EP 2 377 619 A2 (11)

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:

19.10.2011 Patentblatt 2011/42

(51) Int Cl.:

B02C 13/28 (2006.01)

(21) Anmeldenummer: 11162429.2

(22) Anmeldetag: 14.04.2011

(84) Benannte Vertragsstaaten:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Benannte Erstreckungsstaaten:

BA ME

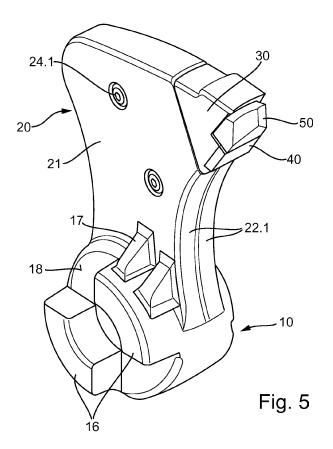
(30) Priorität: 16.04.2010 DE 102010016483

(71) Anmelder: Betek GmbH & Co. KG 78733 Aichhalden (DE)

(72) Erfinder:

· KRAEMER, Ulrich 77709 Wolfach (DE)

• FRIEDERICHS, Heiko 78733, Aichhalden (DE)


(74) Vertreter: Fleck, Hermann-Josef Patentanwälte Jeck-Fleck-Herrmann

Klingengasse 2

71665 Vaihingen/Enz (DE)

(54)Schneidkörper

(57)Die Erfindung betrifft einen Schneidkörper mit einem Schlegel und einem eine Lagerbohrung aufnehmenden Lagerkörper, wobei der Schlegel einen Schlegelkopf aufweist, der über einen Verbindungsabschnitt an den Lagerkörper anschließt. Zum Zwecke einer vereinfachten Wartung und zur Verbesserung der Lebensdauer des Schneidkörpers ist es erfindungsgemäß vorgesehen, dass der Schlegelkopf eine Schneidelementaufnahme aufweist, die einen Schneideinsatz auswechselbar aufnimmt.

30

35

Beschreibung

[0001] Die Erfindung betrifft einen Schneidkörper mit einem Schlegelkopf und einem eine Lagerbohrung aufnehmenden Lagerkörper, wobei der Schlegel einen Schlegelkopf aufweist, der über einen Verbindungsabschnitt an den Lagerkörper anschließt.

[0002] Ein derartiger Schneidkörper ist aus der DE 102 15 833 B4 bekannt. Solche Schneidkörper werden auf einem Rotor umfangsseitig befestigt, wozu eine Steckachse verwendet ist. Diese Steckachse wird durch Bohrungen des Rotors sowie durch die Lagerbohrung des Schneidkörpers hindurchgesteckt. Häufig sind auf der Steckachse mehrere Schneidkörper nebeneinander befestigt, um dadurch eine verbesserte Zerspanleistung zu gewährleisten. Die Steckachse bildet eine Schwenklagerung für den Schneidkörper. Während des Betriebseinsatzes trifft der Schlegel mit seinem Schlegelkopf auf das zu zerkleinernde Material auf und zerspant es. Treten zu hohe Gegenkräfte auf, so kann der Schlegel auf der Steckachse abschwenken. Obwohl der Schlegelkopf mit Hartmetall bestückt ist, unterliegt er einem Verschleiß und muss daher in regelmäßigen Abständen gewechselt werden. Ein Tausch des Schneidkörpers ist auch dann erforderlich, wenn dieser, beispielsweise aufgrund unzulässiger Einsatzbedingungen, im Bereich des Schlegelkopfes abbricht. Zum Wechsel der Schneidkörper muss die Steckachse gelöst und gezogen werden. Dann lassen sich die Schneidkörper entfernen und gegen neue Schneidkörper austauschen.

[0003] Es ist Aufgabe der Erfindung, einen Schneidkörper der eingangs erwähnten Art zuschaffen, der eine vereinfachte Wartung ermöglicht und wirtschaftlich effektiv nutzbar ist.

[0004] Diese Aufgabe wird dadurch gelöst, dass der Schlegelkopf eine Schneidelementaufnahme aufweist, zur auswechselbaren Aufnahme eines Schneideinsatzes, oder dass der Schlegelkopf zur auswechselbaren Aufnahme des Schneideinsatzes mittels einer Schneidelementaufnahme lösbar mit dem Lagerkörper verbindbar ist. Hierbei macht man sich die Erkenntnis zu nutze, dass der Schneidkörper vornehmlich im Bereich seiner Schneidflächen verschleißt. Dadurch, dass nun der Schneideinsatz auswechselbar ist. im Verschleißfall lediglich der Schneideinsatz getauscht werden. Hierbei muss insbesondere nicht die Steckachse entfernt werden, sondern der Schneidkörper kann an dem Rotor verbleiben. Damit wird zum einen eine deutlich vereinfachte und schnellere Wartung möglich. Weiterhin kann die Standzeit des Schneidkörpers deutlich erhöht werden, denn der Schneideinsatz stellt das eigentliche Verschleißteil dar und der teure Schlegel bzw. Lagerkörper kann für mehrere Schneideinsätze wieder verwendet werden. Auf diese Weise wird eine deutlich wirtschaftlichere Nutzung des Schneidkörpers möglich. [0005] Gemäß einer bevorzugten Erfindungsvariante ist es vorgesehen, dass die Schneidelementaufnahme eine Stützfläche aufweist, die quer zur Werkzeug-Vorschubrichtung angeordnet ist und an der der Schneideinsatz oder der Lagerkörper mit einer Sitzfläche abstützbar ist. Über die Stützfläche können die während des Betriebseinsatzes von dem Schneideinsatz aufgenommenen Zerspankräfte sicher aufgenommen und abgeleitet werden. Gemäß einer denkbaren Erfindungsalternative können die Schneidelemente zwei Führungsaufnahmen aufweisen, die einander gegenüberliegend angeordnet sind. Durch die Beabstandung der Führungsaufnahmen können zum einen Kräfte aus variierenden Richtungen sicher aufgenommen werden. Zum anderen wird über die Beabstandung ein Stützabstand gebildet, über den Drehmoment sicher abgeleitet werden können. Besonders bevorzugt sind die Führungsaufnahmen derart ausgerichtet, dass sie hintereinander liegend in Werkzeug-Vorschubrichtung positioniert sind. Hierdurch wird eine besonders gute Kraftableitung möglich.

