(19)
(11) EP 2 394 750 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
14.12.2011  Patentblatt  2011/50

(21) Anmeldenummer: 11180055.3

(22) Anmeldetag:  16.06.2010
(51) Internationale Patentklassifikation (IPC): 
B08B 9/38(2006.01)
B08B 9/46(2006.01)
(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR
Benannte Erstreckungsstaaten:
BA ME RS

(30) Priorität: 02.09.2009 DE 102009039762

(62) Anmeldenummer der früheren Anmeldung nach Art. 76 EPÜ:
10166144.5 / 2292340

(71) Anmelder: Krones AG
93073 Neutraubling (DE)

(72) Erfinder:
  • Folz, Cornelia
    13353 Berlin (DE)
  • Momsen, Jan
    24943 Flensburg (DE)
  • Humele, Heinz
    93107 Thalmassing (DE)
  • Kirchhoff, Timm
    24977 Westerholz (DE)
  • Wasmuht, Klaus Karl
    91792 Ellingen (DE)
  • Hansen, Bernd
    25873 Rantrum (DE)
  • Islinger, Thomas
    93138 Lappersdorf (DE)
  • Weinholzer, Christoph
    94315 Straubing (DE)

(74) Vertreter: Grünecker, Kinkeldey, Stockmair & Schwanhäusser 
Leopoldstrasse 4
80802 München
80802 München (DE)

 
Bemerkungen:
Diese Anmeldung ist am 05-09-2011 als Teilanmeldung zu der unter INID-Code 62 erwähnten Anmeldung eingereicht worden.
 


(54) Verfahren zum Reinigen von Behältern und Reinigungsmaschine


(57) Bei einem Verfahren zum Reinigen von Behältern (B) in einer Reinigungsmaschine (W), in der in mehreren wenigstens eine Intensivreinigungsstation (5) umfassenden Stationen (1 bis 9) und entsprechenden Intensivreinigungsschritten mindestens ein Reinigungsmedium (RM) unter Druck zur Einwirkung gebracht wird, werden die Behälter (B) vor wenigstens einem Intensivreinigungsschritt hinsichtlich ihres Verschmutzungsgrades inspiziert und wird der jeweilige Verschmutzungsgrad detektiert, und wird der jeweilige Intensivreinigungsschritt individuell weitgehend an den detektierten Verschmutzungsgrad zumindest eines Behälters angepasst. In der Reinigungsmaschine ist stromauf der Intensivreinigungsstation (5) eine Inspektionsstation (4) mit zumindest einer Inspektionsvorrichtung (24) zum Detektieren unterschiedlicher Behälter-Verschmutzungsgrade angeordnet, mit der zur Anpassung wenigstens eines Intensivreinigungsschrittes an detektierte Verschmutzungsgrade die Reinigungsfähigkeit beim Intensivreinigungsschritt beeinflussende Einrichtungen (25, 26, 27, 28, 28', 35, 37, 38, 39) abhängig vom detektierten Verschmutzungsgrad steuerbar sind.




Beschreibung


[0001] Die Erfindung betrifft ein Verfahren gemäß Oberbegriff des Patentanspruchs 1 und eine Reinigungsmaschine gemäß Oberbegriff des Patentanspruchs 10.

[0002] Beispielsweise in der Getränkeindustrie ist es bekannt, zum Reinigen von Behältern, insbesondere Flaschen aus Kunststoff oder Glas, in Reinigungsmaschinen mit zumindest einer Intensivreinigungsstation in Verbindung mit Wasser Chemikalien, wie Laugen oder Säuren, in beträchtlichem Ausmaß direkt an oder in den Behältern einzusetzen und dabei gegebenenfalls auch mit Wärme zu arbeiten. Diese bekannten Verfahren erfordern pro zu reinigendem Behälter einen erheblichen Aufwand an Wasser und Chemikalien, sowie erheblichen Energieaufwand zur Wärmeerzeugung. Der hohe Wasserbedarf ist u.a. dadurch bedingt, dass die Chemikalien nicht nur mit bestimmter Verdünnung zum Reinigungseinsatz gebracht werden müssen, sondern auch rückstandsfrei wieder zu entfernen sind. Dies resultiert in einem enormen Kostenaufwand für die Reinigung der Behälter, und kann auch deshalb zu indirekten Zusatzkosten führen, falls aufgrund nicht vollständig rückstandsfrei beseitigter Chemikalien Rückrufaktionen für durch Chemikalienreste kontaminierte, in die Behälter abgefüllte Getränke erforderlich werden. In der Abfüll- und Verpackungstechnik beispielsweise von Mehrwegflaschen aus Glas oder Kunststoff ist die eingesetzte Reinigungsmaschine der größte Verbraucher an thermischer Energie und Chemikalien beispielsweise in Form von Laugen. Pro zu reinigende Flasche werden beispielsweise ca. 30 kJ an thermischer Energie und ca. 20 ml einer 2,5 %igen Lauge benötigt. Der jeweilige Intensivreinigungsschritt ist in der Regel auf das höchste Verschmutzungsniveau der Behälter abgestimmt, d.h., es wird vorausgesetzt, alle Behälter wären extrem und gleich stark verschmutzt, so dass Behälter mit geringerem oder ohne Verschmutzungsgrad, z.B. neue Behälter, stärker gereinigt werden als erforderlich, und dadurch Energie, Zeit und Reinigungsmedium vergeudet werden.

[0003] Beispiele alle Behälter mit maximaler Reinigungswirkung reinigender Reinigungsmaschinen sind zu finden in: GB 5471 A, FR 644 426 A und DE 197 053 C.

[0004] Aus EP 1 787 662 A ist eine modulare Wasch- und Sterilisiermaschine bekannt, in welcher in mehreren Stationen verschmutzte Objekte gereinigt und schließlich desinfiziert werden, insbesondere benutzte medizinische Instrumente. In einer Vorbehandlungsstation werden die verschmutzten Gegenstände in einem oder mehreren Reinigungsschritten mit kaltem Wasser vorgewaschen und/oder in einem Ultraschallbad behandelt. In wenigstens einer nachfolgenden Waschstation wird mit heißem Wasser, gegebenenfalls mit zugesetzten Detergenzien, gewaschen, und erfolgt dabei eine Heiß-Desinfektion mit nachfolgender Spülung und Trocknung in einer Trockenkammer. Die Waschvorgänge erfolgen in Waschkammem, in welche die verschmutzten Gegenstände mit Wagen transportiert werden. Die Heiß-Desinfektion erfolgt mit heißem Wasser bei einer Temperatur von beispielsweise 90°C bis 93°C. Da die Vorbehandlung weniger Zeitaufwand benötigt, als der Hauptwaschvorgang mit der Heiß-Desinfektion und der Trocknung, werden mehrere parallele Hauptwaschstationen eingesetzt.

[0005] In WO 2007/051473 A wird vorgeschlagen, Mehrweg-Glasflaschen mit einem durch ein Hochdruckmedium aufgestrahlten Glaspulver intensiv zu reinigen. Für Kunststoffflaschen ist Glaspulver extrem abrasiv.

[0006] Aus DE 196 28 842 A ist ein Verfahren zum Reinigen von metallenen Flaschen wie Tauchflaschen oder Pressluftflaschen bekannt, bei dem zur Innenreinigung eine Reinigungssubstanz mit kornartigen, abrasiven Partikeln von Glasschrott aus z.B. gehärtetem Glas, entweder trocken oder in einer Flüssigkeit, in die Flasche eingefüllt und dann die Flasche in eine Relativbewegung relativ zur Reinigungssubstanz versetzt wird. Die Relativbewegung umfasst eine Rotation der Flasche um ihre Längsachse und zusätzlich zyklische Kippbewegungen quer dazu.

[0007] Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art sowie eine Reinigungsmaschine zum Durchführen des Verfahrens anzugeben, die eine zuverlässige Reinigung mit reduziertem Energieaufwand ermöglichen. Teil der Aufgabe ist die Schaffung einer Reinigungsmaschine für Flaschen, welche gegebenenfalls nahezu ohne Wärme und weitestgehend oder gänzlich ohne Chemikalien und dennoch sehr kostengünstig betrieben werden kann.

[0008] Die gestellte Aufgabe wird verfahrensgemäß mit den Merkmalen des Patentanspruchs 1 und mit der Reinigungsmaschine mit den Merkmalen des Patentanspruchs 10 gelöst.

