Kugelkörper oder ein Walzenkörper oder ein Tonnenkörper als Lauflager vorgesehen sein. Der reibungsmindernde, drehbare Körper bietet dabei vorzugsweise eine Kontakterstreckung zu einer Ausformung des Kurbelwellenschafts. Damit ergibt sich eine gute Verteilung von Oberflächenkräften bei geringer Kontaktreibung zwischen Kraftstoffpumpe und Kurbelwelle.

[0033] In einer Ausgestaltung ist eine Richtung der Öffnung für die Kraftstoffpumpe im Kurbelwellengestühl einer Wirkrichtung einer Nocke angepasst. Insbesondere ist eine zentrische Richtung der Öffnung derart angelegt, dass ein Durchgriff der Kraftstoffpumpe durch das Kurbelwellengestühl, vorzugsweise ein gerichteter Durchgriff unter einem Winkel, ermöglicht ist. Die Anwinkelung lässt sich günstig ausführen mit einer Winkelstellung, die von einer Radialrichtung der Kurbelwelle abweicht. Ein Winkel zwischen 15° und 75°, vorzugsweise zwischen 25° und 40°, ist günstig für einen kompakten Aufbau. Allerdings ist auch eine Öffnung für einen rechtwinkligen Durchgriff vorteilhaft auszugestalten. Günstig ist bspw. auch eine Anordnung, bei der die Durchgriffsöffnung ein Führungslager, wie ein Drehlager oder ein Gleitlager, eines Hebels aufnimmt. Ein Hebel, insbesondere ein zweiarmiger Wirkhebel kann in Anlagerung, wie einer reibungsgeminderten Anlagerung, betätigbar sein. Vorzugsweise vermittelt der Hebel einen Kraftvertstärkungsanschluss zwischen einer Nocke, einem Antriebselement und der Kraftstoffpumpe. Das Gehäuse der Kraftstoffpumpe ist am Kurbelwellengestühl gehaltert. Der Hebel ist eine Art Druckstück. Die Lagerung des Hebels führt zu einer Reduktion von Transversalkräften, die in manchen Anordnungen auf die Kraftstoffpumpe wirken können. Der Hebel ist ein Betätigungsfortsatz der Kraftstoffpumpe. Der Hebel ist auch als Pumpenschwengel zu bezeichnen. Der Hebel ist vorzugsweise in einem Teilbereich der Öffnung des Kurbelwellengestühls gelagert, welcher dem Kurbelwellenschaft zugewandt ist. Mit dem Hebel greift die Kraftstoffpumpe durch eine Öffnung an einem Überstand, wie einer abstehenden Nase oder einer Kragenform eines Kurbelwellenschafts, an. Der Überstand erhebt sich vorzugsweise auf einer Mantelfläche, insbesondere einer zylinderartigen Fläche des Kurbelwellenschafts. Der Überstand weist eine Auflagefläche auf. Die Auflagefläche bildet ein Lager bspw. in Form einer Auflageschräge, über das eine Betätigung der Kraftstoffpumpe von dem Kurbelwellenschaft vermittelt wird.

[0034] Es ist besonders vorteilhaft, wenn die Kragenform mit dem Kurbelwellenschaft rundartig umläuft. Die kragenartige Struktur befindet sich zwischen einem ersten Radius und einem dazu größeren zweiten Radius an dem Kurbelwellenschaft. Der größere zweite Radius ist kleiner als ein äußerer Umfang der Kurbelwellenwange. Vorzugsweise ist der erste Radius größer als eine halbe Materialquerschnittsabmessung des Kurbelwellenschafts. Eine Teilfläche des Überstands bildet eine Lauffläche. Die Lauffläche kann tassenartig eingeschalt sein, sodass darauf ein Stößel, wie ein Tonnenrollstößel, führbar ist. Der Überstand weist zu einer Achsenrichtung eine Auflageschräge auf. Die Auflageschräge bildet ein Lager, über das eine Betätigung der Kraftstoffpumpe von dem Kurbelwellenschaft, vorzugsweise über einen Rollentassenstößel oder einen Walzenrollstößel, vermittelt wird. Zudem wird durch den Kragen vorteilhaft die Masse an dem Kurbelwellenschaft erhöht, wodurch bei geringen Kosten und geringem Materialaufwand eine Laufdynamik des Motors verbessert wird.