[0006] Die Stabilität des Schneidkörpers wird dadurch erhöht, dass die Führungsaufnahmen mit einem Verbindungsabschnitt miteinander verbunden sind, der im Wesentlichen in Werkzeug-Vorschubrichtung verläuft. Der Verbindungsabschnitt verhindert, dass die beiden Führungsaufnahmen während des Werkzeugeinsatzes aufgrund der auftretenden Kräfte in entgegen gesetzte Richtung abgebogen werden können.

[0007] Gemäß einer bevorzugten Erfindungsvariante kann es vorgesehen sein, dass die Führungsaufnahme der Schneidelementaufnahme zwei zueinander beabstandet angeordnete Führungswände aufweist, die über ein quer zu den Führungswänden verlaufendes Verbindungsstück miteinander verbunden sind. Auf diese Weise wird eine Führungsgeometrie umschlossen, mit der Führungsstege des Schneideinsatzes bzw. des Lagerkörpers formschlüssig und sicher gehalten werden können.

[0008] Gemäß einer Erfindungsvariante können die Führungswände zueinander parallel ausgerichtet sein. Auf diese Weise wird eine einfach fertigbare Führungsgeometrie gebildet.

[0009] Eine weitere Erfindungsvariante ist dergestalt, dass die Führungswände zueinander im Winkel stehen. Über die Anstellung der Führungswände kann das Spiel zwischen dem Schneideinsatz und der Führung minimiert werden, so dass eine spielfreie oder nahezu spielfreie Positionierung möglich wird.

[0010] Ein erfindungsgemäßer Schneidkörper kann dadurch gekennzeichnet sein, dass der Schlegelkopf mit der Schneidelementaufnahme eine Steckaufnahme bildet, in die der Schneideinsatz oder der Lagerkörper mit einem Steckansatz auswechselbar einsteckbar ist. Mit dieser Maßnahme wird eine einfach fügbare Anordnung geschaffen, die eine schnelle und einfache Wartung ermöglicht.

[0011] Besonders bevorzugt ist dabei die Steckaufnahme als taschenförmige Ausnehmung ausgebildet. Diese taschenförmige Ausnehmung bildet eine stabile Geometrie. Wenn zusätzlich vorgesehen ist, dass die Steckaufnahme quer zur Werkzeug-Vorschubrichtung

40

45

mittels einer Öffnung zur Umgebung hin geöffnet ist, dann kann über die Ausnehmung Schmutz, der in den Bereich zwischen dem Steckansatz und der Steckaufnahme gelangt ist, in die Umgebung abfließen. Auf diese Weise wird ein Verklemmen des Steckansatzes in der Steckaufnahme verhindert. Ein erfindungsgemäßer Schneidkörper kann dadurch gekennzeichnet sein, dass die Schneidelementaufnahme eine Einstecköffnung für den Steckansatz aufweist, die in Werkzeug-Vorschubrichtung die Schneidelementaufnahme öffnet. Diese Anordnung der Steckaufnahme garantiert, dass die während des Betriebseinsatzes auftretenden Schneidkräfte den Schneideinsatz stets in die Steckaufnahme hineindrücken. Damit wird der Steckeinsatz zum einen sicher gehalten und zum anderen können die Kräfte sicher abgetragen werden.

[0012] Eine weitere Erfindungsvariante ist derart, dass in den Schlegelkopf Befestigungsaufnahmen eingebracht sind, die in den Bereich der Schneidelementaufnahme münden. Durch die Befestigungsaufnahmen können Befestigungselemente hindurchgeführt und unmittelbar mit dem Schneideinsatz bzw. Lagerkörper verbunden werden, um diesen unverlierbar zu halten.

[0013] Wenn vorgesehen ist, dass der Schneideinsatz oder der Schlegelkopf mittels eines oder mehreren Befestigungselementen derart am Schlegel fixiert ist, dass er unter Federvorspannung in der Schneidelementaufnahme gehalten ist, dann können zum einen Fertigungstoleranzen ausgeglichen werden. Zum anderen wird im Verschleißfall eine Nachsetzmöglichkeit geboten.

[0014] Die Aufgabe der Erfindung wird auch gelöst mit einem Schneideinsatz für einen Schneidkörper mit einem Schneidkopf und einem daran angeformten Steckansatz, oder einer daran angeformten Schneidelementaufnahme, wobei der Schneidkopf ein Schneidelement aus Hartstoff aufweist, und wobei der Steckansatz an gegenüberliegenden Seiten Führungsstege aufweist, die in Steckansatz-Längsrichtung verlaufen, oder wobei die Schneidelementaufnahme an gegenüberliegenden Seiten Führungsaufnahmen aufweist. Dieser Schneideinsatz kann schnell und einfach montiert bzw. gewechselt werden. Zudem bieten die zueinander beabstandeten Führungsstege bzw. Führungsaufnahmen die Möglichkeit einer stabilen Abstützung über die Kräfte aus variierenden Richtungen und Drehmomente sicher in den Schlegel abgeleitet werden können.

[0015] Gemäß einer bevorzugten Erfindungsvariante ist es dabei vorgesehen, dass die Führungsstege beidseitig des Steckansatzes angeordnet sind und in beziehungsweise entgegengesetzt zur Werkzeug-Vorschubrichtung orientiert sind, oder das die Führungsaufnahmen beidseitig einer Schneidelementaufnahme angeordnet sind und in bzw. entgegengesetzt zur Werkzeugvorschubrichtung orientiert sind. Diese Ausrichtung der Führungsstege bzw. Führungsaufnahmen bietet einen spannungsoptimierten Querschnittsaufbau. In Richtung der Werkzeug-Vorschubrichtung verbreitern die beiden Führungsstege die Geometrie des Schneideinsatzes

und tragen dabei zur verbesserten Kraftableitung bei.

[0016] Die Führungsstege oder Führungsaufnahmen können derart gestaltet sein, dass sie mit Befestigungsaufnahmen versehen sind. Mit den Befestigungsaufnahmen können Befestigungselemente zusammenarbeiten, die den Schneideinsatz sicher halten. Werden beide Führungsstege mit Befestigungsaufnahmen versehen, so ergibt sich ein großer Befestigungsabstand, der besonders zur Momentabtragung und damit sicheren Befestigung des Schneideinsatzes dienlich ist.

[0017] Ein erfindungsgemäßer Schneideinsatz kann auch derart sein, dass der Steckansatz zwischen den Führungsstegen eine seitliche Verbreiterung aufweist. Diese seitliche Verbreiterung vergrößert den Querschnitt des Steckansatzes quer zur Werkzeug-Vorschubrichtung und steift damit den Steckansatz aus.

[0018] Der Steckansatz kann auch eine plane, in Werkzeug-Vorschubrichtung verlaufende Anlagefläche aufweisen, mit der er sich an einer Gegenfläche der Schneidelementaufnahme großflächig abstützen kann oder die Steckaufnahme weist alternativ hierzu eine solche Führungsfläche auf.

[0019] Eine besonders bevorzugte Erfindungsausgestaltung ist derart, dass der Schneidkopf in und/oder entgegengesetzt zur Werkzeug-Vorschubrichtung einen Vorsprung aufweist, der den Steckansatz überragt. Mit dem Vorsprung werden die an den Schneidkopf anschließenden Bereiche des Schlegelkopfes geschützt, so dass die Standzeit des Schlegels erhöht werden kann.

30 [0020] Wenn vorgesehen ist, dass der Schneidkopf im Übergangsbereich zu dem Steckansatz wenigstens eine quer zur Steckansatz-Längsachse verlaufende Sitzfläche aufweist, so kann diese Sitzfläche auf eine entsprechende Gegenfläche des Schlegelkopfes abgestützt 35 werden, um eine großflächige Kraftabtragung zu erreichen.

[0021] Im Rahmen der Erfindung kann auch der Schneidkopf belastungsoptimiert an einem Schlegelkopf angeformt sein.

[0022] Die Erfindung wird im Folgenden anhand eines in den Zeichnungen dargestellten Ausführungsbeispieles näher erläutert. Es zeigen:

- Figur 1 in perspektivischer Seitenansicht einen Schneidkörper;
- Figur 2 in perspektivischer Seitenansicht einen Schneideinsatz für den Schneidkörper gemäß Figur 1;
- Figur 3 den Schneideinsatz gemäß Figur 2 in perspektivischer Rückansicht;
- Figur 4 die aus dem Schneidkörper gemäß Figur 1 und dem Schneideinsatz gemäß den Figuren 2 und 3 gebildete Baueinheit in Ansicht von hinten;

55

Figur 5 die Baueinheit gemäß Figur 4 in perspektivischer Rückansicht;

Figur 6 eine aus zwei Schneidkörpern zusammengesetzte Schneidbaugruppe;

Figur 7 in perspektivischer Seitenansicht und Explosionsdarstellung eine weitere Ausgestaltungsvariante eines Schneidkörpers;

Figur 8 den Schneidkörper gemäß Figur 7 in Zusammenbau-Darstellung und veränderter Perspektive; und

Figur 9 den Schneidkörper gemäß Figur 8 in Ansicht von links.

[0023] Figur 1 zeigt einen Schneidkörper, der einen Lagerkörper 10 aufweist. Der Lagerkörper 10 ist von einer Lagerbohrung 13 durchdrungen, wobei die Lagerbohrung 13 einseitig in eine Seitenfläche 11 mündet, die vertikal zur Mittellängsachse der Lagerbohrung 13 ausgerichtet ist. In die Seitenfläche 11 sind Radialnuten 12 eingearbeitet. Der Lagerkörper 10 weist eine ballige Umfangsfläche 14 auf, die an ihrer Unterseite mit einem radial vorspringenden verdickten Ansatz 15 versehen ist. In diesen Ansatz 15 ist ein, in der Figur 1 nicht erkennbarer Schmiernippel eingebracht, der in den Bereich der Lagerbohrung 13 mündet. Über den Schmiernippel kann Fett eingepresst werden. Durch die Lagerbohrung 13 ragt im montierten Zustand eine Steckachse eines Schneidrotors. Mit dem eingepressten Fett kann der Kontaktbereich zwischen der Steckachse und der Lagerbohrung 13 geschmiert und somit die Lebensdauer verlängert werden.

[0024] Wie die Figur 1 erkennen lässt, ist der Ansatz 15 entgegengesetzt zu einem Schlegel 20 angeordnet, der ebenfalls einteilig an den Lagerkörper 10 angeformt ist. Damit bildet der Ansatz 15 ein Gegengewicht zu dem Schlegel 20, das die Pendelbewegungen des Schneidkörpers auf der Steckachse zu Gunsten eines verbesserten Verschleißverhaltens reduziert.

[0025] An den Lagerkörper 10 sind auf der der Seitenfläche 11 abgewandten Seite zwei Vorsprünge 16 in Form von Klauen angeformt. Diese Vorsprünge 16 sind zur verbesserten Steifigkeit mittels Stegen 17 an einen Verbindungsabschnitt 21 des Schlegels 20 angebunden. Der Steg 17 ist einteilig mit dem Vorsprung 16 und dem Verbindungsabschnitt 21 verbunden. Zwischen den Vorsprüngen 16 sind Aufnahmen 18 belassen. Die Figuren 4 und 6 zeigen die Gestaltung und Anordnung der Vorsprünge 16 und der Aufnahmen 18 im Detail. Wie diese Darstellungen erkennen lassen, sind die Vorsprünge 16 und die Aufnahmen 18 zueinander um 180° verdreht angeordnet. Die Funktion der Vorsprünge 16 und Aufnahmen 18 wird später mit Bezug auf Figur 6 näher erläutert. [0026] Wie bereits vorstehend erwähnt wurde, ist an den Lagerkörper 10 ein Verbindungsabschnitt 21 eines

Schlegels 20 einteilig angeformt. Der Verbindungsabschnitt 21 weist eine Frontfläche 22 auf, die mit zwei geneigten Flankenflächen 22.1 versehen ist, wobei die Flankenflächen 22.1 zueinander V-förmig und in Werkzeug-Vorschubrichtung V geneigt verlaufen. Dem Lagerkörper 10 abgekehrt, ist an den Verbindungsabschnitt 21 ein Schlegelkopf 23 einteilig angeformt. Der Schlegelkopf 23 weist eine taschenförmige Schneidelementaufnahme 25 auf, die aus dem Schlegelkopf 23 ausgenommen ist. Dabei weist die Schneidelementaufnahme 25 einen wandförmigen Verbindungsabschnitt 25.2, der parallel zur Werkzeug-Vorschubrichtung V verläuft. An seinen beiden Endbereichen bildet der Verbindungsabschnitt 25.2 jeweils eine Führungswand 25.1. Diese Führungswand 25.1 ist jeweils über ein Verbindungsstück 25.8 mit einer weiteren Führungswand 25.3 verbunden. Dabei erstreckt sich das Verbindungsstück 25.8 quer zu der durch den Verbindungsabschnitt 25.2 gebildeten Ebene. Die beiden Führungswände 25.1 und 25.3 sowie das Verbindungsstück 25.8 bilden jeweils eine Führungsaufnahme. Wie Figur 1 erkennen lässt, werden zwei, quer zur Mittellängsachse der Lagerbohrung 13 hintereinander liegende Führungsaufnahmen mit U-förmiger Geometrie bereitgestellt. Diese beiden Führungsaufnahmen sind zum einen, wie vorstehend erwähnt, über den Verbindungsabschnitt 25.2 miteinander verbunden. Zum anderen ist ein Boden 25.4 verwendet, der die Führungsaufnahmen endseitig verbindet. Über diese Verbindungen wird ein stabiler Zusammenhalt der beiden Führungsaufnahmen gewährleistet.

[0027] Die taschenförmige Schneidelementaufnahme 25 ist seitlich mittels eines Ausschnittes geöffnet. Dieser Ausschnitt wird von zwei Schenkeln 25.6 begrenzt, die von den Führungswänden 25.3 getragen sind. Die beiden Schenkel 25.6 sind über einen Übergangsabschnitt 25.7 U-förmig miteinander verbunden. Denkbar ist auch, die Schenkel 25.6 V-förmig gegeneinander anzustellen. Dabei ist der Übergangsabschnitt 25.7 parallel zum Boden 25.4 orientiert. Der Verbindungsabschnitt 25.2 sowie die Führungswände 25.3 bieten jeweils Stützflächen 25.5, die senkrecht zur Mittellängsachse der Schneidelementaufnahme 25 ausgerichtet sind.

[0028] In die Schneidelementaufnahme 25 kann ein Schneideinsatz 30 eingesetzt werden, wie dies die Figur 4 erkennen lässt. Der Schneideinsatz 30 ist näher in den Figuren 2 und 3 detailliert. Wie diese Zeichnungen veranschaulichen, weist der Schneideinsatz 30 einen Steckansatz 33 auf, an den einteilig ein Schneidkopf 35 angeformt ist. Der Steckansatz 33 weist zwei einander diametral gegenüberliegende Führungsstege 31 auf, die im Querschnitt eine quadratische oder rechteckförmige Geometrie aufweisen. Aus den Führungsstegen 31 sind seitliche Befestigungsaufnahmen 32 ausgenommen. Zwischen den beiden Führungsstegen 31 weist der Steckansatz 33 eine einteilig angesetzte Verbreiterung 33.1 auf. Die Verbreiterung 33.1 ist mit einer Abschlussfläche 33.2 begrenzt. Diese Abschlussfläche 33.2 geht bündig in den Schneidkopf 35 über und ist par-

40

40

allel zu einer Anlagefläche 39 ausgerichtet, die im Bereich der Rückseite den Steckansatz 33 begrenzt.

[0029] Der Schneidkopf 35 ist in Seitenansicht im Wesentlichen dreieckförmig ausgebildet. Er weist einen vorderseitigen Vorsprung 37 und einen rückseitigen Vorsprung 36 auf. Diese beiden Vorsprünge 36 und 37 stehen über die Führungsstege 31 vor und bilden somit Verschleißschürzen. Der Schneidkopf 35 bildet beidseitig der Vorsprünge 36 und 37 Sitzflächen 36.1 beziehungsweise 37.1. Dabei ist die Sitzfläche 36.1 durchgehend ausgeführt, wie dies die Figur 3 erkennen lässt und rechtwinklig zur Mittellängsachse des Steckansatzes 33 angeordnet. Die Sitzfläche 37.1 ist durch die Verbreiterung 33.1 unterbrochen. Die Sitzfläche 37.1 steht ebenfalls rechtwinklig zur Mittellängsachse des Steckansatzes 33. Aus dem Schneidkopf 35 sind zwei gestuft hintereinander liegende Ausfräsungen ausgenommen, von denen eine eine Schneidelementaufnahme 38.1 und die andere eine Auflage 38.2 bildet. Die Schneidelementaufnahme 38.1 dient zur Aufnahme eines Schneidelementes aus Hartwerkstoff, vorzugsweise aus Hartmetall. An das Schneidelement ist eine Panzerplatte 40, die ebenfalls aus Hartwerkstoff, vorzugsweise aus Hartmetall, besteht, spaltfrei angesetzt. Sowohl die Panzerplatte als auch das Schneidelement 50 sind mit dem Schneidkopf 35 stoffschlüssig verbunden, bspw. verlötet oder geklebt. Das Schneidelement 50 weist eine plane Frontfläche 51 auf, an die dachförmig zwei Nebenflächen 52 angeschlossen sind. Im Abknickbereich zwischen der Frontfläche 51 und den beiden Nebenflächen 52 sind Teilschneiden gebildet. Weiterhin ist eine Teilschneide zwischen den beiden Nebenflächen 52 angeordnet. Die beiden Nebenflächen 52 bilden radial außenliegend eine bogenförmige Hauptschneide 53. Diese Geometrie des Schneidelementes ist besonders robust. Die dreieckförmige Zuordnung der drei Nebenschneiden in Dachform verbessert den sukzessiven Schneideingriff in das zu zerkleinernde Material und trägt dabei zur Verringerung der erforderlichen Maschinenleistung wesentlich bei. Darüber hinaus trägt auch die bogenförmige Wölbung der Hauptschneide zur Verringerung der erforderlichen Maschinenleistung bei. Figur 4 zeigt die Zuordnung zwischen dem Grundkörper gemäß Figur 1 und dem Schneideinsatz 30 gemäß den Figuren 2 und 3. Wie diese Darstellung erkennen lässt, wird der Schneideinsatz 30 mit seinem Steckansatz 33 in die Schneidelementaufnahme 25 eingesteckt. Dabei erfolgt die Einsteckbewegung durch die frontseitige Öffnung der Schneidelementaufnahme 25, die in Richtung der Werkzeug-Vorschubrichtung V orientiert ist. Der Schneideinsatz 30 kann mit seinen beiden Führungsstegen 31 in den Führungsaufnahmen der Schneidelementaufnahme 25 geführt werden. Die Einsetzbewegung des Schneideinsatzes 30 wird mit den Sitzflächen 36.1 und 37.1 begrenzt, die planparallel auf den Stützflächen 25.5 des Schlegelkopfes 23 aufliegen. Im eingesetzten Zustand steht der Boden 25.4 des Schlegels 20 im Abstand zu der Unterseite 34 des Steckansatzes 33. Auf diese Weise wird ein