[0009] Da verfahrensgemäß zumindest die Reinigung der Behälter in einem für den erzielbaren Reinigungseffekt vorrangigen Intensivreinigungsschritt oder in zumindest einer Intensivreinigungsstation der Reinigungsmaschine entsprechend zuvor detektierter Verschmutzungsgrade erfolgt, werden Zeit, Energie und Reinigungsmedium eingespart und wird der Kostenaufwand für die Behälterreinigung erheblich reduziert. Der jeweils detektierte Verschmutzungsgrad oder Verschmutzungsgradabstufungen werden zur Anpassung des jeweiligen Intensivreinigungsschrittes vorrangig für den endgültigen Reinigungseffekt herangezogen.

[0010] In der Reinigungsmaschine steuert die Inspektionsvorrichtung die Intensivreinigung so in Anpassung an detektierte Verschmutzungsgrade, dass jeder Behälter zumindest im Wesentlichen so intensiv gereinigt wird, wie es aufgrund seines detektierten Verschmutzungsgrades gerade nötig ist. So wird vermieden, manche Behälter zu stark intensiv zu reinigen. Es wird sogar ein ausreichender endgültiger Reinigungseffekt erzielt, ohne nennenswerte thermische Energie oder/und Chemikalien einsetzen zu müssen. In der Vorreinigungsstation kann mit Vorweichen und Hochdruckwasserstrahlen chemikalienfrei gearbeitet werden. In der Intensivreinigungsstation wird z.B. chemikalienfreies körniges Reinigungsmaterial unter Druck verstrahlt, das entweder beim direkten Auftreffen eine intensive Reinigungswirkung entwickelt und/oder durch nachträgliche Relativbewegung und Reibungseinflüsse Verunreinigungen abträgt und abspült. In einer anschließenden Desinfektionsstation kann ausreichende Sterilität der intensiv gereinigten Behälter erzielt werden.

[0011] Zweckmäßig wird der Intensivreinigungsschritt durch Verändern des Drucks und/oder der Mischung des aus einem Reinigungsmaterial unter einem Trägermedium gebildeten Reinigungsmediums und/oder der Verweildauer in mindestens einer Intensivreinigungsstrecke und/oder von relativen Dreh- und/oder Schüttelbewegungen und/oder durch Wiedereinschleusen bereits intensiv gereinigter Behälter und/oder Ausschleusen von Behältern ohne detektierbarem Verschmutzungsgrad angepasst.

[0012] Zweckmäßig werden zur Einstellung eines auf die für den endgültigen Reinigungseffekt erzielbare Reinigungsfähigkeit des Reinigungsmediums oder bei dem Intensivreinigungsschritt begrenzten niedrigeren Verschmutzungsniveaus zumindest zu stark verschmutzte detektierte Behälter vor dem Intensivreinigungsschritt ausgesondert, vorzugsweise auch nicht mehr brauchbare und/oder beschädigte Behälter. Somit besteht ein wichtiger Aspekt darin, bei der Intensivreinigung ein z.B. auf die Verfahrenseffizienz oder die Reinigungswirkung des Reinigungsmediums bei der Intensivreinigung bewusst begrenztes Verschmutzungsniveau herzustellen, indem z.B. als ungeeignet detektierte Behälter ausgesondert werden. Dies wird zweckmäßig nach der Vorreinigung durchgeführt, um höhere Detektionsgenauigkeit zu erzielen.

[0013] Zweckmäßig werden Behälter mit unterschiedlich detektierten Verschmutzungsgraden abhängig vom jeweiligen Verschmutzungsgrad in eine von mehreren unterschiedlich langen Intensivreinigungsstrecken eingeführt und darin entsprechend ihres Verschmutzungsgrades zumindest innenseitig intensiv gereinigt. Um die Intensivreinigung so effizient wie möglich auszuführen, ist es zweckmäßig, wenn die Behälter abhängig vom nach der Vorreinigung besser detektierbarem Verschmutzungsniveau über eine erste oder wenigstens eine zweite und längere Zeitdauer intensiv gereinigt werden. Je länger die Intensivreinigung durchgeführt wird, desto zuverlässiger werden auch hartnäckige Verunreinigungen entfernt. Dies bedeutet aber, dass jeder Behälter nur gerade so lange wie nötig intensiv gereinigt wird.

[0014] Besonders zweckmäßig wird zumindest in der Intensivreinigungsstation, z.B. mit Druckwasser oder Luft als Trägermedium und von dem Trägermedium geförderten körnigen Eis, Salz, Nussschalengranulat oder Kunststoffmaterial strahlgereinigt. Das körnige Material kann wieder verwendbar oder rückstandsfrei abbaubar oder wieder aufbereitbar sein, und entwickelt für Verunreinigungen zunächst eine intensive abrasive Reinigungswirkung, und zwar auch ohne Einsatz von Wärme.

[0015] Zweckmäßig wird, z.B. mit in Druckluft oder Druckwasser gefördertem, körnigem Eis gereinigt. Mit der abrasiven Reinigungswirkung tritt ein besonders effizienter Kälteschock für die Verunreinigungen auf, durch den Verunreinigungen verspröden und kontrahieren und somit leicht ablösbar und entfernbar sind. Hierfür wird zweckmäßig als körniges Eis entweder Trockeneis aus Kohlendioxid oder Wassereis (Slurry-Eis) aus chemikalienfreiem Wasser aufgestrahlt. Das Trockeneis wird bei der Intensivreinigung vollständig rückstandsfrei in Kohlendioxid umgewandelt, das gegebenenfalls abgesaugt wird. Das Wassereis, das bei der Intensivreinigung schmilzt, spült abgelöste Verunreinigungen weg. Bei etwa gleichem Energiebedarf ist der Wasserbedarf mit körnigem Eis sowie der Abwasseranfall im Vergleich zu herkömmlichen wasserbasierten Verfahren mit Chemikalien um 90 % bis 95 % geringer. Es entstehen ferner kein Schaden auch an empfindlichen Oberflächen, da die Eiskörner schonend einwirken, und auch kein Staub, der gesondert entfernt werden müsste. Gegenüber einem Wasserstrahl-Hochdruckreiniger mit einem Wasserverbrauch bis zu 500 Liter pro Stunde werden bei der Reinigung mit Wassereis, z.B. Slurry-Eis, nur 55 Liter Wasser pro Stunde verbraucht. Der intensive Reinigungserfolg mit beispielsweise als Pellets ausgebildeten Eiskörnern beruht auf dem Abkühlungs- und Versprödungseffekt und dem mechanischen abrasiven Effekt. Speziell bei Trockeneis entstehen nach der Intensivreinigung keinerlei Flüssigkeitsrückstände. Dabei werden z.B. bei der Intensivreinigung 1,0 mm bis 5,0 mm, vorzugsweise etwa 2,0 mm große Eiskörner, vorzugsweise Pellets, mit einem Druck von etwa 3,0 bar bis 15,0 bar, vorzugsweise etwa 5,0 bar und/oder einer Geschwindigkeit von etwa 150 m/s bis 500 m/s, vorzugsweise etwa 300 m/s, aufgestrahlt. Dies führt innerhalb relativ kurzer Zeit zu einem intensiven Reinigungseffekt, vorzugsweise, im Innenbereich der Behälter und im Mündungsbereich.

[0016] Auch ein Nussschalengranulat kann mittels eines Trägermediums zur Einwirkung auf die Behälteroberfläche gebracht, derart, dass das Nussschalengranulat eine Relativbewegung an der Behälteroberfläche ausführt. Nussschalengranulat ist nicht nur ein kostengünstiges, "nachwachsendes" Reinigungsmedium, sondern erbringt auch eine überraschend effiziente Reinigungswirkung. Nussschalengranulat ist nahezu weltweit in großen Mengen und Spezifikationen erhältlich und universell sowohl zur Reinigung von aus Glas bestehenden Behältern als auch Kunststoffbehältern, wie PET-Flaschen, hervorragend geeignet, da es eine moderat abrasive Wirkung entfaltet. Ferner ist Nussschalengranulat gegebenenfalls mehrfach wieder verwendbar und in jedem Fall einfach biologisch abbaubar. Mit Nussschalengranulat lassen sich nicht nur Etiketten, Etikettenreste und Leim von der Außenoberfläche sondern auch z.B. Standardverschmutzungen von der Innenoberfläche der Behälter rasch und effizient entfernen. Dabei wird Nussschalengranulat mit einer Partikelgröße von etwa 0,1 mm bis etwa 1,0 mm, vorzugsweise bis etwa 0,8 mm, zur Einwirkung auf die äußere und/oder innere Behälteroberfläche gebracht, gegebenenfalls entweder trocken oder mit Wasser als Trägermedium.

[0017] Nach einem weiteren, wichtigen Gedanken wird das körnige Material, insbesondere das Eis, mit dem Trägermaterial in den Behälter unter Druck eingestrahlt, um die Innenoberfläche abzustrahlen und wird, vorzugsweise, anschließend oder gleichzeitig zwischen dem Behälter und den Druckstrahlen eine relative Rotationsbewegung erzeugt, und wird die abgestrahlte Innenoberfläche mit dem körnigen Material und dem Trägermaterial nochmals bearbeitet, gespült und endgültig gesäubert.