[0035] In einer Weiterbildung weist der Überstand mindestens einen Höcker auf. Über den Höcker werden z. B. Kontaktkräfte beim Angriff der Kraftstoffpumpe, insbesondere an einer Rundung, die einem Antrieb der Kraftstoffpumpe zugeordnet ist, reibungsoptimiert. Ebenfalls fertigungstechnisch vorteilhaft anbringbar ist ein Überstand, der durch mindestens eine Nut gebildet wird. Durch Einarbeitung einer Nut in den Kurbelwellenschaft ist ein Überstand bei der Herstellung der Kurbelwelle, wie z. B. als Guss-Kurbelwelle oder als Schmiede-Kurbelwelle, realisierbar. Eine Nut kann bspw. als eine Auflageschräge aus dem Kurbelwellenschaft ausgenommen sein. Vorzugsweise entspricht ein Auflageschrägenwinkel einem Winkel einer Durchgriffsrichtung der Kraftstoffpumpe durch die Öffnung des Kurbelwellengestühls.

[0036] Allerdings kann die Kraftstoffpumpe auch direkt über einen Stößel, wie einen translatorischen Adapter, in welchem keine Rotationsübersetzung erfolgt, an dem Überstand angreifen. So hält nach einem Aspekt eine Seite der Öffnung des Kurbelwellengestühls eine Kraftstoffpumpe. Die mit der Kraftstoffpumpe verbundenen Kraftstoffzu- und -ableitungen, entsprechend einer Niederdruckseite in Verbindung zu einem Tank und einer Hochdruckseite in Verbindung zu einem Brennraum des Hubkolbenmotors, können bereichsweise im Kurbelwellengestühl verlaufen. Eine dazu gegenüberliegende Seite der Öffnung stellt einen Durchgriffsbereich dar, wobei insbesondere aus der Öffnung heraus die Kraftstoffpumpe mit dem Überstand, wie dem Kurbelwellenschaft, in Kraftschluss steht. Der Kurbelwellenschaft leistet Arbeit an der Kraftstoffpumpe. Chemische Energie des Kraftstoffs wird verlustarm direkt wieder in einen Kraftstoffdruck umgewandelt.

[0037] So besitzt in einer Ausgestaltung der Überstand eine nockenartige Form, bspw. einen ovalförmigen oder einen ellipsoidalen Umfang. In weiteren Ausbildungen ist der Überstand als eine Kreisform gestaltet, die mit einem Mittelpunkt exzentrisch zu einer Kurbelwellenachse, bzw. der Drehachse der Kurbelwelle verläuft. Ein nockenartiger Antrieb der Kraftstoffpumpe generiert insbesondere einen Hub an der Kraftstoffpumpe. Einer Kurbelwellendrehung können zwei Hübe zugeordnet sein. Ein Hub kann auch an einer Ausformung an dem Kurbelwellenschaft, die einem Bogenabschnitt entspricht, der bspw. einem Spiralbogenausschnitt wie einer Schnecke ähnlich ist, erzeugt werden. So sind Ausführungen möglich, bei denen ein Hub pro Kurbelwellenumdrehung erzeugt wird. Eine abgeleitete Struktur, die vorteilhaft eine Pumpleistung der Kraftstoffpumpe durch Erhöhung einer Pumpfrequenz gegenüber einer Drehfrequenz verbessert, ist eine kleeblattartige Umfangsgeometrie einer Lauffläche.

[0038] Der Überstand kann von einem äußeren Umfang der Kurbelwelle bzw. der Kurbelwellenwange eingeschlossen sein. Der äußere Umfang besitzt einen bezüglich eines äußersten Umfangskreises der Kurbelwellenwange kleineren Radius und ist vorzugsweise konzentrisch dazu angeordnet. Der äußere Umfang schließt die Auflagefläche ein. Ein Radius des äußeren Umfangs ist kleiner als ein Radius des äußersten Umfangs der Kurbelwellenwange. Vorteilhaft zur Realisierung einer großen Pumpleistung ist ein Radius, der ca. 25 % größer ist als ein Kreisradius des Kurbelwellenschafts. Allerdings können auch noch größere Radien, wie z. B. ein Radius, der das Doppelte des Kreisradius des Kurbelwellenschafts beträgt, zur Anpassung des Hubs für die Optimierung der Kraftstoffförderung nützlich sein. Weiterhin kann der Überstand so an dem Kurbelwellenschaft angeordnet sein, dass durch die von der Anordnung bedingte Änderung der Massenverteilung eine Auswuchtung von Kurbelwellensegmenten bewirkt wird. Der Überstand ergänzt die Masse von Gegengewichten zu einem rotatorischen Massenausgleich. Damit lassen sich auch Schwingungseinträge von der Kurbelwelle in das Kurbelwellengestühl minimieren und eine Lagerlebensdauer verbessern.

