(11) EP 2 390 456 A2

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

30.11.2011 Bulletin 2011/48

(51) Int Cl.: **E06B** 9/323 (2006.01)

(21) Numéro de dépôt: 11168068.2

(22) Date de dépôt: 30.05.2011

(84) Etats contractants désignés:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Etats d'extension désignés:

BA ME

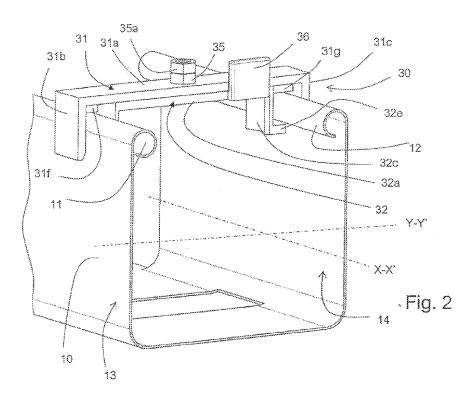
(30) Priorité: 31.05.2010 FR 1054221

(71) Demandeur: Somfy SAS 74300 Cluses (FR)

(72) Inventeurs:

Brignatz, Mathieu
84470 Châteauneuf de Gadagne (FR)

 Leleu, Miguel 74300 Les Carroz (FR)


(74) Mandataire: Myon, Gérard Jean-Pierre et al

Cabinet Lavoix Lyon 62, rue de Bonnel 69448 Lyon Cedex 03 (FR)

(54) Dispositif de rigidification et caisson de store équipé d'un tel dispositif

(57) Ce dispositif (30) sert à la rigidification d'un caisson (10) de réception d'un dispositif de motorisation pour la manoeuvre d'un store, le caisson ayant une section en U avec une surface extérieure (13) et une surface intérieure (14). Ce dispositif est indépendant des moyens de supportage du caisson par rapport à une structure porteuse et comprend un premier élément de contact (31) destiné à coopérer avec au moins une partie d'une surface extérieure (13) du caisson ; un deuxième élé-

ment de contact (32) destiné à coopérer avec au moins une partie d'une surface intérieure (14) du caisson, et des moyens de serrage (35) agissant sur le premier élément de contact (31) et/ou le deuxième élément de contact (32), dans un sens de rapprochement de cet élément et de la partie de surface du caisson (13, 14) avec laquelle il est destiné à coopérer. Un caisson (10) équipé d'un tel dispositif est rigidifié suivant un axe (Y-Y') perpendiculaire à son axe longitudinal (X-X').

40

50

55

Description

[0001] L'invention concerne le domaine des stores de protection solaire, et en particulier des stores vénitiens à lames parallèles, dépliables et orientables.

[0002] Ces stores vénitiens peuvent être manoeuvrés par l'intermédiaire d'un dispositif de motorisation, logé dans un caisson de support, vers lequel sont repliées les lames dans un mouvement d'ouverture complète du store. Les lames sont elle-même supportées par des cordons ou rubans et le dispositif de motorisation gère également l'enroulement des cordons ou rubans au niveau du caisson.

[0003] L'art antérieur est abondant sur des dispositifs de motorisation montés dans des caissons en forme de U. En particulier, de nombreuses solutions ont été décrites permettant de monter un moteur dans un caisson avec l'aide de supports élastomères évitant la propagation des vibrations du moteur vers le caisson, de manière à diminuer le bruit associé au dispositif de motorisation lors de son fonctionnement.

[0004] En particulier, le document EP-A-1321623 décrit des supports élastomères rapportés entre des pieds d'un moteur et les rebords libres du U du caisson, ou disposés aux extrémités d'un anneau de soutien du moteur. Ceux-ci servent donc à absorber les vibrations éventuellement transmises vers le caisson. Il est également connu de ce même document de maintenir le caisson vis-à-vis la structure de support, par exemple un mur ou un plafond auquel est suspendu le store, grâce à des crochets de support, enserrant le caisson. Ces crochets sont prévus avec des pattes flexibles de sorte à pouvoir y insérer le caisson en U. Plusieurs crochets supportent le caisson sur sa longueur.

[0005] Le document DE-U-202007010766 décrit un dispositif de maintien d'un moteur à l'intérieur d'un caisson ne nécessitant pas l'utilisation d'un outil. Le dispositif de maintien comprend notamment une languette pourvue de rebords pliés à ses extrémités. Ces rebords viennent se loger sous les bords recourbés du caisson en U. Par le biais d'un levier à excentrique, la languette plaque le moteur dans un berceau dans le fond du caisson et permet également de plaquer contre le caisson les extrémités du berceau de support du moteur. Le document DE-U-202008002359 décrit un dispositif similaire, pour lequel le berceau de support du moteur comprend des anses venant s'appuyer sur les bords recourbés du caisson. Ces anses coopèrent avec un crochet de maintien du moteur dans le rail, ce crochet comprenant des trous dans lesquels s'encastrent les anses du berceau.