[0018] Bei einer zweckmäßigen Ausführungsform wird das körnige Material vor dem Intensivreinigungs-Verfahrensschritt desinfiziert, um keine Keime von außen einzutragen. Um die Kosten für den Materialeinsatz so gering wie möglich halten zu können, ist es zweckmäßig, überschüssige und/oder gebrauchte Reinigungsmedien zu sammeln und zumindest weitestgehend wieder aufzubereiten. Dies gilt vor allem für Wasser als das Trägermedium oder Schmelzwasser aus dem Eis, das der entfernten Verunreinigungen entledigt und gereinigt und im Kreislauf wieder eingesetzt wird. Dabei ist es wichtig, die Intensivreinigung der Behälter zumindest im Wesentlichen ohne Wärmezufuhr zu dem Reinigungsmedium bzw. den Behältern durchzuführen, um Kosten zu sparen.

[0019] Bei einer zweckmäßigen Verfahrensvariante wird zur Reinigung der Behälter-Innenoberfläche der Behälter mit zumindest dem körnigen Material zumindest teilgefüllt, vorzugsweise mit einem Gemisch von Wasser und Nussschalengranulat oder nur Nussschalengranulat und wird der Behälter geschüttelt, um die abrasive Wirkung an der Innenoberfläche auszuüben. Die Schüttelbewegung kann gegebenenfalls mit einer Rotationsbewegung des Behälters überlagert werden. Standardverschmutzungen der Innenoberfläche werden so besonders effizient und rasch entfernt.

[0020] Bei einer konkreten Verfahrensvariante wird jeder Behälter in wenigstens einem Vorreinigungsschritt mit chemikalienfreiem Wasser benetzt und werden Verunreinigungen eine vorbestimmte Zeitdauer vorgeweicht. Hauptsächlich äußere Verunreinigungen werden dann durch Hochdruck-Wasserstrahlen aus chemikalienfreiem Wasser entfernt. Dies wird vor allem an der Außenseite des Behälters, z.B. beim Etikett oder einer Etikettenhülse durchgeführt. Nachfolgend wird der Behälter wenigstens eine weitere, ebenfalls verschmutzungsgradabhängig vorbestimmte Zeitdauer durch Druckstrahlen mit dem körnigen Material intensiv gereinigt, und anschließend mit chemikalienfreiem Wasser gespült. Der Behälter ist dann bereits sauber, jedoch wird aus Hygienegründen abschließend eine chemikalienfreie Desinfektion des Behälters, zumindest innen und im Mündungsbereich, vorgenommen. Dann ist der Behälter, vorzugsweise eine Mehrwegflasche, zur Befüllung bereit.

[0021] Die chemikalienfreie Desinfektion lässt sich durch Applizieren und Verbrennen von Gas oder einer rückstandsfrei verbrennbaren Substanz vornehmen, d.h. durch eine Flammdesinfektion, bei der geringfügig Energie zur Zündung verbraucht wird. Alternativ kann mit Ozon effizient desinfiziert werden, das Energie-Impulsen unterworfen werden kann, auch um zuverlässig in unschädliche Bestandteile aufgezehrt zu werden.

[0022] Sicherheitshalber können schließlich selbst vor der Desinfektion noch unvollständig gereinigte Behälter durch Inspizieren detektiert und entweder ausgesondert, wieder zur Vorreinigung oder zur Intensivreinigung zurückgefördert werden. Dadurch lässt sich die Fehlerquote an nicht ausreichend gereinigten Behältern nahezu bis auf Null reduzieren.

[0023] Bei einer zweckmäßigen Ausführungsform der Reinigungsmaschine umfassen die steuerbaren Einrichtungen zum Anpassen des jeweiligen Intensivreinigungsschrittes an detektierte Verschmutzungsgrade zumindest eine aus folgender Gruppe: Einrichtungen zur Änderung von Druck, Menge, Dosis, Mischung des Reinigungsmediums, von Zeitdauer und/oder Verweildauer zu reinigender Behälter in der Intensivreinigungsstation, von Bewegungen einer Strahlanlage und/oder Strahlpistole und/oder Strahldüsen, von Behälter-Rotier- und/oder Schüttelbewegungen und/oder zumindest eine Weiche zwischen unterschiedlich langen Intensivreinigungsstrecken und/oder Stationen zur Aussonderung und/oder Rückführung von Behältern.

[0024] Bei einer zweckmäßigen Ausführungsform der Reinigungsmaschine ist der Intensivreinigungsstation ein Vorratsbehälter für körniges Eis, Salz, Nussschalengranulat oder Kunststoffmaterial, insbesondere für Eispellets, sowie eine Dosiervorrichtung für das körnige Material, eine Strahlanlage mit wenigstens einer Strahlpistole und wenigstens einer Strahldüse zugeordnet, wobei die Strahldüse und/oder die Strahlpistole, vorzugsweise und zur Steigerung bzw. Anpassung der Reinigungswirkung, gesteuert bewegbar und/oder rotierbar angeordnet sein kann bzw. können. Es kann optimal zweckmäßig sein, für das körnige Material eine Desinfektionsvorrichtung vorzusehen, um bei der Intensivreinigung keine Keime von außen einzutragen. Der Vorratsbehälter, die Dosiervorrichtung und die Druckstrahlanlage sind zur Bevorratung und Verarbeitung des jeweiligen körnigen Materials speziell ausgebildet. Diese materialspezifische Auslegung trägt dem Verarbeitungsverhalten des körnigen Materials, z.B. Nussschalengranulats, speziell Rechnung.

[0025] Bei einer weiteren Ausführungsform weisen zumindest die Vorreinigungsstation und die Intensivreinigungsstation Flüssigkeits-Sammeleinrichtungen auf, die an Reinigungs- und Wiederaufbereitungseinrichtungen angeschlossen sein können, welche direkt in der Reinigungsmaschine enthalten oder außerhalb derselben platziert sind. Auf diese Weise wird zumindest Wasser im Kreislauf mit nur vernachlässigbar geringen Verlusten an tatsächlich abzuführendem Abwasser eingesetzt. Abgelöste Verunreinigungen werden ausgesondert und beseitigt.

[0026] Bei einer zweckmäßigen Ausführungsform sind mindestens zwei unterschiedlich lange Intensivreinigungsstrecken in der Intensivreinigungsstation parallel vorgesehen, und über Weichen verknüpft. Die Weichen werden von einer Behälter-Inspektionsstation gesteuert, abhängig vom detektierten Verschmutzungsniveau der zur Intensivreinigungsstation geförderten Behälter. Die unterschiedlich langen Intensivreinigungsstrecken ermöglichen die Intensivreinigung der Behälter z.B. parallel und gleichzeitig in Gruppen mit unterschiedlichen Verschmutzungsgraden, an die der jeweilige Intensivreinigungsschritt angepasst ist, damit jeder Behälter individuell nur so intensiv gereinigt wird wie gerade nötig. Die Förderstrecke in der Reinigungsmaschine kann im Übrigen kontinuierlich laufen, oder Abschnitte unterschiedlicher Bewegungsgeschwindigkeiten umfassen, z.B. mit Pufferstrecken, und Hilfsförderstrecken zum Hängendtransport der Behälter, falls die Hauptförderstrecke zum Stehendtransport ausgelegt sein sollte. Beim Injizieren oder Abstrahlen mit dem körnigen Material können sich Komponenten der Strahlanlage gegebenenfalls mitbewegen, oder es werden die Behälter gegebenenfalls kurzzeitig lokal angehalten.

[0027] Bei einer weiteren Ausführungsform ist zwischen der Intensivreinigungsstation und der Desinfektionsstation und/oder zwischen der Vorreinigungsstation und der Intensivreinigungsstation eine zur Aussonderung und/oder Rückführung eingesetzte Inspektionsstation vorgesehen. Die Inspektionsstation zwischen der Intensivreinigungsstation und der Desinfektionsstation kann dazu benutzt werden, bis dahin nicht ausreichend gereinigte Behälter auszusondern, oder wieder in die Vorreinigungsstation oder in die Intensivreinigungsstation zurückzuführen.

[0028] Die Reinigungsmaschine kann als Rundläufer oder als Linearläufer ausgebildet sein, z.B. abhängig von dem zur Verfügung stehenden Platz.

