Technical Field
[0001] The present invention relates to a heat pump apparatus including a plurality of heat-source-side
heat exchangers and an operation control method of the heat pump apparatus.
Background Art
[0002] In a heating operation using a heat pump apparatus, a temperature of a refrigerant
flowing through a heat-source-side heat exchanger which serves as an evaporator is
greatly reduced. For that reason, frost is attached to the heat-source-side heat exchanger.
When the frost is attached, an air flow passage for heat exchange is blocked. Heat
exchange capability of the heat-source-side heat exchanger is thereby degraded. As
a result, heating capability of the heat pump apparatus is degraded.
[0003] A defrost operation for removing the frost attached to the heat-source-side heat
exchanger is performed in order to prevent degradation of this heating capability.
In the defrost operation, a flow direction of the refrigerant in a refrigerant circuit
included in the heat pump apparatus is temporary reversed. In other words, the refrigerant
is temporarily flown in the direction which is the same as in a cooling operation.
With this arrangement, the heat-source-side heat exchanger with the frost attached
thereto is temporarily operated as a condenser. The frost attached to the heat-source-side
heat exchanger is thereby melted.
[0004] In the defrost operation, the heat-source-side heat exchanger which has operated
as the evaporator during the heating operation operates as the condenser. In addition,
a load-side heat exchanger which has operated as a condenser during the heating operation
operates as an evaporator. In the defrost operation in particular, the frost attached
to the heat-source-side heat exchanger is melted. The refrigerant of which the temperature
has been reduced thereby flows into the load-side heat exchanger.
[0005] When the load-side heat exchanger is a heat exchanger which heat-exchanges the refrigerant
flowing in the refrigerant circuit included in the heat pump apparatus and water flowing
in a water circuit, the water flowing in the water circuit may be cooled to 0 °C or
less to freeze up within the load-side heat exchanger. When the water freezes up within
the load-side heat exchanger, the water circuit may be blocked and the load-side heat
exchanger may be broken due to volume expansion by conversion of the water to ice.
[0006] When the load-side heat exchanger is an indoor heat exchanger in an air conditioner,
and when the defrost operation is performed during the heating operation, a cool wind
blows out from an indoor unit, though the heating operation is being performed. Accordingly,
comfort of a user is thereby impaired.
[0007] Patent Document 1 describes provision of a bypass circuit for a refrigerant circuit
so as to prevent flow of a low-temperature refrigerant into a load-side heat exchanger
during a defrost operation.
[0008] Patent Document 2 describes shutting off of a refrigerant circuit for an indoor unit
at a time of a defrost operation in order to prevent flow of a low-temperature refrigerant
into the indoor unit during the defrost operation.
[0009] The dDocument
EP 1801522 A2 discloses a heat pump apparatus according to the preamble of claim 1.
Related Art Documents
Disclosure of Invention
[0011] In the methods described in both of Patent Documents 1 and 2, the refrigerant is
not circulated to the load-side heat exchanger during the defrost operation. For that
reason, during the defrost operation, the heat-source-side heat exchanger operates
as the condenser, but there is no heat exchanger which operates as an evaporator.
Accordingly, the refrigerant cannot be completely evaporated. The refrigerant in a
two-phase state or a liquid state is sucked into a compressor. As a result, a burden
on the compressor is increased.
[0012] Further, in the methods described in both of Patent Documents 1 and 2, a heating
operation is not performed during the defrost operation. For that reason, the heat
pump apparatus alternates between the heating operation and the defrost operation.
Accordingly, its takes time to obtain an effect of heating, so that electric power
is wasted.
[0013] An object of the present invention is to prevent a low-temperature refrigerant from
being sent to a load-side heat exchanger during a defrost operation, and also to continue
a heating operation even during the defrost operation.
[0014] According to the present invention the above objective is solved by the features
of claims 1 and 5. Preferred embodiments are defined in the dependent claims.
Advantageous Effect of Invention
[0015] In the heat pump apparatus of the present invention, one of the plurality of heat-source-side
heat exchangers (second heat exchangers) from which frost is to be removed, which
is the defrosting heat exchanger, is operated as a condenser, and the load-side heat
exchanger (first heat exchanger) is also operated as a condenser, during the defrost
operation. Then, in this heat pump apparatus, the other heat-source-side heat exchangers
excluding the defrosting heat exchanger are operated as evaporators. With this arrangement,
even during the defrost operation, the load-side heat exchanger may be operated as
the condenser, and an effect of heating may be obtained.
Brief Description of Drawings
[0016]
Fig. 1 is a configuration diagram of a heat pump apparatus 100;
Fig. 2 is a configuration diagram of a switching device 2;
Fig. 3 is a diagram showing flows of a refrigerant during a heating operation;
Fig. 4 is a diagram showing flows of the refrigerant during a defrost operation A
of removing frost attached to a heat exchanger 5a;
Fig. 5 is a diagram showing flows of the refrigerant during a defrost operation B
of removing frost attached to a heat exchanger 5b;
Fig. 6 is a diagram showing flows of the refrigerant during a cooling operation; and
Fig. 7 is a table showing a control state of the switching device 2 in each operation
state.
Description of Embodiment
First Embodiment.
[0017] Fig. 1 is a configuration diagram of a heat pump apparatus 100.
[0018] In the heat pump apparatus 100, a suction side 1a of a compressor 1 and a switching
device 2 are connected by a pipe. A discharge side 1b of the compressor 1 and the
switching device 2 are connected by a pipe. The switching device 2 and a heat exchanger
3 (first heat exchanger) are connected by a pipe. The heat exchanger 3 and a pressure
reduction mechanism 4 (first pressure reduction mechanism) are connected by a pipe.
The pressure reduction mechanism 4 and each of two heat exchangers 5a and 5b (second
heat exchangers) are connected by a pipe. Each of two heat exchangers 5a and 5b and
the switching device 2 are connected by a pipe. With this arrangement, a refrigerant
circuit 9 is formed.
[0019] A liquid accumulating device 6 is provided in the course of a pipe connecting the
suction side 1a of the compressor 1 and the switching device 2.
[0020] A pipe connected to the pressure reduction mechanism 4 is branched at a branch point
12 to be connected to each of the heat exchangers 5a and 5b. Pressure reduction mechanisms
7a and 7b (second pressure reduction mechanisms) are provided between the branch point
12 and the respective heat exchangers 5a and 5b.
[0021] Among the devices connected to the above-mentioned refrigerant circuit 9, the devices
excluding the heat exchangers 5a and 5b are placed in a machine chamber 10 (first
housing). The heat exchangers 5a and 5b are respectively placed in outdoor unit blower
chambers 20a and 20b (second housings). That is, the devices including the compressor
1 and each of the heat exchangers 5a and 5b are placed in different housings.
[0022] The machine chamber 10 and the outdoor unit blower chambers 20a and 20b are connected
through connection valves 8a, 8b, 8c, 8d, 8e, 8f, 8g, and 8h.
[0023] The housings of the heat pump apparatus 100 include control devices (control units)
11, 22a, and 22b, respectively. The control device 11 controls an operation of each
of the compressor 1, the switching device 2, and the like placed in the machine chamber
10. The control device 22a controls an operation of a blower 21a and the like placed
in the outdoor unit blower chamber 20a. The control device 22b controls an operation
of a blower 21b and the like placed in the outdoor unit blower chamber 20b.
[0024] It is assumed herein that the control device is provided for each housing. One control
device may control the devices in all of the housings. The control device, for example,
is a computer such as a microcomputer.
[0025] Temperature detection sensors 23a and 24a are installed in the heat exchanger 5a.
Temperature detection sensors 23b and 24b are installed in the heat exchanger 5b.
The temperature detection sensors 23a and 23b respectively detect temperatures of
a refrigerant in a two-phase state in the heat exchangers 5a and 5b. The temperature
detection sensors 24a and 24b respectively detect temperatures of the refrigerant
in a liquid state in the heat exchangers 5a and 5b.
[0026] The heat exchanger 3 is a plate type heat exchanger, for example. The heat exchanger
3 heat-exchanges the refrigerant circulating in the refrigerant circuit 9 with a liquid
such as water circulating in a water circuit 13.
[0027] On the other hand, each of the heat exchangers 5a and 5b is a fin-and-tube type heat
exchanger, for example. Each of the heat exchangers 5a and 5b heat-exchanges the refrigerant
circulating in the refrigerant circuit 9 and a gas such as outdoor air sent from a
corresponding one of the blowers 21a and 21b.