[0006] Le document CH-A-691131 décrit également un dispositif de maintien d'un moteur à l'intérieur d'un caisson. Le moteur est équipé à ses extrémités d'éléments en élastomère, pour éviter la propagation du bruit. Le dispositif de maintien comprend notamment une bride en deux parties assemblées par des vis et maintenant axialement et radialement le moteur et les éléments en élastomère.

[0007] Les différents documents de la technique, bien qu'ils évoquent les problématiques de bruit et de fixation mécanique et élastique du moteur, ne permettent cependant pas de déterminer une solution au problème de propagation des vibrations dans le caisson lui-même. En effet, la forme en U du caisson et la longueur de celui-ci participent au fait que le caisson lui-même est relativement souple. Du fait de matériaux métalliques utilisés pour la fabrication de certains composants, les vibrations liées à la transmission des mouvements du store peuvent être propagées et amplifiées par le caisson.

[0008] Il est également connu de NL-A-6 400 653 ou de US-A-4 949 926 d'utiliser des consoles bi-partites, comprenant un support et un organe de blocage, pour fixer le rail d'un store sur une structure porteuse. Par construction, ces matériels doivent permettre la mise en place du rail après fixation du support sur une structure porteuse, telle qu'un plafond ou un mur. L'élément de blocage est supporté sur ce support, avec possibilité de pivotement comme dans NL-A-6 400 653, ou de coulissement à l'encontre d'un ressort comme dans US-A-4 949 926. Ces mouvements nécessitent des jeux, au point que les bords du caisson peuvent vibrer transversalement, y compris après montage sur les consoles. En outre, des vibrations peuvent se propager sur les bords libres du caisson, entre deux consoles, et le nombre de consoles utilisées pour fixer le rail sur la structure porteuse ne peut pas être augmenté sans augmenter d'autant le temps de pose.

[0009] L'invention propose donc un dispositif destiné à rigidifier le caisson pour réduire ou empêcher les problèmes évoqués ci-dessus.

[0010] A cet effet l'invention concerne un dispositif de rigidification d'un caisson d'un dispositif de motorisation pour la manoeuvre d'un store, ce caisson ayant une section en U avec au moins une surface extérieure et au moins une surface intérieure. Ce dispositif de rigidification est caractérisé en ce qu'il est indépendant des moyens de supportage du caisson par rapport à une structure porteuse et en ce qu'il comprend :

- un premier élément de contact destiné à coopérer avec au moins une partie de la surface extérieure du caisson :
- un deuxième élément de contact destiné à coopérer avec au moins une partie de la surface intérieure du caisson; et
 - des moyens de serrage agissant sur le premier élément et/ou sur le deuxième élément de contact, dans un sens de rapprochement de cet élément et de la partie de surface du caisson avec laquelle il est destiné à coopérer.

[0011] Grâce à l'invention, la rigidification du caisson est obtenue par l'action conjuguée du premier élément de contact et du deuxième élément de contact qui peuvent enserrer entre eux certaines parties du caisson, ce qui immobilise ces parties et assure une rigidification pé-

30

35

renne du caisson. Cette immobilisation peut avoir lieu indépendamment de la répartition des moyens de supportage le long du caisson. Le nombre de dispositif de rigidification peut donc être adapté au comportement vibratoire du caisson, sans augmenter son temps de pose. La propagation des vibrations dans le caisson est ainsi évitée, dans une large mesure.

[0012] Selon des aspects avantageux mais non obligatoires de l'invention, un tel dispositif de rigidification peut incorporer une ou plusieurs des caractéristiques suivantes, prises dans toutes combinaisons techniquement admissibles :

- Le dispositif est apte à créer une liaison rigide entre les bords libres du caisson, sans degré de liberté suivant un axe qui est, d'une part, perpendiculaire à un axe longitudinal du caisson et, d'autre part, parallèle au fond du caisson.
- Le premier élément de contact est en contact uniquement avec une surface extérieure du caisson et le deuxième élément de contact est en contact uniquement avec une surface intérieure du caisson, lorsque le dispositif est monté serré sur le caisson. En variante, le premier et le deuxième élément de contact coopèrent à la fois avec une partie de surface intérieure et une partie de surface extérieure du caisson, lorsque le dispositif est monté serré sur le caisson.
- Les moyens de serrage agissent dans un sens de rapprochement des deux éléments de contact l'un vers l'autre.
- Les moyens de serrage comprennent une vis, un ensemble vis-écrou ou un crochet pivotant.
- Un des éléments de contact comprend une butée latérale permettant de former une surface d'appui latéral pour l'autre élément de contact, lors du montage et du serrage des éléments de contact et des moyens de serrage.
- Le premier et/ou le deuxième élément de contact est en deux parties. Dans ce cas, les moyens de serrage agissent avantageusement dans un sens de rapprochement ou d'éloignement, l'une par rapport à l'autre, des deux parties de cet élément de contact.
- Le premier élément et/ou le deuxième élément sont équipés de cales de contact rigide ou élastique avec le caisson. Les cales peuvent être réalisées par des

[0013] parties bombées intégrales respectivement avec les premier et/ou deuxième éléments de contact. En variante, ces cales sont des pièces rapportées, notamment en élastomère, intercalées entre, d'une part, des extrémités des premier et/ou deuxième éléments de contact et, d'autre part, les surfaces extérieure et/ou intérieure du caisson.