[0029] Ferner können in der Reinigungsmaschine zumindest in der Intensivreinigungsstation Rotationsvorrichtungen für die Behälter und/oder die Strahldüsen oder Strahlpistolen und/oder wenigstens eine Behälterschütteleinrichtung, vorzugsweise für stehende oder hängende oder liegende Behälter, vorgesehen sein, um zwischen den Behältern und dem eingefüllten Reinigungsmedium zwecks Intensivierung oder Verlängern der Reinigung eine relative Drehbewegung zu erzeugen, und können stromauf und/oder stromab der Intensivreinigungsstation bzw. gegebenenfalls auch stromauf der Vorreinigungsstation Behälter-Wendevorrichtungen vorgesehen sein. Die Wendevorrichtungen ändern die Lage der Behälter zwischen einer hängenden Lage und einer überkopfstehenden Lage, und umgekehrt, um für die unterschiedlichen Reinigungsvorgänge optimale Zugangsmöglichkeiten für das Reinigungsmedium zu schaffen, um auch vor der abschließenden Desinfektion die Behälter zu entleeren bzw. zu spülen und für die Inspektion und/oder die Desinfektion sauber und kaum mehr benetzt darzubieten. Beispielsweise lässt sich so in kurzer Zeit eine Standardverschmutzung der Innenoberfläche mit einem Gemisch von Wasser und Nussschalengranulat, vorzugsweise mit einem Mischungsverhältnis von etwa 50 : 50, ablösen und nachher bequem austragen. Die Behälterschüttelvorrichtung kann so ausgebildet sein, dass gegebenenfalls die Schüttelbewegung mit einer Rotationsbewegung des Behälters überlagert wird. Je nach Behältertyp kann dieser bei der Intensivreinigung stehend oder hängend oder liegend gereinigt werden.

[0030] Besonders zweckmäßig wird mit Ozon desinfiziert, das ohne Wärmeeinsatz wirkt, und rückstandsfrei zerfällt. Hierzu kann ein mit Ozon gespeister Applikator vorgesehen sein, und, vorzugsweise, ein z.B. piezoelektrischer Energie-Impuls-Generator für das Ozon.

[0031] Bei der Behälterreinigung in einer Reinigungsmaschine werden im Wesentlichen keine oder überhaupt keine Chemikalien eingesetzt, sondern es kann mit chemikalienfreien Reinigungsmedien gearbeitet werden, die ihre Reinigungswirkung nicht auf chemischem, sondern auf anderem z.B. physikalischem und/oder mechanischem Weg entwickeln. Dies kann z.B. körniges Material sein, das eine abrasive Wirkung hat, wenn es unter Druck aufgestrahlt wird. Das körnige Material löst Verunreinigungen ab, fördert die abgelösten Verunreinigungen weg und lässt sich rückstandsfrei wieder entfernen. Ist das körnige Material Eis, dann kommt zur abrasiven Reinigungswirkung noch eine Kälteschockwirkung hinzu, die die Reinigung intensiviert. Alle Verfahrensschritte können im Wesentlichen ohne oder nur mit wenig zugeführter Wärme durchgeführt werden, um schließlich ein mindestens genauso gutes Reinigungsresultat zu erzielen wie es bisher nur mit dem Einsatz von viel Wasser, viel Chemikalien, und viel thermischer Energie möglich war. Beim Arbeiten mit körnigem Material im Inneren des Behälters wird das körnige Material mit Druck injiziert, bis ein bestimmter Füllungsgrad erreicht ist. Beim Injizieren können die Innenwände abgestrahlt werden. Nachfolgend kann bei weiterer Förderung des Behälters die Füllung mit dem körnigen Material einen zusätzlichen reibungsbehafteten Reinigungseffekt erzeugen, indem zwischen dem Behälter und der Füllung eine relative und gegebenenfalls kräftige Drehbewegung erzeugt wird, die zu einer turbulenten und reinigenden Relativströmung entlang der Innenwand des Behälters führt, bei der durch die Zentrifugalkraft auch das körnige Material nochmals in innigen Reinigungskontakt mit den Innenwänden gebracht wird und abgelöste Verunreinigungen bis zur Entfernung in Bewegung gehalten bleiben. Nussschalengranulat im Reinigungsmedium ist nicht nur höchst effizient, sondern stammt von in praktisch unbegrenztem Ausmaß nachwachsenden Rohstoffen, ist einfach recycelbar und in jedem Fall problemlos biologisch abbaubar. Nussschalengranulat lässt sich nicht nur zum Aufstrahlen einsetzen, sondern auch in trockener oder mit Wasser versetzter Befüllung der Behälter, die an der Innenoberfläche durch Abstrahlen und/oder auch durch Schütteln und/oder Rotieren gereinigt werden.

[0032] Der Erfindungsgegenstand wird anhand der Zeichnungen erläutert. Es zeigen:
Fig. 1
eine Schemadarstellung einer Reinigungsmaschine für Behälter, hier Flaschen aus Kunststoff oder Glas,
Fig. 2
einen vergrößerten Ausschnitt der Reinigungsmaschine von Fig. 1, und
Fig. 3 bis 5
Schemadarstellungen zur Verdeutlichung eines Verfahrensschrittes bei der Intensivreinigung der Behälter.


[0033] Eine in den Fig. 1 und 2 gezeigte Reinigungsmaschine W dient beispielsweise zum Reinigen von Behältern B, die zumindest vorwiegend nach dem Mehrwegprinzip von Verbrauchern zurückgegeben und neuerlich befüllt werden. Speziell kann es sich hierbei um Kunststoff- oder Glasflaschen für die Getränkeindustrie handeln, für die zur Neubefüllung ein sehr hoher Reinigungsstandard und Hygienestandard einzuhalten sind.

[0034] Die in den Fig. 1 und 2 gezeigte Reinigungsmaschine W ist als Linearläufer ausgebildet, könnte alternativ aber auch als Rundläufer ausgebildet sein.

[0035] In der Reinigungsmaschine W sind in Förderrichtung der Behälter B mehrere Stationen 1 bis 10 hintereinandergeschaltet. Durch alle Stationen erstreckt sich eine Förderstrecke 11 zum Stehendtransport, der parallel Hilfsförderabschnitte 29 beispielsweise zum Hängendtransport oder Überkopftransport zugeordnet sind.

[0036] Die Station 1 ist eine Auspack- und Vorweichstation. Die Behälter B werden mittels eines Greifers 13, 16 beispielsweise aus Transportgebinden 12 gehoben und auf die Förderstrecke 11, z.B. ein Förderband, gestellt, derart, dass die Behältermündungen nach oben weisen. Von einer Vorweicheinrichtung 15 mit Wassersprühdüsen 22' werden die Behälter sowohl auf der Außenoberfläche als auch innen mit Wasser benetzt, das Raumtemperatur haben kann und chemikalienfrei ist, um innen und/oder außen vorhandenen Schmutz und eventuelle Etiketten oder Etikettenhülsen vorzuweichen.

[0037] Im Einlauf der Station 2, die eine Vorreinigungsstation ist, ist eine Vorweichstrecke 3 vorgesehen, der eine Wendevorrichtung 18 zugeordnet ist, die die Behälter auf der Hilfsförderstrecke 29 auf dem Kopf stehend platziert, so dass das zum Vorweichen eingebrachte Wasser gegebenenfalls mit gelöstem Schmutz ablaufen kann. In der Station 2 sind zumindest oberseitig und unterseitig Hochdruck-Strahldüsen 22, gegebenenfalls beweglich, angeordnet, die mit Hochdruck-Wasserstrahlen ("Kärchern") Schmutz, Leim und Etiketten entfernen. Das ablaufende Wasser wird mit dem abgelösten Verunreinigungen von Sammeleinrichtungen 17 aufgefangen, einer Vorreinigungseinrichtung 23 zugeführt und dann in einer Hauptreinigungsvorrichtung 20 gereinigt und über eine Leitung 14 wieder in den Kreislauf geführt. In der Vorreinigungsvorrichtung 23 können Feststoffe und feste Verschmutzungen bei 19 abgesondert werden. In der Hauptreinigungsvorrichtung 20 kann "echtes" Abwasser bei 21 abgeführt werden.

[0038] Im Auslauf der Vorreinigungsstation 2 ist eine weitere Wendevorrichtung 18 vorgesehen, die die Behälter B um 180° wendet und auf der Förderstrecke 11 abstellt, ehe die vorgereinigten Behälter B in die nächste Station 4 einlaufen, die mittels einer Inspektionsvorrichtung 24 u.a. zur Verschmutzungsdifferenzierung dient.

