

(11) **EP 2 393 117 A8**

CORRECTED EUROPEAN PATENT APPLICATION

(15) Correction information:

(12)

Corrected version no 1 (W1 A1) Corrections, see Abstract

(48) Corrigendum issued on:

11.01.2012 Bulletin 2012/02

(43) Date of publication:

07.12.2011 Bulletin 2011/49

(21) Application number: 11006885.5

(22) Date of filing: 19.10.2009

(84) Designated Contracting States:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30) Priority: 22.10.2008 JP 2008271673

29.05.2009 JP 2009129783 12.12.2008 JP 2008316452

(62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:

09013174.9 / 2 180 514

(71) Applicant: Sony Corporation Tokyo 108-0075 (JP) (51) Int Cl.:

H01L 27/146 (2006.01)

H04N 5/335 (2011.01)

(72) Inventors:

 Yanagita, Takeshi Tokyo (JP)

 Mabuchi, Keiji Tokyo (JP)

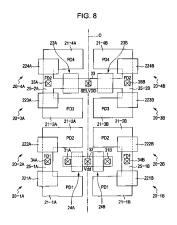
 Ishiwata, Hiroaki Tokyo (JP)

(74) Representative: Müller - Hoffmann & Partner

Patentanwälte

Innere Wiener Strasse 17 81667 München (DE)

Remarks:


This application was filed on 23-08-2011 as a divisional application to the application mentioned under INID code 62.

(54) Solid state image sensor, imaging apparatus, and electronic device

A solid state image sensor includes a pixel array, (57)as well as charge-to-voltage converters, reset gates, and amplifiers each shared by a plurality of pixels in the array. The voltage level of the reset gate power supply is set higher than the voltage level of the amplifier power supply. Additionally, charge overflowing from photodetectors in the pixels may be discarded into the charge-to-voltage converters. The image sensor may also include a row scanner configured such that, while scanning a row in the pixel array to read out signals therefrom, the row scanner resets the charge in the photodetectors of the pixels sharing a charge-to-voltage converter with pixels on the readout row. The charge reset is conducted simultaneously with or prior to reading out the signals from the pixels on the readout row.

A pixel layout is also proposed. The resulting layout is efficient for securing the area occupied by the photodetectors. Consequently, a large footprint for a photodetec-

tor can be acquired within a limited pixel boundary, even when attempting to further miniaturize pixels by adopting a multi-pixel sharing architecture in order to meet the demand for more detailed images.