 Le dispositif comprend au moins un moyen absorbeur dynamique de vibrations. Dans ce cas, on peut prévoir que le moyen absorbeur dynamique de vibrations comprend un élément piézo-électrique, apte à générer une tension électrique sous l'effet d'une déformation ou d'une contrainte mécanique, raccordé à une résistance électrique.

[0014] L'invention concerne également un caisson de réception d'un dispositif de motorisation pour la manoeuvre d'un store, notamment un store vénitien, ce caisson ayant une section en U. Ce caisson est caractérisé en ce qu'il est équipé d'au moins un dispositif tel que mentionné ci-dessus qui permet sa rigidification, selon un axe perpendiculaire à un axe longitudinal du caisson.

[0015] L'invention sera mieux comprise et d'autres avantages de celle-ci apparaitront plus clairement à la lumière de la description qui va suivre de trois modes de réalisation d'un dispositif de rigidification d'un caisson conformes à son principe, donnée uniquement à titre d'exemple et faite en référence aux dessins dans lesquels:

- la figure 1 est une coupe d'un caisson équipé d'un dispositif de rigidification de l'art antérieur;
- les figures 2 et 3 sont des vues en perspective d'un caisson équipé d'un dispositif de rigidification conforme à un premier mode de réalisation de l'invention;
- la figure 4 est une vue d'extrémité du caisson des figures 2 et 3 ;
- la figure 5 est une vue d'extrémité, comparable à la figure 4, pour un caisson et un dispositif de rigidification conformes à un deuxième de réalisation de l'invention, certaines pièces étant représentées hachurées, pour faciliter leur repérage; et
- la figure 6 est une vue analogue à la figure 5 pour un dispositif de rigidification et un caisson conformes à un troisième mode de réalisation de l'invention.

[0016] La figure 1 montre de manière schématique une vue en coupe d'un dispositif de motorisation 1, comprenant un caisson (ou rail) 10 dans lequel est placé un moteur (non représenté) et un tube d'enroulement 3, se-Ion l'art antérieur. Le caisson 10 a une section sensiblement carrée formant un U, dont les bords 11, 12 sont recourbés de manière à rigidifier cette section. Le moteur ou le tube d'enroulement sont maintenus en place par une pièce de serrage 5, venant se loger à l'intérieur de la section en U et en partie sous les bords recourbés 11 et 12. Cette pièce de serrage sert principalement à maintenir le moteur et/ou le tube d'enroulement serré contre le fond 10a du caisson 10. Les moyens de serrage conventionnels ne sont pas représentés. Une cale 6 en élastomère peut être présente entre le caisson et les différents éléments du dispositif de motorisation (bride, moteur, tube). Une bride 7, qui se présente sous la forme d'un crochet venant entourer le caisson 10 et se situant dans un plan différent du plan de coupe pris au niveau de la pièce de serrage 5, est maintenue par deux éléments de fixation 21 au niveau d'une structure porteuse

25

40

20, par exemple d'un plafond. Cette bride participe à la suspension du dispositif au plafond.

[0017] Les figures 2 et 3 montrent en perspective un premier exemple de réalisation, selon l'invention, d'un dispositif 30 de rigidification d'un caisson 10, ce dernier étant partiellement représenté. La figure 4 représente ce premier exemple de mode de réalisation en vue d'extrémité. Pour plus de simplicité sur ces différentes figures, les autres éléments contenus dans le caisson ne sont pas représentés. Dans ce premier mode de réalisation, le dispositif de rigidification ne participe pas au maintien et au serrage du moteur ou du tube d'enroulement dans le caisson, mais cette alternative est envisageable. Des éléments de fixation, comparables à ceux, 21, de la figure 1 mais non représentés, permettent d'immobiliser le caisson 10 sur une structure porteuse, par exemple un plafond. Ces éléments de fixation coopèrent avec une bride analogue à la bride 7 de l'art antérieur et sont indépendants du dispositif 30.

[0018] Ainsi, pour un caisson 10 donné, les éléments de fixation non représentés sont dédiés au montage sur la structure porteuse et répartis le long du rail en fonction de son poids et de son environnement, par exemple de la nature du plafond qui peut comporter des poutres et du plâtre. Un ou plusieurs dispositifs 30 sont montés sur le caisson 10 en des emplacements susceptibles de correspondre à des ventres de déformation vibratoires, c'est-à-dire des zones de déformation d'amplitude maximum, par exemple entre deux brides de fixation du caisson à la structure porteuse. Comme les dispositifs 30 sont indépendants des éléments de fixation, leur nombre et leur position le long de l'axe longitudinal X-X' du caisson peuvent être adaptés en fonction du comportement vibratoire du caisson, sans augmenter le temps de pose du dispositif de motorisation.