[0028] The heat exchanger 3 may be a heat exchanger for heat-exchanging the refrigerant
circulating in the refrigerant circuit 9 and a gas such as air.
[0029] Fig. 2 is a diagram showing a configuration of the switching device 2.
[0030] The switching device 2 includes flow paths 31, 32, 33, 34, 35, and 36. The flow path
31 connects the pipe connected to the discharge side 1b of the compressor 1 and the
pipe connected to the heat exchanger 3. The flow path 32 connects the pipe connected
to the suction side 1a of the compressor 1 and the pipe connected to the heat exchanger
3. The flow path 33 (second flow path) connects the pipe connected to the discharge
side 1b of the compressor 1 and the pipe connected to the heat exchanger 5a. The flow
path 34 (first flow path) connects the pipe connected to the suction side 1a of the
compressor 1 and the pipe connected to the heat exchanger 5a. The flow path 35 (second
flow path) connects the pipe connected to the discharge side 1b of the compressor
1 and the pipe connected to the heat exchanger 5b. The flow path 36 (first flow path)
connects the pipe connected to the suction side 1a of the compressor 1 and the pipe
connected to the heat exchanger 5b.
[0031] The flow path 31 includes an opening/closing mechanism 41, which is an electromagnetic
valve or the like, in the course of the flow path 31. Similarly, the flow path 32
includes an opening/closing mechanism 42, which is an electromagnetic valve or the
like, in the course of the flow path 32. Similarly, the flow path 33 includes an opening/closing
mechanism 43 (second opening/closing mechanism), which is an electromagnetic valve
or the like, in the course of the flow path 33. Similarly, the flow path 34 includes
an opening/closing mechanism 44 (first opening/closing mechanism), which is an electromagnetic
valve or the like, in the course of the flow path 34. Similarly, the flow path 35
includes an opening/closing mechanism 45 (second opening/closing mechanism), which
is an electromagnetic valve or the like, in the course of the flow path 35. Similarly,
the flow path 36 includes an opening/closing mechanism 46 (first opening/closing mechanism),
which is an electromagnetic valve or the like, in the course of the flow path 46.
[0032] An operation of the heat pump apparatus 100 will be described.
[0033] The control device 11 controls the open/close mechanisms 41, 42, 43, 44, 45, and
46 included in the switching device 2 to be opened or closed, thereby making switching
among a heating operation, a defrost operation, and a cooling operation.
[0034] First, the operation of the heat pump apparatus 100 at a time of the heating operation
will be described. The heating operation herein refers to an operation of heating
water flowing in the water circuit 13 by the heat exchanger 3. The heating operation
includes a hot-water supply operation for supplying hot water as well as heating for
heating indoor air.
[0035] Fig. 3 is a diagram showing flows of the refrigerant during the heating operation.
Referring to Fig. 3, an arrow indicates a flow of the refrigerant. One of the opening/closing
mechanisms included in the switching device 2 indicated by a blank ellipse shows that
the opening/closing mechanism is opened. One of the opening/closing mechanisms included
in the switching device 2 indicated by a black ellipse shows that the opening/closing
mechanism is closed. That is, in the case of the heating operation, the control device
11 sets the opening/closing mechanisms 41, 44, and 46 to be opened, and sets the opening/closing
mechanisms 42, 43, and 45 to be closed.
[0036] The refrigerant in a low-temperature and low-pressure gas-phase state is compressed
into a high-temperature and high-pressure gas refrigerant by the compressor 1 and
is then discharged. The high-temperature and high-pressure gas refrigerant discharged
from the compressor 1 flows into the switching device 2. The high-temperature and
high-pressure gas refrigerant is guided to the heat exchanger 3.
[0037] The high-temperature and high-pressure gas refrigerant and the water circulating
in the water circuit 13 are heat-exchanged at the heat exchanger 3. With this arrangement,
the gas refrigerant condenses into a liquid refrigerant, and the water is heated into
hot water. That is, the heat exchanger 3 operates as a condenser. The hot water generated
by heat exchange with the refrigerant by the heat exchanger 3 is supplied to a heat
radiator such as a radiator and a water heater not shown. Then, heating is performed,
and the hot water is supplied.
[0038] The liquid refrigerant at a high pressure which has flown out from the heat exchanger
3 becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant by the
pressure reduction mechanism 4. The low-temperature and low-pressure gas-liquid two-phase
refrigerant branches at the branch point 12 to flow into the heat exchanger 5a and
the heat exchanger 5b. In this case, the refrigerant may be further pressure-reduced
by each of the pressure reduction mechanisms 7a and 7b. The low-temperature and low-pressure
gas-liquid two-phase refrigerant and the outdoor air are heat-exchanged by each of
the heat exchangers 5a and 5b. The refrigerant evaporates into a low-pressure gas
refrigerant. That is, each of the heat exchangers 5a and 5b operates as an evaporator.
[0039] The low-pressure gas refrigerant flows into the switching device 2 through each of
the heat exchangers 5a and 5b. The low-pressure gas refrigerant is guided to a liquid
accumulating device 6 through the switching device 2. Then, the low-pressure gas refrigerant
is sucked into the compressor 1 through the liquid accumulating device 6 and is then
compressed into a high-temperature and high-pressure gas state.
[0040] When the low-temperature and low-pressure gas-liquid two-phase refrigerant and the
outdoor air are heat-exchanged by each of the heat exchangers 5a and 5b, and when
the temperature of the refrigerant is low, vapor in the air condenses and then freezes.
Frost is thereby attached to the heat exchangers 5a and 5b.
[0041] Next, the operation of the heat pump apparatus 100 at a time of the defrost operation
will be described. The defrost operation refers to an operation of removing frost
attached to at least one of the heat exchangers 5a and 5b.
[0042] First, the operation of removing the frost attached to the heat exchanger 5a will
be described.
[0043] Fig. 4 is a diagram showing flows of the refrigerant during a defrost operation A
of removing the frost attached to the heat exchanger 5a. Referring to Fig. 4, an arrow
shows a flow of the refrigerant. Referring to Fig. 4, one of the opening/closing mechanisms
included in the switching device 2 indicated by a blank ellipse shows that the opening/closing
mechanism is opened. One of the opening/closing mechanisms included in the switching
device 2 indicated by a black ellipse shows that the opening/closing mechanism is
closed. That is, in the operation of removing the frost attached to the heat exchanger
5a, the control device 11 sets the opening/closing mechanisms 41, 43, and 46 to be
opened, and sets the opening/closing mechanisms 42, 44, and 45 to be closed.
[0044] The refrigerant in a low-temperature and low-pressure gas-phase state is compressed
into a high-temperature and high-pressure gas refrigerant by the compressor 1 and
is then discharged. The high-temperature and high-pressure gas refrigerant discharged
from the compressor 1 flows into the switching device 2. The high-temperature and
high-pressure gas refrigerant is guided to each of the heat exchanger 3 and the heat
exchanger 5a through the switching device 2.
[0045] The high-temperature and high-pressure gas refrigerant which has flown into the heat
exchanger 3 and the water circulating in the water circuit 13 are heat-exchanged at
the heat exchanger 3. The gas refrigerant condenses into a liquid refrigerant, and
the water is heated into hot water. That is, the heat exchanger 3 operates as the
condenser. The hot water generated by heat exchange with the refrigerant at the heat
exchanger 3 is supplied to the heat radiator such as the radiator and the water heater
not shown, as at the time of the heating operation. Then, heating is performed, and
the hot water is supplied. This means that the heating and the supply of the hot water
are continuously performed even during the defrost operation A. The liquid refrigerant
at a high pressure which has flown out from the heat exchanger 3 becomes a low-temperature
and low-pressure gas-liquid two-phase refrigerant by the pressure reduction mechanism
4. The low-temperature and low-pressure gas-liquid two-phase refrigerant flows into
the heat exchanger 5b through the branch point 12. In this case, the refrigerant may
be further pressure-reduced by the pressure reduction mechanism 7b.