Figurenkurzbeschreibung



[0039] Die Erfindung kann noch besser verstanden werden, wenn Bezug auf die beiliegenden Figuren genommen wird, wobei

Figur 1 zeigt einen Längsschnitt, also in längster Erstreckung, durch eine Verbrennungskraftmaschine,

Figur 2 zeigt einen Querschnitt, also im rechten Winkel zum Längsschnitt nach Figur 1, durch eine ähnliche Verbrennungskraftmaschine wie nach Figur 1,

Figur 3 zeigt eine Kraftstoffpumpe in schematischer Darstellung,

Figur 4 zeigt ein erstes Ausführungsbeispiel an einer Kurbelwelle in schematischer Darstellung,

Figur 5 zeigt eine Nockensteuerung an einer Kurbelwelle,

Figur 6 zeigt ein weiteres Ausführungsbeispiel an einer Kurbelwelle mit Antriebselement für eine Pumpe in schematischer Darstellung,

Figur 7 zeigt in Querschnitt eine Kurbelwelle mit einem Antriebselement in schematischer Darstellung,

Figur 8 zeigt in Querschnitt eine Kurbelwelle mit einer Einkolbenhochdruckpumpe in schematischer Darstellung,

Figur 9 zeigt in schematischer 3D-Darstellung das Zusammenwirken einer Kraftstoffsteckpumpe an einem Nocken einer Kurbelwelle in schematischer Darstellung,

Figur 10 zeigt das Ausführungsbeispiel nach Figur 9 in einer schematischen Schnittdarstellung,

Figur 11 zeigt eine äquivalente Übertragung des erfindungsgemäßen Prinzips auf eine andere, geeignete Stelle der Kurbelwelle und

Figur 12 zeigt die Kraftstoffaufbereitungsvorrichtung einer Verbrennungskraftmaschine.


Figurenbeschreibung



[0040] Figur 1 zeigt einen Hubkolbenmotor 1, der als Dieselmotor betreibbar ist. Der Hubkolbenmotor 1 ist eine Verbrennungskraftmaschine, die vier Hubkolben 3 in Reihe angeordnet hat. Genauso ist es vorstellbar, dass der Hubkolbenmotor eine andere Zylinderzahl hat, z. B. 3 oder 6 Zylinder. Auf der Oberseite der Hubkolben 3 befindet sich der Brennraum 5. Die Oberseite eines Hubkolbens 3 ist die von der Kurbelwelle 35 abgewandete Seite des Hubkolbens 3. Der Brennraum 5 kann in Bezug auf sein Volumen in Abhängigkeit der Stellung der Hubkolben 3 variiert werden. In dem Brennraum 5 findet eine Kraftstoff-Luft-Verbrennung 87 statt, damit aus kalorischer Energie 85 über ein Übertragungsglied mit Pleuel 11 und die Kurbelwelle 35 eine mechanische Energie 89 an der Abtriebswelle 33 des Hubkolbenmotors 1 zur Verfügung gestellt werden kann. Zur Beladung des Brennraums 5 und zum Ausströmen der verbrannten Gase aus dem Brennraum 5 weist der Hubkolbenmotor 1 Gaswechselventile 23 auf, die über eine Nockenwelle 21 gesteuert werden können. Die Nockenwelle 21 ist auf die relative Lage der Kurbelwelle 35 synchronisiert. Die Nockenwelle 21 befindet sich im Bereich des Zylinderkopfes 17, der von dem Zylinderkopfdeckel 19 abgeschlossen ist. Die Hubkolben 3 können eine Hubbewegung 7, geführt durch die Pleuel 11, zurücklegen.

[0041] Ein weiteres wichtiges Teil für die Bildung des Motorblocks 9 ist das Kurbelwellengehäuse 25. Das Kurbelwellengehäuse 25 stellt das Kurbelwellengestühl 27 zur Verfügung, auf dem die Kurbelwelle 35 aufliegt. Die Kurbelwelle 35 ist auf der einen Seite durch das Riemenrad 31 und auf der anderen Seite durch den Anschluss 33 für das Schwungrad begrenzt. Die Kurbelwelle 35 hat somit eine Längserstreckung zwischen Riemenrad 31 und Anschluss 33 für das Schwungrad. Zu dem Motorblock 9 kann weiterhin die Ölwanne 13 gerechnet werden. In der Ölwanne 13 ist eine Ölpumpe 15 vorgesehen, die das Motoröl zur Kühlung durch den Motorblock 9 bis in den Bereich des Zylinderkopfes 17 pumpt. Die Kurbelwelle 35 hat einzelne Kurbelwellenwangen 37.

[0042] Die Erfindung zeichnet sich nach einem Aspekt dadurch aus, dass sich die Kraftstoffpumpe 63 (siehe z. B. Figur 3) in dem Motorblock 9 befindet, sich also in dem zwischen Zylinderkopfdeckel 19 und Ölwanne 13 begrenzten Raum befindet.

[0043] Figur 2 zeigt einen ähnlichen Hubkolbenmotor 1, wie er zuvor in Figur 1 beschrieben worden ist. Der Motorblock 9 mit seinen Komponenten, wie der Kurbelwelle 35, ist in der Darstellung nach Figur 2 zeigt einen ähnlichen Hubkolbenmotor 1, wie er zuvor in Figur 1 beschrieben worden ist. Der Motorblock 9 mit seinen Komponenten wie der Kurbelwelle 35 ist in der Darstellung nach Figur 2 quer - im Vergleich zum Längsschnitt nach Figur 1 - geschnitten worden. Der Brennraum 5 oberhalb des Hubkolbens 3 ist in einem sehr verdichteten Zustand dargestellt. Das Gaswechselventil 23 befindet sich in der geschlossenen Stellung. Es ist also der Zustand des Hubkolbens 5 gezeigt, bei dem der Brennraum 5 nahezu vollständig verdichtet worden ist, z. B. knapp vor oder knapp nach dem Zündvorgang (selbstzündend wie bei einem Dieselmotor oder fremdzündend wie bei einem Ottomotor). Ansatzweise sind Teile der Zündkerze 97 zu sehen, zum Beispiel eine Bohrung mit einem Schraubengewinde zur Befestigung des Schraubgewindes der Zündkerze 97. Das Gaswechselventil 23 wird durch eine Nockenwelle 21 betätigt. Die Nockenwelle 21 und die Kurbelwelle 35 erstrecken sich in die gleiche Richtung, also in paralleler Anordnung. Der Hubkolben 3 führt seine mechanische Energie über die Pleuel(stange) 11 auf die Kurbelwelle 35. Die Kurbelwelle 35 mündet in einem Schwungrad 31. Wie durch die unterschiedlichen Kreise der Kurbelwelle 35 dargestellt, weist die Kurbelwelle 35 Kurbelwellenwangen 37 auf, die einen Umfang 39 haben. Das Kurbelwellengehäuse 25 trägt das Kurbelwellengestühl 27. An dem Kurbelwellengehäuse 25 schließt sich die Ölwanne 13 an. Das Pleuel 11 macht sowohl eine Hubbewegung 7 als auch eine Rotationsbewegung mit dem Rotationssinn der Kurbelwelle 35. Wie in Figur 2 dargestellt, trägt das Kurbelwellengehäuse 25 das Kurbelwellengestühl 27. Vorteilhafterweise trägt das Kurbelwellengehäuse 25 das Kurbelwellengestühl 27 oder idealer Weise ist das Kurbelwellengestühl 27 ein Teil des Kurbelwellengehäuses 25, weil die Kurbelwelle 35 durch ihre Lager in Lagerschalen auf dem Kurbelwellengestühl 27 abgestützt ist.

[0044] Figur 3 zeigt eine geeignete Kraftstoffpumpe 63, die als eine der Komponenten der Kraftstoffaufbereitungsvorrichtung 61 (siehe Figur 12) verwendet werden kann. Die Kraftstoffpumpe 63 hat ein Pumpenkerngehäuse 69, in dem die Druckaufladung des Kraftstoffes, der über den Pumpenanschluss 73 zu- und abgeleitet werden kann, stattfindet. Für eine präzise Einstellung des Kraftstoffdruckes auf ein Mindestdruckniveau wie z. B. 2200 bar bietet die Kraftstoffpumpe 63 ein Regelventil 71. Das Pumpenkerngehäuse 69 hat außen einen Pumpenbefestigungsflansch 79. Aus dem Pumpenkerngehäuse 69 ragt der Pumpenkolben 77 heraus, zu dem eine Pumpenrückstellfeder 75 gehört. Die Pumpenrückstellfeder 75 umschließt den Pumpenkolben 77. Eine solche Kraftstoffpumpe 63 ist erfindungsgemäß vorteilhaft in einem Hubkolbenmotor 1 nach den Figuren 1 und 2 integriert, wie in den nachfolgenden Figuren 4 bis 10 dargestellt.