[0019] En effet, bien que la courbure imprimée aux bords libres du caisson permette de rigidifier celui-ci, l'ouverture longitudinale nécessaire à l'insertion du tube d'enroulement ou du moteur provoque nécessairement une fragilité du caisson propice à la propagation des vibrations issues des transmissions mécaniques de mouvement du moteur.

[0020] Dans la description qui suit, les éléments représentés sur les figures 2 à 4 qui sont analogues à ceux de la figure 1 portent les mêmes références.

[0021] Le dispositif de rigidification 30 comprend un premier élément de contact 31 destiné à coopérer avec au moins une partie d'une surface 13 tournée vers l'extérieur d'un caisson 10, dite surface extérieure, et un deuxième élément de contact 32 destiné à coopérer avec au moins une partie d'une surface 14 tournée vers l'intérieur du caisson, dite surface intérieure. La surface extérieure 13 s'étend, notamment, sur l'extérieur des branches du U formé par la section transversale du caisson 10. La surface extérieure 13 et/ou la surface intérieure 14 ne sont pas nécessairement continues, du fait de la présence des bords recourbés du caisson. Le dispositif 30 comprend également des moyens de serrage 35 du

premier élément 31 et du deuxième élément 32 l'un avec l'autre.

[0022] Le premier élément de contact se présente sous la forme d'une bride extérieure 31 comprenant une partie médiane 31 a et des extrémités 31 b et 31 c pliées par rapport à la partie médiane pour se loger de part et d'autre du caisson 10. La bride extérieure 31 est directement en contact avec la surface extérieure 13 du caisson, sur les parois verticales et/ou sur une partie des bords recourbés du caisson 11, 12 regardant vers l'extérieur du caisson.

[0023] La bride extérieure 31 peut être mise en place sur le caisson 10 par déformation élastique, en particulier du caisson lui-même. Elle est de préférence montée serrée sur le caisson. La bride extérieure supporte dans sa partie médiane une partie des moyens de serrage 35.

[0024] Les éléments de fixation non représentés sont rapportés de manière amovible sur la bride extérieure 31. [0025] Le deuxième élément de contact se présente sous la forme d'une bride 32 intérieure au caisson, comprenant une partie médiane 32a et des extrémités 32b et 32c pliées pour se loger sous les bords recourbés et libres 11 et 12 du caisson lorsque celle-ci est installée. En particulier, les extrémités pliées de la bride intérieure 32 sont également elles-mêmes recourbées vers l'extérieur pour former deux pattes 32d, 32e d'accroche de la bride intérieure sous les bords 11 et 12 du caisson 10. La bride intérieure 32 est directement en contact avec la surface intérieure du caisson, sur les parois verticales et/ou sur une partie des bords recourbés du caisson regardant vers l'intérieur du caisson.

[0026] La bride intérieure 32 peut être mise en place dans le caisson par déplacement latéral, par rotation ou par déformation élastique du caisson 10 et/ou de la bride 32. La bride intérieure supporte, notamment dans sa partie médiane, une partie des moyens de serrage 35. Elle est de préférence montée serrée sur le caisson.

[0027] Les brides 31 et 32 peuvent être réalisées en matière plastique ou en métal.

[0028] Les moyens de serrage 35 sont constitués, par exemple, d'une vis et d'un écrou, disposés de part et d'autre des deux parties médianes des première et deuxième brides. Ils permettent le rapprochement des deux brides l'une vis-à-vis de l'autre, donc le serrage des bords 11 et 12 du caisson 10 entre la bride 31 et les pattes 32d et 32c. Un contreécrou 35a assure le blocage des moyens 35 en configuration de serrage.

[0029] Alternativement, les brides peuvent être serrées l'une par rapport à l'autre en rotation. En particulier, la bride intérieure peut être mise en place en biais par l'ouverture du caisson puis tournée, par rapport à la bride extérieure, de sorte à serrer ses extrémités pliées contre la surface intérieure du caisson. De préférence, les moyens de serrage comprennent alors un organe de mise en rotation de la bride intérieure et/ou un clip antidesserrement, évitant le desserrement de la bride intérieure sous l'effet de vibrations répétées.

[0030] Lorsqu'elles sont installées vis-à-vis du caisson

25

30

10, le rapprochement des deux brides 31 et 32 permet de pincer les bords 11 et 12 du caisson et de créer ainsi une liaison rigide entre les deux bords recourbés et libres du caisson. La section du caisson est alors fermée au niveau du dispositif de rigidification 30, sans degré de liberté suivant un axe Y-Y' perpendiculaire à l'axe longitudinal X-X' du caisson et parallèle à son fond 10a. Cette liaison permet de rigidifier l'ensemble du caisson 10. Un ou plusieurs dispositifs de rigidification 30 peuvent être installés sur la longueur du caisson 10, dans la mesure du possible répartis équitablement sur cette longueur, parallèlement à l'axe X-X'.