[0046] On the other hand, the high-temperature and high-pressure gas refrigerant which has
flown into the heat exchanger 5a condenses into a liquid refrigerant by the heat exchanger
5a. In this case, condensation heat is discharged to the outdoor air, and the frost
attached to the heat exchanger 5a melts by the discharged condensation heat. That
is, the heat exchanger 5a also operates as a condenser. Then, the liquid refrigerant
at a high pressure which has flown out from the heat exchanger 5a becomes a low-temperature
and low-pressure gas-liquid two-phase refrigerant by the pressure reduction mechanism
7a. The low-temperature and low-pressure gas-liquid two-phase refrigerant flows into
the heat exchanger 5b through the branch point 12. In this case, the refrigerant may
be further pressure-reduced by the pressure reduction mechanism 7b.
[0047] The low-temperature and low-pressure gas-liquid two-phase refrigerant and the outdoor
air are heat-exchanged at the heat exchanger 5b, and the refrigerant evaporates into
a low-pressure gas refrigerant. That is, the heat exchanger 5b operates as an evaporator.
[0048] The low-pressure gas refrigerant flows into the switching device 2 from the heat
exchanger 5b. The low-pressure gas refrigerant is guided to the liquid accumulating
device 6 through the switching device 2. Then, the low-pressure gas refrigerant is
sucked into the compressor 1 through the liquid accumulating device 6, and is then
compressed into a high-temperature and high-pressure gas-phase state.
[0049] Next, the operation of removing the frost attached to the heat exchanger 5b will
be described.
[0050] Fig. 5 is a diagram showing flows of the refrigerant during a defrost operation B
of removing the frost attached to the heat exchanger 5b. Referring to Fig. 5, an arrow
shows a flow of the refrigerant. Referring to Fig. 5, one of the opening/closing mechanisms
included in the switching device 2 indicated by a blank ellipse shows that the opening/closing
mechanism is opened. One of the opening/closing mechanisms included in the switching
device 2 indicated by a black ellipse shows that the opening/closing mechanism is
closed. That is, in the operation of removing the frost attached to the heat exchanger
5b, the control device 11 sets the opening/closing mechanisms 41, 44, and 45 to be
opened, and sets the opening/closing mechanisms 42, 43, and 46 to be closed.
[0051] The refrigerant in a low-temperature and low-pressure gas-phase state is compressed
into a high-temperature and high-pressure gas refrigerant by the compressor 1 and
is then discharged. The high-temperature and high-pressure gas refrigerant discharged
from the compressor 1 flows into the switching device 2. The high-temperature and
high-pressure gas refrigerant is guided to each of the heat exchanger 3 and the heat
exchanger 5b through the switching device 2.
[0052] The high-temperature and high-pressure gas refrigerant which has flown into the heat
exchanger 3 and the water circulating in the water circuit 13 are heat-exchanged at
the heat exchanger 3. The gas refrigerant condenses into a liquid refrigerant, and
the water is heated into hot water. That is, the heat exchanger 3 operates as the
condenser. The hot water generated by heat exchange with the refrigerant at the heat
exchanger 3 is supplied to the heat radiator such as the radiator and the water heater
not shown, as at the time of the heating operation. Then, heating is performed, and
the hot water is supplied. This means that the heating and the supply of the hot water
are continuously performed even during the defrost operation B. The liquid refrigerant
at a high pressure which has flown out from the heat exchanger 3 becomes a low-temperature
and low-pressure gas-liquid two-phase refrigerant by the pressure reduction mechanism
4. The low-temperature and low-pressure gas-liquid two-phase refrigerant flows into
the heat exchanger 5a through the branch point 12. In this case, the refrigerant may
be further pressure-reduced by the pressure reduction mechanism 7b.
[0053] On the other hand, the high-temperature and high-pressure gas refrigerant which has
flown into the heat exchanger 5b condenses into a liquid refrigerant by the heat exchanger
5b. In this case, condensation heat is discharged to the outdoor air, and the frost
attached to the heat exchanger 5b melts by the discharged condensation heat. That
is, the heat exchanger 5b also operates as a condenser. Then, the liquid refrigerant
at a high pressure which has flown out from the heat exchanger 5b becomes a low-temperature
and low-pressure gas-liquid two-phase refrigerant by the pressure reduction mechanism
7b. The low-temperature and low-pressure gas-liquid two-phase refrigerant flows into
the heat exchanger 5a through the branch point 12. In this case, the refrigerant may
be further pressure-reduced by the pressure reduction mechanism 7a.
[0054] The low-temperature and low-pressure gas-liquid two-phase refrigerant and the outdoor
air are heat-exchanged at the heat exchanger 5a, and the refrigerant evaporates into
a low-pressure gas refrigerant. That is, the heat exchanger 5a operates as an evaporator.
[0055] The low-pressure gas refrigerant flows into the switching device 2 from the heat
exchanger 5a. The low-pressure gas refrigerant is guided to the liquid accumulating
device 6 through the switching device 2. Then, the low-pressure gas refrigerant is
sucked into the compressor 1 through the liquid accumulating device 6, and is then
compressed into a high-temperature and high-pressure gas-phase state.
[0056] Next, the operation of the heat pump apparatus 100 at a time of the cooling operation
will be described. The cooling operation herein refers to an operation of cooling
the water flowing in the water circuit 13 by the heat exchanger 3. The cooling operation
includes a cool water supply operation of supplying cool water as well as cooling
for cooling the indoor air.
[0057] Fig. 6 is a diagram showing flows of the refrigerant during the cooling operation.
Referring to Fig. 6, an arrow shows a flow of the refrigerant. Referring to Fig. 6,
one of the opening/closing mechanisms included in the switching device 2 indicated
by a blank ellipse shows that the opening/closing mechanism is opened. One of the
opening/closing mechanisms included in the switching device 2 indicated by a black
ellipse shows that the opening/closing mechanism is closed. That is, in the cooling
operation, the control device 11 sets the opening/closing mechanisms 42, 43, and 45
to be opened, and sets the opening/closing mechanisms 41, 44, and 46 to be closed.
[0058] The refrigerant in a low-temperature and low-pressure gas-phase state is compressed
into a high-temperature and high-pressure gas refrigerant by the compressor 1 and
is then discharged from the compressor 1. The high-temperature and high-pressure gas
refrigerant discharged from the compressor 1 flows into the switching device 2. The
high-temperature and high-pressure gas refrigerant is guided to each of the heat exchanger
5a and the heat exchanger 5b through the switching device 2.
[0059] The high-temperature and high-pressure gas refrigerant and the outdoor air are heat-exchanged
by each of the heat exchangers 5a and 5b. The gas refrigerant thereby condenses into
a liquid refrigerant. That is, each of the heat exchangers 5a and 5b operates as a
condenser.
[0060] The liquid refrigerant at a high pressure which has flown out from each of the heat
exchangers 5a and 5b becomes a low-temperature and low-pressure gas-liquid two-phase
refrigerant by a corresponding one of the pressure reduction mechanisms 7a and 7b.
The low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the
heat exchanger 3. In this case, the refrigerant may be further pressure-reduced by
the pressure reduction mechanism 4. The low-temperature and low-pressure gas-liquid
two-phase refrigerant and the water circulating in the water circuit 13 are heat-exchanged
at the heat exchanger 3. Then, the refrigerant evaporates into a low-pressure gas
refrigerant. The water is cooled into cold water. This means that the heat exchanger
3 operates as an evaporator. The cold water generated by heat exchange with the refrigerant
at the heat exchanger 3 is supplied to a heat absorber and a cold water supplier not
shown. Then, cooling is performed, and the cold water is supplied.
[0061] The low-pressure gas refrigerant flows into the switching device 2 from the heat
exchanger 3. The low-pressure gas refrigerant is guided to the liquid accumulating
device 6 through the switching device 2. Then, the low-pressure gas refrigerant is
sucked into the compressor 1 through the liquid accumulating device 6 and is then
compressed into a high-temperature and high-pressure gas-phase state.
[0062] Fig. 7 is a table showing a control state of the switching device 2 in each operation
state. As described above, each of the opening/closing mechanisms 41, 42, 43, 44,
45, and 46 included in the switching device 2 is controlled to be opened or closed
according to each operating state. Details of opening/closing control are as described
above. Thus, description of the opening/closing control will be omitted.
[0063] Next, a start condition of the defrost operation will be described.
[0064] In the heat pump apparatus 100, by continuously performing the heating cooperation,
frost is gradually attached to each of the heat exchangers 5a and 5b used as the evaporator.
Thus, heating capability is degraded.
[0065] Then, the control device 22a obtains temperatures of the refrigerant detected by
the temperature detection sensors 23a and 24a and transfers the detected temperatures
to the control device 11. The control device 22b obtains temperatures of the refrigerant
detected by the temperature detection sensors 23b and 24b and transfers the detected
temperatures to the control device 11. The control device 11 determines a state of
the frost attached to each of the heat exchangers 5a and 5b by the transferred temperatures
of the refrigerant. When the temperature of the refrigerant detected by each of the
temperature detection sensors 24a and 24b continues to be -7°C or less for five minutes,
the control device 11 determines that the frost of a predetermined amount or more
has been attached. The control unit therefore causes the defrost operation to be started.
[0066] The control device 11 determines whether or not to individually start the defrost
operation for each of the heat exchangers 5a and 5b.
[0067] That is, when only the heat exchanger 5a satisfies the start condition of the defrost
operation, the control device 11 causes the defrost operation A of removing the frost
attached to the heat exchanger 5a to be started. On the contrary, when only the heat
exchanger 5b satisfies the start condition of the defrost operation, the control device
11 causes the defrost operation B of removing the frost attached to the head exchanger
5b to be started.
[0068] When both of the heat exchangers 5a and 5b satisfy the start condition of the defrost
operation at the same time, the control unit 11 causes the defrost operation A and
the defrost operation B to be performed in a predetermined order. The order of the
control may be arbitrarily determined.
[0069] Next, a description will be directed to a method of controlling the pressure reduction
mechanisms 4, 7a, and 7b.
[0070] The outdoor unit blower chambers 20a and 20b are the different housings and may be
disposed in positions having different distances from the machine chamber 10. In this
case, it is desirable to adjust pressures of the refrigerant to be sent to the outdoor
unit blower chambers 20a and 20b according to the distances from the machine chamber
10 to the outdoor unit blower chambers 20a and 20b. Then, opening degrees of the pressure
reduction mechanisms 4, 7a, and 7b may be adjusted according to the distances from
the machine chamber 10 to the outdoor unit blower chambers 20a and 20b.
[0071] In the case of the heating operation, for example, the refrigerant which has flown
out from the heat exchanger 3 is pressure-reduced by the pressure reduction mechanisms
4, 7a, and 7b. By adjusting the opening degrees of the pressure reduction mechanisms
7a and 7b according to the distances from the machine chamber 10 to the outdoor unit
blower chambers 20a and 20b in this case, the pressures of the refrigerant which will
flow into both of the heat exchangers 5a and 5b may be set to be appropriate.
[0072] The opening degrees of the pressure reduction mechanisms 4, 7a, and 7b may be adjusted
based on degrees of supercooling and degrees of superheating of the heat exchangers
5a and 5b as well as the distances from the machine chamber 10 to the outdoor unit
blower chambers 20a and 20b.
[0073] In the case of the cooling operation, a degree of supercooling of the heat exchanger
5a can be computed from temperatures of the temperature detection sensors 23a and
24a installed in the heat exchanger 5a. Similarly, a degree of supercooling of the
heat exchanger 5b can be computed from temperatures of the temperature detection sensors
23b and 24b installed in the heat exchanger 5b. The degree of supercooling may be
adjusted by a flow amount of the refrigerant. Further, by operating the heat pump
apparatus 100 so that the degrees of supercooling are constant, the heat pump apparatus
100 may obtain stable performance. Then, the opening degrees of the pressure reduction
mechanisms 4, 7a and 7b may be controlled such that the degrees of supercooling are
constant (such as 7°C).
[0074] Likewise, in the case of the heating operation, a degree of superheating of the heat
exchanger 5a can be computed from temperatures of the temperature detection sensors
23a and 24a installed in the heat exchanger 5a. A degree of superheating of the heat
exchanger 5b can be computed from temperatures of the temperature detection sensors
23b and 24b installed in the heat exchanger 5b. The degree of superheating may be
adjusted by a flow amount of the refrigerant. Further, by operating the heat pump
apparatus so that the degrees of superheating are constant, the heat pump apparatus
100 may obtain stable performance. Then, the opening degrees of the pressure reduction
mechanisms 4, 7a and 7b may be controlled such that the degrees of superheating are
constant (such as 5°C).
[0075] As described above, the heat pump apparatus 100 causes the heat exchanger 3, which
is a load-side heat exchanger, to operate as the condenser during the defrost operation
as well. For that reason, the water does not freeze inside the heat exchanger 3, which
is the load-side heat exchanger, during the defrost operation. Further, heating and
hot water supply may be continued during the defrost operation as well. For that reason,
wasteful power consumption may be prevented without impairing comfort of a user.
[0076] Further, in the heat pump apparatus 100, the machine chamber 10 including the compressor
1 is set to be placed in the housing different from those of the outdoor unit blower
chamber 20a including the heat exchanger 5a and the outdoor unit blower chamber 20b
including the heat exchanger 5b. For that reason, the machine chamber 10, the outdoor
unit blower chamber 20a, and the outdoor unit blower chamber 20b may be respectively
installed in different locations.
[0077] Each of the compressor 1 and the blowers 21a and 21b placed in the outdoor unit blower
chambers 20a and 20b generates operation noise. Generally, when there are two sound
sources having an identical sound pressure, the sound pressure increases by approximately
3 dB. Accordingly, when the compressor 1 and the blowers 21a and 21b are installed
close to one another, a sound pressure increase occurs. However, by respectively disposing
the machine chamber 10 and the outdoor unit blower chambers 20a and 20b in different
locations, the sound pressure increase may be prevented. Noise as a whole may be reduced.
[0078] When all the devices are placed in one housing, the size of the housing is increased.
However, by dividing the devices into a plurality of groups and respectively disposing
the groups in a plurality of housings, the size of each housing may be reduced. This
offers a broader range of selection of installation locations.
[0079] Further, it is not necessary to dispose the machine chamber 10 outdoors. Thus, durability
of the machine chamber 10 may be improved, which prevents aging degradation.
[0080] Alternatively, all the devices may be placed in one housing.
[0081] Assume that a required load, which is an amount of heat necessary for bringing a
temperature of the water to a predetermined temperature at the heat exchanger 3, is
small. Then, one of the blower 21a of the outdoor unit blower chamber 20a and the
blower 21b of the outdoor unit blower chamber 20b may be stopped. Further, the control
device 11 may control the switching device 2 and the pressure reduction mechanisms
7a and 7b so that the refrigerant does not flow into one of the outdoor unit blower
chambers 20a and 20b in which the blower has been stopped. With this arrangement,
power consumption may be reduced.
[0082] In the above description, the heat exchanger 3 is set to heat-exchange the refrigerant
circulating in the refrigerant circuit 9 and the liquid such as the water circulating
in the water circuit 13. The heat exchanger 3, however, may heat-exchange the refrigerant
circulating in the refrigerant circuit 9 and a gas such as air.
[0083] In the above description, the number of the heat-source-side heat exchangers is two,
which are the heat exchangers 5a and 5b. The heat pump apparatus 100, however, may
include three or more heat-source-side heat exchangers.
1. A heat pump apparatus (100) comprising:
a refrigerant circuit (9) that connects each side of a suction side (1a) and a discharge
side (1b) of a compressor (1) and a switching mechanism (2) by a pipe, connects the
switching mechanism (2) and a first heat exchanger (3) by a pipe, connects the first
heat exchanger (3) and a first pressure reduction mechanism (4) by a pipe, connects
the first pressure reduction mechanism (4) and each second heat exchanger (5a, 5b)
of a plurality of second heat exchangers (5a, 5b) by a pipe, and connects the each
second heat exchanger (5a, 5b) and the switching mechanism (2) by a pipe; and
a control unit (11) which controls the switching mechanism (2) at a time of a heat
radiating operation such that a refrigerant discharged from the compressor (1) flows
to the first heat exchanger (3), thereby causing the first heat exchanger (3) to operate
as a heat radiator and causing at least one of the plurality of second heat exchangers
(5a, 5b) to operate as an evaporator for evaporating the refrigerant flown out from
the first heat exchanger (3), and controls the switching mechanism (2) at a time of
a defrost operation of removing frost attached to one of the plurality of second heat
exchangers (5a, 5b) which is a defrosting heat exchanger (5a, 5b), such that the refrigerant
discharged from the compressor (1) flows to the first heat exchanger (3) and the defrosting
heat exchanger (5a, 5b), thereby causing the first heat exchanger (3) and the defrosting
heat exchanger (5a, 5b) to operate as heat radiators and causing at least one of the
remainder of the plurality of second heat exchangers (5a, 5b) excluding the defrosting
heat exchanger (5a, 5b) to operate as an evaporator for evaporating the refrigerant
flown out from the first heat exchanger (3) and the defrosting heat exchanger (5a,
5b),
wherein the switching mechanism (2) includes:
a plurality of first flow paths (34, 36) which connect the pipe connected to the suction
side (1a) of the compressor (1) and pipes each connected to the each second heat exchanger
(5a, 5b), each first flow path (34, 36) of the plurality of first flow paths (34,
36) including a first opening/closing mechanism (44, 46) in the course thereof; and
a plurality of second flow paths (33, 35) which connect the pipe connected to the
discharge side (1b) of the compressor (1) and the pipes each connected to the each
second heat exchanger (5a, 5b), each second flow path (33, 35) of the plurality of
second flow paths (33, 35) including a second opening/closing mechanism (43, 45) in
the course thereof;
wherein the control unit (11) opens the first opening/closing mechanism (44, 46) provided
on at least one of the plurality of first flow paths (34, 36), and closes the remainder
of the first opening/closing mechanisms (44, 46) and the remainder of second opening/closing
mechanisms (43, 45) at the time of the heat radiating operation; and
wherein the control unit (11) opens the second opening/closing mechanism (43, 45)
provided on the second flow path (33, 35) that connects the pipe connected to the
discharge side (1b) of the compressor (1) and the pipe connected to the defrosting
heat exchanger (5a, 5b), opens the first opening/closing mechanism (44, 46) provided
on at least one of the plurality of first flow paths (34, 36) excluding the first
flow path (34, 36) that connects the pipe connected to the suction side (1a) of the
compressor (1) and the pipe connected to the defrosting heat exchanger (5a, 5b), and
closes the remainder of the first and second opening/closing mechanisms (43, 45) at
the time of the defrost operation,
wherein the each second heat exchanger (5a, 5b) is a heat exchanger for heat-exchanging
the refrigerant and a gas,
characterized in that the heat pump apparatus (100) further comprises:
a first housing (10) with at least the compressor (1) placed therein; and
a plurality of second housings (20a, 20b) each with one of the plurality of second
heat exchangers (5a, 5b) placed therein, a number of the plurality of second housings
(20a, 20b) being the same as a number of the plurality of second heat exchangers (5a,
5b), wherein each second housing (20a, 20b) of the plurality of second housings (20a,
20b) includes a blower (21a, 21b) for sending the gas to the second heat exchanger
(5a, 5b) placed in the second housing (20a, 20b).
2. The heat pump apparatus (100) according to claim 1,
wherein the first pressure reduction mechanism (4) is connected to the each second
heat exchanger (5a, 5b) by the pipe branched from a pipe connected to the first pressure
mechanism at a branch point (12); and wherein the refrigerant circuit (9) includes
a second pressure reduction mechanism (7a, 7b) in the course of the pipe between the
branch point (12) and the each second heat exchanger (5a, 5b).
3. The heat pump apparatus (100) according to claim 1,
wherein the control unit (22a, 22b) causes an operation of the blower (21a, 21b) included
in at least one of the plurality of second housings (20a, 20b) to be stopped when
a required load is lower than a predetermined load at the first heat exchanger (3),
the required load being an amount of heat necessary for bringing a temperature of
a fluid to be heat-exchanged by the refrigerant flowing in the refrigerant circuit
(9) to a predetermined temperature.
4. The heat pump apparatus (100) according to claim 1,
wherein the first heat exchanger (3) is a heat exchanger for heat-exchanging the refrigerant
and water.
5. An operation control method of a heat pump apparatus (100) which includes a refrigerant
circuit (9) that connects each side of a suction side (1a) and a discharge side (1b)
of a compressor (1) and a switching mechanism (2) by a pipe, connects the switching
mechanism (2) and a first heat exchanger (3) by a pipe, connects the first heat exchanger
(3) and a first pressure reduction mechanism (4) by a pipe, connects the first pressure
reduction mechanism (4) and each second heat exchanger (5a, 5b) of a plurality of
second heat exchangers (5a, 5b) by a pipe, and connects the each second heat exchanger
(5a, 5b) and the switching mechanism (2) by a pipe,
wherein the switching mechanism (2) includes:
a plurality of first flow paths (34, 36) which connect the pipe connected to the suction
side (1a) of the compressor (1) and pipes each connected to the each second heat exchanger
(5a, 5b), each first flow path (34, 36) of the plurality of first flow paths (34,
36) including a first opening/closing mechanism (44, 46) in the course thereof; and
a plurality of second flow paths (33, 35) which connect the pipe connected to the
discharge side (1b) of the compressor (1) and the pipes each connected to the each
second heat exchanger (5a, 5b), each second flow path (33, 35) of the plurality of
second flow paths (33, 35) including a second opening/closing mechanism (43, 45) in
the course thereof;
the operation control method of the heat pump apparatus (100) comprising:
opening the first opening/closing mechanism (44, 46) provided on at least one of the
plurality of first flow paths (34, 36), and closing the remainder of the first opening/closing
mechanisms (44, 46) and the remainder of second opening/closing mechanisms (43, 45)
at a time of a heat radiating operation such that a refrigerant discharged from the
compressor (1) flows to the first heat exchanger (3), thereby causing the first heat
exchanger (3) to operate as a heat radiator and causing at least one of the plurality
of second heat exchangers (5a, 5b) to operate as an evaporator, and
opening the second opening/closing mechanism (43, 45) provided on the second flow
path (33, 35) that connects the pipe connected to the discharge side (1b) of the compressor
(1) and the pipe connected to the defrosting heat exchanger (5a, 5b), opening the
first opening/closing mechanism (44, 46) provided on at least one of the plurality
of first flow paths (34, 36) excluding the first flow path (34, 36) that connects
the pipe connected to the suction side (1a) of the compressor (1) and the pipe connected
to the defrosting heat exchanger (5a, 5b), and closing the remainder of the first
and second opening/closing mechanisms (43, 45) at the time of the defrost operation
at a time of a defrost operation of removing frost attached to one of the plurality
of second heat exchangers (5a, 5b) which is a defrosting heat exchanger (5a, 5b),
such that the refrigerant discharged from the compressor (1) flows to the first heat
exchanger (3) and the defrosting heat exchanger (5a, 5b), thereby causing the first
heat exchanger (3) and the defrosting heat exchanger (5a, 5b) to operate as heat radiators
and causing at least one of the remainder of the plurality of second heat exchangers
(5a, 5b) excluding the defrosting heat exchanger (5a, 5b) to operate as an evaporator,
wherein the each second heat exchanger (5a, 5b) is a heat exchanger for heat-exchanging
the refrigerant and a gas,
characterized in that the heat pump apparatus (100) further comprises:
a first housing (10) with at least the compressor (1) placed therein; and
a plurality of second housings (20a, 20b) each with one of the plurality of second
heat exchangers (5a, 5b) placed therein, a number of the plurality of second housings
(20a, 20b) being the same as a number of the plurality of second heat exchangers (5a,
5b), wherein each second housing (20a, 20b) of the plurality of second housings (20a,
20b) includes a blower (21a, 21b) for sending the gas to the second heat exchanger
(5a, 5b) placed in the second housing (20a, 20b).
1. Wärmepumpenvorrichtung (100), umfassend:
einen Kältemittelkreislauf (9), der jede Seite von einer Ansaugseite (1a) und einer
Auslassseite (1b) eines Verdichters (1) und einen Schaltmechanismus (2) durch eine
Leitung verbindet, den Schaltmechanismus (2) und einen ersten Wärmetauscher (3) durch
eine Leitung verbindet, den ersten Wärmetauscher (3) und einen ersten Druckreduzierungsmechanismus
(4) durch eine Leitung verbindet, den ersten Druckreduzierungsmechanismus (4) und
jeden zweiten Wärmetauscher (5a, 5b) einer Vielzahl von zweiten Wärmetauschern (5a,
5b) durch eine Leitung verbindet und den jeweiligen zweiten Wärmetauscher (5a, 5b)
und den Schaltmechanismus (2) durch eine Leitung verbindet; und
eine Steuereinheit (11), die den Schaltmechanismus (2) zu einem Zeitpunkt eines Wärmestrahlungsbetriebs
steuert, so dass ein vom Verdichter (1) abgegebenes Kältemittel zum ersten Wärmetauscher
(3) strömt, wobei der erste Wärmetauscher (3) veranlasst wird, als ein Wärmeabstrahler
zu arbeiten, und zumindest einer aus der Vielzahl von zweiten Wärmetauschern (5a,
5b) veranlasst wird, als ein Verdampfer zum Verdampfen des aus dem ersten Wärmetauscher
(3) ausgeströmten Kältemittels zu arbeiten, und den Schaltmechanismus (2) zu einem
Zeitpunkt eines Entfrostungsbetriebs des Entfernens von Frost, der an einem der Vielzahl
von zweiten Wärmetauschern (5a, 5b), der ein Entfrostungswärmetauscher (5a, 5b) ist,
anhaftet, zu steuern, so dass das vom Verdichter (1) abgegebene Kältemittel zum ersten
Wärmetauscher (3) und zum Entfrostungswärmetauscher (5a, 5b) strömt, wodurch der erste
Wärmetauscher (3) und der Entfrostungswärmetauscher (5a, 5b) veranlasst werden, als
Wärmeabstrahler zu arbeiten und zumindest einer der übrigen der Vielzahl von zweiten
Wärmetauschern (5a, 5b), ausschließlich des Entfrostungswärmetauschers (5a, 5b), veranlasst
wird, als ein Verdampfer zum Verdampfen des aus dem ersten Wärmetauscher (3) und dem
Entfrostungswärmetauscher (5a, 5b) ausgeströmten Kältemittels zu arbeiten,
wobei der Schaltmechanismus (2) aufweist:
eine Vielzahl von ersten Strömungspfaden (34, 36), die die Leitung, die mit der Ansaugseite
(1a) des Verdichters (1) verbunden ist, und Leitungen, die jeweils mit dem jeweiligen
zweiten Wärmetauscher (5a, 5b) verbunden sind, verbinden, wobei jeder erste Strömungspfad
(34, 36) der Vielzahl von ersten Strömungspfaden (34, 36) in seinem Verlauf einen
ersten Öffnungs-/Schließmechanismus (44, 46) aufweist; und
eine Vielzahl von zweiten Strömungspfaden (33, 35), die die Leitung, die mit der Auslassseite
(1b) des Verdichters (1) verbunden ist, und die Leitungen, die mit dem jeweiligen
zweiten Wärmetauscher (5a, 5b) verbunden sind, verbinden, wobei jeder zweite Strömungspfad
(33, 35) der Vielzahl von zweiten Strömungspfaden (33, 35) in seinem Verlauf einen
zweiten Öffnungs-/Schließmechanismus (43, 45) aufweist;
wobei die Steuereinheit (11) den ersten Öffnungs-/Schließmechanismus (44, 46), der
auf zumindest einem der Vielzahl von ersten Strömungspfaden (34, 36) vorgesehen ist,
öffnet und die übrigen der ersten Öffnungs-/Schließmechanismen (44, 46) und die übrigen
der zweiten Öffnungs-/Schließmechanismen (43, 45) schließt zum Zeitpunkt des Wärmeabstrahlungsbetriebs;
und
wobei die Steuereinheit (11) den zweiten Öffnungs-/Schließmechanismus (43, 45), der
auf dem zweiten Strömungspfad (33, 35) vorgesehen ist, der die mit der Auslassseite
(1b) des Verdichters (1) verbundene Leitung und die mit dem Entfrostungswärmetauscher
(5a, 5b) verbundene Leitung verbindet, öffnet, den ersten Öffnungs-/Schließmechanismus
(44, 46), der auf zumindest einem der Vielzahl von ersten Strömungspfaden (34, 36)
vorgesehen ist, ausschließlich des ersten Strömungspfades (34, 36), der die mit der
Ansaugseite (1a) des Verdichters (1) verbundene Leitung und die mit dem Entfrostungswärmetauscher
(5a, 5b) verbundene Leitung verbindet, öffnet, und die übrigen der ersten und zweiten
Öffnungs-/Schließmechanismen (43, 45) schließt zum Zeitpunkt des Entfrostungsbetriebs,
wobei der jeweilige zweite Wärmetauscher (5a, 5b) ein Wärmetauscher zum Wärmetausch
zwischen dem Kältemittel und einem Gas ist,
dadurch gekennzeichnet, dass die Wärmepumpenvorrichtung (100) ferner umfasst:
ein erstes Gehäuse (10), in dem zumindest der Verdichter (1) angeordnet ist; und
eine Vielzahl von zweiten Gehäusen (20a, 20b), wobei in jedem jeweils einer der Vielzahl
von zweiten Wärmetauschern (5a, 5b) angeordnet ist, wobei eine Anzahl der Vielzahl
von zweiten Gehäusen (20a, 20b) gleich ist wie eine Anzahl der Vielzahl von zweiten
Wärmetauschern (5a, 5b), wobei jedes zweite Gehäuse (20a, 20b) der Vielzahl von zweiten
Gehäusen (20a, 20b) ein Gebläse (21a, 21b) zum Senden des Gases an den zweiten Wärmetauscher
(5a, 5b), der im zweiten Gehäuse (20a, 20b) untergebracht ist, aufweist.
2. Wärmepumpenvorrichtung (100) nach Anspruch 1,
wobei der erste Druckreduzierungsmechanismus (4) mit dem jeweiligen zweiten Wärmetauscher
(5a, 5b) durch die Leitung verbunden ist, die von einer Leitung abgezweigt ist, die
mit dem ersten Druckmechanismus an einer Abzweigungsstelle (12) verbunden ist; und
wobei der Kältemittelkreislauf (9) einen zweiten Druckreduzierungsmechanismus (7a,
7b) im Verlauf der Leitung zwischen der Abzweigungsstelle (12) und dem jeweiligen
zweiten Wärmetauscher (5a, 5b) aufweist.
3. Wärmepumpenvorrichtung (100) nach Anspruch 1,
wobei die Steuereinheit (22a, 22b) veranlasst, das ein Betrieb des Gebläses (21a,
21b), das in zumindest einem der Vielzahl von zweiten Gehäusen (20a, 20b) untergebracht
ist, gestoppt wird, wenn eine erforderliche Last geringer ist als eine vorherbestimmte
Last am ersten Wärmetauscher (3), wobei die erforderliche Last ein Wärmebetrag ist,
der erforderlich ist, um eine Temperatur eines Fluids, das mit dem im Kältemittelkreislauf
(9) strömenden Kältemittel Wärme austauschen soll, auf eine vorherbestimmte Temperatur
zu bringen.
4. Wärmepumpenvorrichtung (100) nach Anspruch 1,
wobei der erste Wärmetauscher (3) ein Wärmetauscher zum Wärmeaustausch zwischen dem
Kältemittel und Wasser ist.
