EP 2 381 649 A1

Patent Office

desrevers (11) EP 2 381 649 A1

(1 9) ’ o Hllm”‘ ‘llH H“‘ Hll‘ ‘l“l |”H |H|’ |H‘| ‘l |H Hl‘l ‘lm |”’| |H‘| Hll‘
Patentamt
0 European

(12) EUROPEAN PATENT APPLICATION
(43) Date of publication: (51) IntCl.
26.10.2011 Bulletin 2011/43 HO4L 29/08 (2006.01)

(21) Application number: 11174944.6

(22) Date of filing: 05.05.2008

(84) Designated Contracting States: Saks, Benjamin, D.
AT BEBG CH CY CZDE DK EE ES FIFR GB GR Wood Dale, IL lllinois 60191 (US)
HRHUIEISITLILTLULV MC MT NL NO PL PT ¢ Tang, Ke
RO SE SI SK TR Mount Prospect, IL lllinois 60056 (US)
(30) Priority: 07.05.2007 US 927978 P (74) Representative: Moore, Barry et al
Hanna Moore & Curley
(62) Document number(s) of the earlier application(s) in 13 Lower Lad Lane
accordance with Art. 76 EPC: Dublin 2 (IE)
08767554.2 | 2 145 452
Remarks:
(71) Applicant: Vorne Industries, Inc. This application was filed on 21-07-2011 as a
Itasca, IL 60143 (US) divisional application to the application mentioned

under INID code 62.
(72) Inventors:
¢ Vorne, Ramon, A
Wood Dale, IL lllinois 60191 (US)

(54) Method and system for extending the capabilities of embedded devices through network
clients

(57) A method and system for extending the capa-

bilities of resource-constrained embedded devices (102) 102 102
by leveraging the memory and processing resources of
clients such as web browsers ("clients") installed on host 102
computational devices ("hostcomputers™) (104). The em- {
bedded device (102) delegates computational tasks such Embedded
as generation of content (e.g., user interfaces, reports,

configuration files, etc.) to clients (104) and acts as a \
simple file and data server. The embedded device (102)
provides static resource files to each client (104), includ- 104 ﬁ)
ing static template files and a client processing engine. - -
The client processing engine: interprets processing in-
structions contained in static template files; utilizes man- Host 1 1 Host
aged communication channels to exchange dynamic da- Computer | | | Client | [ctient || | Computer
ta sets with the embedded device (102) in real-time; gen- u\m _ Host Host : “\,6
erates various forms of content by processing, transform- Computer Computer
ing, manipulating, and aggregating dynamic data sets “\,6 u\m
and static resource files; and reads and writes arbitrarily

large files from and to the host computer (104), overcom-

ing resource limitations of the embedded device (102).

Embedded Embedded

Device Device 102

Embedded
Device

104

FIG. 1

Printed by Jouve, 75001 PARIS (FR)

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1
Description
CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the filing benefit of U.S. Provisional Patent Application Ser. No. 60/927,978 filed on
May 7, 2007 and entitled "METHOD AND SYSTEM FOR EXTENDING THE CAPABILITIES OF EMBEDDED DEVICES
THROUGH NETWORK CLIENTS", the disclosure of which is hereby incorporated by reference.

BACKGROUND

[0002] This invention relates to embedded devices connected to networks that have clients such as web browsers
running on one or more host computers.

[0003] Embedded devices (i.e., devices which combine electronic hardware and software and possibly mechanical
parts or other components, and which are specifically designed to perform a dedicated function or task; e.g., vending
machines, appliances, motor controllers, printers) are often designed to work in conjunction with host computers to
provide features such as enhanced user interfaces (using the host computer display), remote access (via a network to
which both the host computer and embedded device are connected), and firmware upgrades (loading a new firmware
version into the embedded device from the host computer). By leveraging the capabilities and resources of the host
computer, the embedded device is able to overcome internal resource constraints that are inherent due to cost and/or
size limitations of the embedded device. These constraints often manifest themselves as limitations in the amount of
memory (e.g., bytes ofrandom access memory) and/or processing power (e.g., processor speed, data bus size, instruction
set, and onboard peripherals) of the embedded device.

[0004] Looking a bit closer at the issue of memory constraints in embedded devices, random access memory (RAM)
is particularly of concern. Single-chip microcontrollers, which are often used in embedded devices, typically have limited
RAM and rely on other types of memory (e.g., flash memory) to store programs and other constant data. For example,
a currently popular microprocessor platform for embedded devices is the ARM7. Two of the leading ARM7 suppliers,
Atmel Corporation and NXP Semiconductors, both offer ARM7 devices with network connectivity (in the form of Ethernet
media access controllers). The Atmel AT91SAM7X family provides four times the amount of flash memory than RAM
memory (e.g., the top-of-the-line AT91SAM7XC512 includes 512 KB flash and 128 KB RAM). The disparity is even more
pronounced in the NXP LPC2368, which includes 512 KB flash and only 58 KB RAM. Since RAM is frequently a very
limited resource in embedded devices, it is especially desirable to reduce RAM usage in embedded devices.

[0005] Twocommon techniques for leveraging the capabilities and resources of host computers are: i) installing custom
software on each host computer that will interact with the embedded device, or ii) incorporating an HTTP server in the
embedded device that generates content suitable for an HTTP client (i.e., web browser) on the host computer. Each
method has its strengths and weaknesses.

[0006] A strength of custom software is that it enables resource-constrained embedded devices to thoroughly leverage
the capabilities and resources of the host computer, due to the ability of custom software to access and control many
aspects of the host computer.

[0007] A weakness of custom software is that it typically needs to be installed and maintained on each host computer
that will access the embedded device. In practice, this is often cumbersome, time consuming, and expensive, especially
in business environments where typically only IT departments are allowed to install software. Each new version of the
custom software requires updates or new installations, and compatibility issues frequently arise due to interactions
between the custom software and different versions of computer operating systems, different combinations of other
custom software applications installed on the host computer, and/or mismatches between versions of the custom software
and versions of the embedded devices.

[0008] A strength of incorporating an HTTP server in the embedded device is that it provides for a "zero footprint"
client, meaning that a standard HTTP client (e.g., web browser) of a host computer can be used to access the embedded
device from any host computer that has the client installed. Since the great majority of personal computers have web
browsers pre-installed, this is a major improvement over custom software.

[0009] A weakness of incorporating an HTTP server in the embedded device is that resource constraints of the
embedded device, such as the earlier mentioned memory and processing power limitations, can severely impact the
user experience in terms of i) quality, such as the usability of a user interface or the sophistication of a report that can
be generated, ii) quantity, such as the size of a report that can be generated or the size of a file that can be read, iii)
responsiveness, such as how quickly the embedded device can generate requested content, and/or iv) scalability, such
as the number of clients that can be simultaneously serviced.

[0010] Althoughthere are technologies available that provide for varying degrees of client-side processing (e.g., Flash®
Player by Adobe Systems Incorporated, OpenLaszlo™ by Laszlo Systems Incorporated, and the Java™ Runtime
Environment by Sun Microsystems Incorporated), these technologies are typically not specifically designed or optimized

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1
for working with embedded devices and thus typically do not take into account the special requirements and limitations
of resource-constrained embedded devices. As a result, existing technologies generally suffer from one or more of the
following problems:
1. They are not designed to explicitly minimize memory usage (e.g., RAM and/or flash) and/or processing bandwidth
in the server (i.e., embedded device) and may therefore not run effectively on resource-constrained embedded

devices.

2. They do not provide tools for reading, writing, and/or manipulating arbitrarily large files while taking into account
the limited resources of embedded devices.

3. They are not designed to dynamically update content or do so inefficiently.
4. They do not cleanly separate static content (which can be cached by the client) from dynamic content.
5. They are not designed for general client-side processing (e.g., they focus on presentation layer processing).

6. They require proprietary developmental tools (e.g., available only from a particular company, and/or only for a
particular platform) thus limiting development options.

7. They require server-side components, programming languages and/or scripting languages that are not generally
available for or are poorly suited for use on embedded devices.

8. They require additional software to be installed on the client (e.g., browser plug-ins).

9. They do not support a wide range of clients (e.g., a wide range of browser platforms).

10. They support only a single type of content (e.g., Flash® SWF files) or a limited range of content.

11. They do not provide tools for accessing resources from external domains.
[0011] Note that the preceding list of problems is intended to be illustrative in nature, and is not intended to serve as
an exhaustive list of every aspect of existing technologies that may render them inappropriate for embedded devices.
[0012] Therefore, what is needed is an effective method for resource-constrained embedded devices to interact with
host computers, which can ideally provide for one or more of the following:

1. A zero footprint client that does not require any custom software to be installed at the host computer.

2. A significant reduction in the amount of memory and processing power that is required by the embedded device
to produce sophisticated, complex, and high quality content, including dynamic content.

3. An ability to generate content that is much larger (potentially orders of magnitude larger) than can fit within the
available memory of the embedded device.

4. An ability to store arbitrarily large files to the host computer and/or to file systems accessible to the host computer.

5. An ability to read, process, and extract information from arbitrarily large files from the host computer and/or from
file systems accessible to the host computer.

6. A solution that maximizes the amount of content that can be cached by the client.

7. A generalized and "generic" solution that is not significantly limited in the type of content that can be generated
or the type of processing that can be performed at the client.

8. A solution that is not dependent on specific third-party products, browser plug-ins, development tools, etc.

9. A solution that is effective across a broad range of clients and embedded devices.

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

10. A solution that can be easily and flexibly adapted to the requirements of the specific application and to the
resources of the specific embedded device.

11. An ability for the client to efficiently aggregate data from multiple embedded devices while placing minimal
memory and processing requirements on the embedded devices.

12. A generally improved overall user experience when interacting with the embedded device through the host
computer.

SUMMARY

[0013] Thereis disclosed hereina METHOD AND SYSTEM FOR EXTENDING THE CAPABILITIES OF EMBEDDED
DEVICES THROUGH NETWORK CLIENTS that leverages the memory and processing resources of clients such as
web browsers ("clients"), running on one or more host computers.

[0014] The network connected, resource-constrained embedded device ("embedded device") acts as a simple file
and data server to clients, and these clients take on the responsibility of content generation and other computational
tasks. Since clients running on host computers generally have access to orders of magnitude more memory and process-
ing power than typical embedded devices, they are generally capable of generating far richer content and performing
far more sophisticated computational tasks than embedded devices on their own.

[0015] Furthermore, multiple clients can concurrently process and manipulate files and data served from a single
embedded device. The end resultis a highly scalable system that maximizes the number of clients that can be concurrently
supported by one embedded device, and that significantly enhances the quality (and quantity) of content that can be
generated and the sophistication of computational tasks that can be performed.

[0016] Often, there may be a need to store or open this generated content at the host computer, but the client may
not have the means to achieve this, typically due to security restrictions (e.g., the restrictions placed on commonly used
web browsers for writing files to the host computer and/or to file systems accessible to the host computer). Various
embodiments of the invention also include a method and system for reading and writing arbitrarily large files from and
to the host computer and/or file systems accessible to the host computer (referred to as "file bouncing") while overcoming
memory and processing limitations of the embedded device, as well as overcoming limitations imposed by client security
restrictions.

[0017] The system, according to various embodiments, comprises four primary elements: a client processing engine,
static template files, dynamic data sets, and managed communication channels. These elements are described in more
detail below.

[0018] The client processing engine is responsible for coordinating work performed at the client on behalf of the
embedded device. From the perspective of the embedded device, the client processing engine is simply a static resource
(or a collection of static resources) stored on the embedded device and transmitted to the client on demand.

[0019] However, from the perspective of the client, once the client processing engine is loaded onto the client it is an
executable program (e.g., a JavaScript program) responsible for performing client-side processing. The client processing
engine interprets static template files and carries out the instructions specified therein. The client processing engine is
explicitly intended and designed to minimize resources and processing required within the embedded device and to
transfer work from the embedded device to the client. The client processing engine, in essence, becomes an "operating
system" that runs within the client, and elevates the client from being a content delivery medium to being a processing
"node" in a distributed computing system.

[0020] Static template files are responsible for providing information necessary to perform specific processing tasks
(e.g., generate a report, render a web page, etc.). From the perspective of the embedded device, a static template file
is simply a static resource transmitted to the client on demand. From the perspective of the client, a static template file
contains a set of processing instructions for the client processing engine. In essence, the embedded device delegates
processing tasks encompassed by static template files to the client, in order to minimize resources and processing
required within the embedded device and to transfer work from the embedded device to the client.

[0021] Dynamic data sets are collections of data that are exchanged between the embedded device and the client.
Unlike static template files, which are static resources, each dynamic data set is generated dynamically by the embedded
device (or alternately by the client). JavaScript Object Notation (JSON), described by RFC 4627, is particularly useful
as a dynamic data set format as it is very simple to parse and generate, and was specifically designed to provide a
compact data representation. Dynamic data sets, in essence, encapsulate the "dynamic" aspect of content with a compact
data representation, and, in concert with a variety of techniques that minimize the resources and processing required
within the embedded device, further transfer work from the embedded device to the client.

[0022] Managed communication channels are bidirectional communication links between the client processing engine
and an embedded device. The term "managed" refers to the fact that the communication channels are controlled by the

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

client processing engine, not directly by the client as is traditionally the case. The client processing engine may use
managed communication channels to maintain ongoing communication with one or more embedded devices in a seam-
less fashion that is invisible to the user. Managed communication channels may be implemented with a variety of
techniques, such as XHR (XMLHttpRequest) and document manipulation. With document manipulation, the client
processing engine alters existing content (e.g., HTML, XHTML, etc.), which causes the client to make a communication
request to the embedded device. Document manipulation is accomplished via techniques such as JavaScript's document
write () method, modifications to the Document Object Model, and modifications to the document’s innerHTML property.
[0023] The client processing engine parses each static template file and communicates with the embedded device
using one or more managed communication channels to request, receive, and/or submit dynamic data sets, which the
client processing engine uses in concert with static template files to generate, process, transform, manipulate, and/or
aggregate content as well as perform other computational tasks.

[0024] File bouncing may be achieved by using, for example, the HTTP protocol, to send files to the embedded device
in a series of one or more packets that the embedded device simply "bounces" back to the client. The embedded device
only holds onto a given packet for as long as it takes to bounce that packet to the client, after which the packet may be
discarded. Packets can be of arbitrary size, and the embedded device need only reserve memory resources sufficient
to buffer a single packet at once (i.e., the embedded device does not need to store the entire file or even a significant
portion thereof).

[0025] Files that are read from the host computer and/or from file systems accessible to the host computer (e.g., using
HTML form-based file upload) using file bouncing are entirely available to the client processing engine, which may
manipulate, transform, and/or selectively access their content as a proxy for the embedded device.

[0026] Files that are written to the host computer and/or to file systems accessible to the host computer (e.g., using
the HTTP Content-Disposition header) using file bouncing are typically generated by the client processing engine from
static template files and/or dynamic data sets. Dynamic data sets may be streamed from the embedded device to the
client as the underlying data is produced, making it transitory from the perspective of the embedded device. While
generating files the client processing engine may manipulate and/or transform content on behalf of the embedded device.
[0027] File bouncing can dramatically reduce the resources required by an embedded device to read, access, generate,
and write arbitrarily large files from and to the host computer.

[0028] These and other aspects of the invention may be understood more readily from the following description and
the appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0029] The invention is described with reference to various embodiments that are illustrated in the drawings and
following detailed description below.

[0030] FIG.1isablockdiagram showing atop-level view of network-connected embedded devices and host computers
with clients.

[0031] FIG. 2 is a block diagram showing relationships between primary elements of the system.

[0032] FIG. 3 is a block diagram showing subcomponents of the client processing engine.

[0033] FIG. 4 is an example of a dynamic data set containing real-time data generated by an embedded device.
[0034] FIG. 5is an example of an abstract static template file.

[0035] FIG. 6 is an example of content generated by the client processing engine from the abstract static template file
of FIG. 5 and the dynamic data set of FIG. 4.

[0036] FIG. 7 shows the content of FIG. 6 as rendered by a web browser.

[0037] FIG. 8 is an example of a literal static template file for generating a Rich Text Format document.

[0038] FIG. 9is the content generated by the client processing engine from the literal static template file of FIG. 8 and
the dynamic data set of FIG. 4.

[0039] FIG. 10 shows the content of FIG. 9 as rendered by a word processor.

[0040] FIG. 11 is a sequence diagram showing steps for generating content with both static and dynamic elements.
[0041] FIG. 12 is a sequence diagram showing steps for using file bouncing to store content generated at the client
to the host computer.

[0042] FIG. 13 is a sequence diagram showing steps for using file bouncing to load a file accessible to the host
computer (but not directly accessible to the client) into the client.

DETAILED DESCRIPTION
[0043] While this invention is susceptible of embodiments in many different forms, there is shown in the drawings and

will herein be described in detail a preferred embodiment of the invention with the understanding that the present
disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

broad aspect of the invention to embodiments illustrated.

[0044] Various embodiments of the invention provide a method and system for enabling network connected, resource-
constrained embedded devices (henceforth referred to simply as "embedded devices") to leverage the memory and
processing resources of clients such as web browsers (henceforth referred to as "clients"), which are installed on host
computational devices such as personal computers or thin clients (henceforth referred to as "host computers"), in such
a way as to overcome internal resource constraints of the embedded devices. A top-level view can be seen in FIG. 1,
which shows a plurality of embedded devices 102, and a plurality of clients 104 on host computers 106, connected to
a shared (i.e., a common) communication network 108.

[0045] The ability to use a standard web browser as the client 104 to interact with the embedded device 102 makes
the solution "zero footprint" from the perspective of the host computer 106 - no custom software needs to be installed
since the great majority of host computers have such clients pre-installed.

[0046] In order to minimize the processing performed by the embedded device 102, the embedded device takes on
the role of a simple file and data server delivering two basic types of information, as can be seen in FIG. 2:

@ Static resource files 202 such as JavaScript and XML
® Dynamic data sets 204 such as real-time data, in a compact format such as JSON (JavaScript Object Notation)

[0047] To be considered a "file" for the purposes of this discussion, a static resource need not be stored in a traditional
file system. For example, a static resource could be stored as an object of some type (e.g., a sequence of bytes) in flash
memory.

[0048] In the case of static resource files 202, the embedded device 102 simply transmits these files to the client 104
whenever they are requested. It does no significant processing on the files beyond transmission. The static resource
files may be stored in flash memory of the embedded device, and may be transmitted as a sequence of small "packets"
to the client thus minimizing the use of RAM resources.

[0049] Inthe case of dynamic data sets 204, the embedded device 102 transmits data in a simple and compact format
such as the JSON format shown in FIG. 4.

[0050] Returning to FIG. 2, processing of dynamic data sets 204 by the embedded device 102 may be minimized by
representing each data item in a form that closely parallels its native internal representation in the embedded device.
For example, in the dynamic data set of FIG. 4, the data item date/time 404 has a value of 202809600, which represents
the number of seconds since the turn of the century (seconds since 1/1/2000 12:00 AM), which in this example is also
the internal date/time representation of the embedded device. The client processing engine may be capable of formatting
this data item in many different ways, such as 6/5/2006, 2006-06-05T08:00:00, or June 5, 2006 8:00 AM. For example,
the client processing engine formats date/time 404 as 6/5/2006 8:00 AM within subtitle 704 (FIG. 7) and subtitle 1002
(FIG. 10).

[0051] Returning to FIG. 2, the embedded device 102 focuses on serving files and raw data rather than focusing on
generating final content (e.g., XHTML web pages, Rich Text Format reports, etc.). The client processing engine 206 is
responsible for transforming the static template files 208 and the dynamic data sets 204 that it receives from the embedded
device to produce the generated content 212. This division of responsibilities takes advantage of the fact that host
computers 106, and the clients 104 running on them, typically have far greater memory and processing resources than
embedded devices, often times by orders of magnitude.

[0052] Thus by taking on the role of a basic file and data server as described above, the embedded device can service
many clients with few resources. Additionally, multiple clients can concurrently process and manipulate files and data
served from a single embedded device. The end result is a highly scalable system that maximizes the number of clients
that can be concurrently supported by one embedded device, and that significantly improves the quality of content that
can be generated.

[0053] It is important to emphasize that the embedded device 102 is not responsible for content generation. It does
not generate user interfaces, diagnostic interfaces, informational screens, reports, configuration files, etc. That respon-
sibility is delegated to the client 104 through the client processing engine 206. The files and data served by the embedded
device are processed, transformed, manipulated, and combined by the client processing engine to generate various
forms of content 212. And, as illustrated in FIG. 2, the client processing engine 206 may be cached by the client 104,
so it need only be loaded from the embedded device one time per client.

[0054] It is also important to emphasize that while the focus of this description is on client-side content generation,
other processing tasks can also be delegated to the client (e.g., number crunching, data analysis, and data validation).
[0055] There are four primary elements that interact and that are shared between the embedded device 102 and the
client 104: static template files 208, dynamic data sets 204, client processing engine 206, and managed communication
channels 210.

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

Static Template Files

[0056] The first element is the static template file 208. Each static template file is stored in the embedded device 102
(e.g., in flash memory) and transferred to the client 104 as needed. Since each static template file is a static resource
file, the embedded device simply reads it from its memory and transmits it to the client. No significant additional processing
is needed at the embedded device. Typically, there will be a plurality of static template files stored in the embedded device.
[0057] From the perspective of the client 104, a static template file 208 provides a set of processing instructions. For
example, a static template file may contain instructions that can be used to generate a web page, or a report, or it may
contain general computational instructions. Static template files are generally written in a simple and compact way that
can be parsed easily to generate content or perform other processing. XML is a logical format for static template files,
as XML documents can be as simple or complex as needed for a particular application, and XML is easily parsed by
clients such as web browsers.

[0058] FIG. 5 shows an example of a static template file that could be used for generating a web page, FIG. 6 shows
corresponding XHTML content generated by the client processing engine, and FIG. 7 shows the generated web page
as itappearsin a web browser. Similarly, FIG. 8 shows an example of a static template file used specifically for generating
a Rich Text Format report, FIG. 9 shows corresponding Rich Text Format content generated by the client processing
engine, and FIG. 10 shows the generated report as it appears in a word processor. In both cases, the source of dynamic
data is the dynamic data set of FIG. 4.

[0059] Static template files can provide processing instructions that are abstract (i.e., describing the desired end result
without providing explicit instructions on how to achieve it) and/or literal (i.e., describing explicitly how to achieve the
desired end result).

[0060] The static template file shown in FIG. 5 contains abstract instructions that may be used to generate the web
page shown in FIG. 7. Some of the key elements and attributes are as follows:

@ The label attribute 504 (FIG. 5) is used to provide text labels for many parts of the web page shown in FIG. 7,
including the title 702, subtitle 704, variable box 706 (each variable box groups a collection of related name/value
pairs), and variable 708 (each variable represents a single name/value pair).

@ Returning back to FIG. 5, the index attribute 502 identifies a data item from an associated dynamic data set to
be inserted into the web page (e.g., as the value part of a name/value pair). This attribute is only necessary if the
order in which. the dynamic data set data items are used within the static template file is different from their order
in the dynamic data set. For example, the index attribute 502 in the title element, which has an index value of "0",
identifies and would be associated with the "Assembly Line 12" data item 402 (FIG. 4) of the dynamic data set. Note
that the index is zero-based.

@ The format attribute 506 is used to provide formatting instructions for data items. In this example the formatting
instruction convention (e.g., "#,0.00%") is very similar to the custom format codes used in the Excel® spreadsheet
product by Microsoft Corporation.

@ The footer element 508 is an abstract instruction used to indicate that a page footer should be drawn at the bottom
of the page. A standalone footer tag is suitable for applications that use a consistent footer across some or all pages,
in which case the complete footer generation may be performed by the client processing engine. This illustrates
another benefit of using static template files—abstract processing instructions can make it simpler to design content,
and the client processing engine may be used to provide a degree of uniformity in the appearance and functionality
of generated content. An example of client processing engine generated functionality is the hyperlink 602 (FIG. 6)
included in the generated footer.

@ The variable_box 512 and stack_panel 510 elements are further examples of abstract instructions. A variable_
box describes a certain type of presentation object (in this case a group of related name/value pairs, where each
name/value pair is a variable element), and a stack_panel describes how to lay out presentation objects (in this
case horizontally).

[0061] The static template file shown in FIG. 8 uses literal instructions to describe the Rich Text Format (RTF) report
shown in FIG. 10. The example static template file of FIG. 8 supports a report format that consists of header element
802 content that is placed at the beginning of the report, record_body element 808 content that is repeated for each
"data record", record_separator element 806 content that is placed between each data record, and footer element 804
content that is placed at the very end of the report. Thus, the example static template file of FIG. 8 could be used to
generate a one page report or a 1,000 page report. For brevity FIG. 9 and FIG. 10 represent a one page report generated

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

from the single data record shown in the dynamic data set of FIG. 4. Most of the example static template file of FIG. 8
is literal RTF content to be copied to the report. Some of the key elements and attributes are as follows:

® The header element 802 and footer element 804 contain literal text to be placed at the beginning and end of the
generated report, respectively. Likewise, the record_separator element 806 contains literal text to be placed between
individual records (but not before the first record and not after the last record).

® The record_body element 808 primarily contains literal text that is copied directly into the report with any leading
and trailing whitespace removed.

@ The define element 810 and insert element 812 provide a simple mechanism used to avoid repetition of literal
text, and thus reduce the size of a static template file. The define element captures a block of literal text at its point
of first use so that it can be repeated (i.e., inserted) later with an insert element.

@ The variable element 814 marks each place where formatted dynamic data is to be inserted into the report. Note
that a label attribute 504 (FIG. 5) is not required since the label is included as part of the literal text, and an index
attribute 502 (FIG. 5) is not required as the order of the variable element data items is the same as their order in
the dynamic data set. Also note that format attribute 506 (FIG. 8) has the same behavior as format attribute 506
(FIG. 5).

[0062] A static template file might include references to other static template files (or even to itself), thus enabling a
"modular" approach to building sets of processing instructions for the client processing engine. As static resource files,
static template files can be stored in the embedded device in compressed form (e.g., GNU zip format, also referred to
as gzip format), which reduces the memory footprint in the embedded device. They can also be transferred to the client
in compressed form (e.g., gzip format) to reduce the transfer time and conserve resources. The memory footprint in the
embedded device may be reduced even further by loading static template files from one or more sources other than the
embedded device (e.g., from an external host).

[0063] Static template files may also be created and/or modified at the client. For example, in addition to parsing static
template files, the client processing engine may contain logic to generate them (typically in concert with information
gathered through a user interface). Static template files created and/or modified in such a manner may be stored within
the embedded device and/or interpreted immediately by the client processing engine (e.g., for "one-time" execution or
to provide a preview feature). Static template files created and/or modified in such a manner, which are then stored
within the embedded device, are still "static" from the perspective of both the embedded device (which need not do
significant processing on them) and the client (which may cache them).

[0064] Note that although FIG. 5 shows abstract static template file instructions that are used to generate XHTML and
FIG. 8 shows literal static template file instructions for generating RTF, this is simply for illustrative purposes. Nothing
about XHTML requires abstract static template file instructions, and nothing about RTF requires literal static template
file instructions. XHTML, RTF, and other types of content (e.g., charts, graphs, reports, documents, spreadsheets, web
pages, etc.) can be generated using abstract and/or literal static template file instructions.

[0065] Moreover, the abstract static template file instructions shown in FIG. 5 are not limited to generating XHTML.
The same static template file could be used to generate an RTF report similar to that shown in FIG. 10, simply by
instructing the client processing engine to generate RTF instead of XHTML. In this manner, a given static template file
and associated dynamic data set could be used to generate many different types of content (e.g., reports, documents,
spreadsheets, web pages, etc.), as long as the client processing engine supports the target content types.

[0066] As described earlier, other tasks besides content generation may be delegated to the client by the embedded
device. For example, a static template file may contain instructions to retrieve a dynamic data set, transform it, and then
submit it back to the embedded device. This capability enables clients to function as nodes in a distributed computing
network, with the embedded device offloading computationally intensive tasks to one or more clients that provide dis-
tributed processing support for a given embedded device at any given time.

[0067] FIG. 5 and FIG. 8 are provided for illustrative purposes, and are not intended to set limits or boundaries to the
scope of static template file processing instructions. For example, static template file processing instructions could be
used to implement an event system for responding to user actions or to implement a system for user input that validates
numbers (e.g., specifying minimum, maximum, and special allowed values) and/or text strings (e.g., specifying allowed
text patterns). An important point is that static template files are intended and designed to function as "cookie cutter"
templates that provide instructions for generating content and/or computational processing instructions to the client
processing engine, in order to minimize resources required within the embedded device and in order to transfer work
from the embedded device to the client.

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

Dynamic Data Sets

[0068] Returning to FIG. 2 the second element is the dynamic data set 204. Each dynamic data set contains one set
(i.e., one "collection" or "package") of data that is exchanged between the embedded device 102 and the client 104.
Unlike static template files, which are static resources, each dynamic data set is generated dynamically by the embedded
device (or client). Example formats for dynamic data sets are JSON and XML. JSON is simple to parse and generate,
can represent data objects of arbitrary complexity, and was specifically designed to provide a compact data represen-
tation. FIG. 4 is an example of a simple JSON format dynamic data set with ten data items (each separated by a comma),
which is used for generating the web page of FIG. 7 and the report of FIG. 10. As can be seen in FIG. 4, the example
JSON dynamic data set is nearly entirely composed of pure data.

[0069] Using a compact and (nearly) pure data representation and minimizing the processing of dynamic data by the
embedded device, as discussed earlier, are very important for optimizing (i.e., increasing) dynamic data set transfer
speed and improving the scalability and responsiveness of the embedded device. For example, a report that shows
manufacturing performance results by shift for the past year may contain data for 1,000 shifts, where each shift is
represented by one portion (e.g., one data record) of a large (e.g., multiple data record) dynamic data set. Alternatively,
a web page showing current manufacturing results may be updated multiple times per second, thus generating many
thousands of dynamic data set transactions in one hour. In both cases, the amount of dynamic data generated is likely
to be significant, and therefore the savings from a compact data representation is also likely to be significant. The memory
footprint of a dynamic data set may be further reduced by compressing it before transferring it to the client (e.g., using
gzip compression).

[0070] A compact data representation conserves RAM and other resources within the embedded device. Resource
usage within the embedded device can be further reduced by generating the response to a client dynamic data set
request in multiple parts, such that only one part of the response is stored in the memory of the embedded device at
any time. For example, a dynamic data set that contains ten data records can be generated in ten parts, one for each
record, such that only one of the ten data records of the response is stored in the RAM of the embedded device at any time.
[0071] The information needed to build a dynamic data set request may be implicitly associated with a static template
file or explicitly included within a static template file. The static template file examples of FIG. 5 and FIG. 8 both rely on
an implicit association with the static template file resource (nothing in the static template file explicitly identifies the
dynamic data set request). Explicitly including a dynamic data set request within a static template file can be as simple
as including a dynamic_data_set element with a query attribute such as query="SELECT * FROM Table 1". Alternatively,
the static template file can explicitly reference one or more pieces of data within the embedded device. For example,
the index attribute 502 (FIG. 5) could be modified to reference a particular piece of data within the embedded device,
with the client processing engine automatically constructing a dynamic data set query from the index attributes.

[0072] Although not required, the specification and generation of dynamic data sets can be simplified by logically
organizing data within the embedded device into tables (as in a database). Data can then be queried using standard
SQL SELECT statements even if the underlying data management in the embedded device is not a database as long
as the embedded device includes a suitable "interpreter" for SQL. This is consistent with viewing the embedded device
as a data server. Furthermore, using tabular organization, any piece of data in the embedded device can be referenced
with a simple identifier composed of a table ID, row ID, and column ID.

[0073] A single dynamic data set can contain an arbitrary amount of data, which can be organized linearly (e.g., as
tabular data) or hierarchically (e.g., as an "object" of arbitrary complexity).

[0074] Dynamic data sets may be generated by the embedded device and transmitted to the client, or alternately may
be generated by the client and transmitted to the embedded device. For example, data entered at the client by the user
may be "posted" to the embedded device as a dynamic data set.

[0075] Dynamic data sets can also be encrypted to provide data security, which makes this system suitable for use
in high-security applications.

[0076] Dynamic data sets can be processed by the client processing engine to generate new information from existing
data items (e.g., calculating sums and averages) without requiring additional work from the embedded device. The client
processing engine can perform many different types of data manipulation and transformation, such as filtering, sorting,
grouping and summarizing. This technique can be especially useful when the client aggregates data from multiple
embedded devices as described later.

[0077] Note that the methods and techniques described herein are provided for illustrative purposes, and are not
intended to set limits or boundaries to the scope of dynamic data set operations. An important point is that dynamic data
sets are intended and designed to encapsulate the "dynamic" aspect of content with a compact representation, in order
to minimize resources required within the embedded device and in order to transfer work from the embedded device to
the client.

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

Client Processing Engine

[0078] Referring to FIG. 2, the third element is the client processing engine 206, which is a static resource file, or
plurality of static resource files, stored in the embedded device 102 (e.g., in flash memory) and transmitted to the client
104 as required. The client processing engine is a static resource file, which means the embedded device simply reads
the file from its memory and transmits it to the client. No significant further processing is needed at the embedded device.
[0079] Once it has been loaded by the client 104, the client processing engine-206 is an executable program, such
as a JavaScript program, which interprets static template files and carries out the instructions specified therein. Carrying
out those instructions generally requires the client processing engine to have additional capabilities. Referring to FIG.
3, the client processing engine may comprise a processing core 302 (which directs and controls the other sub-components
of the client processing engine), a static template file processor 304, a user interface generator 306, a report generator
308, a data formatter 310, a data validator 312, a communication channel manager 314, a file bouncer 316 (which saves
and loads files to and from the host computer and/or file systems accessible to the host computer), and possibly additional
components 318. An important point is that the client processing engine 206 is explicitly intended and designed to
minimize resources required within the embedded device and to transfer work from the embedded device to the client.
Thus, FIG. 3 is provided for illustrative purposes, and is not intended to set limits or boundaries to the scope of the client
processing engine.

[0080] With the current state of client technology, writing the client processing engine in the JavaScript language and
writing static template files in XML can provide significant benefits, as it enables the client processing engine to take
advantage of capabilities that are native to clients, such as the availability of extensive functionality for parsing, manip-
ulating, and otherwise working with XML documents, which can dramatically reduce the complexity of the client processing
engine.

[0081] The client processing engine can be as simple or complex as a particular application (i.e., type of embedded
device) requires. For example, a meaningful (albeit limited) client processing engine can be built with 5 KB or less of
JavaScript, while one that is feature rich might include 50 KB or more of JavaScript.

[0082] Theclient processing engine can also be designed as a series of modules (i.e., smaller files) that are dynamically
loaded (transmitted to the client on demand). This reduces the initial loading time for a new client. Like other static
resource files, the file(s) comprising the client processing engine can also be stored in a compressed form (e.g., gzip
format), which reduces both the memory footprint in the embedded device and the initial loading time. The memory
footprintin the embedded device may be reduced even further by loading the client processing engine or modules thereof
from one or more sources other than the embedded device (e.g., from an external host as referenced by other resources
loaded from the embedded device).

[0083] The client processing engine plays a central role in improving the scalability of the system, as it can run
concurrently on any number of clients. Furthermore, the client processing engine performs both presentation tasks and
business logic tasks (examples of the latter include managing communication, performing data validation and data
manipulation, and generating complex reports), which elevates the client from being a content delivery medium to being
a processing "node" in a distributed computing system.

Managed Communication Channel

[0084] Referring to FIG. 2 the fourth element is the managed communication channel 210. Managed communication
channels are used by the client 104, specifically the client processing engine 206, to communicate with one or more
embedded devices. The term "managed" refers to the fact that the communication channel is controlled by the client
processing engine, not directly by the client as is traditionally the case. Managed communication channels enable the
client processing engine to maintain ongoing communication with one or more embedded devices, transferring information
between the client and embedded device in a seamless fashion that is invisible to the user, thus providing a superior
user experience. For example, the client processing engine can use a managed communication channel to retrieve
information that is used to dynamically update a web page that shows manufacturing performance data in real-time (e.g.,
updating ten times per second) with no flicker, page reloads or other visual artifacts.

[0085] Managed communication channels 210 can also be used by the client to retrieve executable code (such as
JavaScript) from the embedded device 102 "on demand" (i.e., only when it is actually needed), such as when the client
processing engine 206 is designed as a series of dynamically loaded modules (as previously discussed).

[0086] There are a number of different methods that can be used to implement a managed communication channel.
Two very useful methods are XMLHttpRequest (also referred to as XHR) and document manipulation.

[0087] XHR is a de facto standard for HTTP client-server communication and is available in various forms for current
versions of popular clients such as the Internet Explorer® 6 and Internet Explorer® 7 web browsers from Microsoft
Corporation, the Firefox® 1.5 and Firefox® 2 web browsers from Mozilla Corporation, the Safari™ 2 web browser from
Apple Inc., and the Opera™ 9 web browser from Opera Software ASA. XHR can be used to request data from the

10

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

embedded device (using GET) or to send data to the embedded device (using POST). Furthermore, XHR requests can
be designated as either synchronous or asynchronous as needed. However, XHR is generally restricted to accessing
resources in the local domain.

[0088] XHR can also be used indirectly to load executable code on demand by retrieving that code as a text string.
For example, the following illustrates a known cross-platform JavaScript technique that makes code in a text string part
of the global scope (where it is accessible to the client processing engine):

function add_to_global_scope(code_string)
{
var global = this;
if (window.execScript)
{
window.execScript (code_string) ;
return null;
}
return global.eval ? global.eval(code_ string)
eval (code_string);

}

[0089] Document manipulation, on the other hand, is particularly useful if non-local (i.e., cross) domain access is
required. Document manipulation is a lesser known but very useful technique for managed communication, in which a
resource is downloaded by dynamically adding a new tag to an existing web page, where said tag references the desired
resource. For example, a JavaScript file can be downloaded by dynamically adding a <script> tag to the current page,
such as <script src="http://192.168.1.240/data_1138.js">. The W3C DOM (World Wide Web Consortium Document
Object Model), JavaScript's document.write() method, and the innerHTML property can all be used to perform document
manipulation.

[0090] Referring to FIG. 1, an important use of document manipulation in this embodiment is to request dynamic data
sets from multiple embedded devices 102 (i.e., from multiple domains and/or IP addresses). This enables any single
client 104 with a client processing engine 206 (FIG. 2) to request, manipulate, transform, aggregate, and present data
from a plurality of embedded devices. For example, the embedded device can serve a dynamic data set as a dynamically
generated JavaScript file by formatting the data as JSON and assigning that formatted data to a JavaScript variable
(thereby making the data part of a complete JavaScript statement). Whenever such afile is referenced at the client (e.g.,
through a dynamically generated <script> tag as described above), it will automatically be requested from the embedded
device that is specified in the resource URL (i.e., in the src attribute of the <script> tag).

[0091] Managed communication channels are only loosely coupled to the communication methods described above.
They can easily be adapted to use other methods as Internet standards (de facto or otherwise) evolve, such as the
proposed W3C standard "Document Object Model (DOM) Level 3 Load and Save Specification”.

[0092] Some of the techniques described above will work with both synchronous and asynchronous communication.
Asynchronous communication is recommended as it generally provides a superior user experience. Note that this is a
preference, not a requirement. In many cases the client processing engine will still function effectively if managed
communication channels use synchronous communication instead of asynchronous communication.

[0093] Note that the methods and techniques described herein are provided for illustrative purposes, and are not
intended to set limits or boundaries to the scope of managed communication channel operations. An important point is
that managed communication channels serve as bidirectional communication links between the client processing engine
running on a client and one or more embedded devices. They are used to exchange information that supports the
objectives of minimizing resources required within the embedded device and transferring work from the embedded
device to the client.

Interaction of Major Elements

[0094] To better understand how the client processing engine, static template files, dynamic data sets, and managed
communication channels interact, the steps necessary to generate a web page with both static and dynamic elements
are shown as a sequence diagram in FIG. 11 and are described in detail below.

[0095] In one embodiment of the invention, as illustrated in FIG. 11, purely static content is generated as follows:

1. The user requests a specific web page (e.g., by following a link or by entering a URL directly) (step 1102).

11

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1
2. The client connects to the embedded device and requests the specific web page (URL) (step 1104).

3. The embedded device transmits the requested web page to the client. This page is referred to as a "bootstrap"
page, since instead of the user-requested content, it contains the means to generate this content, via references to
the client processing engine, one or more static template files, and optionally one or more dynamic data sets and
other resources (step 1106).

4. The bootstrap page contains a reference to the client processing engine (e.g., through an HTML <script> tag),
which causes the client to request the client processing engine from the embedded device (step 1108).

5. The embedded device transmits the client processing engine to the client (step 1110).

6. The bootstrap page received in item 3 above contains a call to the client processing engine entry function, causing
the client to call the entry function and begin executing the client processing engine (step 1112).

7. The bootstrap page received in item 3 above specifies the URL of a static template file that contains instructions
for generating the desired content, and the client processing engine requests that static template file using a managed
communication channel (step 1114).

8. The embedded device transmits the static template file to the client (step 1116).

9. The client processing engine parses the static template file and generates the associated static content accordingly
from abstract and/or literal processing instructions (step 1118).

10. The static content is ready (step 1120).
[0096] When the content includes dynamic elements the following additional steps are performed:

11. The client processing engine identifies a dynamic data set requirement associated with the static template file
(e.g., an SQL SELECT statement that is included in the static template file). The dynamic data set requirement may
be implicit or explicit as discussed earlier (step 1122).

12. The client processing engine uses a managed communication channel to request a dynamic data set (step 1124).
13. The embedded device generates the dynamic data set and transmits it to the client (step 1126).

14. The client processing engine transforms the dynamic data set data based on static template file processing
instructions and aggregates the transformed data and the static content from item 10 (step 1128); and

15. For content that changes over time, such as a real-time manufacturing performance page, the client processing
engine repeats items 12 through 14 for as long as the web page is kept open (step 1130).

[0097] The above steps focus on the interactions between the static template file, dynamic data set, client processing
engine and managed communication channel. In actual implementations, additional static resource files, such as CSS
(Cascading Style Sheets) files, image files, etc. are likely to be loaded, either directly, such as through references in the
bootstrap web page, or indirectly as client processing engine resource requests through a managed communication
channel. Also note that a bootstrap page may reference more than one static template file, in which case items 7 through
9 will be repeated for each static template file. Similarly, there may be more than one dynamic data set associated with
a given static template file, in which case items 11 through 13 will be repeated until all dynamic data sets have been
received. It will be apparent to one skilled in the art that these and other modifications may be made to the steps described
above without departing from the spirit and scope of this particular embodiment.

[0098] Returning to FIG. 2, static resource files, such as the static template files 208, the client processing engine
206, and others as mentioned above should be cached by the client 104 whenever possible. The client does this by
storing copies of the static template files, the client processing engine, and other files at the host computer 106. Since
the resource is static and therefore is unchanging, the client can satisfy additional requests for the same resource by
using this stored copy, saving time and resources within the embedded device 102 (which need not retransmit the same
file). Client caching can significantly reduce the workload of the embedded device, as well as improve responsiveness
of the client, so it is important that the embedded device provide support for client caching (e.g. using appropriate HTTP

12

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

headers). Returning to FIG. 11, note that if the bootstrap page transmitted by the embedded device 102 in step 11086,
the client processing engine transmitted by the embedded device in step 1110, and the static template file transmitted
by the embedded device in step 1116 are cached by the client (as should typically be the case), they will not need to
be transmitted again by the embedded device. Also note that with client caching, the client processing engine is received
once and is then available to each and every bootstrap page loaded from the embedded device.

[0099] Returning again to FIG. 2, note that the embedded device 102 does not have to do any significant processing
related to its stored static template file 208 and client processing engine 206 files. It simply transmits them to the client
104. Similarly, each dynamic data set 204 requires minimal processing from the embedded device. The dynamic data
sets are (nearly) pure data with minimal formatting; and the client processing engine may read instructions from the
static template file and transform the data accordingly. As described earlier, the embedded device acts as a file and
data server, and the client processing engine is responsible for transforming static template files and dynamic data sets
into useful content. This division of labor offloads a great deal of processing work from the embedded device to the
network clients, greatly improving the scalability of the overall solution.

File Bouncing

[0100] Another feature of various embodiments of the present invention is the ability to read arbitrarily large files from
the host computer (including reading such files from any file systems accessible to the host computer) and write arbitrarily
large files to the host computer (including writing or storing such files to any file systems accessible to the host computer
and opening such files at the host computer). For example, the user may want to store a report generated by the client
(e.g., areport generated by the client processing engine) to the host computer for later access or for archiving. As another
example, an embedded device may need access to a file that is stored on the host computer to perform certain tasks,
yet have resource limitations that prevent it from storing the file within its memory.

[0101] Implementing this feature can be problematic because clients (e.g., web browsers) may tightly control access
to host computer file systems for security reasons. The primary purpose of this control is typically to prevent potentially
malicious programs (e.g., malicious JavaScript) from accessing the file system. These restrictions also make it difficult
if not impossible for the client processing engine to read and write files from and to the host computer on its own, even
with the user’s explicit permission. Web browser clients typically do allow the user to grant permission to upload files
accessible to the host computer to an HTTP server and download files from an HTTP server to the host computer (it
should be noted that embedded devices that include HTTP servers could participate in such operations). However, as
mentioned above, the embedded device may not have the resources necessary to store an entire file, or even a significant
portion of a file, in memory, even for a short time. This is particularly true if it is desirable for the embedded device to be
able to handle multiple files in this manner simultaneously. Furthermore, as mentioned earlier, a mechanism is needed
for content (e.g., reports, documents, spreadsheets, etc.) generated by the client processing engine to be able to be
stored or opened by the host computer.

[0102] The solution to these problems is a system and method which addresses the aforementioned security restric-
tions, while at the same time enabling resource-constrained embedded devices to read and write arbitrarily large files
from and to the host computer (with the user’s permission).

[0103] File bouncing facilitates the following scenarios:

@ Files from the host computer, with the user’s permission, can be loaded into the client, which often will have orders
of magnitude more memory than the embedded device. Once loaded within the client, files can be accessed and
manipulated at will by the embedded device, using the client processing engine as its intermediary.

@ Content generated by the client (typically by the client processing engine working as a proxy for the embedded
device), with the user’s permission, can be stored or opened as a file at the host computer.

[0104] With file bouncing, the client sends the file (i.e., the contents of the file) to the embedded device in a series of
one or more packets, which the embedded device simply "bounces" back to the client (hence the name "file bouncing").
The embedded device only holds onto a given packet for as long as it takes to bounce that packet back to the client,
after which the packet is discarded. Thus, the embedded device does not need to store the entire file, and it does minimal
processing on the packets. The packets can be of arbitrary size, and the embedded device need only reserve memory
resources sufficient to buffer a single packet at once (although throughput can be improved by buffering multiple packets
simultaneously). When more than one file is "bounced" simultaneously, each file is said to use a different file bouncing
"channel".

[0105] File bouncing could be performed by having the client send a packet (i.e., a portion of the file) to the embedded
device, the embedded device sending the packet back to the client and waiting for the client to send the next packet,
and the process repeating until there are no more packets to send (i.e., the entire file has been "bounced"). However,

13

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

not all communication protocols and/or clients support this type of behavior. For example, a communication protocol as
specified or as implemented (such as HTTP) might require the client to send its entire request (i.e., the entire file) before
the server (i.e., embedded device) may begin to send its response. Therefore, a more generalized solution is to use two
cooperating connections to achieve a similar result: packets received from the client through the first connection are
returned to the client through the second connection, as described below and as illustrated in FIG. 12 and FIG. 13.
[0106] In one embodiment of the invention, the steps to store (i.e., write) a file generated by the client to the host
computer are shown in FIG. 12, and are outlined in more detail below. It will be apparent to one skilled in the art that
various modifications may be made to the steps described herein without departing from the spirit and scope of this
embodiment.

1. The user makes a request that will invoke file bouncing in some application-specific manner (step 1202).

2. The client processing engine uses a managed communication channel to request a file bouncing channel ID
(each channel ID reserves resources at the embedded device, including the resources for two HTTP connections)
(step 1204).

3. The embedded device searches for an available channel ID (step 1206).

@ If it has a channel ID available, it marks the corresponding channel as reserved.

@ If it does not have a channel ID available, a file bounce cannot be performed at this time (an appropriate
response is sent to the client, which in turn displays a message for the user, and the process ends here).

4. The embedded device transmits the channel ID for the channel reserved in item 3 above to the client (step 1208).

5. If the file to be stored (e.g., a report) has not yet been generated, the client processing engine performs any
actions necessary to generate the file (step 1210).

6. The client processing engine uses a managed communication channel to initiate a POST of the generated file,
along with the channel ID and any other associated metadata (e.g., file name, file size, file MIME type, etc.) to the
embedded device. Note that the embedded device places the file data (i.e., content, not metadata) included in this
POST in a buffer associated with the specified channel ID (step 1212).

7. The client processing engine concurrently issues a GET request that includes the channel ID as a URL parameter
to initiate retrieval of the file being bounced. This request is made via a hidden iframe on the web page to cleanly
separate the GET request from the POST request. Some clients may place restrictions on opening the iframe
programmatically in which case a user action such as a button click can be used to trigger its creation (step 1214).

8. The embedded device transmits the appropriate HTTP headers in response to the GET request of item 7 above,
including an HTTP Content-Disposition header for the file being bounced. The first part of the file may also be
transmitted by the embedded device at this time. Refer to the use of the buffer as described in items 10 and 11
below (step 1216).

9. When the client (browser) receives the Content-Disposition header, it opens a dialog box that allows the user to
select whether the file should be opened or saved to the host computer when the download is complete (step 1218).

10. As aresult of the POST request initiated at item 6 above, the embedded device receives up to one TCP window’s
worth of data from the client, which is placed in a buffer associated with the specified channel ID (step 1220).

11. The embedded device removes data (i.e., file content) from the buffer associated with the specified channel ID
(see item 10 above) and transmits it to the client (via the GET response initiated in item 7 above) (step 1222).

12. Items 10 and 11 above are repeated until the complete file has been "bounced", at which point the file will be
opened or saved at the host computer (depending on the user’s selection at item 9 above) (step 1224).

13. The embedded device marks the channel ID as free (step 1226).

14. The embedded device sends an appropriate (application-specific) response to the client to confirm that the

14

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

POST request of item 6 above has been completed (step 1228).
[0107] Inone embodiment of the invention, the steps to load (i.e., read) a file from the host computer to the client (web
browser) are shown in FIG. 13, and are outlined in more detail below. It will be apparent to one skilled in the art that
various modifications may be made to the steps described herein without departing from the spirit and scope of this

embodiment.

1. The user navigates to a web page that will invoke file bouncing to select (and ultimately load) a file from the host
computer. This page is referred to as the parent (step 1302).

2. The client connects to the embedded device and requests the parent web page (step 1304).

3. The embedded device transmits the parent to the client, which contains an iframe (referred to as the child). Note
that the child is used to select and POST the file and the parent is used to GET and access the file (step 1306).

4. The client requests the iframe content (i.e., the child) from the embedded device (step 1308).

5. The embedded device transmits the child (which includes an HTML form-based file upload control that will be
used to select the file to be uploaded) to the client (step 1310).

6. The client processing engine uses a managed communication channel (from the child) to request a file bouncing
channel ID from the embedded device (each channel ID reserves resources at the embedded device, including the
resources for two HTTP connections) (step 1312).

7. The embedded device searches for an available channel ID (step 1314).
@ If it has a channel ID available, it marks the corresponding channel as reserved.

@ If it does not have a channel ID available, a file bounce cannot be performed at this time (an appropriate
response is sent to the child, which in turn displays a message for the user, and the process ends here).

8. The embedded device transmits the channel ID for the channel reserved in item 7 above to the client (step 1316).

9. The child stores the channel ID in a hidden field within the HTML form that contains the file upload control (which
causes it to be uploaded with the rest of the form later) (step 1318).

10. The user selects the desired file from the host computer with the file upload control, and clicks a confirmation
button when the file has been selected (step 1320).

11. The child notifies the parent that the file is ready to be bounced and provides the channel ID to the parent (step
1322).

12. Having been notified by the child, the parent uses a managed communication channel to initiate a GET request
to retrieve the file from the embedded device. The embedded device places this request on hold while it waits for
the file data from the child (step 1324).

13. The child uses a standard POST request (i.e., a managed communication channel is not required) to initiate the
form submit (note that because of the HTML form-based file upload control, the form submit includes the file). Note
thatthe embedded device places the file data (i.e., content, not metadata) included in this POST in a buffer associated
with the specified channel ID (step 1326).

14. The embedded device transmits the appropriate HTTP headers to the parent in response to the GET request
of item 12 above. The first part of the file may also be transmitted by the embedded device at this time. Refer to the

use of the buffer as described in items 15 and 16 below (step 1328).

15. As a result of the POST request initiated at item 13 above, the embedded device receives up to one TCP
window’s worth of data from the child and places it in a buffer associated with the specified channel ID (step 1330).

15

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

16. The embedded device removes data (i.e., file content) from the buffer associated with the specified channel ID
(see item 15 above) and transmits it to the parent (step 1332).

17. ltems 15 and 16 above are repeated until the complete file has been "bounced", at which point the complete file
has been loaded into the parent, where the client processing engine can freely access and manipulate it (step 1334).

18. The embedded device marks the channel ID as free (step 1336).

19. The embedded device sends an appropriate (application-specific) response to the child to confirm that the POST
request of item 13 above has been completed (step 1338).

[0108] Note that in both of the examples outlined above, only a very small part of the file need be resident in the
embedded device at any time. For example, using file bouncing a 10 MB (or larger) file can be read or written with only
a 10 KB (or smaller) RAM buffer in the embedded device, offering a 1,000 times (or more) reduction in required memory
for the embedded device.

[0109] File bouncing may use the TCP window (which controls the number of bytes of data that can be transmitted
over a given connection without an acknowledgement from the receiver) to provide automatic flow control and a degree
of synchronization between two cooperating connections used to implement a file bouncing channel. As data is uploaded
to the embedded device the POST connection TCP window of the embedded device is filled, and as data is downloaded
to the client via the GET connection the POST connection TCP window of the embedded device is emptied. In this
manner, the POST connection TCP window may be used to "pace" the file bounce. This enables loose coupling between
the two HTTP connections associated with a file bouncing channel in the embedded device. The client will only transmit
data to the embedded device (via the POST connection) if the embedded device has buffer space within its POST
connection TCP window, and the embedded device will simply transmit data to the client (via the GET connection) as
fast as it can (as permitted by the client’s analogous TCP window).

[0110] This use of two cooperating HTTP connections makes file bouncing somewhat unusual. For example, HTTP
servers normally handle each connection independently; whereas file bouncing utilizes a degree of coordination and
cooperation between the two HTTP connections participating in a given file bouncing channel (they are in essence
"paired"). Note that because the two HTTP connections used in file bouncing operate simultaneously, the managed
communication channels described in this section use asynchronous communication.

[0111] Another unusual aspect of file bouncing is how it deals with content (the files). Normally files are stored in their
entirety within the HTTP server. Even dynamically-generated files can generally be considered to have a continuous
existence, in the sense that the server can generate a copy of the file as needed. With file bouncing, however, the
bounced files are completely transitory from the server’s (i.e., embedded device’s) perspective. Once a given packet is
transmitted from the embedded device (and acknowledged by the client) it disappears from the embedded device’s
perspective (it is no longer needed).

[0112] The examples given use pairs of HTTP connections; however it is also possible to use FTP connections for
file bouncing. A person skilled in the art will realize that various combinations of connection types are possible.

[0113] Itisinterestingtolook attime-based results recorded from a testimplementation of client-side content generation
combined with file bouncing. A host computer (with a 3 GHz Pentium® D processor from Intel Corporation) and an
embedded device (with a 200 MHz ARM920T® core from ARM Limited) were connected via a local area network (100
Mbps Ethernet). The client (Internet Explorer® 6 web browser from Microsoft Corporation) retrieved a bootstrap page,
client processing engine, static template file (for generating a Rich Text Format report) and dynamic data set from the
embedded device, using managed communication channels as appropriate, in approximately 4 seconds, after which
the client generated a 1,000 page report (3.6 MB) in approximately 35 seconds, followed by the client and embedded
device participating in a file bouncing session to save the report to the host computer file system in approximately 8
seconds.

[0114] One of the benefits of the described system is improved scalability. For example:

@ The client processing engine can be loaded on any number of clients, each of which becomes another processing
entity in the system. For example, one embedded device can have 100 clients, each of which uses the client
processing engine to offload work from the embedded device.

® One static template file can be used to generate content that is repeatedly updated (i.e., dynamic elements of
the content are repeatedly refreshed) over arbitrary time durations. For example, the client processing engine can
use a static template file to generate a web page that is refreshed in real-time (e.g., ten times per second) with new
data from the embedded device, while placing a minimal load on the embedded device. Using the example of FIG.
4 (a dynamic data set of approximately 74 characters), FIG. 5 (a static template file of approximately 817 characters),

16

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

and FIG. 6 (a generated document of approximately 2,093 characters), and assuming the web page is refreshed
ten times per second for one minute (600 updates), a comparison can be drawn between the client processing
engine generating the content and requiring approximately 45,000 bytes to be transmitted from the embedded device
to the client (817 bytes for the static template file and 74 bytes per dynamic data set times 600 updates) versus the
embedded device generating the same content and requiring approximately 1,256,000 bytes to be transmitted from
the embedded device to the client (2,093 characters per page times 600 updates).

@ One static template file can be used to generate content of arbitrary "depth", acting in essence as a content
"cookie cutter". For example, one static template file can be used by the client processing engine to generate hundred
or even thousand page reports, where each page is generated from the static template file and one record of a
multiple record dynamic data set.

@ The division of static resources (e.g., the client processing engine and the static template files) from dynamic
resources (the dynamic data sets), maximizes the amount of cacheable information. Generally, the only resources
that cannot be cached are dynamic data sets, which are composed entirely of dynamic data - all other resources
may typically be cached by the client. This provides a very significant advantage over dynamic web pages generated
server-side (i.e., by the embedded device), which cannot be cached but might still contain a large amount of static
content. It also means that the embedded device spends most of its time on the core task of serving dynamic data
(via dynamic data sets). This benefit is further amplified by the use of (nearly) pure data in the dynamic data set as
exemplified in the preferred embodiment.

[0115] The division between static resources and dynamic resources also provides other benefits. For example, it
cleanly separates presentation and style information (found within the static template file) from data (found within the
dynamic data set). This allows the two to vary independently - data from several dynamic data sets can be presented
in the same style, and a single dynamic data set can be presented in several different styles. An example of the latter
can be seen in a comparison between FIG. 6 and FIG. 9, which illustrates how the same dynamic data set (shown in
FIG. 4), in combination with two different static template files (FIG. 5 and FIG. 8), may be used to generate markedly
different output (the web page of FIG. 7 and the RTF report of FIG. 10); or alternately how the same dynamic data set
(FIG. 4) and static template file (FIG. 5), may be used to generate markedly different output (the web page of FIG. 7
and the RTF report of FIG. 10) merely by directing the client processing engine to generate a different type of content.
[0116] Furthermore, this division between static resources and dynamic resources can greatly reduce the processing
and resources required for data encryption. Data security can be provided simply by encrypting the dynamic data sets.
Static resources typically do not contain private information and can be transferred freely without encryption. Therefore,
the described system can greatly reduce the amount of information to be encrypted. Once again, this benefit is further
amplified by the use of (nearly) pure data in the dynamic data set as exemplified in the preferred embodiment.

[0117] The described system also keeps the RAM requirements of the embedded device very low. For example, static
resource files such as the client processing engine and the static template files can be stored in flash memory or other
low-cost storage, with RAM usage limited to a small number of outstanding "packets" as a file is being transmitted to a
client. Furthermore, the separation of static resources and dynamic resources minimizes the amount of RAM required
to build and store a dynamic data set while it is being transmitted to a client, since dynamic data sets are entirely dynamic
data instead of a mixture of static and dynamic content. Furthermore, the use of file bouncing minimizes the memory
(typically RAM) required by the embedded device to read and write files from and to the host computer.

[0118] While the described system requires only minimal resources from the embedded device, the transfer of content
generation and other processing to the host computer means that this does not detract from the user experience. Quite
the contrary, since host computers are generally orders of magnitude above embedded devices in terms of memory and
processing power, they are capable of generating content that is much larger and more sophisticated than would be
possible for the embedded device on its own.

[0119] It should be explicitly noted that the described embodiments are not dependent on specific third-party compa-
nies, products, or development tools; and do not require any custom software, including any special browser plug-ins,
to be installed at the host computer. They are "generic" in their requirements - all of the required files (e.g., client
processing engine and static template file) can be created with a simple text editor (such as the Notepad text editor from
Microsoft Corporation) and no "special" requirements are placed upon the host computer. For example, the primary
elements of the described embodiments have been successfully tested across a range of popular HTTP clients, including
the Internet Explorer® 6 and Internet Explorer® 7 web browsers from Microsoft Corporation, the Firefox® 1.5 and
Firefox® 2 web browsers from Mozilla Corporation, the Safari™ 2 web browser from Apple Inc., and the Opera™ 9 web
browser from Opera Software ASA.

[0120] Furthermore, it should be noted that the described embodiments require only very basic HTTP support from
the embedded device, which is an important consideration for resource-constrained embedded devices. Nothing in the

17

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

embodiments described herein requires support for additional server-side technologies such as PHP, CGI, or ASP.NET.
This helps keep resource requirements low, allowing various embodiments of the invention to be used even in very
"small" embedded systems.

[0121] Furthermore, one or more of the following numbered clauses may describe and relate to further aspects or
features within the context of the present teaching:

1. A system for extending the capabilities of an embedded device comprising:

an embedded device comprising a client processing engine and at least one static template file;

a host computer having a client capable of executing the client processing engine;

a communication network for permitting communication between the embedded device and the host computer;
at least one managed communication channel controlled by the client processing engine; and

at least one of a dynamic data set transmitted from the embedded device to the client and a dynamic data set
transmitted from the client to the embedded device;

wherein, the embedded device provides the client processing engine and the at least one static template file to
the client; and

wherein, the client processing engine:

parses the at least one static template file;

uses the at least one managed communication channel to perform at least one of requesting the at least one
dynamic data set and submitting the at least one dynamic data set; and performs content generation by a
process selected from the group consisting of transformation, manipulation, aggregation, and any combination
thereof, using information derived from the at least one static template file and the at least one dynamic data set.

2. The system of clause 1, wherein the embedded device concurrently communicates with a plurality of clients each
capable of executing a client processing engine provided by the embedded device.

3. The system of clause 1, wherein the client processing engine communicates with a plurality of embedded devices
using a plurality of managed communication channels.

4. The system of clause 1, wherein the client processing engine generates a plurality of content types from a single
static template file.

5. The system of clause 4, wherein each generated content type is selected from the group consisting of reports,
documents, spreadsheets, web pages, and any combination thereof.

6. The system of clause 1, wherein the client processing engine is comprised of code written in JavaScript.

7. The system of clause 1, wherein the client processing engine utilizes a single static template file with a plurality
of dynamic data sets to generate content.

8. The systemof clause 7, wherein each dynamic data set has the same form and represents variations of substantially
the same information.

9. The system of clause 8, wherein each dynamic data set represents a more recent version of information contained
within a previous dynamic data set, and at least a portion of the generated content is updated over time based on

the most recent dynamic data set.

10. The system of clause 8, wherein each dynamic data set is transformed into a portion of content, and aggregated
with other such portions of content, to create a final generated content.

11. The system of clause 1, wherein the at least one static template file comprises at least one instruction to include
at least one static template file by reference.

12. The system of clause 1, wherein the at least one static template file comprises report-generation instructions.

13. The system of clause 12, wherein the report-generation instructions comprise one of the following: page layout
instructions, data formatting instructions, and any combination thereof.

18

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

14. The system of clause 1, wherein the at least one static template file comprises one of the following: literal
instructions, abstract instructions, and any combination thereof.

15. The system of clause 1, wherein the at least one dynamic data set provides information in real-time.

16. The system of clause 1, further comprising a client caching mechanism to cache one of the following: the client
processing engine, the at least one static template file, and any combination thereof.

17. The system of clause 1, wherein the embedded device stores in compressed form one of the following: the client
processing engine, the at least one static template file, and any combination thereof.

18. The system of clause 17, wherein the compressed form is gzip.

19. The system of clause 1, wherein the embedded device communicates to the client in a compressed form one
of the following: the client processing engine, the at least one static template file, the at least one dynamic data set,
and any combination thereof.

20. The system of clause 19, wherein the compressed form is gzip.

21. The system of clause 1, wherein the at least one dynamic data set comprises JSON format data.

22. The system of clause 1, wherein the at least one dynamic data set comprises XML format data.

23. The system of clause 1, wherein the at least one dynamic data set contains no static information.

24. The system of clause 1, wherein the client processing engine retrieves additional components of itself using
managed communication channels.

25. The system of clause 1, wherein the at least one managed communication channel is implemented using one
of the following: XMLHttpRequest, document manipulation, and any combination thereof.

26. The system of clause 1, wherein the generated content comprises elements selected from the group consisting
of charts, graphs, tables, reports, documents, spreadsheets, drawings, web pages, and any combination thereof.

27. The system of clause 1, wherein the embedded device internally organizes information used in generating the
at least one dynamic data set as at least one data table.

28. The system of clause 1, wherein requests for dynamic data sets comprise at least one SQL SELECT statement.
29. The system of clause 1, wherein the at least one dynamic data set is secured through encryption.
30. The system of clause 1, wherein the system is utilized for manufacturing performance management applications.

31. A method for enabling an embedded device to work in concert with a client on a host computer, to access content
of a file accessible to the host computer, but not directly accessible to the client, comprising the steps of:

selecting a file at the client;

establishing a communication link between the client and the embedded device:

sending a portion of the file from the client to the embedded device of a size that fits within the resource limitations
of the embedded device, which then returns the portion to the client;

adding the returned portion to any previous portions received at the client; and repeating the previous sending
and adding steps until the file has been completely reconstructed at the client;

wherein the client accesses the reconstructed file as a proxy for the embedded device.

32. The method as described in clause 31, wherein the communication link protocols are selected from the group
consisting of HTTP, FTP, and any combination thereof

33. The method as described in clause 31, wherein the reconstructed file comprises content that is at least one of

19

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1
processed, transformed, manipulated, and aggregated at the client.

34. The method as described in clause 31, further comprising the step of using a plurality of communication links
to concurrently access content of multiple files.

35. The method as described in clause 31, wherein the communication link comprises a first connection that sends
the portion of the file and a second connection that returns the portion.

36. The method as described in clause 35, further comprising the step of using a TCP window to provide automatic
flow control between the first connection and the second connection.

37.The method as described in clause 31, wherein the method s utilized for manufacturing performance management
applications.

38. A method for enabling an embedded device to work in concert with a client on a host computer with limited
access to file systems accessible to the host computer, to generate a file at the client to be stored or opened via
the host computer, comprising the steps of:

generating content of a file in a memory of the client;

establishing a communication link between the client and the embedded device; determining one of the following
at the client: where the file shall be stored in the file system accessible to the host computer and whether the
file shall be opened;

sending a portion of the file from the client to the embedded device of a size that fits within the resource limitations
of the embedded device, which returns the portion back to the client, adding the returned portion to any previous
portions received at the host computer, and repeating the previous sending and adding steps until the entire
file has been completely sent and returned; and,

either storing or opening the entire file consistent with the determining step.

39. The method as described in clause 38, wherein the communication link protocols are selected from the group
consisting of HTTP, FTP, and any combination thereof

40. The method as described in clause 38, wherein the step of generating content comprises generating content in
real time from data as that data is provided by the embedded device.

41. The method as described in clause 38, wherein the step of generating content comprises processing information
received by the client from the embedded device in one of the following ways: transformation, manipulation, aggre-
gation, and any combination thereof.

42. The method as described in clause 38, further comprising the step of using a plurality of communication links
to concurrently send and return multiple files.

43. The method as described in clause 38, wherein the communication link comprises a first connection that sends
the portion of the file and a second connection that returns the portion.

44. The method as described in clause 43, further comprising the step of using a TCP window to provide automatic
flow control between the first connection and the second connection.

45. The method as described in clause 38, wherein the method is utilized for manufacturing performance management
applications.

Claims

1.

A system for extending the capabilities of an embedded device, comprising:
an embedded device (102) comprising a client processing engine (206) and at least one static template file (208);

a host computer (106) having a client (104) capable of executing the client processing engine (206);
a communication network (108) for permitting communication between the embedded device (102) and the

20

10

15

20

25

30

35

40

45

50

55

EP 2 381 649 A1

host computer (106);

at least one managed communication channel (210) controlled by the client processing engine (206); and

at least one dynamic data set (204) transmitted from the embedded device (102) to the client (104);

wherein, the embedded device (102) provides the client processing engine (206) and the at least one static
template file (208) to the client (104); and

wherein, the client processing engine (206):

operably parses the at least one static template file (208);

operably uses the at least one managed communication channel (210) to request the at least one dynamic
data set (204); and

operably performs content generation by a process selected from the group consisting of transformation,
manipulation, aggregation, and any combination thereof,

using information derived from the at least one static template file (208) and the at least one dynamic data set
(204).

2. The system of claim 1, wherein the embedded device (102) concurrently operably communicates with a plurality of
clients (104) each capable of executing a client processing engine (206) provided by the embedded device (102).

3. The system of any preceding claim, wherein the client processing engine (206) is configured in at least one of the
following ways:

the client processing engine (206) communicates with a plurality of embedded devices (102) using a plurality
of managed communication channels (210);

the client processing engine (206) operably generates a plurality of content types from a single static template
file (208), optionally wherein each generated content type is selected from the group consisting of reports,
documents, spreadsheets, web pages, and any combination thereof;

the client processing engine (206) is comprised of code written in JavaScript;

the client processing engine (206) utilizes a single static template file (208) with a plurality of dynamic data sets
(204) to generate content; and

the client processing engine (206) retrieves additional components of itself using managed communication
channels.

4. The system of claim 1 or 2, wherein, when the client processing engine (206) utilizes a single static template file
(208) with a plurality of dynamic data sets (204) to generate content, each dynamic data set (204) has the same
form and represents variations of substantially the same information, and optionally is configured in at least one of
the following ways:

each dynamic data set (204) represents a more recent version of information contained within a previous dynamic
data set (204), and at least a portion of the generated content is updated over time based on the most recent
dynamic data set (204); and

each dynamic data set (204) is transformed into a portion of content, and aggregated with other such portions
of content, to create a final generated content.

5. The system of any preceding claim, wherein the at least one static template file is configured in at least one of the
following ways:

the at least one static template file comprises at least one instruction to include at least one static template file
by reference;

the at least one static template file (208) comprises report-generation instructions, optionally wherein the report-
generation instructions comprise one of the following: page layout instructions, data formatting instructions, and
any combination thereof; and

the at least one static template file (208) comprises one of the following: literal instructions, abstract instructions,
and any combination thereof.

6. The system of any preceding claim, wherein the at least one dynamic data set (204) provides information in real-time.

7. The system of any preceding claim, further comprising a client caching mechanism to cache one of the following:

21

10

15

20

25

30

35

40

45

50

55

10.

1.

12,

13.

14.

15.

EP 2 381 649 A1
the client processing engine (206), the at least one static template file (208), and any combination thereof.
The system of any preceding claim, wherein the embedded device (102) stores in compressed form one of the
following: the client processing engine (206), the at least one static template file (208), and any combination thereof,
optionally wherein the compressed form is gzip.
The system of any preceding claim, wherein the embedded device (102) communicates to the client (104) in a
compressed form one of the following: the client processing engine (206), the at least one static template file (208),

the atleast one dynamic data set (204), and any combination thereof, optionally wherein the compressed formiis gzip.

The system of any preceding claim, wherein the at least one dynamic data set (204) comprises at least one of JSON
format data and XML format data.

The system of any preceding claim, wherein the at least one managed communication channel (210) is implemented
using one of the following: XMLHttpRequest, document manipulation, and any combination thereof.

The system of any preceding claim, wherein the generated content comprises elements selected from the group
consisting of charts, graphs, tables, reports, documents, spreadsheets, drawings, web pages, and any combination
thereof.

The system of any preceding claim, being configured in at least one of the following ways:

requests for dynamic data sets (204) comprise at least one SQL SELECT statement; and
the at least one dynamic data set (204) is secured through encryption.

The system of any preceding claim, wherein the system is utilized for manufacturing performance management
applications.

The system of any preceding claim, wherein the client processing engine (206) transmits at least one dynamic data
set (204) to the embedded device (102).

22

EP 2 381 649 A1

l})l l})Z
102 Embefided Embefided 102
/ Device . Device /
Embedded Embedded
Device Device
104% 104
) !
Client Client
Host Host
Computer Client Client Computer
Vo Host ' Host | \
106 Computer Computer 106
106 106
FIG. 1

23

EP 2 381 649 A1

Static Resource Files

T A I

Dynamic Data Sets k

1 [l ‘ 1
] [] t
[] 1 [« -,
‘ fuaction cpefuncl (k—206] "‘“1: k 208 M ;o:;;;:z;a:;:ft}izn.csn E
N - ves >
N F L > : : [“"Asgenbly Line 12°, :
1) <. > [¢ 202809660.)236,4,3240.4¢57]
: function cpePunc? { </xml> 1 ' ‘
. Y1 (“Asseably Line 12%. 1
« V. 202009720,3244.4.3248,457] !
]
. funciion cpey 3 (: : (.- :
1 pefuanc ‘ N b
3 5 Vo ‘
: ! Vo :
1 [1 *
: 1o '
< 3 ’ . . 1 1
i Client Processing Engine Static Template Files v :
. . . 1
i (Stored on Embedded Device) (Stored on Embedded Device): ! - !
‘ [[R S S

}
function cpeFunc2 {

}

functioa cpefuncl (

}

Client Processing Engine

function cpeFuncl (k—206

(Optionally Cached by Client) (Optionafly Cached by Client)

Managed 210
106 Communication 104
/ Channel(s))

P te Files

{} 2/06

Client Processing Engine < :

HOST COMPUTER

[Cond Commt 32

€ cfact Caumt 4
Total Coumt 3,21
[dvarsg< aPu 457

Generated Content’

FI1G. 2

24

EP 2 381 649 A1

206

Client Processing Engine 302

Processing Core

304

Static Template File Processor

3(}6 ﬁ)S
User Interface Gene_rator Report Generator
3;0 3;2
Data Formatter . Data Validator
3;4 3}6
Communication Channel Manager File Bouncer
318

25

EP 2 381 649 A1

["Assembly Line 12",202809600,3229,0.8851,4,0.8603,3233,0.9988,457,0.7605]

402 404
FIG. 4

26

EP 2 381 649 A1

<?xmi version="1.0" encoding="UTF-8" 7>
<static_template_file>
<header> /_/502 /_/ 504
<title index="0" label="Current Status - " format="@" />
<subtitie index="1" label="Updated as of: " format="m/d/yyyy h.mm AM/PM" />
</header>
<stack_panel type="horizontal">
<variable_box label="Counts">
510 <variable index="2" fabel="Good Count" format="#,0" />
1 <variable index="4" label="Reject Count" format="#,0" />
<variable index="6" label="Total Count" format="#,0" />
<variable index="8" label="Average RPH" format="#,0" />
</variable_box>
<variable_box label="OEE">
<variable index="3" label="Availability" format="#,0.00%" />
<variable index="5" label="Performance"” format="#,0.00%" />
512 <variable index="7" label="Quality" format="#,0.00%" />
<variable index="9" {abel="0OEE" format="#,0.00%" />
</variable_box>
\</stack _panel>
<footer /> 506
</static_template_file>

FIG. 5

27

EP 2 381 649 A1

<IDOCTYPE htm| PUBLIC "-/AW3C/DTD XHTML 1.0 Transitional//EN"
“http:/iwww.w3.0rg/TR/xhtmi1/DTD/xhtmi1-transitional dtd“>
<html xmlns="http://www w3.org/1999/xhtm[*>
<head>
<title>Current Status - Assembly Line 12</title>
<style type="text/css">
body {font-family: “verdana”; width: 720px;}
table {border-collapse: collapse; font-size: 10pt;}
td {border: 0.5pt black solid;}
thead {background-color: black; color: white; font-weight: boid;}
.horizontal_stack_pane!_etement {float: left;}
-name {font-weight: bold;}
- .stack_panel_final_element {clear: both;}
.value {text-align: right;}
#header {border-bottom: 2pt black solid; border-top: 2pt black salid:
margin-bottom: 24pt; text-align: center;}
#header h1 {font-size: 18pt; margin: 2pt Opt Opt;}
#header h2 {font-size: 9pt; margin: Opt Opt 6pt;}
#footer {font-size: 8pt; margin-top: 20pt; text-align: center;}
<[style>
</head>
<body>
<div id="header"><h1>Current Status - Assembly Line 12</h1>
<h2>Updated as of: 6/5/2006 8:00 AM</h2></div>
<div class="hoftizonta!l_stack panel">
<div style="width: 50%;" ctass="horizontal_stack_panel_element">
<table style="margin: auto; width- 300px;">
<thead><tr><td>Counts </td><td></td> </tr></thead>
<tbody>
<tr><td class="name">Good Count<itd> <td class="value">3,229</td></tr>
<tr><td class="name">Reject Count</td><td class="value">4</td></tr>
<tr><td class="name">Total Count</td><td class="value">3,233</td></tr>
<tr><td class="name">Average RPH</td><td class="value">457</td></tr>
<ltbody> :
</table>
<[div>
<div style="width: 50%," class="horizontal_stack_panel_element">
<table style="margin: auto; width: 300px;">
<thead> <tr><td>OEE</td> <td></td></tr></thead>
<thody> ’
<tr><td class="name">Availability</td><td class="value">88.51% </td></tr>
<tr><td class="name">Performance</td><td class="value">86.03% </td> </r>
<tr><td class="name">Quality</td><td class="value">99.88%</td></tr>
<tr><td class="name">QEE</td><td class="value">76.05%<ftd></tr>

</tbody>
<ftable>
</div>
<div class="stack_panel_final_element"></div>
</div>
<div id="footer"> Powered by Vorne XL { www.vorne.com |
1-877-767-LEAN </div> /
</body> 602

</htmi>

FIG. 6

28

EP 2 381 649 A1

— .
Current Status - Assembly Line 12

[1OIX]

File Edit View Bookmarks " Tools Help

OO ® @ LPHO

Address | hitp://192.168.1.250/

ME

Current Status - Assembly Line 12—

Updated as of: 6/5/2006 8:00 AM

Good Count 3,229

Reject Count 4
Total Count 3,233
IAverage RPH 457

{ i
vailability 88.51%
Performance 86.03%
Quality - 99.88%
EE 76.05%

Powered by Vorﬁe XL | www.vorne.com } 1-877-767-LEAN

FIG. 7

29

702
704
706
708

EP 2 381 649 A1

<?xml version="1.0" encoding="UTF-8" 7>
<static_template_file type="rtf">
<header>{\rtf \ansi\deffO{\fonttbi{\fO\fswiss Verdana}}
{\colortbl ;\redO\greenO\blueQ;\red255\green255\blue255;}
\margt720\margb720\marg!1080\margr1080
</header>
<record_body>
- ’,J \pard\brdrt\brdrs\brdrw4\brdrcf \brdrb\brdrs\brdrw4O\brdrcf 1\qc
808 f\b\fs4 \~Vline\fs36 Shift Report - <variable format="@"/>
\fs20\ine Shift Start: <variable format="m/d/yyyy h.mm AM/PM"/>
\fs 12\line \-Ppanpard\fs20\panpar\par{\trowd \trgaph4$s
<define text="cell">
810 \clbrdrt\brdrw 10\brdrsiclbrdriibrdrw 10\brdrs\clbrdrb\brdrw 10\brdrsiclbrdribrdrw 10\brdrs
<{define>
\clcbpatticelix2520
[<insert text="cell'/>\clcbpat1\cellx4680\celix5400
812 <insert text="cell"/>\clcbpat1icellx7920
<insert text="cell"/>\clcbpat1\cellx 10080
\pardiintbi\cf2\g! {\b Counts}cell\pardiintbi\cf2\qr {}\cell
\pardiintbi\cf2\q! {J\cell
\pardiintbi\cf2\q! {\b OEE}\cell\pardiintbi\cf2\gr {<define text="row">}cell
\row}{\trowd \trgaph45
<insert text="cell'/>\cellx2520
<insert text="celf"/>\cellx4680\cellx5400
<insert text="cell'/>\cellx7920. ~
<insert text="cell"/>\cellx 10080 ' 814
<[define>
\pardiintbi\cf1\ql {\b Good Count}\celparduntbi\cf1\qr {<variable format="#,0"/>}\cell
\pard\intbi\cff\gl {J\celt
\pardiintbl\cft\q! {\b Availability}\cell\pardiintbl\cf1\qr {<variable format="#,0.00%"/><insert text="row"/>
\pardiintblicf1\ql {\b Reject Countlicel\pardiintblicfi\qr {<variable format="#,0"/>}\cell
\pardiintb\cf \ql {}\cell
pard\intb\cfi\gl {\b Performance}\celi\pardiintbi\cfi\gr {<variable format="#,0.00%"/> <insert text="row"/>
\pard\intb\cf1\ql {\b Total Countj\cell\pardiintbi\cf1\gr {<variable format="#,0"/>}celt
\pardiintbRef1\gl {\cell
\pard\intbi\cf1\ql {\b QualityPceth\pard\intbi\cf1\qr {<variable format="#,0.00%"/><insert text="row"/>
\pardiintbh\cf\gl {\b Average RPH})\cell\pardiintbi\cf1\gr {<variable format="#,0"/>}cell
\pardiintbh\cf\ql (J\cell 506
\pardvintbi\cf1\ql {\b OEENcel\pardiintblicf1\gr {<variable format="#,0.00%"/>}cell
\row}
\pard\par\par\pard\fs 16\cf1\qc Powered by Vorne XL | {\field(\"\idinst{HYPERLINK
806 “http://www.vorne com"P{Midrsi{\cf\ul www vorne.comicf1 | 1-877-767-LEAN\par
L</record_b0dy>
<record_separator>\page</record_separator>

<footer>}</footer>
</stati late file>
‘s ic_lemplate_file \ 804

‘802

FIG. 8

30

EP 2 381 649 A1

{wtf Nansi\deffO{\fonttbI(\fO\fswiss Verdana}}

{\colortb! ;\redO\greenO\blue;\red255\green255\blue255;}

\margt720\margb720\marg!1080\margr1080
\pard\brdrt\brdrs\brdrw40\brdrcf1\brdrb\brdrs\brdrw40\brdrcf1\qc
{\b\fs4 \~\line\fs36 Shift Report - Assembly Line 12
\fs20\line Shift Start: 6/5/2006 8:00 AM
\fs12Vline \~P\pan\pard\fs20\panpanpar{itrowd \trgaph45
\clbrdrt\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\clbrdrb\brdrw 1 0\brdrsiclbrdribrdrw 10\brdrsiclch pat 1\cellx2520
\clbrdrf\brdrw 10\brdrs\clbrdri\brdrw 1Q0\brdrs\clbrdrb\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\clcbpat 1\cellx4680
\cellx5400
\cibrdrt\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\clbrdrb\brdrw 1 O\brdrs\clbrdri\brdrw 10\brdrs\cicbpat ficellx7920
\cibrdrt\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\clbrdrb\brdrw 1 O\brdrs\clbrdrribrdrw 10\brdrs\clchpat 1icelix 10080
\pardiintbi\cf2\ql {\b Counts}icell\pard\intbl\cf2\qr {\cell ‘
\pardiintb\cf2\ql {\cell
\pardiintbi\cf2\qf {\b OEE}\cell\pardiintbl\cf2\qr {}\cell
\rowH{\frowd \trgaph45
\clbrdrt\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\clbrdrb\brdrw 10\brdrsiclbrdribrdrw 10\brdrsicellx2520
\clbrdri\brdrw 10\brdrs\cibrdri\brdrw 10\brdrs\clbrdrb\brdrw 10\brdrsiclbrdri\brdrw 10\brdrs\cellx46 80\celix5400
\clbrdrt\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\clbrdrb\brdrw 1 Q\brdrs\clbrdribrdrw 10\brdrs\celix 7920
\clbrdrt\brdrw 10\brdrs\ctbrdri\brdrw 10\brdrs\clbrdrb\brdrw 10\brdrsiclbrdrr\brdrw 10\brdrsicelix 10080
\pardiintb\cfi\ql {\b Good Countp\cell\pard\intblicft\qr {3,229 cell
\pard\intbi\cf1\ql {}\cell
\pardiintbi\cf\gl {\b Availability}\cell\pardtintbi\cf1\qr {88.51%}\cell
_ \rowH\trowd \trgaph45
\clbrdrt\brdrw 10\brdrs\cibrdribrdrw O\brdrs\clbrdrb\brd rw1Q\brdrs\clbrdriibrdrw 10\brdrs\celix2520
\clbrdrt\brdrw 10\brdrs\clbrdri\brdrw 10\bidrs\clbrdrb\brd rw 10\brdrs\clbrdriibrdrw 10\brdrs\cellx4680\cellx5400
\clbrdrt\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\clbrdrb\brdrw 10\brdrsiclbrdri\brdrw 10\brdrsicellx 7920
\cibrdrt\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\cibrdrb\brdrw 10\brdrs\clbrdrri\brdrw 10\brdrsicelix 10080
\pardintbi\cf1\ql {\b Reject Count}\celi\pardiintbi\cf1\qr {4 }\cell
\pardiintbl\cfi\gl {}\cell
\pardiintbi\cf1\gl {\b Performance}\cell\pardiintbilcf1\qr {86.03%}\cell
\rowH{\trowd \trgaph45 :
\clbrdri\brdrw 10\brdrs\cibrdribrdrw 10\brdrs\ctbrdrb\brdrw 10\brdrsiclbrdre\brdrw 10\brdrs\celix2520
\clbrdri\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\clbrdrbi\brdrw 10\brdrs\clbrdrribrdrw 10\brdrsi\celix4680\cellx5400
\clbrdrf\brdrw 10\brdrs\clbrdri\brdrw 10\brdrs\clbrdrb\brdrw 10\brdrs\cibrdrmbrdrw 10\brdrsi\celix 7920
\clbrdrt\brdrw 10\brdrs\clbrdritbrdrw 10\brdrs\clbrdrb\brdrw 10\brdrs\clbrdribrdrw 10\brdrsicelix 10080
\pardlintbi\cf1\gl {\b Total Count)\cell\pardiintbicf1\qr {3,233}\cetl
‘\pardiintbhcfi\ql {J\cell
\pardiintbi\cf1\gl {\b Quality)\celi\pardiintbi\cf1\qr {99.88%}\cell
\row}{\trowd \trgaph45
\clbrdri\brdrw 10\brdrs\clbrdri\brdrw10\brdrs\clbrdrb\brdrw 10\brd rs\c!brdrr\brd rw 10\brdrs\cellx2520
\clbrdrt\brdrw 10\brdrs\clbrdri\brdrw 10\brdrsiclbrdrb\brd rw 10\brdrs\cibrdri\brdrw 10\brdrsicellx4680\celix5400
\clbrdrt\brdrw 1Q\brdrs\clbrdri\brdrw 10\brdrs\clbrdrb\brd rw 10\brdrs\clbrdrnbedrw 10\brdrs\celix7920
\ctbrdri\brdrw 10\brdrs\clbrdri\brdrw10\brdrs\cibrdrb\brdrw 10\brdrs\clbrdribrdrw 1 0\brdrs\celix 10080
\pardiintbi\cf1\gl {\b Average RPH}\cell\parduntbi\cf1\qr {457 }\cell
\pard\intbicfi\gl {{cell
\pard\intbl\cf1\gl {\b OEE}cell\pardiintbcf1\qr {76.05%\cel\row}
\pard\par\pan\pard\fs16\cf1\qc Powered by Vorne XL | {Mield{*\fldinst{HYPERLINK
“hitp:/hwww vorne.com"“JH{\fidrsit{\cf1\ul www.vorne.comi}icfi | 1-877-767-LEAN\par}

FIG. 9

31

EP 2 381 649 A1

Shift Report - Assembly Line 12

Shift Start: 6/5/2006 8:00 AM 1

1002
0 $ i
Good Count 3,229 Avail ability 88.51%
Reject Count 4 Performance 86.03%
Yotal Count 3,233 Quality 99.88%
Average RPH 457 OEE 76.05%

Powered by Vome XL [www.vorne com | 1-877-767-LEAN

—/

FIG. 10

32

EP 2 381 649 A1

’ Dashed box area is repeated as many times as neecded

104 102
Ci Embedded
ient Device
User requests
’web page 1102
’ Request web page 1104 N
—— -
L Transmit “bootstrap” page 1106 :I
Request client processing engine 1108 :
L Transmit client processing engine 1110
;) Client processing engine begins executing at client 1112 :
Client processing engine uses managed communication channel to 3
request static template file 1114 N L
I‘ Transmit static tempfate file 1116 j
) Client processing engine parses slatic template file; generates .
Sta;'C i(:r;tgnt —_static content from abstract and/or literal instructions 1118 :
ready :
- —— Client processing engine identifies requirement for dynamic :
< data set 1122 ‘
T T T T T T e T T T e T T T T s |
: Client processing engine uses managed communication channel to : :
: request dynamic data set 1124 ' :
: ; Generate and transmit dynamic data set 1126] :
! i
i . . . ‘ 1
e ransform re S '
Dynamic content 1 F)hent pr'ocessmg nglngt ans s and aggregate ! X
updated 1130 : Z information to generate final content 1128 S
ot . -
1 ' 1
! : i

|
I
+
|
I
!
I
!
|
!
!
|
{
|
|
|
|
I
|
|
|
|
I
|
I
|
|
|
|
|
[
|
i
|
I
I
[
|
|
|
1
|
!

FIG. 11

33

User makes
request invoking

P file bouncing 1202

104

/

EP 2 381 649 A1

Client

User is prompted
to open or save file

{

{

1

|

!
.

U Request file bouncing channe! 1D 1204

Search for avaitable channel {D. If available, reserve
it. If not available, process ends here. 1206

Transmit reserved channel ID 1208

;) Generate file (if it has not already been generated) 1210

Initiate GET of fite via hidden iframe (with channel 1D in URL) 1214

-

® 1218

File is accessible
(opened or saved)

o224

Start download of file (GET response with
HTTP Content-Disposition Header) 1216

Upload parts 2 to n of file (POST) 1220

Download parts 2 to n of file (GET) 1222

Dashed box area is repeated as many times as needed, and flow
control is automatically provided through the POST TCP window

[j Transmit success response 1228

Free reserved channel 1D 1226 { ;

FIG. 12

34

o e e —

1

1

1

i

.) !
Initiate POST of file (with channel ID and other metadata) 1212 ~

L
|

102

Embedded
Device

[|

EP 2 381 649 A1

104 102

Embedded
User navigates to Device
web page with file

“load” facility 1302

-® Request web page (parent) 1304 1
P

Transmit parent web page (which contains child iframe) 1306

Transmit child content (inc. form-based fite.upload control) 1310

Child requests fite bouncing channel 1D 1312’ L

Search for available channel ID. If available, reserve
it. If not available, process ends here. 1314

T
[]
|
—
Request contents of child iframe 1308
{
E
{
1
I
{
i

Transmit reserved channel 1D to child 1316

Child stores channel 1D in hidden field within the
User selects file to L 4<—" HTML form containing the file upload controt 1318
"‘Ioad“ 1320 ' S

| Child notifies parent that file is ready to be bounced and
provides channel \D 1322 :

}mmmmemeee]

Parent initiates GET of file using channel 1D 1324

Child initiates POST of file using channel 1D 1326

r Start download of file to parent (GET response) 1328

Child uploads parts 2 to n of file (POST) 1330

Dashed box area is repeated as many times as needed, and flow
control is automatically provided through the POST TCF window

e T
| |
1 {
i 1
0 Download parts 2 to n of file to parent (GET) 1332 :
! !
1

1
i 1

File isloadedin . 1
.‘client memory 1334

Free reserved channel 1D 1336 (;

D Transmit success response to child 1338
i
t

FIG. 13

35

EP 2 381 649 A1

9

des

Européisches
Patentamt

European
Patent Office

Office européen

brevets

[

EPO FORM 1503 03.82 (P04C01)

EUROPEAN SEARCH REPORT

Application Number

EP 11 17 4944

DOCUMENTS CONSIDERED TO BE RELEVANT
Categor Citation of document with indication, where appropriate, Relevant CLASSIFICATION OF THE
gory of relevant passages to claim APPLICATION (IPC)
X US 2002/083172 Al (KNOWLES GREGORY T [US] ([1-15 INV.
ET AL) 27 June 2002 (2002-06-27) HO4L29/08
* paragraph [0009] *
* paragraph [0012] *
* paragraph [0025] *
* paragraph [0030] - paragraph [0037] *
* paragraph [0041] *
* paragraph [0044] *
* figure 1 *
A US 6 446 192 Bl (NARASIMHAN SUBRAM [US] ET|1-15
AL) 3 September 2002 (2002-09-03)
* paragraph [0010] *
* paragraph [0060] *
* paragraph [0073] *
A EP 1 324 535 A2 (MICROSOFT CORP [US]) 1-15
2 July 2003 (2003-07-02)
* paragraph [0020] *
* paragraph [0027] - paragraph [0031] *
* paragraph [0036] * TECHNICAL FIELDS
_____ SEARCHED (IPC)
A "Dynamic HTML and XML: The XMLHttpRequest [1-15 HO4L
Object",
INTERNET CITATION,
24 June 2005 (2005-06-24), pages 1-4,
XP002501685,
Retrieved from the Internet:
URL:http://developer.apple.com/internet/we
bcontent/xmlhttpreq.htm
[retrieved on 2008-10-29]
* the whole document *
The present search report has been drawn up for all claims
Place of search Date of completion of the search Examiner
Munich 12 September 2011 Cankaya, Sukru
CATEGORY OF CITED DOCUMENTS T : theory or principle underlying the invention
E : earlier patent document, but published on, or
X : particularly relevant if taken alone after the filing date
Y : particularly relevant if combined with another D : document cited in the application
document of the same category L : document cited for other reasons
A technological backgroUnd e ettt ettt
O : non-written disclosure & : member of the same patent family, corresponding
P : intermediate document document

36

EPO FORM P0459

EP 2 381 649 A1

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO. EP 11 17 4944

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report.
The members are as contained in the European Patent Office EDP file on
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

12-09-2011
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2002083172 Al 27-06-2002 NONE

US 6446192 Bl 03-09-2002 NONE

EP 1324535 A2 02-07-2003 JP 4313030 B2 12-08-2009
JP 2003216436 A 31-07-2003
W 1256798 B 11-06-2006
US 2003126236 Al 03-07-2003

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82

37

EP 2 381 649 A1
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

* US 92797807 P [0001]

38

	bibliography
	description
	claims
	drawings
	search report