[0031] Il est important que les deux bords du caisson soient maintenus rigidement suivant l'axe Y-Y'. En effet, un jeu éventuel ne permettrait pas de limiter efficacement la propagation des ondes sonores et des vibrations au caisson et, indirectement, aux éléments assemblés dans celui-ci pour la manoeuvre du store.

[0032] Des cales permettent d'ajuster les deux éléments de contact l'un par rapport à l'autre en fonction des caissons utilisés. En particulier, la bride extérieure 31 comprend deux cales 31 f et 31 g destinées à venir en appui, par le dessus, sur les bords 11 et 12 du caisson. Ces cales peuvent être réalisées intégralement avec la bride 31 ou être rapportées lors du montage et avant le serrage. De la même façon, des parties bombées 32f et 32g sont créées au niveau des extrémités pliées de la bride 32 et prévues pour venir en appui sur la partie des bords 11 et 12 tournée vers l'intérieur du caisson 10. Ces cales peuvent être rigides ou élastiques.

[0033] La bride intérieure 32 comprend également une butée latérale 36, permettant de former une surface d'appui latéral pour la bride extérieure 31, lors du montage et du serrage des éléments 31, 32 et 35, et ainsi de bien positionner les brides l'une par rapport à l'autre. Cette butée latérale pourrait alternativement être disposée sur la bride extérieure.

[0034] D'autres exemples de réalisation possibles sont représentés sur les figures suivantes.

[0035] Dans le deuxième mode de réalisation représenté à la figure 5, le dispositif de rigidification 30 est indépendant des éléments non représentés utilisés pour la fixation du caisson 10 au plafond ou sur un mur. Les brides 31 et 32 sont respectivement en contact avec les surfaces extérieure 13 et intérieure 14 du caisson 10 par l'intermédiaire de pièces en élastomère. Plus précisément, des cales en élastomère 41 b et 41 c sont intercalées entre les extrémités recourbées 31 b et 31 c de la bride 31 et la surface 13. Par ailleurs, des cales en élastomère 42b et 42c sont intercalées entre les extrémités recourbées 32b et 32c de la bride 32 et la surface 14. On relève que les cales 42b et 42c ont une section en L, de sorte qu'elles s'étendent également entre les extrémités 32d et 32c et les bords recourbés 11 et 12 du caisson 10.

[0036] Les moyens de serrage 35 peuvent être de tout type adapté à leurs fonctions, notamment une vis, un ensemble vis/écrou ou un crochet pivotant. Sur la figure

5, ces moyens de serrage sont représentés par un élément rectangulaire et les deux flèches F₃₅ représentent l'effort de serrage exercé sur les brides 31 et 32.

[0037] La figure 6 représente un troisième exemple de réalisation. Les références des figures précédentes sont reprises et augmentées de 100 pour désigner des éléments similaires.

[0038] Dans cet exemple, le dispositif de fixation est indépendant des éléments non représentés de fixation du rail 10 au plafond ou sur un mur. La bride extérieure 131 est formée d'une partie centrale 131 a et de deux extrémités 131 b et 131c pliées par rapport à la partie centrale pour se loger de part et d'autre du caisson 10. Elle comprend également des plots fixes 131 h et 131 i dépassant de la partie médiane de la bride extérieure à l'opposé de ses extrémités 131b et 131c. La bride intérieure 132 est formée de deux parties 132i et 132ii indépendantes. Chaque partie de la bride intérieure 132 est formée d'un bras 132b, 132c dont l'extrémité 132d, 132e est pliée pour venir se loger sous les bords recourbés 11 et 12 du caisson. Chaque partie 132i ou 132ii de la bride intérieure 132 peut coulisser vis-à-vis de la bride extérieure et être maintenue serrée contre un des plots fixes 131 h ou 131 i, ce que représentent les flèches F₁₃₅. Lorsque le dispositif de fixation 130 est monté par rapport au rail 10, les brides 131 et 132 serrées pincent les bords recourbés du caisson. Ce pincement peut avoir lieu par contact direct entre les brides 131 et 132, d'une part, et le caisson 10, d'autre part. En variante, et comme cela est représenté sur la figure 6, ce pincement peut avoir lieu par l'intermédiaire de cales en élastomère 141 b, 142b, 141c, 142c. Dans tous les cas, les brides 131 et 132 forment une liaison rigide avec le caisson 10, en particulier selon un axe Y-Y' défini comme dans le premier mode de réalisation.

[0039] Les bras de la bride intérieure 132 et les plots de la bride extérieure 131, à savoir le bras 132b et le plot 131 h d'un côté, le bras 132c et le plot 131 i de l'autre, sont réalisés pour présenter chacun une surface de serrage en vis-à-vis l'une de l'autre lorsque ces brides sont assemblées sur le caisson 10. Les moyens de serrage 135b et 135c peuvent être ici constitués d'une vis et d'un écrou, de part et d'autre des deux surfaces en regard des deux brides. Le serrage provoque le déplacement axial, parallèlement à l'axe Y-Y', des parties 132i et 132ii de la bride intérieure 132. Ce serrage peut affecter soit les deux parties 132i et 132ii simultanément, soit un moyen de serrage par partie de bride intérieure. Ainsi, la bride 132 vient pincer le bord recourbé du caisson.

[0040] Une alternative à ce troisième mode de réalisation consiste à utiliser une bride intérieure en une partie et une bride extérieure en deux parties. Le montage est équivalent à celui décrit ci-dessus.

[0041] Dans une variante des modes de réalisation représentés, le dispositif de rigidification peut comprendre deux brides indépendantes et préférentiellement symétriques, formant chacune un contact entre une surface extérieure et une surface intérieure du caisson de part

15

20

25

40

45

50

et d'autre de l'ouverture du caisson. Un moyen de serrage assure le rapprochement entre les brides et également le contact avec les différentes surfaces du caisson. [0042] Dans les modes de réalisation des figures 5 et 6 et dans la variante envisagée ci-dessus, le dispositif de rigidification 30 ou 130 permet, comme celui du premier mode de réalisation, de créer une liaison rigide entre les bords libres 11 et 12 du caisson, sans degré de liberté suivant l'axe Y-Y'. Ceci est obtenu grâce à la fermeture de la section en U du caisson par le dispositif de rigidification, en des emplacements choisis le long du caisson indépendamment de la position des éléments de fixation sur la structure porteuse.

[0043] Avantageusement, le dispositif de rigidification 30 ou 130 comprend au moins un moyen absorbeur dynamique de vibrations tel que représenté, avec les références 51, 52 et 150, sur les figures 5 et 6. Ce moyen absorbeur dynamique de vibrations transforme l'énergie mécanique, de type vibratoire, en énergie thermique. Ce moyen absorbeur dynamique de vibration comprend par exemple un élément piézo-électrique, apte à générer une tension électrique sous l'effet d'une déformation ou d'une contrainte mécanique, raccordé à une résistance électrique. Ainsi, l'énergie électrique produite est intégralement dissipée par effet Joule dans la résistance électrique. Selon une variante préférée, on utilise pour la réalisation du moyen absorbeur dynamique un seul matériau composé, présentant à la fois des propriétés piézo-électriques et de résistance électrique, aptes à simultanément produire et dissiper l'énergie électrique à partir d'une énergie mécanique de vibration.

[0044] De manière à permettre un fonctionnement optimal à la fois en compression et en cisaillement, le matériau composé est disposé de manière à être contraint dans l'espace compris entre les deux brides, comme représenté à la figure 5. Alternativement, le moyen absorbeur dynamique de vibrations est simplement collé sur une des brides, comme représenté à la figure 6. Il fonctionne alors essentiellement en cisaillement.

[0045] Le moyen absorbeur de vibrations peut avoir un fonctionnement de type purement passif, ou de type actif comme décrit par exemple dans les brevets US-B-6,178,246 ou US-B-6,609,985.

[0046] Les caractéristiques techniques des modes de réalisation et des variantes envisagées ci-dessus peuvent être combinées entre elles.

Revendications

1. Dispositif (30 ; 130) de rigidification d'un caisson (10) de réception d'un dispositif de motorisation pour la manoeuvre d'un store, le caisson ayant une section en U avec une surface extérieure (13) et une surface intérieure (14), le dispositif étant caractérisé en ce qu'il est indépendant des moyens de supportage du caisson par rapport à une structure porteuse et en ce qu'il comprend :

- un premier élément de contact (31 ; 131) destiné à coopérer avec au moins une partie de la surface extérieure (13) du caisson ;
- un deuxième élément de contact (32 ; 132) destiné à coopérer avec au moins une partie de la surface intérieure (14) du caisson, et
- des moyens de serrage (35 ; 135a, 135b) agissant sur le premier élément de contact (31 ; 131) et/ou le deuxième élément de contact (32 ; 132), dans un sens de rapprochement de cet élément et de la partie de surface du caisson (13, 14) avec laquelle il est destiné à coopérer.
- 2. Dispositif selon la revendication 1, caractérisé en ce qu'il est apte à créer une liaison rigide entre les bords libres (11, 12) du caisson (10), sans degré de liberté suivant un axe (Y-Y') qui est, d'une part, perpendiculaire à un axe longitudinal (X-X') du caisson et, d'autre part, parallèle au fond (10a) du caisson.
- 3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que le premier élément de contact (31; 131) est en contact uniquement avec une surface extérieure (13) du caisson (10) et le deuxième élément de contact (32; 132) est en contact uniquement avec une surface intérieure (14) du caisson, lorsque le dispositif (30; 130) est monté serré sur le caisson.
- Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que le premier et le deuxième élément de contact (31-32; 131-132) coopèrent à la fois avec une partie de surface intérieure (14) et une partie de surface extérieure (13) du caisson (10), lorsque le dispositif (30; 130) est monté serré sur le caisson.
 - 5. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les moyens de serrage (35) agissent dans un sens de rapprochement des deux éléments de contact (31, 32) l'un vers l'autre.
 - 6. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les moyens de serrage (35; 135a, 135b) comprennent une vis, un ensemble vis-écrou ou un crochet pivotant.
 - 7. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'un des éléments de contact (31, 32) comprend une butée latérale (36) permettant de former une surface d'appui latéral pour l'autre élément de contact, lors du montage et du serrage des éléments de contact (31, 32) et des moyens de serrage (35).
 - 8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le premier et/ou le deuxième élément de contact (132) est en deux par-