[0045] Die Kurbelwelle 35, wie in Figur 4 dargestellt, hat eine Längserstreckung 59 entlang der Kurbelwellenachse 55. Einzelne Kurbelwellenwangen 37 werden durch Kurbelwellenschafte 53 miteinander verbunden. Ein Teil der Kurbelwelle 35 ist eine Abtriebswelle 33 bzw. auf der Kurbelwelle 35 gibt es eine Abtriebswelle 33. Auf der Abtriebswelle 33 der Kurbelwelle 35 sitzt, wie schematisch dargestellt, ein Abtriebsrad 91. Die Kurbelwellenschafte 53 haben einen Umfang 83. Der Umfang 83 wird durch die Oberfläche 47 des jeweiligen Kurbelwellenschafts 53 gebildet. An wenigstens einem Kurbelwellenschaft 53 lagert ein Antriebselement 81. Das Antriebselement 81 kann eine Bewegung in wenigstens eine Richtung ausführen, die der Achsenorientierung 57 entspricht. Die Antriebsebene 51 entspricht somit im Wesentlichen dem Umfang 83 des Kurbelwellenschafts 53, der sich aus dem Durchmesser 49 des Kurbelwellenschafts 53 und der Gestaltung der Oberfläche 47 ergibt. Die Oberfläche 47 wird im Bereich der Antriebsebene 51 so gestaltet, dass eine auf die Kurbelwelle 35 synchronisierte Steuerung des Antriebselements 81 erfolgt. Die Antriebsebene 51 ist konturiert gestaltet. Hierzu hat die Antriebsebene eingearbeitete Strukturen in der Oberfläche 47. Die Oberfläche 47 auf dem Kurbelwellenschaft 53 ist im Bereich der Antriebsebene 51 konturiert. Die Antriebsebene 51, die sich auf dem Umfang 83 des Kurbelwellenschaftes 53 befindet, steuert das Antriebselement 81 der Kraftstoffpumpe 63 (siehe Figur 3). Die Achsenorientierung 57 des Antriebselements 81 weist abgewinkelt von der Kurbelwellenachse 55 in eine eigene Richtung. Vorteilhafterweise verläuft die Achsenorientierung 57 parallel zu der Orientierung der Kurbelwellenwangen 37.

[0046] Figur 5 zeigt eine Kurbelwelle 35, in die ein Nocken 43 dadurch eingearbeitet worden ist, dass eine ovale Oberfläche 47 aus der Kurbelwelle 35 heraussteht. Der Nocken 43 ist Teil des Kurbelwellenschafts 53. Der Nocken 43 ist als eingearbeitete Oberfläche 47 Teil des Kurbelwellenschafts 53. Der Nocken 43 erzeugt eine gestufte Oberfläche 47. Eine Stufe 45 ist in der Oberfläche 47 eingeformt.

[0047] Figur 6 zeigt eine Antriebsebene 51' mit zahlreichen, eingearbeiteten Nocken 43, die auch als Überstände 41 bezeichnet werden dürfen. Die Antriebsebene 51' ist mit seitlich in diese hineinreichenden Nocken 43 bzw. Überständen 41 so gestaltet, dass aufgrund der Drehung der Kurbelwelle 35 eine Anhebung und Absenkung des Antriebselements 81 in Richtung der Achsenorientierung 57' erfolgt. Die Achsenorientierung 57' weicht von der Kurbelwellenachse 55 ab. Die Kurbelwellenschafte 53 liegen auf der Kurbelwellenachse 55. Die Kurbelwellenachse 55 ist die Schwerpunktsachse der Kurbelwelle 35. Deutlich weiter herausstehend sind die Kurbelwellenwangen 37. Einzelne Kurbelwellenwangen 37 begrenzen seitlich das Antriebselement 81. Wie in Figur 6 dargestellt, ist das Antriebselement 81 ein direkt auf den Kurbelwellenschaft 53 gelagertes Element mit einem Rollenabnehmer. Der Rollenabnehmer ist schräg zur Kurbelwellenachse 55 orientiert. Die Antriebsebene 51' unterläuft die Rolle des Antriebselements 81. Durch den Pfeil der Achsenorientierung 57' wird die Hubbewegung des Antriebselements 81 nachgezeichnet. Die Antriebsebene 51' liegt auf dem Umfang 83 des Kurbelwellenschafts 53.

[0048] Figur 7 zeigt eine ähnliche Anordnung einer Kraftstoffpumpensteuerung über das Antriebselement 81, das unmittelbar auf einer Oberfläche 47 der Nockenwelle 35 lagert. Die Nockenwelle 35 ist durch das Lagerschild 93 mit ihren Axialschrauben 95 in dem Kurbelwellengestühl 27 gelagert. Das Kurbelwellengehäuse 25 umfasst das Kurbelwellengestühl 27. In dem Kurbelwellengehäuse 25, genauer im Kurbelwellengestühl 27, ist eine Öffnung 29 vorgehalten. Die Öffnung 29 ist auf die Breite des Antriebselements 81 und das daran anschließende Bauteil der Kraftstoffpumpe 63 (siehe Figur 3) abgestimmt. Die Oberfläche 47 des Kurbelwellenschafts 53 ist so gestaltet, dass je nach Position der Kurbelwelle 35 bzw. der relativen Lage der Kurbelwelle 35 das Antriebselement 81 unterschiedlich weit in Richtung der Achsenorientierung 57" gedrückt wird. Die Achsenorientierung 57" sitzt ausgewinkelt, das heißt in einer eigenen Richtung weg von der Hauptrichtung der Kurbelwelle 35. Die Öffnung 29 ist vorteilhafterweise auf der dem Lagerschild 93 entfernten Seite angeordnet.

[0049] Wie in Figur 8 zu sehen ist, kann dem Antriebselement 81 jede beliebige Pumpe aufgesattelt werden, beispielsweise eine Einkolbenhochdruckpumpe 67. Die Einkolbenhochdruckpumpe 67 verläuft in Richtung der Achsenorientierung 57". Die Achsenorientierung 57" reicht durch einen Bereich des Kurbelwellengehäuses 25. Das Antriebselement 81 wird über die Pumpenrückstellfeder 75 gegen den Umfang 83 des Kurbelwellenschaftes 53 gedrückt. Der Kurbelwellenschaft 53 lagert auf einem Lagerschild 93 im Kurbelwellengehäuse 25. Die Kurbelwelle 35 dient zum unmittelbaren Antrieb der Einkolbenhochdruckpumpe 67. Mittels Axialschrauben 95 oder anderer geeigneter Befestigungsmittel kann die eingelegte Kurbelwelle 35 eingespannt werden. Vorteilhaft ist ein Schraubgewinde in dem Kurbelwellengehäuse 25, sodass das Pumpenkerngehäuse 69 eingeschraubt in dem Kurbelwellengehäuse festgesetzt ist. Mit einer Bewegungsrichtung ausgestattet folgt das Antriebselement 81 dem Umfang 83 des Kurbelwellenschaftes 53. Die Achsenorientierung 57" fällt nicht mit den Hauptachsen der Kurbelwelle 35, wie durch die geraden Striche angedeutet, zusammen, sondern sie hat eine ganz eigene Orientierung.

[0050] Figur 9 zeigt das zuvor dargestellte Prinzip der Figuren 7 und 8 in einer ähnlichen Ausführungsform als 3D-Darstellung, bei dem der Motorblock 9 durch einen Ausschnitt des Zylinderkopfes 17 und des Kurbelwellengehäuses 25 angedeutet ist. In dem Kurbelwellengehäuse 25 verläuft die Kurbelwelle 35. Durch das Kurbelwellengestühl 27 reicht eine Kraftstoffsteckpumpe 65 so hindurch, dass ein Ende der Kraftstoffsteckpumpe 65 direkt an der Kurbelwelle 35 anlagert.

[0051] Die in der Figur 9 dargestellte Anordnung der Kraftstoffsteckpumpe 65 lässt sich in Figur 10 als 2D-Darstellung näher inspizieren. In dem Motorblock 9 lagert oberhalb des Lagerschilds 93, genauer an der abgewandten Seite der Kurbelwelle 35 die Kraftstoffsteckpumpe 65, deren Antriebselement 81 die Oberfläche 47 der Kurbelwelle 35 nachfahren kann. Das Kurbelwellengehäuse 25 bietet genügend Raum, damit die Kraftstoffsteckpumpe 65 geführt werden kann. Die Kraftstoffsteckpumpe 65 mündet in dem Bereich des Kurbelwellengehäuses 25 und ist mit seinem anderen Ende an dem Deck für den Zylinderkopf 17 anliegend. Der Zylinderkopf 17 lässt sich an dem Deck anschrauben.

[0052] Figur 11 zeigt eine ähnliche Lösung, wie zuvor in den Figuren 3 bis 10 dargestellt, wobei anstelle des Kurbelwellenschafts 53 eine Kurbelwellenwange 37 als Betätigungsmittel für die Kraftstoffpumpe 63 (siehe Figur 3) benutzt wird. Die Kraftstoffpumpe 63 sitzt in einem spitzen Winkel, ausgelenkt aus der Senkrechten auf die Kurbelwelle 35, auf der Kurbelwelle 35. Die Kurbelwelle 35 lagert in dem Kurbelwellengestühl 27 (nicht dargestellt). Die Kraftstoffpumpe 63 ist eine über einen Rollentassenstößel angetriebene Hubkolbenpumpe, die Teil der Kraftstoffaufbereitungsvorrichtung ist. Die Kurbelwellenschafte 53 sind die Verbindungsmittel zwischen den Kurbelwellenwangen 37 der Kurbelwelle 35, die in die Abtriebswelle 33 mündet. Abweichend von der Längserstreckung 59 der Kurbelwelle 35, also nicht auf der Kurbelwellenachse 55, wird ein Umfang 39 der Kurbelwellenwange 37 mit einem Durchmesser 49 als Antriebsebene 51, 51' genutzt, weil eine Achsenorientierung 57, 57' einer Kraftstoffpumpe 63 (nicht dargestellt) an der Wange 37 der Kurbelwelle 35 lagert. Die Oberfläche 47 der Kurbelwellenwange 37 kann genauso wie die Konturierung der Kurbelwellenschafte 53 mit Überständen 41 und/oder Stufen 45 zur Steuerung des anzutreibenden Elements ausgestattet sein. In der Regel hängt an dem Abtriebsrad 91 ein Steuertrieb für Nebenaggregate. Dieser über das Abtriebsrad 91 laufende Steuertrieb wird auch dadurch entlastet, dass die Hochdruck erzeugenden Elemente wie eine Kraftstoffpumpe nicht mehr über das Abtriebsrad 91 anzutreiben sind, sondern von den inneren Teilen der Kurbelwelle 35, entweder im Kurbelwellenschaft 53 oder der Kurbelwellenwange 37, angetrieben werden.

[0053] Figur 12 zeigt einen Hubkolbenmotor 1, in dessen Zylinderkopf 17 die Gaswechselventile 23 liegen. Die Gaswechselventile 23 werden über Nockenwellen 21 gesteuert. Zwischen den Nockenwellen 21 ist die Kraftstoffaufbereichtungsvorrichtung 61 so angeordnet, dass der Brennraum 5 mit einem Brennstoff-Luft-Gemisch versorgt werden kann.

[0054] Die zuvor dargestellten Einzelaspekte nach den Figuren 1 bis 12 können ebenfalls einen eigenständigen erfinderischen Beitrag leisten. So kann während des Schleifvorgangs der Kurbelwelle das entsprechende Oberflächenprofil in einen Teil der Kurbelwelle 35, wie z. B. in die Kurbelwellenwange 37 oder in einen Kurbelwellenschaft 53, eingearbeitet werden. Ein oder mehrere zusätzliche Bearbeitungs- oder Montageschritte, um das Steuerungsprofil für die Kraftstoffpumpe herzustellen, erübrigen sich.

Bezugszeichenliste



[0055] 
Bezugszeichen Bedeutung
1 Hubkolbenmotor
3 Hubkolben
5 Brennraum
7 Hubbewegung
9 Motorblock
11 Pleuel
13 Ölwanne
15 Ölpumpe
17 Zylinderkopf
19 Zylinderkopfdeckel
21 Nockenwelle
23 Gaswechselventile
25 Kurbelwellengehäuse
27 Kurbelwellengestühl
29 Öffnung
31 Schwungrad
33 Abtriebswelle
35 Kurbelwelle
37 Kurbelwellenwange
39 Umfang der Kurbelwellenwange
41 Überstand
43 Nocken bzw. Kontur
45 Stufe
47 Oberfläche
49 Durchmesser der Kurbelwelle, insbesondere Schaftdurchmesser
51, 51' Antriebsebene
53 Kurbelwellenschaft
55 Kurbelwellenachse
57, 57', 57" Achsenorientierung, insbesondere des Antriebs
59 Längserstreckung
61 Kraftstoffaufbereitungsvorrichtung
63 Kraftstoffpumpe, insbesondere Hochdruckkraftstoffpumpe
65 Kraftstoffsteckpumpe
67 Einkolbenhockdruckpumpe
69 Pumpenkerngehäuse
71 Regelventil
73 Pumpenanschluss
75 Pumpenrückstellfeder
77 Pumpenkolben
79 Pumpenbefestigungsflansch
81 Antriebselement
83 Umfang des Kurbelwellenschafts
85 kalorische Energie
87 Kraftstoff-Luft-Verbrennung
89 mechanische Energie
91 Riemenscheibe
93 Lagerschild
95 Axialschraube, insbesondere Lagerschildschraube
97 Zündkerze bzw. Zündkerzenöffnung oder Zündkerzenbohrung



Ansprüche

1. Hubkolbenmotor (1) mit innenliegender Kurbelwelle (35) in einem Kurbelwellengehäuse (25) des Hubkolbenmotors (1),
der einen durch einen Hubkolben (3) begrenzten Brennraum (5) hat,
wobei die Kurbelwelle (35) wenigstens eine Kurbelwellenwange (37) und wenigstens einen Kurbelwellenschaft (53) hat, vorzugsweise mehrere Kurbelwellenwangen (37) und mehrere die Kurbelwellenwangen (37) verbindende Kurbelwellenschäfte (53) hat, und mit einer Kraftstoffaufbereitungsvorrichtung (61), die eine Kraftstoffpumpe (63, 65, 67), insbesondere eine Hochdruckkraftstoffpumpe (67) wie eine Dieselhochdruckpumpe oder eine Benzinhochdruckpumpe, umfasst,
dadurch gekennzeichnet, dass
der Kurbelwellenschaft (53) mit einem Antriebselement (81) der Kraftstoffpumpe (63, 65, 67) unmittelbar in Eingriff steht.
 
2. Hubkolbenmotor (1) nach Anspruch 1, dadurch gekennzeichnet, dass eine Antriebsebene (51, 51') der Kraftstoffpumpe (63, 65, 67) durch den Kurbelwellenschaft (53) läuft.
 
3. Hubkolbenmotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Kurbelwelle (35) eine Kurbelwellenachse (55) hat,
an der sich die Kurbelwelle (35) erstreckt und
zu der der Hubkolben (3) quer abgewinkelt einer Hubbewegung (7) folgt,
wobei eine Anlagerung der Kraftstoffpumpe (63, 65, 67) seitlich zur Kurbelwellenachse (55) gegeben ist,
sodass eine Antriebskraft vorteilhafter Weise im rechten Winkel zur Kurbelwellenachse (55) in die Kraftstoffpumpe (63, 65, 67) erfolgt.
 
4. Hubkolbenmotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
über einen Umfang (83) des Kurbelwellenschafts (53), vorzugsweise an einer Oberfläche (47), die einen Durchmesser (49), insbesondere einen breitest möglichen Durchmesser (49), des Kurbelwellenschafts (53) beschreibt, die Antriebskraft in die Kraftstoffpumpe (63, 65, 67) eingeleitet wird.
 
5. Hubkolbenmotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Kurbelwelle (35) von einem Kurbelwellengestühl (27) getragen wird, in das eine Öffnung (29) eingelassen ist, in der die Kraftstoffpumpe (63, 65, 67) zumindest teilweise lagert.
 
6. Hubkolbenmotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
der Kurbelwellenschaft (53) einen Überstand (41), wie einen eingearbeiteten Nocken (43) oder eine Stufe (45), hat, der auf die Kraftstoffpumpe (63, 65, 67) eine Hubbewegung ausübt.
 
7. Hubkolbenmotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
durch einen Antrieb eine Pumpkraft auf einen Zylinder (77) der Kraftstoffpumpe (63, 65, 67) ausgeübt wird.
 
8. Hubkolbenmotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Kraftstoffpumpe (63, 65, 67) eine Kraftstoffsteckpumpe (65), insbesondere eine Einkolbenhochdruckpumpe (67), ist.
 
9. Hubkolbenmotor (1) nach einem der vorhergehenden Ansprüche 3 bis 8, dadurch gekennzeichnet, dass
die Kraftstoffpumpe (63, 65, 67) in einer Achsenorientierung (57, 57', 57") angeordnet ist, die von der Kurbelwellenachse (55) und von der Richtung einer Längserstreckung (59) des Kurbelwellenschafts (53) abweicht.
 
10. Hubkolbenmotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
die Kraftstoffpumpe (63, 65, 67) einen Hebel umfasst, der zwischen einem Kurbelwellenabgriff und dem Pumpenkerngehäuse (69) gelagert, insbesondere federvorgespannt (75) gelagert, die Antriebsleistung aus dem Kurbelwellenschaft (53) von diesem weglenkend in das Pumpenkerngehäuse (69) einleitet.
 
11. Hubkolbenmotor (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
sämtliche Teile (69, 71, 73, 75, 77, 79, 81) der Kraftstoffpumpe (63, 65, 67) von einem Motorblock (9) des Hubkolbenmotors (1), insbesondere von dem Kurbelwellengehäuse (25), eingeschlossen sind.
 
12. Betriebsverfahren eines Hubkolbenmotors (1), insbesondere nach einem der vorhergehenden Ansprüche,
der kalorische Energie (85) mit Hilfe einer Kraftstoff-Luftverbrennung (87) in einem Brennraum (5) über eine innenliegende Kurbelwelle (35),
die wenigstens eine Kurbelwellenwange (37) hat und die wenigstens einen Kurbelwellenschaft (53) hat,
in eine mechanische Energie (89) umwandelt, und
dessen Kraftstoff druckaufgeladen (63, 65, 67) dem Brennraum (5) zur Verfügung steht,
dadurch gekennzeichnet, dass
eine Kraftstoffpumpe (63, 65, 67), die ihre Förderleistung von dem Kurbelwellenschaft (53) oder einer Kontur (47, 41, 43, 45) auf dem Kurbelwellenschaft (53) erhält, die Druckaufladung des Kraftstoffs herstellt.
 




Zeichnung









































Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente