Technical Field
[0001] The present invention relates to a heat pump water heater which employs a reverse-type
defrosting method.
Background Art
[0002] In a prior-art heat pump water heater which employs a reverse-type defrosting method,
a method is proposed that freezing and growth on a drain pan of drained water dropped
from the surface of an evaporator due to a defrosting operation function under a temperature
condition of a low outside temperature is prevented by distributing a part of a high-pressure
side refrigerant pipeline of a heat pump cycle or a part of a water pipeline for supplying
hot water on the drain pan (See Patent Literature 1, for example).
Citation List
Patent Literature
[0003]
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2004-218861 (pages 3 to 4, Figs. 2, 4 to 5)
Summary of Invention
Technical Problem
[0004] However, with the anti-freezing method using the drain pan of the above prior-art
heat pump water heater, it is important to distribute the part of the high-pressure
side refrigerant pipeline or the part of the water pipeline for supplying hot water
in close contact on the drain pan for efficient heat transfer, but there is a problem
that a mounting structure of the refrigerant pipeline or the water pipeline becomes
complicated. Also, since the part of the high-pressure side refrigerant pipeline or
the part of the water pipeline for supplying hot water is distributed on the drain
pan, it is likely that a water discharge path of the drained water generated during
the defrosting operation is blocked by the distributed refrigerant pipeline or the
water pipeline or a gradient of the water distribution path becomes difficult, whereby
a drain reservoir might be generated, which is a problem.
[0005] The present invention was made in order to solve the above problems and has a first
object to obtain a heat pump water heater provided with a drain pan anti-freezing
method with a smaller number of components and in a simple structure.
A second object of the present invention is to obtain a heat pump water heater provided
with a drain pan anti-freezing method in which a discharge path of the drained water
generated during the defrosting operation is not blocked and a drain reservoir is
difficult to be generated.
Solution to Problem
[0006] A heat pump water heater according to the present invention is provided with a refrigerating
cycle in which a compressor, a four-way valve that switches a flow direction of a
refrigerant, a water heat exchanger that performs heat exchange between the refrigerant
and water, an expansion mechanism that adjusts a flow rate of the refrigerant and
decompresses, and an air heat exchanger that performs heat exchange between the air
and the refrigerant are sequentially and circularly connected by a pipeline, a water
circuit in which the water heat exchanger, a hot water tank that reserves water heated
by the water heat exchanger, and a pump are sequentially and circularly connected
by a pipeline, a water channel pipeline disposed in a lower stage of the air heat
exchanger, a path switching valve disposed in the water circuit between the pump and
the water heat exchanger, a bypass circuit connected between the path switching valve
and an inlet of the water channel pipeline and connecting an outlet of the water channel
pipeline to the water circuit between the path switching valve and an inlet of the
water heat exchanger, and a control portion that executes switching control of the
four-way valve and the path switching valve, in which the control portion switches
the flow direction of the refrigerant in the refrigerating cycle by switching the
four-way valve on the basis of predetermined information during the defrosting operation
and allows high-temperature water in the hot water tank to flow through the water
channel pipeline of the air heat exchanger via the bypass circuit by switching the
path switching valve.
Advantageous Effects of Invention
[0007] In the heat pump water heater according to the present invention, since freezing
of the drain pan is prevented by circulating the high-temperature circulating water
in the hot water tank to a lower-stage path in the air heat exchanger during the defrosting
operation and by heating the drained water generated in an upper stage of the air
heat exchanger and then allowing it to flow into the drain pan, there is no need to
distribute the part of the high-pressure side refrigerant pipeline or the part of
the water pipeline for supplying hot water on the drain pan, which has an advantage
that the mounting structure is simplified.
Also, since the part of the high-pressure side refrigerant pipeline or the part of
the water pipeline for supplying hot water is not distributed on the drain pan, the
discharge path of the drained water is not blocked, the drain reservoir is hardly
generated, and the drained water is smoothly drained, which has an advantage that
cooling and freezing of the drained water in the drain reservoir during the heating
operation is suppressed.
Brief Description of Drawings
[0008]
[Fig. 1] Fig. 1 is a circuit diagram during a defrosting operation of a heat pump
water heater according to Embodiment 1 of the present invention.
[Fig. 2] Fig. 2 is a block diagram illustrating a configuration relating to control
of an operation of the heat pump water heater according to Embodiment 1 of the present
invention.
[Fig. 3] Fig. 3 is a flowchart illustrating a behavior of a control portion relating
to control of an operation of the heat pump water heater according to Embodiment 1
of the present invention (1).
[Fig. 4] Fig. 4 is a flowchart illustrating a behavior of a control portion relating
to control of an operation of a pump type water heater according to Embodiment 2 of
the present invention (2).
[Fig. 5] Fig. 5 is an exploded perspective view of the heat pump water heater according
to Embodiment 2 of the present invention.
Description of Embodiments
Embodiment 1
[0009] Fig. 1 is a circuit diagram during a defrosting operation of a heat pump water heater
according to Embodiment 1 of the present invention.
[0010] As shown in Fig. 1, the heat pump water heater according to Embodiment 1 of the present
invention is composed of a compressor 1, a four-way valve 2 that switches a refrigerant
circuit during the defrosting operation, a water heat exchanger 3 that performs heat
exchange between water and a refrigerant, an electronic expansion valve 4 that adjusts
a flow rate of the refrigerant and decompresses, and an air heat exchanger 5 that
performs heat exchange between the air and the refrigerant connected sequentially
by a refrigerant pipeline 6.
[0011] A water circuit 10 between the water heat exchanger 3 and a hot water tank 7 is connected
at a water-outlet side connection joint 8 and a water-inlet side connection joint
9, and water is circulated by a pump 11. Between the water-inlet side connection joint
9 and the water heat exchanger 3, a three-way valve 12 that switches to the water
heat exchanger 3 during a heating operation and to the water circuit 10 so as to be
connected to the water heat exchanger 3 via a lower-stage path 5a of the air heat
exchanger during the defrosting operation is disposed. The three-way valve 12 constitutes
a path switching valve. Also, the lower-stage path 5a of the air heat exchanger constitutes
a water channel pipeline. Also, a bypass circuit 14 is constituted by connecting the
three-way valve 12 (path switching valve) to an inlet of the lower-stage path 5a of
the air heat exchanger (water channel pipeline), and connecting an outlet of the lower-stage
path 5a of the air heat exchanger (water channel pipeline) to the water circuit 10
between the three-way valve 12 (path switching valve) and an inlet of the water heat
exchanger 3.
[0012] Also, bold arrows in Fig. 1 indicate directions in which water (or hot water) flows,
while broken lines indicate directions in which a refrigerant flows.
[0013] Fig. 2 is a block diagram illustrating a configuration relating to control of an
operation of the heat pump water heater according to Embodiment 1 of the present invention.
[0014] In Fig. 2, reference numeral 21 designates a control portion, which is composed of
a microcomputer, a DSP or the like. Also, reference numeral 22 designates a memory,
which stores various types of data, tables and the like. Reference numeral 23 designates
a ROM, which stores a program executed by the control portion 21 and fixed data. Reference
numeral 24 designates an input/output bus, and information of all the devices is exchanged
with the control portion 21 through this input/output bus 24.
[0015] Reference numeral 25 designates a four-way valve driving portion, which drives switching
of the four-way valve 2 on the basis of an instruction from the control portion 24.
Also, reference numeral 26 designates a three-way valve driving portion, which drives
switching of the three-way valve 12 on the basis of an instruction from the control
portion 24. Reference numeral 27 designates a communication portion, which receives
setting information from a remote controller (hereinafter referred to as remote in
some cases) 28 and transmits it to the control portion through the input/output bus
24.
[0016] The lower-stage path 5a of the air heat exchanger constitutes a water channel pipeline.
[0017] Subsequently, a behavior of Embodiment 1 will be described.
Fig. 3 is a flowchart illustrating the behavior of the control portion 21 concerning
the control of the operation of the heat pump water heater according to Embodiment
1 of the present invention. Subsequently, the behavior of the control portion 21 in
Embodiment 1 will be described using Figs. 1 to 3.
While a power switch of the water heater is on, an operation of the water heater is
performed, but since this operation is not related to the present application, it
will not be described here. During the operation of the water heater, processing shown
in Fig. 3 is cyclically started in a relatively short cycle (a cycle of several milli
seconds to several seconds, for example). If the processing of Fig. 3 is started,
the control portion 21 executes initial value setting such as clearing of a timer
value (Step S301) and then, executes reception from the remote controller 28 (Step
302). Then, the control portion 21 examines contents received from the remote controller
28 and determines whether there is a defrosting operation start instruction or not
(Step S303).
In the heat pump water heater, if an operation is performed at a low outside temperature,
the air heat exchanger 5 which works as an evaporator and performs heat exchanger
between the air and a refrigerant becomes a low temperature at 0°C or below, the air
passing through the air heat exchanger 5 is cooled, and moisture in the air is condensed
on surface of the air heat exchanger 5 and forms frost, which blocks the air passage.
In order to ensure preferable performance of the air heat exchanger 5, an operation
to remove the frost adhering to the surface of the air heat exchanger 5 is needed,
and the defrosting operation should be performed. As for the defrosting operation,
if a defrosting operation start instruction signal is transmitted from the remote
controller 28 on the basis of a manipulation of the remote controller by a user and
this instruction is received by the control portion 21 sequentially through the communication
portion 27 and the input/output bus 24, the control portion 21 recognizes the defrosting
operation start by this instruction signal, controls the four-way valve driving portion
25 and the three-way valve driving portion 26 on the basis of defrosting operation
information set in the memory 22 in advance and switches the four-way valve 2 and
the three-way valve 12 (Steps S304 to S305). Then, the control portion 21 drives the
compressor 1 and starts the defrosting operation (Step S306). At the same time, a
timer is counted and the defrosting operation is continuously performed until a predetermined
time has elapsed (Steps S307 to S308). By means of this defrosting operation, the
frost adhering to the surface of the air heat exchanger is heated and becomes drained
water, which drops onto the drain pan 13 running down on the fin, flows through a
water discharge groove of the drain pan 13 and is discharged to the outside of the
unit through a water outlet. After a predetermined time has elapsed, the control portion
21 switches the four-way valve 2 and the three-way valve 12 back to the original positions
and further stops the compressor so as to stop the defrosting operation (Step S309)
and finishes the processing. After that, the operation of the water heater is performed.
[0018] As described above, by allowing the high-temperature water supplied from the hot
water tank 7 to flow to the lower-stage path 5a of the air heat exchanger by switching
the three-way valve 12 during the defrosting operation, the drained water running
down on the fin is heated in the lower stage of the air heat exchanger 5 so that the
drained water can be prevented from freezing on the drain pan 13.
In the above example, the case in which the defrosting operation is instructed by
the remote controller 28 has described, but it is needless to say that the instruction
can be made by a switch operation on an operation panel on the main body side of the
water heater.
Also, it may be so configured that the defrosting operation is started automatically
if the control portion 21 calculates operation efficiency of the heat pump water heater
resulting in equal or less than predetermined operation efficiency or if the temperature
of hot water in the water heater is not raised to a predetermined temperature or above.
Subsequently, an operation of the control portion 21 in that case will be described.
Fig. 4 is a flowchart illustrating the behavior of the control portion concerning
control of an operation of a heat pump water heater according to Embodiment 2 of the
present invention. In Fig. 4, the flow is the same in Fig. 3 except that Steps S301
to S302 in Fig. 3 are replaced by Steps S401 to S402.
Subsequently, the behavior of the control portion 21 will be described using Fig.
4.
The control portion 21 sets an initial value (Step S301) and then calculates operation
efficiency of the heat pump water heater (Step S401). As a calculation method of the
operation efficiency, a known method is used. For example, the operation efficiency
is calculated on the basis of a rotation speed of the compressor 1. This rotation
speed of the compressor 1 is detected by a rotation detector, not shown, mounted on
a rotation shaft of the compressor 1. Alternatively, the rotation speed of the compressor
1 may be calculated on the basis of an output of an inverter output current detector,
not shown, using the current detector (such as a current transducer and the like),
not shown.
Subsequently, the control portion 21 compares the calculated operation efficiency
with a predetermined reference value set (Step S402). If the operation efficiency
is not less than the reference value, the routine returns to Step S401, where the
calculation of the operation efficiency and the comparison with the reference value
are repeated. In the comparison at Step S402, if the operation efficiency falls below
the predetermined reference value set, an operation is performed similarly to Step
S304 and after in Fig. 3.
As a result, since the defrosting operation is performed automatically, users don't
have to make manipulation to instruct the defrosting operation. Also, since the defrosting
operation is performed reliably, an efficient operation is made possible all the time.
Embodiment 2
[0019] Fig. 5 is an exploded perspective view of the heat pump water heater according to
Embodiment 2 of the present invention.
[0020] By disposing the water heat exchanger 3, the lower-stage path 5a of the air heat
exchanger, and the water-inlet side connection joint 9 in the vicinity of the three-way
valve 12 used for switching of the water circuit during the defrosting operation,
a piping length of the water circuit 10 that connects them to each other can be made
shorter and simple in configuration, and a manufacturing cost can be kept low.
[0021] Also, by disposing the three-way valve 12 used for switching of the water circuit
during the defrosting operation on the inlet side of the water heat exchanger 3, the
high-temperature water circulated from the hot water tank 7 in the water heat exchanger
3, which is an evaporator during the defrosting operation, can be supplied to the
lower-stage path 5a of the air heat exchanger without lowering the temperature.
[0022] Also, at the fin disposed in the air heat exchanger 5, by eliminating a cut-and-raised
portion of the fins in the path portion through which the refrigerant flows, water
removal performance of the fin in the periphery of the path portion, which becomes
an evaporator during heating operation and through which the low-temperature refrigerant
flows, is improved, and growth of frost can be suppressed.
Reference Signs List
[0023]
- 1
- compressor
- 2
- four-way valve
- 3
- water heat exchanger .
- 4
- electronic expansion valve
- 5
- air heat exchanger
- 5a
- lower path of air heat exchanger
- 6
- refrigerant pipeline
- 7
- hot water tank
- 8
- water-outlet side connection joint
- 9
- water-inlet side connection joint
- 10
- water circuit
- 11
- pump
- 12
- three-way valve
- 13
- drain pan
- 14
- bypass circuit
- 21
- control portion
- 22
- memory
- 23
- ROM
- 24
- input/output bus
- 25
- four-way valve driving portion
- 26
- three-way valve driving portion
- 27
- communication portion
- 28
- remote controller
1. A heat pump water heater, comprising:
a refrigerating cycle in which a compressor (1), a four-way valve (2) that switches
a flow direction of a refrigerant, a water heat exchanger (3) that performs heat exchange
between said refrigerant and water, an expansion mechanism that adjusts a flow rate
of the refrigerant and decompresses, and an air heat exchanger (5) that performs heat
exchange between the air and the refrigerant are sequentially and circularly connected
by a pipeline;
a water circuit (10) in which said water heat exchanger (3), a hot water tank (7)
that reserves water heated by said water heat exchanger (3), and a pump (11) are sequentially
and circularly connected by a pipeline;
a water channel pipeline (5a) disposed in a lower stage of said air heat exchanger
(5);
a path switching valve (12) disposed in the water circuit (10) between said pump (11)
and said water heat exchanger (3);
a bypass circuit connected between said path switching valve (12) and an inlet of
said water channel pipeline (5a) and connecting an outlet of said water channel pipeline
(5a) to the water circuit (10) between said path switching valve (12) and an inlet
of said water heat exchanger (3); and
a control portion that executes switching control of said four-way valve (2) and said
path switching valve (12), wherein
said control portion switches a flow direction of the refrigerant in said refrigerating
cycle by switching said four-way valve (2) on the basis of predetermined information
during defrosting operation and allows high-temperature water in said hot water tank
(7) to flow through the water channel pipeline (5a) of said air heat exchanger (5)
via said bypass circuit by switching said path switching valve (12).
2. The heat pump water heater of claim 1, further comprising
a drain pan that collects drained water heated by the water channel pipeline (5a)
of said air heat exchanger (5) and dropped from said air heat exchanger (5), in the
lower part of said air heat exchanger (5).
3. The heat pump water heater of claim 1 or 2, wherein
a cut-and-raised portion is not disposed in the fin of the water channel pipeline
portion of said air heat exchanger (5).
4. The heat pump water heater of any one of claims 1 to 3, wherein
in the vicinity of said channel switching valve, said water heat exchanger (3), the
water channel pipeline (5a) of said air heat exchanger (5), and a circuit connection
joint on the water inlet side are disposed.
5. The heat pump water heater of any one of claims 1 to 4, wherein
said path switching valve (12) is disposed on the inlet side of said water heat exchanger
(3).
6. The heat pump water heater of any one of claims 1 to 5, wherein
said path switching valve (12) is a three-way valve.
7. The heat pump water heater of any one of claims 1 to 6, wherein
said control portion executes defrosting operation on the basis of an instruction
from a user.
8. The heat pump water heater of any one of claims 1 to 6, wherein
said control portion executes the defrosting operation when efficiency falls below
a reference value set in advance.