ties (132i, 132ii).

- 9. Dispositif selon la revendication 8, caractérisé en ce que les moyens de serrage (135b, 135c) agissent dans un sens de rapprochement ou d'éloignement, l'une par rapport à l'autre, des deux parties (132i, 132ii) de l'élément de contact (132) en deux parties.
- 10. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le premier élément de contact (31) et/ou le deuxième élément de contact (32) sont équipés de cales (31 f, 31g, 32f, 32g; 41 b, 41 c, 42b, 42c; 141b, 141c, 142b, 142c) de contact rigide ou élastique avec le caisson (10).
- 11. Dispositif selon la revendication 10, caractérisé en ce que les cales (31 f, 31 g, 32f, 32g) sont réalisées par des parties bombées intégrales respectivement avec les premier et/ou deuxième éléments de contact (31, 32).
- 12. Dispositif selon la revendication 10, caractérisé en ce que les cales (41 b, 41 c, 42b, 42c; 141 b, 141c, 142b, 142c) sont des pièces rapportées, notamment en élastomère, intercalées entre, d'une part, des extrémités (31 b, 31 c, 32b, 32c; 131 b, 131c, 132b, 132c) des premier et/ou deuxième éléments de contact (31, 32) et, d'autre part, les surfaces extérieure (13) et/ou intérieure (14) du caisson.
- **13.** Dispositif selon l'une des revendications précédentes, **caractérisé en ce qu**'il comprend au moins un moyen absorbeur dynamique de vibrations (51, 52; 150).
- 14. Dispositif selon la revendication 13, caractérisé en ce que le moyen absorbeur dynamique de vibrations (51, 52; 150) comprend un élément piézo-électrique, apte à générer une tension électrique sous l'effet d'une déformation ou d'une contrainte mécanique, raccordé à une résistance électrique.
- 15. Caisson (10) de réception d'un dispositif de motorisation pour la manoeuvre d'un store, notamment un store vénitien, ce caisson ayant une section en U, caractérisé en ce qu'il est équipé d'au moins un dispositif (30; 130) selon l'une des revendications précédentes permettant sa rigidification, suivant un axe (Y-Y') perpendiculaire à un axe (X-X') longitudinal du caisson.

10

15

20

25

30

35

40

50

55

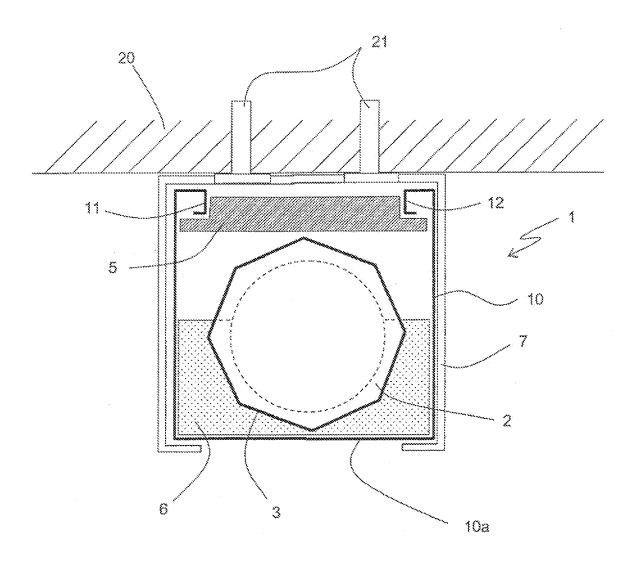
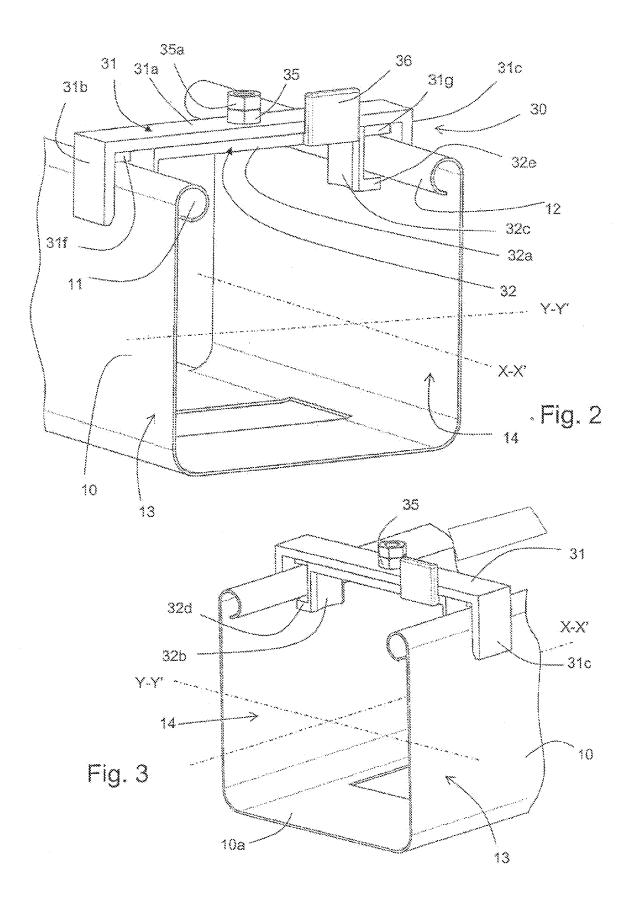
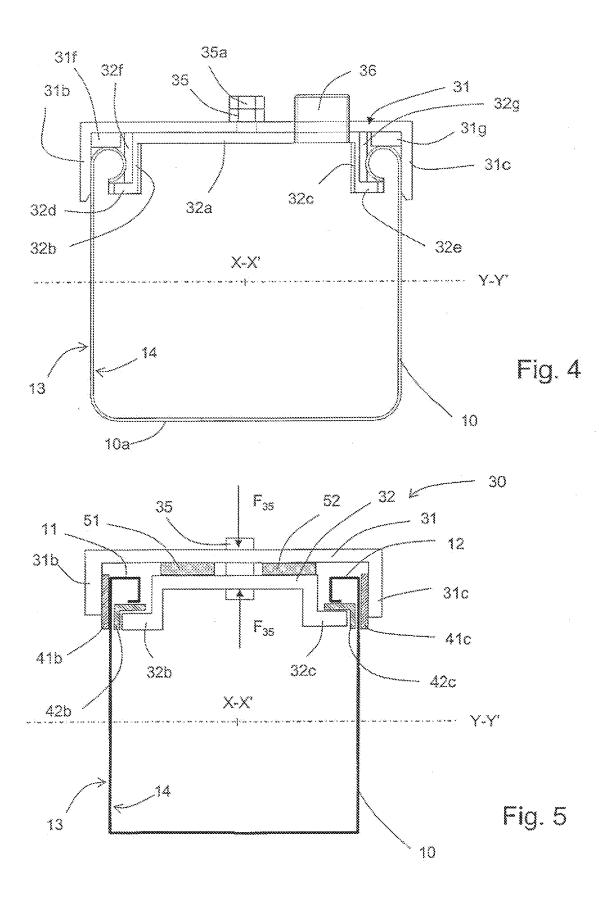
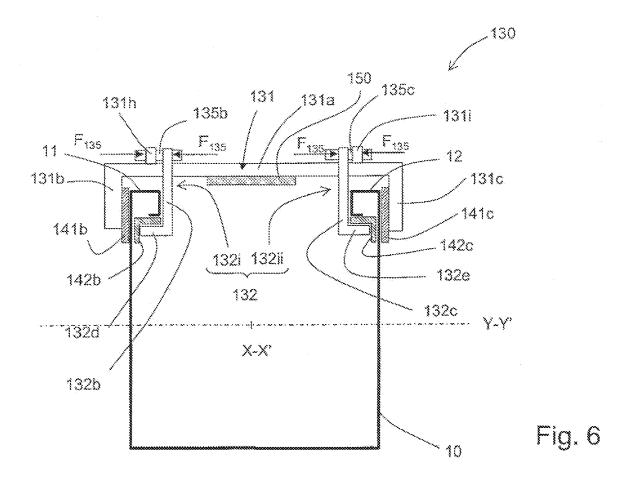





Fig. 1 Art antérieur

EP 2 390 456 A2

RÉFÉRENCES CITÉES DANS LA DESCRIPTION

Cette liste de références citées par le demandeur vise uniquement à aider le lecteur et ne fait pas partie du document de brevet européen. Même si le plus grand soin a été accordé à sa conception, des erreurs ou des omissions ne peuvent être exclues et l'OEB décline toute responsabilité à cet égard.

Documents brevets cités dans la description

- EP 1321623 A [0004]
- DE 202007010766 U **[0005]**
- DE 202008002359 U [0005]
- CH 691131 A [0006]

- NL 6400653 A [0008]
- US 4949926 A [0008]
- US 6178246 B [0045]
- US 6609985 B [0045]