5. Betriebssteuerungsverfahren einer Wärmepumpenvorrichtung (100), die einen Kältemittelkreislauf
(9) umfasst, der jede Seite von einer Ansaugseite (1a) und einer Auslassseite (1b)
eines Verdichters (1) und einen Schaltmechanismus (2) durch eine Leitung verbindet,
den Schaltmechanismus (2) und einen ersten Wärmetauscher (3) durch eine Leitung verbindet,
den ersten Wärmetauscher (3) und einen ersten Druckreduzierungsmechanismus (4) durch
ein Leitung verbindet, den ersten Druckreduzierungsmechanismus (4) und jeden zweiten
Wärmetauscher (5a, 5b) einer Vielzahl von zweiten Wärmetauschern (5a, 5b) durch eine
Leitung verbindet, und den jeweiligen zweiten Wärmetauscher (5a, 5b) und den Schaltmechanismus
(2) durch ein Leitung verbindet,
wobei der Schaltmechanismus (2) aufweist:
eine Vielzahl von ersten Strömungspfaden (34, 36), die die Leitung, die mit der Ansaugseite
(1a) des Verdichters (1) verbunden ist, und Leitungen, die jeweils mit dem jeweiligen
zweiten Wärmetauscher (5a, 5b) verbunden sind, verbinden, wobei jeder erste Strömungspfad
(34, 36) der Vielzahl von ersten Strömungspfaden (34, 36) in seinem Verlauf einen
ersten Öffnungs-/Schließmechanismus (44, 46) aufweist; und eine Vielzahl von zweiten
Strömungspfaden (33, 35), die die Leitung, die mit der Auslassseite (1b) des Verdichters
(1) verbunden ist, und die Leitungen, die mit dem jeweiligen zweiten Wärmetauscher
(5a, 5b) verbunden sind, verbinden, wobei jeder zweite Strömungspfad (33, 35) der
Vielzahl von zweiten Strömungspfaden (33, 35) in seinem Verlauf einen zweiten Öffnungs-/Schließmechanismus
(43, 45) aufweist;
wobei das Betriebssteuerungsverfahren der Wärmepumpenvorrichtung (100) umfasst:
Öffnen des ersten Öffnungs-/Schließmechanismus (44, 46), der auf zumindest einer der
Vielzahl von ersten Strömungspfaden (34, 36) vorgesehen ist, und Schließen der übrigen
ersten Öffnungs-/Schließmechanismen (44, 46) und der übrigen zweiten Öffnungs-/Schließmechanismen
(43, 45) zu einem Zeitpunkt eines Wärmeabstrahlungsbetriebs, so dass ein vom Verdichter
(1) abgegebenes Kältemittel zum ersten Wärmetauscher (3) strömt, wobei der erste Wärmetauscher
(3) veranlasst wird, als ein Wärmeabstrahler zu arbeiten und zumindest einer der Vielzahl
von zweiten Wärmetauschern (5a, 5b) veranlasst wird, als ein Verdampfer zu arbeiten,
und
Öffnen des zweiten Öffnungs-/Schließmechanismus (43, 45), der auf dem zweiten Strömungspfad
(33, 35) vorgesehen ist, der die Leitung, die mit der Auslassseite (1b) des Verdichters
(1) verbunden ist, und die Leitung, die mit dem Entfrostungswärmetauscher (5a, 5b)
verbunden ist, verbindet, Öffnen des ersten Öffnungs-/Schließmechanismus (44, 46),
der auf zumindest einem der Vielzahl von ersten Strömungspfaden (34, 36) vorgesehen
ist, mit Ausnahme des ersten Strömungspfades (34, 36), der die Leitung, die mit der
Ansaugseite (1a) des Verdichters (1) verbunden ist, und die Leitung, die mit dem Entfrostungswärmetauscher
(5a, 5b) verbunden ist, verbindet, und Schließen der übrigen der ersten und zweiten
Öffnungs-/Schließmechanismen (43, 45) zum Zeitpunkt des Entfrostungsbetriebs des Entfernens
von Frost, der an einem der Vielzahl von zweiten Wärmetauschern (5a, 5b), der ein
Entfrostungswärmetauscher (5a, 5b) ist, anhaftet, so dass das vom Verdichter (1) abgegebene
Kältemittel zum ersten Wärmetauscher (3) und zum Entfrostungswärmetauscher (5a, 5b)
strömt, wobei veranlasst wird, dass der erste Wärmetauscher (3) und der Entfrostungswärmetauscher
(5a, 5b) als Wärmeabstrahler arbeiten, und zumindest einer der übrigen der Vielzahl
von zweiten Wärmetauschern (5a, 5b), mit Ausnahme des Entfrostungswärmetauschers (5a,
5b), veranlasst wird, als ein Verdampfer zu arbeiten,
wobei der jeweilige zweite Wärmetauscher (5a, 5b) ein Wärmetauscher zum Wärmetausch
zwischen dem Kältemittels und einem Gas ist,
dadurch gekennzeichnet, dass die Wärmepumpenvorrichtung (100) ferner umfasst:
ein erstes Gehäuse (10), in dem zumindest der Verdichter (1) angeordnet ist; und
eine Vielzahl von zweiten Gehäusen (20a, 20b), in denen jeweils einer der Vielzahl
von zweiten Wärmetauschern (5a, 5b) untergebracht ist, wobei eine Anzahl der Vielzahl
von zweiten Gehäusen (20a, 20b) gleich ist wie eine Anzahl der Vielzahl von zweiten
Wärmetauschern (5a, 5b), wobei jedes zweite Gehäuse (20a, 20b) der Vielzahl von zweiten
Gehäusen (20a, 20b) ein Gebläse (21a, 21b) zum Senden des Gases zum zweiten Wärmetauscher
(5a, 5b), der im zweiten Gehäuse (20a, 20b) untergebracht ist, aufweist.
1. Appareil de pompe à chaleur (100) comprenant :
un circuit de fluide frigorigène (9) qui relie chaque côté d'un côté d'aspiration
(1a) et d'un côté de refoulement (1b) d'un compresseur (1) et un mécanisme de commutation
(2) par un tuyau, relie le mécanisme de commutation (2) et un premier échangeur de
chaleur (3) par un tuyau, relie le premier échangeur de chaleur (3) et un premier
mécanisme de réduction de pression (4) par un tuyau, relie le premier mécanisme de
réduction de pression (4) et chaque deuxième échangeur de chaleur (5a, 5b) d'une pluralité
de deuxièmes échangeurs de chaleur (5a, 5b) par un tuyau, et relie chaque dit deuxième
échangeur de chaleur (5a, 5b) et le mécanisme de commutation (2) par un tuyau ; et
une unité de commande (11) qui commande le mécanisme de commutation (2) à un instant
d'une opération de rayonnement de chaleur de sorte qu'un fluide frigorigène refoulé
du compresseur (1) s'écoule vers le premier échangeur de chaleur (3), amenant de ce
fait le premier échangeur de chaleur (3) à fonctionner en tant que radiateur de chaleur
et amenant au moins l'un de la pluralité de deuxièmes échangeurs de chaleur (5a, 5b)
à fonctionner en tant qu'évaporateur pour évaporer le fluide frigorigène qui s'est
écoulé hors du premier échangeur de chaleur (3), et commande le mécanisme de commutation
(2) à un instant d'une opération de dégivrage pour retirer le givre attaché à l'un
de la pluralité de deuxièmes échangeurs de chaleur (5a, 5b) qui est un échangeur de
chaleur de dégivrage (5a, 5b), de sorte que le fluide frigorigène refoulé du compresseur
(1) s'écoule vers le premier échangeur de chaleur (3) et l'échangeur de chaleur de
dégivrage (5a, 5b), amenant de ce fait le premier échangeur de chaleur (3) et l'échangeur
de chaleur de dégivrage (5a, 5b) à fonctionner en tant que radiateurs de chaleur et
amenant au moins l'un du reste de la pluralité de deuxièmes échangeurs de chaleur
(5a, 5b) à l'exclusion de l'échangeur de chaleur de dégivrage (5a, 5b) à fonctionner
en tant qu'évaporateur pour évaporer le fluide frigorigène qui s'est écoulé hors du
premier échangeur de chaleur (3) et de l'échangeur de chaleur de dégivrage (5a, 5b),
dans lequel le mécanisme de commutation (2) comprend :
une pluralité de premiers trajets d'écoulement (34, 36) qui relient le tuyau relié
au côté d'aspiration (1a) du compresseur (1) et les tuyaux reliés chacun à chaque
dit deuxième échangeur de chaleur (5a, 5b), chaque premier trajet d'écoulement (34,
36) de la pluralité de premiers trajets d'écoulement (34, 36) comprenant un premier
mécanisme d'ouverture/fermeture (44, 46) le long de celui-ci ; et
une pluralité de deuxièmes trajets d'écoulement (33, 35) qui relient le tuyau relié
au côté de refoulement (1b) du compresseur (1) et les tuyaux reliés chacun à chaque
dit deuxième échangeur de chaleur (5a, 5b), chaque deuxième trajet d'écoulement (33,
35) de la pluralité de deuxièmes trajets d'écoulement (33, 35) comprenant un deuxième
mécanisme d'ouverture/fermeture (43, 45) le long de celui-ci ;
dans lequel l'unité de commande (11) ouvre le premier mécanisme d'ouverture/fermeture
(44, 46) prévu sur au moins l'un de la pluralité de premiers trajets d'écoulement
(34, 36), et ferme le reste des premiers mécanismes d'ouverture/fermeture (44, 46)
et le reste des deuxièmes mécanismes d'ouverture/fermeture (43, 45) à l'instant de
l'opération de rayonnement de chaleur ; et
dans lequel l'unité de commande (11) ouvre le deuxième mécanisme d'ouverture/fermeture
(43, 45) prévu sur le deuxième trajet d'écoulement (33, 35) qui relie le tuyau relié
au côté de refoulement (1b) du compresseur (1) et le tuyau relié à l'échangeur de
chaleur de dégivrage (5a, 5b), ouvre le premier mécanisme d'ouverture/fermeture (44,
46) prévu sur au moins l'un de la pluralité de premiers trajets d'écoulement (34,
36) à l'exclusion du premier trajet d'écoulement (34, 36) qui relie le tuyau relié
au côté d'aspiration (1a) du compresseur (1) et le tuyau relié à l'échangeur de chaleur
de dégivrage (5a, 5b), et ferme le reste des premiers et deuxièmes mécanismes d'ouverture/fermeture
(43, 45) à l'instant de l'opération de dégivrage,
dans lequel chaque dit deuxième échangeur de chaleur (5a, 5b) est un échangeur de
chaleur pour échanger la chaleur entre le fluide frigorigène et un gaz,
caractérisé en ce que l'appareil de pompe à chaleur (100) comprend en outre :
un premier logement (10) avec au moins le compresseur (1) placé dans celui-ci ; et
une pluralité de deuxièmes logements (20a, 20b) chacun avec l'un de la pluralité de
deuxièmes échangeurs de chaleur (5a, 5b) placé dans celui-ci, un nombre de la pluralité
de deuxièmes logements (20a, 20b) étant identique à un nombre de la pluralité de deuxièmes
échangeurs de chaleur (5a, 5b), dans lequel chaque deuxième logement (20a, 20b) de
la pluralité de deuxièmes logements (20a, 20b) comprend un ventilateur (21a, 21b)
pour envoyer le gaz vers le deuxième échangeur de chaleur (5a, 5b) placé dans le deuxième
logement (20a, 20b).
2. Appareil de pompe à chaleur (100) selon la revendication 1,
dans lequel le premier mécanisme de réduction de pression (4) est relié à chaque dit
deuxième échangeur de chaleur (5a, 5b) par le tuyau dérivé d'un tuyau relié au premier
mécanisme de pression au niveau d'un point de branchement (12) ; et
dans lequel le circuit de fluide frigorigène (9) comprend un deuxième mécanisme de
réduction de pression (7a, 7b) le long du tuyau entre le point de branchement (12)
et chaque dit deuxième échangeur de chaleur (5a, 5b).
3. Appareil de pompe à chaleur (100) selon la revendication 1,
dans lequel l'unité de commande (22a, 22b) provoque l'arrêt du fonctionnement du ventilateur
(21a, 21b) inclus dans au moins l'un de la pluralité de deuxièmes logements (20a,
20b) lorsqu'une charge requise est inférieure à une charge prédéterminée au niveau
du premier échangeur de chaleur (3), la charge requise étant une quantité de chaleur
nécessaire pour provoquer un échange de chaleur d'un fluide avec le fluide frigorigène
s'écoulant dans le circuit de fluide frigorigène (9) à une température prédéterminée.
4. Appareil de pompe à chaleur (100) selon la revendication 1,
dans lequel le premier échangeur de chaleur (3) est un échangeur de chaleur pour échanger
la chaleur entre le fluide frigorigène et l'eau.
5. Procédé de commande de fonctionnement d'un appareil de pompe à chaleur (100) qui comprend
un circuit de fluide frigorigène (9) qui relie chaque côté d'un côté d'aspiration
(1a) et d'un côté de refoulement (1b) d'un compresseur (1) et un mécanisme de commutation
(2) par un tuyau, relie le mécanisme de commutation (2) et un premier échangeur de
chaleur (3) par un tuyau, relie le premier échangeur de chaleur (3) et un premier
mécanisme de réduction de pression (4) par un tuyau, relie le premier mécanisme de
réduction de pression (4) et chaque deuxième échangeur de chaleur (5a, 5b) d'une pluralité
de deuxièmes échangeurs de chaleur (5a, 5b) par un tuyau, et relie chaque dit deuxième
échangeur de chaleur (5a, 5b) et le mécanisme de commutation (2) par un tuyau,
dans lequel le mécanisme de commutation (2) comprend :
une pluralité de premiers trajets d'écoulement (34, 36) qui relient le tuyau relié
au côté d'aspiration (1a) du compresseur (1) et les tuyaux reliés chacun à chaque
dit deuxième échangeur de chaleur (5a, 5b), chaque premier trajet d'écoulement (34,
36) de la pluralité de premiers trajets d'écoulement (34, 36) comprenant un premier
mécanisme d'ouverture/fermeture (44, 46) le long de celui-ci ; et
une pluralité de deuxièmes trajets d'écoulement (33, 35) qui relient le tuyau relié
au côté de refoulement (1b) du compresseur (1) et les tuyaux reliés chacun à chaque
dit deuxième échangeur de chaleur (5a, 5b), chaque deuxième trajet d'écoulement (33,
35) de la pluralité de deuxièmes trajets d'écoulement (33, 35) comprenant un deuxième
mécanisme d'ouverture/fermeture (43, 45) le long de celui-ci ;
le procédé de commande de fonctionnement de l'appareil de pompe à chaleur (100) comprenant
:
l'ouverture du premier mécanisme d'ouverture/fermeture (44, 46) prévu sur au moins
l'un de la pluralité de premiers trajets d'écoulement (34, 36), et la fermeture du
reste des premiers mécanismes d'ouverture/fermeture (44, 46) et du reste des deuxièmes
mécanismes d'ouverture/fermeture (43, 45) à un instant d'une opération de rayonnement
de chaleur de sorte qu'un fluide frigorigène refoulé du compresseur (1) s'écoule vers
le premier échangeur de chaleur (3), amenant de ce fait le premier échangeur de chaleur
(3) à fonctionner en tant que radiateur de chaleur et amenant au moins l'un de la
pluralité de deuxièmes échangeurs de chaleur (5a, 5b) à fonctionner en tant qu'évaporateur,
et
l'ouverture du deuxième mécanisme d'ouverture/fermeture (43, 45) prévu sur le deuxième
trajet d'écoulement (33, 35) qui relie le tuyau relié au côté de refoulement (1b)
du compresseur (1) et le tuyau relié à l'échangeur de chaleur de dégivrage (5a, 5b),
l'ouverture du premier mécanisme d'ouverture/fermeture (44, 46) prévu sur au moins
l'un de la pluralité de premiers trajets d'écoulement (34, 36) à l'exclusion du premier
trajet d'écoulement (34, 36) qui relie le tuyau relié au côté d'aspiration (1a) du
compresseur (1) et le tuyau relié à l'échangeur de chaleur de dégivrage (5a, 5b),
et la fermeture du reste des premiers et deuxièmes mécanismes d'ouverture/fermeture
(43, 45) à l'instant de l'opération de dégivrage à un instant d'une opération de dégivrage
pour retirer le givre attaché à l'un de la pluralité de deuxièmes échangeurs de chaleur
(5a, 5b) qui est un échangeur de chaleur de dégivrage (5a, 5b), de sorte que le fluide
frigorigène refoulé du compresseur (1) s'écoule vers le premier échangeur de chaleur
(3) et l'échangeur de chaleur de dégivrage (5a, 5b), amenant de ce fait le premier
échangeur de chaleur (3) et l'échangeur de chaleur de dégivrage (5a, 5b) à fonctionner
en tant que radiateurs de chaleur et amenant au moins l'un du reste de la pluralité
de deuxièmes échangeurs de chaleur (5a, 5b) à l'exclusion de l'échangeur de chaleur
de dégivrage (5a, 5b) à fonctionner en tant qu'évaporateur,
dans lequel chaque dit deuxième échangeur de chaleur (5a, 5b) est un échangeur de
chaleur pour échanger la chaleur entre le fluide frigorigène et un gaz,
caractérisé en ce que l'appareil de pompe à chaleur (100) comprend en outre :
un premier logement (10) avec au moins le compresseur (1) placé dans celui-ci ; et
une pluralité de deuxièmes logements (20a, 20b) chacun avec l'un de la pluralité de
deuxièmes échangeurs de chaleur (5a, 5b) placé dans celui-ci, un nombre de la pluralité
de deuxièmes logements (20a, 20b) étant identique à un nombre de la pluralité de deuxièmes
échangeurs de chaleur (5a, 5b), dans lequel chaque deuxième logement (20a, 20b) de
la pluralité de deuxièmes logements (20a, 20b) comprend un ventilateur (21a, 21b)
pour envoyer le gaz vers le deuxième échangeur de chaleur (5a, 5b) placé dans le deuxième
logement (20a, 20b).