Nachsetzraum gebildet. Zur Fixierung des Schneideinsatzes 30 werden längsgeschlitzte Federspannhülsen (Schwerspannhülsen) oder Elastomerelemente verwendet. Diese werden durch die Befestigungsaufnahmen 24 und die hierzu fluchtend angeordneten Befestigungsaufnahmen 32 des Steckansatzes 33 hindurchgetrieben. Dabei ist die Zuordnung des Schneideinsatzes 30 zu dem Schlegelkopf 23 so getroffen, dass die Befestigungselemente 24.1 eine Federvorspannung einbringen. Diese Federvorspannung drückt die Sitzflächen 36.1 und 37.1 des Schneideinsatzes 30 federvorgespannt auf die Stützflächen 25.5 des Schlegelkopfes 23 auf. Wenn nun während des Betriebseinsatzes die Berührfläche zwischen dieser Stützfläche 25.5 und den Sitzflächen 36.1 und 37.1 verschlissen wird, so können die Befestigungselemente 24.1 mit ihrer Federspannung diesen Verschleiß ausgleichen und der Schneideinsatz wird nachgesetzt. Dabei erlaubt der zwischen dem Boden 25.4 und der Unterseite 34 gebildete Nachsetzraum die Nachsetzbewegung.

[0030] Wie aus der Figur 5 erkennbar ist, sind die Befestigungselemente 24.1 beidseitig der Befestigungsaufnahme 24 durch den Schlegelkopf 23 hindurchgesetzt.
[0031] Figur 6 lässt erkennen, dass der Schneideinsatz 30 mit seiner Verbreiterung 33.1 durch die zwischen den Schenkeln 25.6 gebildete Öffnung hindurchgesetzt ist. Dabei schließt die Abschlussfläche 33.2 bündig mit der anschließenden Seitenwangenfläche des Schlegelkopfes 23 ab. Auf diese Weise wird ein planer seitlicher Übergang zwischen dem Schneideinsatz 30 und dem Schlegelkopf 23 geschaffen, der sich verschleißgünstig auswirkt. Zudem bietet die Verbreiterung 33.1 einen Schutz gegen Eindringen von zerkleinertem Material.

[0032] Figur 6 lässt weiter erkennen, dass zwei Schneidkörper, die bezüglich ihres Lagerkörpers 10 spiegelsymmetrisch aufgebaut sind, miteinander verbunden werden können. Hierzu werden die Vorsprünge 16 des einen Schneidkörpers in die Aufnahmen 18 des anderen Schneidkörpers klauenartig eingestellt. Damit wird in Umfangsrichtung eine drehfeste Verbindung geschaffen. Durch die Lagerbohrungen 13 der beiden Schneidkörper kann eine Steckachse hindurch geschoben werden, über die die axiale Zuordnung der beiden Schneidkörper aufrechterhalten wird. Alternativ kann anstelle der Klauenverbindung auch eine andere Verbindung zwischen den Schneidkörpern vorgesehen sein, bspw. können sie miteinander verschraubt sein oder reibschlüssig oder in sonstiger Weise formschlüssig aneinander gehalten sein.

[0033] In den Figuren 7 bis 9 ist eine weitere Ausgestaltungsvariante eines Schneidkörpers gezeigt. Wie aus einem Vergleich der Figuren 4 und 9 erkennbar ist, weisen die beiden Schneidkörper im Wesentlichen die gleiche Geometrie auf. Insbesondere sind die Schneidkörper im Bereich ihrer Lagerkörper 10 identisch aufgebaut und weisen übereinstimmend die Seitenflächen 11 mit den unterbrechenden Radialnuten 12 sowie die Vorsprünge 16 und die dazwischen liegenden Aufnahmen

25

30

35

45

50

55

18 auf. Weiterhin sind die Vorsprünge 16 über Stege 17 angebunden und der Lagerkörper 10 ist von der Lagerbohrung 13 durchdrungen.

[0034] Mit dem Lagerkörper 10 ist der Schlegelkopf 23 auswechselbar verbindbar. Dabei wird der gleiche Verbindungsmechanismus wie bei dem Ausführungsbeispiel gemäß den Figuren 1 bis 6 bestehend aus einem Steckansatz 33 und einer Schneidelementaufnahme 25 verwendet, wobei in kinematischer Umkehr der Steckansatz 33 am Lagerkörper 10 und die Schneidelementaufnahme 25 am Schlegelkopf 23 vorgesehen ist. Die Trennung zwischen dem Schlegelkopf 23 und dem Lagerkörper 10 ist im Bereich des Verbindungsabschnittes 21 vorgenommen. Der Schlegelkopf 23 ist wieder im Wesentlichen identisch zu dem Schlegelkopf 23 gemäß den Figuren 1 bis 6 aufgebaut und es kann mit identisch verwendeten Bezugszeichen auf die vorstehenden Ausführungen verwiesen werden. Insbesondere weist der Schlegelkopf 23 die Frontfläche 22 mit konkavem Verlauf auf. Diese geht in eine unmittelbar anschließende Konkavfläche des Lagerkörpers 10 über. Der Schlegelkopf 23 ist mit einer Schneidelementaufnahme 38.1 versehen, in die der Schneideinsatz 30 unmittelbar eingelötet ist. Dabei wird die Schneidelementaufnahme 38.1 von einem Schneidkopf 35 gebildet, der an den Schlegelkopf 23 einteilig angeformt ist. Unterhalb des Schneideinsatzes 30 ist die aus Hartmetall bestehende Panzerplatte 40 eingelötet.

[0035] Zur auswechselbaren Fixierung des Schlegelkopfes 23 an dem Lagerkörper 10 ist an den Lagerkörper 10 der Steckansatz 33 unmittelbar angeformt. Der Steckansatz 33 entspricht in seiner prinzipiellen Gestaltung dem Steckansatz 33 gemäß dem Ausführungsbeispiel nach Figur 1 bis 6, wobei insbesondere auf die Figuren 2 bis 3 verwiesen wird. Dementsprechend besitzt der Steckansatz 33 zwei Führungsstege 31, die in Radialrichtung verlaufen und an einer Verbreiterung 33.1 in Vorschubrichtung V vorne und hinten liegend angeformt sind. Der Steckansatz 33 weist wieder die Abschlussfläche 33.2 und eine Anlagefläche 39 auf. Aus den Führungsstegen 31 sind seitlich Befestigungsaufnahmen 32 ausgenommen. Der Schlegelkopf 23 weist in Übereinstimmung mit der geometrischen Ausgestaltung der Schneidelementaufnahme 25 nach Figur 1 eine Schneidelementaufnahme 25 auf, die zwei zu den Führungsstegen 31 korrespondierende Führungsaufnahmen umfasst, wobei die Führungsaufnahmen von Führungswänden 25.1 und 25.3 und einem Verbindungsabschnitt 25.2 begrenzt sind. Die Führungsaufnahmen sind wieder mit einem Boden 25.4 und einem Übergangsabschnitt 25.7 verbunden, wobei der Übergangsabschnitt 25.7 an Schenkel 25.6 angeformt ist.

[0036] Wie Figur 7 erkennen lässt, erstreckt sich der Steckansatz 27 radial zur Vorschubrichtung V. Er weist in Vorschubrichtung V eine relativ breite Bauhöhe auf, die noch durch die Führungsstege 31 deutlich vergrößert wird. Damit weist der Steckansatz 33 in Vorschubrichtung V belastungsoptimiert ein hohes Widerstandsmo-

ment gegen Biegung und eine große Querschnittsfläche gegen Scherkräfte auf.

[0037] Zur Montage des Schlegelkopfes 23 wird dieser mit seiner Führungsaufnahme 25 auf den Steckansatz 33 aufgeschoben. Auf die oben stehenden diesbezüglichen Ausführungen zu den Figuren 1 bis 6 wird Bezug genommen.

[0038] Im montierten Zustand stehen Befestigungsaufnahmen 24 des Schlegelkopfes 23 in Flucht zu den Befestigungsaufnahmen 32 im Steckansatz 33. Zur Fixierung des Schlegelkopfes 23 können wiederum Befestigungselemente 24.1, bspw. Schwerspannhülsen, verwendet werden.

[0039] Wie Figur 9 erkennen lässt, gehen die Frontfläche 22 und die entgegengesetzt zur Frontfläche 22 angeordnete Rückseite des Schlegelkopfes 23 bündig in den Lagerkörper 10 über und bilden damit keine störenden Vorsprünge, die einen Verschleiß negativ begünstigen würden. Ebenso schließt die Verbreiterung 33.1 des Steckansatzes 33 bündig mit der Seitenfläche des Schlegelkopfes 23 ab.

Patentansprüche

 Schneidkörper mit einem Schlegel (20) und einem, eine Lagerbohrung (13) aufnehmenden Lagerkörper (10), wobei der Schlegel einen Schlegelkopf (23) aufweist, der über einen Verbindungsabschnitt (21) an dem Lagerkörper (10) anschließt,

dadurch gekennzeichnet,

dass der Schlegelkopf (23) eine Schneidelementaufnahme (25) aufweist, zur auswechselbaren Aufnahme eines Schneideinsatzes (30), oder

dass der Schlegelkopf (23) zur auswechselbaren Aufnahme des Schneideinsatzes (30) mittels einer Schneidelementaufnahme (25) lösbar mit dem Lagerkörper (10) verbindbar ist.

40 **2.** Schneidkörper nach Anspruch 1,

dadurch gekennzeichnet,

dass die Schneidelementaufnahme (25) eine Stützfläche (25.5) aufweist, die quer zur Werkzeug-Vorschubrichtung (V) angeordnet ist und an der der Schneideinsatz (30) oder der Lagerkörper (10) mit einer Sitzfläche (37.1) abstützbar ist.

3. Schneidkörper nach Anspruch 1 oder 2,

dadurch gekennzeichnet,

dass die Schneidelementaufnahme (25) zwei Führungsaufnahmen (25.1) aufweist, die einander gegenüberliegend angeordnet sind.

4. Schneidkörper nach Anspruch 3,

dadurch gekennzeichnet,

dass die Führungsaufnahmen (25.1) mit einem Verbindungsabschnitt (25.2) miteinander verbunden sind, der im Wesentlichen in Werkzeug-Vorschub-

20

25

40

45

50

55

richtung (V) verläuft.

5. Schneidkörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet,

dass die Führungsaufnahme (25.1) der Schneidelementaufnahme (25) zwei zueinander beabstandet angeordnete Führungswände (25.1, 25.3) aufweist, die über ein quer zu den Führungswänden (25.1, 25.3) verlaufendes Verbindungsstück (25.8) miteinander verbunden sind.

6. Schneidkörper nach Anspruch 5,

dadurch gekennzeichnet,

dass die Führungswände (25.1, 25.3) zueinander parallel ausgerichtet sind.

7. Schneidkörper nach Anspruch 5,

dadurch gekennzeichnet,

dass die Führungswände (25.1, 25.3) zueinander im Winkel stehen.

8. Schneidkörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet,

dass der Schlegelkopf (23) mit der Schneidelementaufnahme (25) eine Steckaufnahme bildet, in die der Schneideinsatz (30) oder der Lagerkörper (10) mit einem Steckansatz (33) auswechselbar einsteckbar

9. Schneidkörper nach Anspruch 8,

dadurch gekennzeichnet,

dass die Steckaufnahme als taschenförmige Ausnehmung ausgebildet ist.

10. Schneidkörper nach Anspruch 8 oder 9,

dadurch gekennzeichnet,

dass die Steckaufnahme quer zur Werkzeugvorschubrichtung (V) mittels einer Öffnung zur Umgebung hin geöffnet ist.

11. Schneidkörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet,

dass die Schneidelementaufnahme (25) eine Einstecköffnung für den Steckansatz (33) aufweist, die in Werkzeugvorschubrichtung (V) oder radial nach innen zum Lagerkörper (10) hin die Schneidelementaufnahme (25) öffnet.

12. Schneidkörper nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet,

dass in den Schlegelkopf (23) Befestigungsaufnahmen (24) eingebracht sind, die in den Bereich der Schneidelementaufnahme (25) münden.

13. Schneidkörper nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet,

dass der Schneideinsatz (3) oder der Schlegelkopf (23) mittels eines oder mehrerer Befestigungselemente (24.1) derart fixiert ist, dass er unter Federvorspannung an der Schneidelementaufnahme (25) gehalten ist.

- 14. Schneideinsatz (30) für einen Schneidkörper mit einem Schneidkopf (35) und einem daran angeformten Steckansatz (33) oder einer daran angeformten Schneidelementaufnahme (25), wobei der Schneidkopf (35) ein Schneidelement (50) aus Hartstoff auf-10 weist, und wobei der Steckansatz (33) an gegenüberliegenden Seiten Führungsstege (31) aufweist, die in Steckansatz-Längsrichtung verlaufen, oder wobei die Schneidelementaufnahme (25) an gegenüberliegenden Seiten Führungsaufnahmen (25.1) aufweist, die in Führungsaufnahmen-Längsrichtung verlaufen.
 - 15. Schneideinsatz nach Anspruch 14,

dadurch gekennzeichnet,

dass die Führungsstege (31) beidseitig des Steckansatzes (33) angeordnet sind und in beziehungsweise entgegengesetzt zur Werkzeugvorschubrichtung (V) orientiert sind, oder das die Führungsaufnahmen (25.1) beidseitig einer Schneidelementaufnahme (25) angeordnet sind und in bzw. entgegengesetzt zur Werkzeugvorschubrichtung (V) orientiert sind.

16. Schneideinsatz nach Anspruch 14, oder 15, 30

dadurch gekennzeichnet,

dass ein oder beide Führungsstege (31) oder eine oder beide Führungsaufnahmen (25.1) wenigstens eine Befestigungsaufnahme (32) aufweisen.

17. Schneideinsatz nach einem der Ansprüche 14 bis

dadurch gekennzeichnet,

dass der Steckansatz (33) zwischen den Führungsstegen (31) eine seitliche Verbreitung (33.1) aufweist.

18. Schneideinsatz nach einem der Ansprüche 14 bis

dadurch gekennzeichnet,

dass der Steckansatz (33) eine plane, in Werkzeug-Vorschubrichtung (V) verlaufende Anlagefläche (39) aufweist, und/oder

dass die Schneidelementaufnahme (25) eine plane in Werkzeugvorschubrichtung (V) verlaufende Führungsfläche aufweist.

19. Schneideinsatz nach einem der Ansprüche 14 bis

dadurch gekennzeichnet,

dass der Schneidkopf (35) in und/oder entgegengesetzt zur Werkzeug-Vorschubrichtung (V) einen Vorsprung (36, 37) aufweist, der den Steckansatz (33) überragt.

20. Schneideinsatz nach einem der Ansprüche 14 bis 19.

dadurch gekennzeichnet,

dass der Schneidkopf (35) im Übergangsbereich zu dem Steckansatz (33) wenigstens eine, quer zur Steckansatz-Längsachse verlaufende Sitzfläche (37.1) aufweist.

21. Schneideinsatz nach einem der Ansprüche 14 bis 20,

10

dadurch gekennzeichnet,

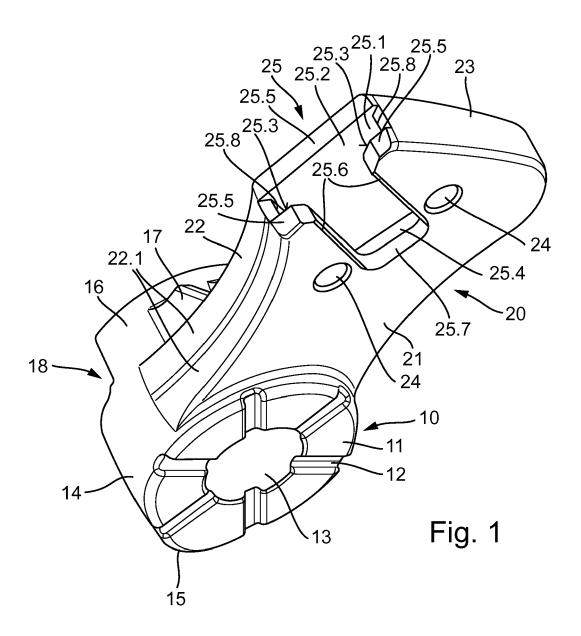
dass der Schneidkopf (35) an einen Schlegelkopf (23) angeformt ist.

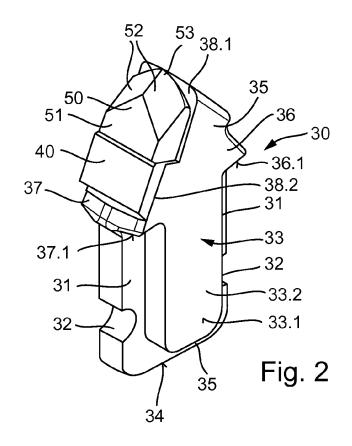
22. Schneidkörper gemäß einem der Ansprüche 1 bis 13 mit einem in die Schneidelementaufnahme (25) eingesetzten Schneideinsatz (30) gemäß einem der Ansprüche 14 bis 21.

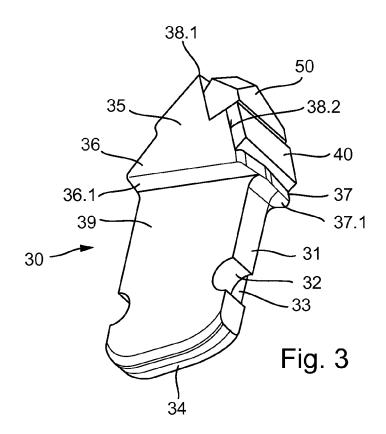
20

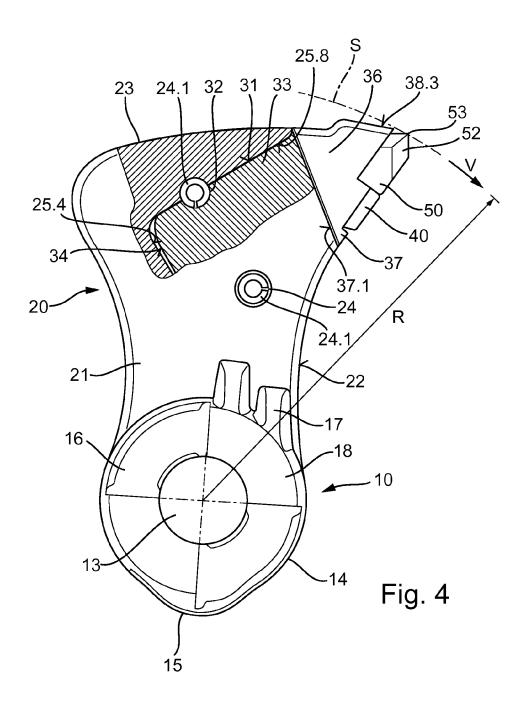
25

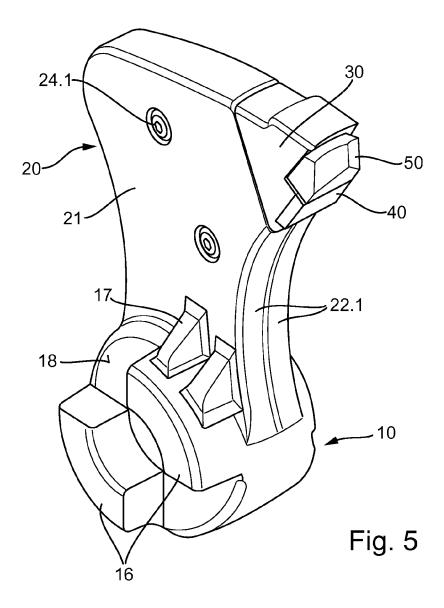
30

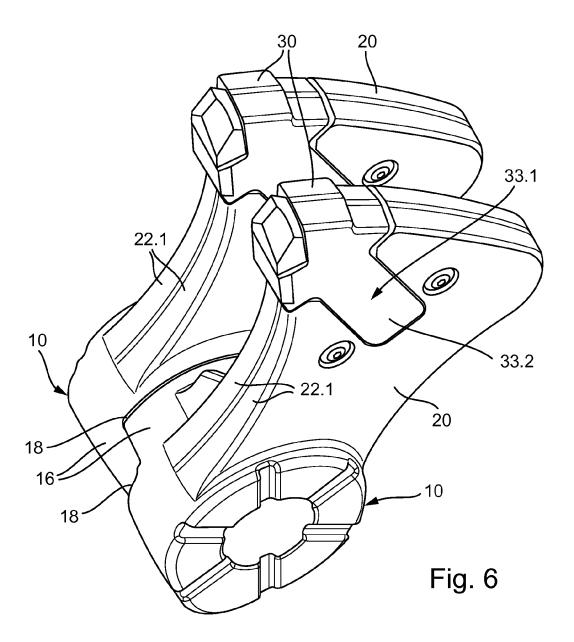

35

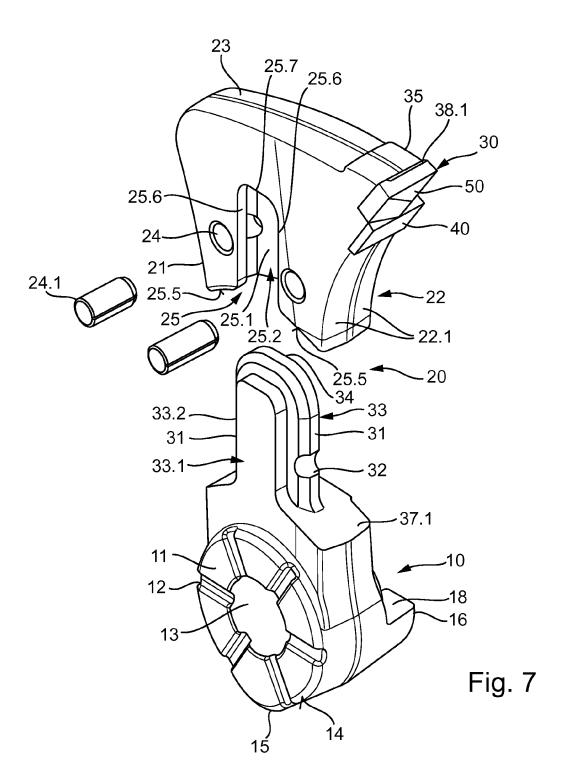

40

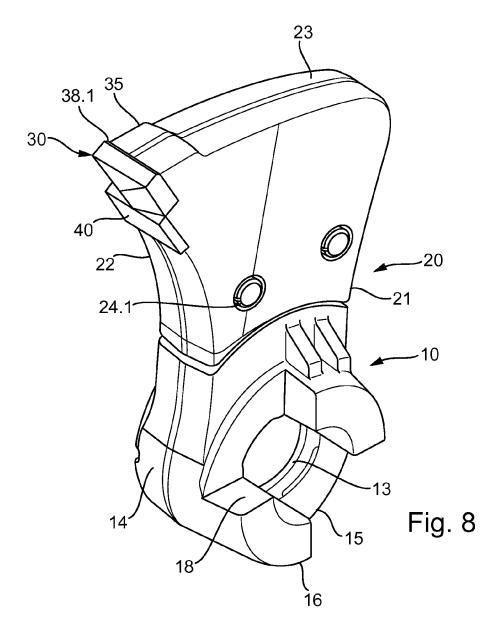

45

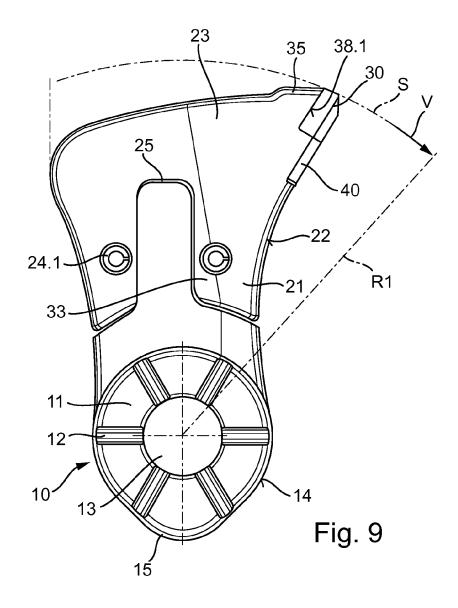

50


55









EP 2 377 619 A2

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

• DE 10215833 B4 [0002]