[0039] Die nächste Station 5 ist eine Intensivreinigungsstation, in der die Behälter B mit wenigstens einem zumindest weitestgehend chemikalienfreien Reinigungsmedium intensiv gereinigt werden. Im Verlauf der Förderstrecke 11 in der Station 5 können drei Weichen 25, 26 und 27 vorgesehen sein. Die Weiche 25 wird beispielsweise von der Inspektionsvorrichtung 24 gesteuert, um ein vorbestimmtes detektiertes Verschmutzungsniveau aufweisende, nicht mehr zu reinigende, fehlerhafte oder nicht mehr verwertbare Behälter auszusondern und beispielsweise in einen Sammler 33 zu fördern. Die ein Stück weiter stromab platzierte Weiche 26 ist wie auch die noch weiter stromab liegende Weiche 27 einer zur hier geraden Intensivreinigungsstrecke 11a in der Station 5 parallelen aber längeren zweiten Intensivreinigungsstrecke 11b zugeordnet. Zumindest die Weiche 26 kann von der Inspektionsvorrichtung 24 gesteuert werden, um abhängig vom detektierten Verschmutzungsniveau, das niedriger ist, als das vorher zum Aussondern detektierte Verschmutzungsniveau, Behälter individuell über die längere Intensivreinigungsstrecke 11b oder die kürzere Intensivreinigungsstrecke 11a zu fördern. Zwischen den Weichen 26, 27 können die aufeinanderfolgend geförderten Behälter beabstandet werden, so dass aus der zweiten Intensivreinigungsstrecke 11 b wieder zurückkehrende Behälter problemlos in die erste Intensivreinigungsstrecke 11a einschleusbar sind.

[0040] In der Station 5 ist eine Strahlanlage A angeordnet, die beispielsweise körniges Material R verarbeitet, das z.B. direkt oder durch ein Trägermedium wie Luft oder Wasser mit hohem Druck und hoher Geschwindigkeit zumindest abrasiv auf die Behälter B zur Einwirkung gebracht wird, vorzugsweise im Inneren und im Mündungsbereich der Behälter. Die Hochdruck-Strahlanlage A wird näher anhand der Fig. 2 erläutert. Stromab der Strahlanlage A können Einrichtungen 28 vorgesehen sein, um die Behälter in eine Rotationsbewegung zu versetzen, während sie gefördert werden. Die so erzeugte Relativbewegung zwischen der Füllung des Reinigungsmediums und dem Behälter dient der weiteren Reinigung.

[0041] Die beispielsweise stromab der Strahlanlage A vorgesehenen Einrichtungen 28 können additiv mit Einrichtungen 28' kombiniert werden, die die Behälter in eine Schüttelbewegung versetzen, oder können alternativ durch die Einrichtungen 28' ersetzt sein, die die mit zumindest einer Teilbefüllung entweder nur trockenen körnigen Materials R oder in einem Gemisch mit einem Trägermedium wie Wasser zur Innenreinigung in eine Schüttelbewegung versetzen. Das Schütteln der Behälter zur Innenreinigung ist besonders bei Verwendung von Nussschalengranulat als das körnige Material R zweckmäßig.

[0042] Die Station 6 enthält eine weitere Wendevorrichtung 18, in der die stehend angeförderten Behälter B in eine Überkopflage gebracht werden, um sie zu entleeren. Die nachfolgende Station 7 ist eine Spülstation, in der die überkopfstehenden Behälter mit Wasser bzw. Hochdruckwasser abschließend innen und außen gespült werden. Den Stationen 6, 7 ist wie der Station 2 eine Vorreinigungsvorrichtung 23 und eine Hauptreinigungsvorrichtung 20 für aufgefangenes Wasser und gegebenenfalls körniges Material R oder geschmolzenes Eis nachgeschaltet, die gereinigtes Wasser, hier der Strahlanlage A, zuführt und in Sammeleinrichtungen 17 aufgefangenes Wasser von Verunreinigungen trennt.

[0043] Die Station 8 enthält eine weitere Inspektionsvorrichtung 24 zum automatischen Detektieren einer eventuellen Restverschmutzung, wobei eine nicht gezeigte Aussonderungsstation und/oder Rückführvorrichtung von der Inspektionsvorrichtung 24 steuerbar ist, um nicht ausreichend gereinigte Behälter auszusondern oder in die Station 2 oder in die Station 5 zurückzuführen.

[0044] Die Desinfektionsstation 9, beispielsweise zur Flammdesinfektion der z.B. überkopf geförderten Behälter B, enthält Düsen 30, die aus einem Reservoir 31 mit einem Gas wie z.B. Ozon oder einer rückstandsfrei verbrennbaren Substanz gespeist werden, um die Behälter zu füllen, ehe eine Zündeinrichtung 32 eine Verbrennung initiiert, um mit den entstehenden Flammen die Desinfektion der Behälter durchzuführen, vor allem innen und im Mündungsbereich auch außen. Zweckmäßig wird in der Desinfektionsstation 9 mit Ozon gearbeitet, das, vorzugsweise, durch wenigstens einen Energieimpuls, z.B. auf piezoelektrischem Weg, beaufschlagt werden kann, um nachhaltig zu desinfizieren, und sich dabei rückstandsfrei aufzehrt (z.B. in Sauerstoff und freie Radikale zerfällt).

[0045] An die Desinfektionsstation 9 schließt sich in der Station 10 eine weitere Wendevorrichtung 18 an, die die Behälter B aus der Überkopflage wieder zum Stehendtransport auf die Förderstrecke 11 überführt.

[0046] Fig. 2 verdeutlicht schematisch die Stationen 4 und 5 der Reinigungsmaschine W von Fig. 1. Bei dieser Ausführungsform der Reinigungsmaschine W ist die Station 5 mit den hier zwei (oder mehreren) unterschiedlich langen Intensivreinigungsstrecken 11a, 11b für eine Intensivreinigung unter Verwendung eines körnigen Materials R konzipiert. Dieses körnige Material R sollte eine bestimmte Korngröße haben, rückstandsfrei zugesetzt werden können, oder sich sogar bei der Intensivreinigung rückstandsfrei aufbrauchen, z.B. als Slurry-Eis vollständig zu Wasser schmelzen, keinen Staub erzeugen, und die Oberfläche, speziell im Mündungsbereich oder im Inneren der Behälter nicht verletzen, jedoch z.B. vorgeweichte, Verunreinigungen zumindest mit Aufprallenergie und/oder durch eine abrasive Einwirkung vollständig ablösen.

[0047] Das körnige Material R kann aus Metall, Kunststoff, Sand, Salz oder dgl. bestehen, wobei Salz den Vorteil bietet, sich zumindest in Kontakt mit etwas Wasser allmählich aufzulösen. Alternativ ist das körnige Material R in Fig. 2 Eis, und zwar entweder Trockeneis aus Kohlendioxid oder Wassereis (Slurry-Eis) aus chemikalienfreiem Wasser, beispielsweise in Pelletform mit einer bestimmten Korngröße.

[0048] Die Eiskörner werden zweckmäßig direkt oder mit einem Trägermedium unter Druck gefördert und appliziert. Das Trägermedium M ist entweder Druckluft oder Druckwasser. Die Eisstrahl-Technik vereinigt mehrere Vorteile. Die etwa 2,0 mm großen Eiskörner oder Partikel werden, z.B. mit Druckluft, bei einem Druck von etwa 5 bar auf die zu reinigende Oberfläche aufgebracht bzw. in die Behälter injiziert. Die Eiskörner reinigen dabei durch ihre Aufprallenergie und Abrasion auf mechanischem Weg. Sie schmelzen allmählich und spülen abgelöste Verschmutzungen von der Oberfläche ab. Trockeneis aus Kohlendioxid verdunstet rückstandsfrei. Die Eisstrahl-Technik kann mit Wassereis (Slurry-Eis) sogar in geschlossenen Räumen eingesetzt werden. Bei Trockeneis empfiehlt sich die Absaugung des entstehenden Kohlendioxids. Selbst empfindliche Oberflächen werden durch die relativ weichen Eiskörner bei der Intensivreinigung nicht beschädigt. Es entsteht deshalb auch kein Staub, der gesondert entfernt werden müsste. Wie bereits erwähnt, sind in der Station 5 Rotiervorrichtungen 28 vorgesehen, um die mit dem Reinigungsmedium (körniges Material R und Trägermedium M, wie Luft oder Wasser) zumindest teilgefüllten Behälter entweder in einer Drehrichtung oder in wechselnden Drehrichtungen zu rotieren, während sie weitergefördert werden, so dass zwischen der Reinigungsmedium-Füllung in jedem Behälter und der Behälterinnenwand eine relative Drehbewegung entsteht, bei der angelöste oder weitgehend gelöste Verschmutzungen endgültig abgespült und in Bewegung gehalten werden, und bei der vor allem das körnige Material R die Innenwand weiterhin abrasiv beaufschlagt und zusammen mit dem Trägermaterial spült, wobei das körnige Material durch Zentrifugalkraft nach außen und in den Kontakt mit der Innenwand gebracht wird. Somit kommt das körnige Material zweifach zur Wirkung, zunächst beim Druckstrahlen aus der Strahlpistole 40, und danach bei der Rotationsbewegung.

[0049] Im Fall von Eis als körniges Material R (Trockeneis oder Wassereis) hat das körnige Material ebenfalls mindestens zwei Reinigungseffekte. Neben der abrasiven Wirkung, d.h. aufgrund der Aufprallenergie beim Abstrahlen der Innenwand des Behälters B bzw. beim Injizieren in den Behälter, ziehen sich getroffene Verunreinigungen, falls sie nicht sofort aufgebrochen und abgelöst worden sind, durch die starke Unterkühlung (im Fall von Trockeneis aus Kohlendioxid beispielsweise -79°C) zusammen und verspröden. Durch entstehende Thermospannungen und unter dem Einfluss der Aufprall- oder Bewegungsenergie der Eiskörner lösen sich dann diese Verschmutzungen leicht von der Oberfläche. Zumindest die nachfolgend auftreffenden Eiskörner tragen diese schon teilgelösten Verunreinigungen vollständig ab. Im Fall von Trockeneis löst sich dieses nach dem Auftreffen vollständig in Gas auf, das in die Atmosphäre zurückgeht, aus der es ursprünglich gewonnen wurde. Bei Trockeneis gibt es praktisch keine Flüssigkeitsrückstände, so dass der abrasive Reinigungseffekt beim Abstrahlen, gegebenenfalls mit mehreren Bewegungszyklen der Strahldüsen 41 bzw. Strahlpistole 40 bis zum Grund des Behälters, sehr effizient ist. Es könnte gegebenenfalls auch zusätzlich Wasser eingesetzt werden. Im Fall von Körnern aus Wassereis, direkt aufgestrahlt oder mit Druckluft oder Druckwasser, schmilzt dieses allmählich, wodurch abgelöste Verunreinigungen effizient weggespült und in einer Zirkulationsbewegung im Behälter gehalten werden, und sich nicht nochmals absetzen.

[0050] Der Station 5 in Fig. 2, die die Intensivreinigungsstation der Reinigungsmaschine W beispielsweise von Fig. 1 repräsentiert, weist einen Vorratsbehälter 34 für körniges Material R, insbesondere Eispellets wie Slurry-Eis, auf oder ist an einen solchen angeschlossen. Der Vorratsbehälter 34 kann isoliert und/oder gekühlt sein. Vom Vorratsbehälter 34 erstreckt sich eine Zufuhr über eine Dosiervorrichtung 35 zu einer Mischvorrichtung 37, an die auch eine Zufuhr 38 für das Trägermedium M, hier Wasser beispielsweise aus der Station 6, 7 oder chemikalienfreies Reinwasser angeschlossen ist. In dieser Zufuhr 38 kann eine Druck- und/oder Mengenregeleinrichtung 39 oder dgl. enthalten sein. Im Fall von Trockeneis aus Kohlendioxid oder Slurry-Eis kann der Mischvorrichtung 37 Druckluft, beispielsweise von einem Kompressor, über eine Druckregel- und Mengeneinstellvorrichtung zugeführt werden.

[0051] Um sicherzustellen, dass bei der Intensivreinigung keine zusätzlichen Keime eingetragen werden, kann eine Desinfektionsvorrichtung 36 zumindest für das körnige Material R vorgesehen sein.

[0052] Von der Mischvorrichtung 37 wird zumindest eine Strahl pistole 40 gespeist, die, vorzugsweise, spezielle Hochleistungsdüsen 41 besitzt, und, gegebenenfalls, in Richtung der Pfeile in Fig. 2 relativ zur Förderstrecke 11, 11a linear und/oder rotatorisch verstellbar ist.

[0053] Für den Fall, dass zumindest zwei unterschiedlich lange Intensivreinigungsstrecken 11a, 11 b und die Weichen 27 vorgesehen sind, ist stromab der Strahlpistole 40 (zweckmäßigerweise einer Gruppe Strahlpistolen) eine Vereinzelungsvorrichtung 42 vorgesehen, um die aufeinanderfolgend entlang der Förderstrecke 11 transportierten Behälter B zu beabstanden.

[0054] Beispielsweise fallen in Fig. 2 die Eiskörner aus dem Vorratsbehälter 34 über die Dosiervorrichtung 35 in einen Ausgangskrümmer der Strahlpistole 40, die mit Druckluft gespeist wird und einen relativ schonenden Ansaugdruck für die Eiskörner erzeugt. Durch die Druckluft werden die Eiskörner auf etwa 300 m/s beschleunigt. Durch die exakt berechneten Hochleistungs-Strahldüsen 41 wird nun das Reinigungsmedium aus den Eiskörnern (Pellets) und der Druckluft auf die zu reinigende Oberfläche, z.B. die Innenoberfläche und den Mündungsbereich, des Behälters gestrahlt. Dabei kann mit einem Druck von etwa 5 bar gearbeitet werden. Die vorerwähnten Korngrößen, der Druckbereich und die Geschwindigkeit können natürlich in einem breiten Bereich variiert werden.

[0055] Falls das körnige Material Metall, Kunststoff, Sand, Salz oder dgl. ist, kann als Trägermedium ebenfalls entweder Druckluft oder Druckwasser verwendet werden. Der Verwendung von Eis, insbesondere Slurry-Eis, als das körnige Material wird der Vorzug gegeben, weil es für die Behälter wenig aggressiv wirkt und entweder verdunstet oder zu Wasser schmilzt. Bei anderen körnigen Materialien muss das jeweils eingesetzte körnige Material, das überschüssig ist oder gebraucht anfällt z.B. über die Sammeleinrichtungen 17 (Tröge oder dgl.) gesammelt und bei der Wiederaufbereitung des Wassers zuvor ausgesondert und gesondert wieder aufbereitet werden. Salz lässt sich hingegen in gelöster Form bei der Aufbereitung des Wassers durch Entsalzen beseitigen und entweder entsorgen oder wiederverwenden.

[0056] Als das körnige Material R kann zweckmäßig ein Nussschalengranulat, beispielsweise mit einer Partikelgröße von etwa 0,1 mm bis 1,0 mm, vorzugsweise bis etwa 0,8 mm, zur Innen- und/oder Außenreinigung der Behälter in der Intensivreinigungsstation verwendet werden. Nussschalengranulat ist ein kostengünstiges Reinigungsmaterial, das biologisch abbaubar und gegebenenfalls einfach recycelbar ist und praktisch weltweit in nahezu unbegrenzten Mengen als nachwachsender Rohstoff zur Verfügung steht, und beispielsweise ein Abfallprodukt von Produktionsverfahren ist, bei denen Nusskerne verarbeitet werden. Das Nussschalengranulat kann bei der Intensivreinigung trocken oder beispielsweise mit Wasser als Trägermedium aufgestrahlt und/oder eingefüllt werden. Zur Innenreinigung mit Nussschalengranulat kann der Behälter geschüttelt und/oder rotiert werden, wodurch z.B. Standardverschmutzungen rasch abgelöst und einfach abgeführt werden. Bei der Außenreinigung hat sich Nussschalengranulat als besonders effizient zur Beseitigung von Etiketten, Etikettenresten und Leim bzw. Leimresten erwiesen.

[0057] In der Station 5 könnten mehrere Unterstationen jeweils mit Strahlpistolen 40 bzw. Strahldüsen 41 zum Einsatz gebracht werden, wobei, zweckmäßig, die Behälter zwischen diesen Unterstationen gewendet werden könnten, um jeweils ihres Inhalts aus Reinigungsmedium und Verschmutzungen entledigt zu werden. Zweckmäßig gibt es eine bestimmte Verweildauer in der Station 5, innerhalb derer das Reinigungsmedium zumindest im Inneren der Behälter agitiert wirkt. Nachdem die Behälter die Station 5 verlassen, werden sie (Fig. 1) durch die Wendevorrichtung 18 in der Station 6 gewendet, so dass ihr Inhalt abfließt (der gesammelt und gegebenenfalls unter Absonderung nicht mehr verwendbarer Teilsubstanzen wiederaufbereitet wird), ehe die Behälter in der Station 7 mit chemikalienfreiem Wasser gespült werden.

[0058] Die Fig. 3 bis 5 verdeutlichen schematisch den Ablauf bei der Intensivreinigung eines Behälters B beispielsweise in der Station 5 in den Fig. 2 und 1.

[0059] Der leere, mit dem Mündungsbereich nach oben weisend auf der Intensivreinigungsstrecke 11a stehende Behälter B wird in Fig. 3 aus den Strahldüsen 41 mit Druckstrahlen 43 beaufschlagt, die aus dem körnigen Material R und gegebenenfalls dem Trägermedium M generiert werden, z.B. aus mit Druckluft geförderten Trockeneis- oder Wassereis-Pellets. Die Strahlpistole 40 ist mit den untenliegenden Strahldüsen 41 beispielsweise in dem Behälter B eingeführt, um vom Behälterinnenboden allmählich nach oben die Innenwand abzustrahlen. Dabei können die Strahldüsen 41 in Richtung der gezeigten Pfeile auf- und abbewegt werden, und/oder rotiert werden. Gegebenenfalls sind an der Strahlpistole 40 auch Strahldüsen 41 zum Reinigen des außenliegenden Mündungsbereiches vorgesehen. Ferner können über die Länge der Strahlpistole 40 mehrere Strahldüsen 41 vorgesehen sein.

[0060] Bei einer alternativen Ausführungsform ist die Strahlpistole 40/Strahldüse 41 im Wesentlichen stationär so platziert, dass sie das Reinigungsmedium nur in den Behälter B injiziert, wobei z.B. der Behälter entweder kurzzeitig angehalten werden kann, oder sich die Strahlpistole kurzzeitig mit dem Behälter mitbewegen kann, oder die Injektion nur über die Zeitdauer erfolgt, während welcher der Behälter B die Strahldüse 41 passiert.

[0061] In beiden Fällen ist gemäß Fig. 4 dann in dem Behälter eine Füllung oder Teilfüllung aus dem körnigen Material R und dem Trägermedium M enthalten, wenn sich der Behälter B aus dem Bereich der Strahlpistole 40 weiterbewegt. Nun wird der Behälter B durch die Rotiervorrichtungen 28 in eine Drehung beispielsweise um seine Hochachse versetzt, so dass zur weiteren Reinigung zwischen der Füllung mit Flüssigkeitsreibung zum Behälter und dessen Innenwand eine Relativbewegung entsteht, bei der angelöste oder gelöste Verunreinigungen endgültig abgelöst und mitgenommen und in Bewegung gehalten werden, und beispielsweise durch Fliehkräfte oder die Strömungsdynamik das körnige Material R weiterhin gegen die Innenoberfläche gedrückt wird, und mit auch mechanischer Reibung jegliche Verunreinigungsreste ablöst, die dann in der Füllung aus dem körnigen Material R und dem Trägermedium M in Bewegung gehalten werden, und sich nicht mehr absetzen. Dabei wird eine vorbestimmte Verweildauer für diese Intensivreinigung in der Intensivreinigungsstrecke 11a eingehalten, die sich beispielsweise individuell nach dem durch die Inspektionsvorrichtung 24 detektierten Verschmutzungsniveau richten kann. Bei höherem Verschmutzungsgrad werden die betroffenen Behälter in der längeren Intensivreinigungsstrecke 11 b länger behandelt. Anschließend wird der in Fig. 5 gezeigte Behälter durch die Wendevorrichtung 18 gewendet, so dass die Füllung aus dem körnigen Material R, dem Trägermedium M und den abgelösten Verschmutzungen abfließen kann, wobei eine gewisse Zeitdauer zugestanden wird, so dass die Behälter gut abtropfen, ehe sie in der Station 7 mit Wasser intensiv gespült werden.

[0062] In Fig. 4 kann alternativ oder additiv zu den Einrichtungen 28 zum Rotieren der Behälter wenigstens eine Einrichtung 28' zum Schütteln der Behälter vorgesehen sein, um diese an der Innenoberfläche bei der Innenreinigung der abrasiven Wirkung des körnigen Materials R auszusetzen. Das Schütteln, mit oder ohne gleichzeitige Rotation, ist besonders zweckmäßig bei Verwendung von Nussschalengranulat als das körnige Material R.

[0063] In der Desinfektionsstation 9 wird Gas oder eine andere rückstandsfrei verbrennbare Substanz in den Behälter B injiziert und z.B. gezündet, und wird die nach der Zündung entstehende Flamme auch gezielt auf die Außenseite des Mündungsbereiches des Behälters gerichtet, um auch diesen Bereich zu desinfizieren. Vorzugsweise wird mit Ozon, und gegebenenfalls piezoelektrisch erzeugten Energieimpulsen eines Generators gearbeitet.

[0064] Der weitgehend chemikalienfrei und ohne nennenswerten Einsatz von Wärmeenergie durchgeführte Verfahrensablauf mit Sluny-Eis, Aussonderung zur stark verschmutzter oder nicht mehr brauchbarer Behälter B schon vor der Intensivreinigung, zumindest einer Strafrunde stärker verschmutzter Behälter, und der Desinfektion mit Ozon wird aus mehreren Gründen als besonders zweckmäßig und kostengünstig angesehen. Durch die automatische Inspektion und Aussonderung vor der Intensivreinigung wird ein vorbestimmtes zulässiges Verschmutzungsniveau begrenzt, das bewusst auf die Reinigungsfähigkeit des körnigen Materials R, z.B. Slurry-Eis, abgestimmt werden kann. Kaum oder wenige verschmutzte Behälter B werden dann zügig gereinigt. Stärker verschmutzte Behälter B, gegebenenfalls bis zum vorbestimmten Verschmutzungsniveau, werden länger oder sogar mehrfach gereinigt, gegebenenfalls unter erneuter Applikation des körnigen Materials, wobei entlang der Intensivreinigungsstrecke durchaus mehrfach körniges Material appliziert werden könnte. Im Fall von Slurry-Eis oder Wassereis schmilzt dieses zu Wasser, das durch Wenden der Behälter mit den Verschmutzungen nur durch Schwerkraft entfernt und/oder mit Reinwasser rückstandsfrei ausgespült wird. Durch die ablaufbedingte Verweildauer bis zur Desinfektion sind die intensiv gereinigten Oberflächen wenn überhaupt nur noch geringfügig benetzt, so dass das Ozon seine Desinfektionswirkung sehr effizient ausspielen kann, gegebenenfalls unterstützt durch Energieimpulse, die einfach auf piezoelektrischem Wege (oder auf andere Weise) im Ozon einwirken, das rückstandsfrei in Sauerstoff und freie Radikale aufgezehrt wird. Insgesamt wird somit eine immense Kostenersparnis erzielt, im Vergleich mit konventionellen Verfahren, vor allem da keine Chemikalien, kaum von außen oder in Reinigungsmedien eingebrachte thermische Energie, und sehr viel weniger Wasser eingesetzt werden.

[0065] Die vor allem bei der Inspektionsstation 24 ausgesonderten Behälter müssen nicht notwendigerweise verworfen werden, sondern können zur weiteren Kosteneinsparung gesammelt und auf andere, z.B. aggressivere Weise separat gereinigt oder speziell vorgereinigt und dann zu einem neuen Versuch wieder in das Verfahren eingeschleust werden. Denn es kann sich hierbei durchaus um einen nennenswerten Anteil aller zu reinigenden Behälter handeln, der bewusst zunächst ausgesondert wird, um das vorbestimmte und auf das Verfahren und/oder die Reinigungsfähigkeit des körnigen Materials R, insbesondere Slurry-Eis, abgestimmte Verschmutzungsniveau zu begrenzen.

[0066] Ein wichtiger Aspekt besteht darin, bei der Intensivreinigung ein z.B. auf die Verfahrenseffizienz oder die Reinigungswirkung des körnigen Materials bewusst begrenztes Verschmutzungsniveau herzustellen, indem als ungeeignet detektierte Behälter ausgesondert werden. Dies wird zweckmäßig nach der Vorreinigung durchgeführt, um höhere Detektionsgenauigkeit zu erzielen. Es kann auch zweckmäßig sein, zwischen der Intensivreinigungsstation und der Desinfektionsstation eine Spülstation anzuordnen, in der die Behälter mit chemikalienfreiem Wasser, gegebenenfalls sicherheitshalber ausgespült oder abgespült werden.


Ansprüche

1. Verfahren zum Reinigen von Behältern (B), insbesondere Flaschen aus Glas oder Kunststoff, in einer Reinigungsmaschine (W), in der in mehreren, wenigstens eine Vorreinigungsstation (2) und wenigstens eine Intensivreinigungsstation (5) umfassenden Stationen (1 bis 9) und entsprechenden Verfahrensschritten mindestens ein Reinigungsmedium unter Druck auf und/oder in die durch die Reinigungsmaschine (W) geförderten Behälter (B) zur Einwirkung gebracht wird, dadurch gekennzeichnet, dass die Behälter (B) vor wenigstens einem Intensivreinigungsschritt zumindest hinsichtlich ihres Verschmutzungsgrades automatisch inspiziert werden, und der jeweilige Verschmutzungsgrad detektiert wird, und dass der jeweilige Intensivreinigungsschritt individuell weitgehend an den detektierten Verschmutzungsgrad angepasst wird.
 
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Intensivreinigungsschritt durch Verändern des Drucks und/oder der Zusammensetzung des aus einem Reinigungsmaterial (R) und einem Trägermedium (M) gebildeten Reinigungsmediums (RM) und/oder der Verweildauer in mindestens einer Intensivreinigungsstrecke (11a, 11 b) und/oder von relativen Dreh- und/oder Schüttelbewegungen und/oder durch Wiedereinschleusen bereits intensiv gereinigter Behälter und/oder Ausschleusen von Behältern ohne detektierbarem Verschmutzungsgrad angepasst wird.
 
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Einstellung eines auf die für den endgültigen Reinigungseffekt erzielbare Reinigungsfähigkeit des Reinigungsmediums (RM) oder bei dem Intensivreinigungsschritt begrenzten niedrigeren Verschmutzungsniveaus zumindest zu stark verschmutzt detektierte Behälter vor dem Intensivreinigungsschritt ausgesondert werden, vorzugsweise auch nicht mehr brauchbare und/oder beschädigte Behälter.
 
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass Behälter (B) mit für einen Intensivreinigungsschritt zulässig detektierten Verschmutzungsgraden abhängig vom jeweiligen Verschmutzungsgrad in eine von mehreren unterschiedlich langen Intensivreinigungsstrecken (11 a, 11 b) eingeführt und darin entsprechend ihrem Verschmutzungsgrad zumindest innenseitig intensiv gereinigt werden.
 
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass jeder Behälter (B) mit für einen Intensivreinigungsschritt zulässig detektiertem Verschmutzungsgrad, zumindest die Innenoberfläche des Behälters (B), mit in Wasser oder Luft als Trägermedium (M) unter Druck gefördertem, vorzugsweise recycelbarem und/oder rückstandsfrei abbaubaren, körnigem Eis und/oder Salz und/oder Nussschalengranulat und/oder Kunststoffmaterial zumindest durch Abstrahlen intensiv und chemikalienfrei gereinigt wird.
 
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass zumindest die Innenoberfläche des Behälters (B) mit körnigem Eis gereinigt wird, wobei, vorzugsweise, Trockeneis aus Kohlendioxid oder Wassereis wie Slurry-Eis aufgestrahlt oder injiziert wird.
 
7. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Reinigung der Behälter-Innenoberfläche der Behälter (B) mit zumindest dem körnigen Material (R) zumindest teilgefüllt, vorzugsweise mit einem Gemisch von Wasser und Nussschalengranulat oder nur Nussschalengranulat befüllt, und zumindest geschüttelt und/oder rotiert wird.
 
8. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jeder Behälter (B) in wenigstens einem Vorreinigungsschritt im Wesentlichen allseitig mit chemikalienfreiem Wasser benetzt und innenliegende Verunreinigungen eine vorbestimmte Zeitdauer vorgeweicht werden, dass der Behälter durch Hochdruckstrahlen mit chemikalienfreiem Druckwasser außenseitig vorgereinigt wird, ehe der vorgereinigte Behälter (B) zur Anpassung des jeweiligen Intensivreinigungsschrittes hinsichtlich seines, vorzugsweise innenseitigen, Verschmutzungsgrades inspiziert und der Verschmutzungsgrad detektiert wird.
 
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass vor einem auf den Intensivreinigungsschritt folgenden Desinfektion unvollständig gereinigte Behälter durch eine automatische Inspektion detektiert und ausgesondert oder in die Vorreinigungsstation (2) oder Intensivreinigungsstation (5) wieder eingeschleust werden.
 
10. Reinigungsmaschine (W) für Behälter (B), insbesondere Flaschen aus Glas oder Kunststoff, mit mehreren entlang wenigstens einer Behälter-Handlings- und -Förderstrecke (11, 29) angeordneten, wenigstens eine Vorreinigungsstation (2) und wenigstens eine Intensivreinigungsstation (5) umfassenden Stationen (1 bis 9), in denen durch die Reinigungsmaschine (W) geförderte Behälter (B) mit wenigstens einem unter Druck zumindest innen applizierten Reinigungsmedium (RM) gereinigt werden, dadurch gekennzeichnet, dass stromab der Intensivreinigungsstation (5) eine Inspektionsstation (4) mit zumindest einer Inspektionsvorrichtung (24) zumindest zum Detektieren von unterschiedlichen Behälter-Verschmutzungsgraden angeordnet ist, und dass mit der oder über die Inspektionsvorrichtung (24) zur Anpassung wenigstens eines Intensivreinigungsschrittes an die detektierten Verschmutzungsgrade die Reinigungsfähigkeit beim Intensivreinigungsschritt und/oder des Reinigungsmediums (RM) beeinflussende Einrichtungen (28, 28', 35, 37, 38, 39, 25, 26, 27) zumindest in der Intensivreinigungsstation (5) abhängig vom jeweils detektierten Verschmutzungsgrad steuerbar sind.
 
11. Reinigungsmaschine nach Anspruch 10, dadurch gekennzeichnet, dass die steuerbaren Einrichtungen (25, 26, 27, 28, 28', 35, 37, 38, 39) zumindest eine aus folgende Gruppe umfassen: Einrichtungen zur Änderung von Druck, Menge, Dosis, Mischung des Reinigungsmediums (RM) und/oder Verweildauer zum Reinigen der Behälter (B) in der Intensivreinigungsstation (5), Bewegungen einer Strahlanlage (A) und/oder Strahlpistolen (40) und/oder Strahldüsen (41), von Rotier- und/oder Schüttelbewegungen der Behälter (B) und/oder einer Stellung zumindest einer Weiche (25, 26, 27) zwischen unterschiedlich langen Intensivreinigungsstrecken (11a, 11 b) und/oder zur Aktivierung von Einrichtungen zur Aussonderung und/oder Rückführung von Behältern (B).
 
12. Reinigungsmaschine nach Anspruch 11, dadurch gekennzeichnet, dass der Intensivreinigungsstation (5) ein Vorratsbehälter (34) für körniges Eis, insbesondere Eispellets und/oder Salz und/oder Nussschalengranulat und/oder Kunststoffmaterial, eine Material-Dosiereinrichtung (35) und eine Druck-Strahlanlage (A) mit wenigstens einer, vorzugsweise gesteuert bewegbaren und/oder drehbaren Strahlpistole (40) mit wenigstens einer Strahldüse (41) zugeordnet sind.
 
13. Reinigungsmaschine nach Anspruch 10, dadurch gekennzeichnet, dass die Inspektionsstation (4) zwischen der Vorreinigungsstation (2) und der Intensivreinigungsstation (5) angeordnet ist.
 
14. Reinigungsmaschine nach Anspruch 10, dadurch gekennzeichnet, dass zumindest die Vorreinigungsstation (2) und die Intensivreinigungsstation (5) Sammeleinrichtungen (17) aufweisen, denen Reinigungs- und Wiederaufbereitungseinrichtungen (23, 20) direkt zugeordnet sind, oder die an Reinigungs- und Wiederaufbereitungseinrichtungen (23, 20) angeschlossen sind.
 
15. Reinigungsmaschine nach Anspruch 11, dadurch gekennzeichnet, dass in der Intensivreinigungsstation (5) mindestens zwei unterschiedlich lange, parallele Intensivreinigungsstrecken (11a, 11b) vorgesehen und über von der stromauf liegenden Inspektionsvorrichtung (24) gesteuerte Weichen (25, 26, 27) verknüpft sind.
 
16. Reinigungsmaschine nach Anspruch 11, dadurch gekennzeichnet, dass zumindest in der Intensivreinigungsstation (5) Rotationseinrichtungen (28) und/oder wenigstens eine Schütteleinrichtung (28') für die Behälter (B) und/oder Bewegungseinrichtungen für die jeweilige Strahlpistole (40) oder die Strahldüsen (41) und stromauf und/oder stromab der Intensivreinigungsstation (5) Behälter-Wendevorrichtungen (18) vorgesehen sind.
 
17. Reinigungsmaschine nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Einstellung eines im Hinblick auf die Reinigungsfähigkeit des Reinigungsmaterials (RM) oder der Intensivreinigungsstation (5) abgestimmten Verschmutzungsniveaus zumindest diesem gegenüber zu stark verschmutzte, vorzugsweise auch nicht mehr brauchbare oder beschädigte, Behälter (B) über die Inspektionsvorrichtung (24) aussonderbar und die Intensivreinigungsstation (2) nur mit Behältern (B) mit für den endgültigen Reinigungseffekt des Intensivreinigungsschrittes zulässig detektierten Verschmutzungsgraden beschickbar ist.
 




Zeichnung













Recherchenbericht













Angeführte Verweise

IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente