(11) **EP 2 395 288 A1**

(12)

DEMANDE DE BREVET EUROPEEN

(43) Date de publication:

14.12.2011 Bulletin 2011/50

(51) Int CI.:

F24D 19/10 (2006.01)

(21) Numéro de dépôt: 10165219.6

(22) Date de dépôt: 08.06.2010

(84) Etats contractants désignés:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

Etats d'extension désignés:

BAMERS

(71) Demandeur: COMAP 69008 Lyon (FR)

(72) Inventeurs:

 Gortais, Joël 69360 Saint Symphorien d'Ozon (FR)

 Paris, Bernard 84000 Avignon (FR)

(74) Mandataire: Maureau, Philippe et al Cabinet Germain & Maureau 12, rue Boileau B.P. 6153

69466 Lyon Cedex 06 (FR)

(54) Vanne d'équilibrage

(57) La présente invention a pour objet une vanne d'équilibrage (1) à clapet (2) comportant une entrée (A) et une sortie (B), montée en aval d'un élément de régulation thermique (3) intégré à une branche (4) d'un réseau hydraulique (5) soumise à une pression (ΔP) sensiblement constante, caractérisée en ce qu'elle comporte des moyens de mesure (7) d'une grandeur caractéristique du fluide traversant la vanne d'équilibrage (1), des moyens de commande (8) du positionnement du clapet

(2) de la vanne d'équilibrage (1), des moyens de stockage de données (11) dans laquelle sont stockés des paramètres intrinsèques et extrinsèques de la vanne d'équilibrage (1), des moyens de traitement (10) indépendants agencés pour réaliser l'équilibrage automatique, dans la branche (4) à partir des valeurs de la grandeur caractéristique du fluide mesuré par les moyens de mesure (7), des moyens de commande (8) et des données stockées dans les moyens de stockage (11) ainsi que des procédés de mise en oeuvre de ces équilibrages.

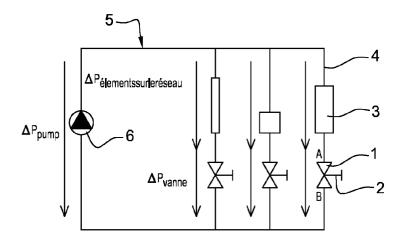


Fig. 1

EP 2 395 288 A

Description

20

35

40

50

[0001] La présente invention se rapporte au domaine des réseaux hydrauliques de bâtiments et a plus précisément pour objet une vanne d'équilibrage à clapet comportant une entrée et une sortie, montée en aval d'un élément de régulation thermique intégré à un réseau hydraulique soumise à une pression sensiblement constante.

[0002] Par définition, une vanne d'équilibrage a pour fonction de contrôler les charges entrantes dans les branches du réseau hydraulique comportant des éléments de régulation thermique, tel un robinet thermostatique pour radiateur dans des branches de réseaux de chauffage ou une vanne de régulation pour ventilo-convecteur dans des branches de réseaux de climatisation.

[0003] Une vanne d'équilibrage est un élément essentiel pour répondre aux normes de rationalisation de l'énergie dans les nouveaux bâtiments répondant aux exigences de Bâtiment Basse Consommation (BBC), Très Haute Performance Energétique (THPE), Très Haute Performance Energétique et Energies Renouvelables (THPE EnR) ou prochainement Bâtiment Basse Consommation Effinergie ou autres labels de performance écologique et/ou thermique.

[0004] L'équilibrage est pour les réseaux hydrauliques des bâtiments, l'acte final de la chaîne d'installation. Celui-ci a pour but de permettre la distribution des calories du fluide selon les besoins du bâtiment, ce qui sous entend d'avoir les bons débits aux bons endroits.

[0005] Dans une installation, les réseaux hydrauliques évoluent de façon dynamique, si bien que les besoins thermiques et donc les débits du fluide ne sont pas identiques selon les saisons, l'orientation des bâtiments et l'activité, cependant la plupart des systèmes installés se limitent à des vannes d'équilibrage assurant les réglages pour les périodes sollicitant le plus de besoins en calories.

[0006] Il est connu de réguler les écoulements de fluides des installations dans les bâtiments par des vannes d'équilibrage et par des vannes de régulation. Par exemple, à partir d'une unité de traitement qui détermine de façon centralisée si les paramètres des vannes de régulation doivent être modifiés. Toutes ses modifications produites par les vannes de régulation entraînent de nouveaux réglages pour les vannes d'équilibrage.

[0007] Néanmoins, ces vannes utilisent un système de traitement centralisé avec des moyens de communication à distance pour coordonner les réglages et assurer un diagnostique du réseau.

[0008] De plus, l'utilisation d'une communication à distance, notamment sans fil, entre l'ensemble des vannes de régulation et d'équilibrage et l'unité de traitement centrale réduit la fiabilité de ces vannes d'équilibrage qui ne reçoivent pas toutes de la même façon les signaux provenant de l'unité de traitement.

[0009] Le réglage des vannes d'équilibrage est fastidieux, coûteux et nécessite un logiciel dédié à ces réglages et des connaissances avancées en hydraulique. Du fait de l'interaction hydraulique entre les branches du réseau, ces réglages sont difficiles à obtenir sans méthodes et/ou outil.

[0010] Cela étant attribué au simple fait que ces vannes d'équilibrage sont situées à des distances différentes du système de traitement et que les signaux peuvent être amenés à traverser des murs ou cloisons de diverses épaisseurs réduisant considérablement l'intensité des signaux émis par le système de traitement centralisé.

[0011] La présente invention a pour but de résoudre tout ou partie des inconvénients mentionnés ci-dessus.

[0012] A cet effet, la présente invention a pour objet une vanne d'équilibrage à clapet comportant une entrée et une sortie, montée en aval d'un élément de régulation thermique intégré à une branche d'un réseau hydraulique soumise à une pression (ΔP) sensiblement constante, caractérisée en ce qu'elle comporte des moyens de mesure d'une grandeur caractéristique du fluide traversant la vanne d'équilibrage automatique, des moyens de commande du positionnement du clapet de la vanne d'équilibrage automatique, des moyens de stockage de données dans laquelle sont stockés des paramètres intrinsèques et extrinsèques de la vanne d'équilibrage, des moyens de traitement indépendants agencés pour réaliser l'équilibrage automatique dans la branche à partir des valeurs de la grandeur caractéristique du fluide mesuré par les moyens de mesure, des moyens de commande et des données stockées dans les moyens de stockage.

[0013] Cette disposition permet de disposer d'une vanne d'équilibrage fonctionnant de façon automatique indépendamment des interférences du réseau, en s'ajustant automatiquement à la condition hydraulique souhaitée et en autonomie parfaite sans nécessité de système de traitement centralisé.

[0014] L'équilibrage automatique ainsi réalisé peut être appliqué à un équilibrage de type statique et/ou dynamique et/ou communiquant.

[0015] Selon un mode de réalisation, les moyens de traitement permettent un équilibrage automatique dit statique dans lequel les paramètres disponibles dans les moyens de stockages de données sont compilés avec les mesures recueillies par les moyens de mesure afin d'obtenir des valeurs de référence caractéristiques du réseau hydraulique.

[0016] Selon un mode de réalisation, les moyens de traitement permettent un équilibrage automatique dit dynamique dans lequel des valeurs de référence, de préférence celles déterminées précédemment, sont exploitées pour commander les moyens de commande du positionnement du clapet de manière à conserver un différentiel de pression ou un débit suivant le cas sensiblement constant dans la branche du réseau hydraulique (ΔP) dans laquelle la vanne d'équilibrage est installée

[0017] Selon un mode de réalisation, les moyens de traitement permettent d'échanger et de modifier des données

d'équilibrage à des fin d'adaptation, de diagnostique de tout le réseau hydraulique.

10

20

30

35

45

50

[0018] Selon un mode de réalisation, les moyens de traitement permettent une communication des vannes avec une unité centrale afin d'ajuster et de modifier les valeurs de références et ainsi diminuer les pertes hydrauliques du réseau et quantifier les gains énergétiques de génération et de distribution.

[0019] Ce moyen de traitement permet d'avoir une vision d'ensemble de l'installation permettant son diagnostique rapide et ainsi cibler une intervention curative ou corrective ou légale.

[0020] Selon un mode de réalisation, la grandeur caractéristique mesurée du fluide traversant la vanne d'équilibrage concerne son débit. Alternativement, le débit et la température peuvent être pris en compte.

[0021] Le débit d'un fluide traversant une vanne est facilement et précisément mesurable.

[0022] Selon un mode de réalisation, les paramètres intrinsèques de la vanne d'équilibrage comprennent les caractéristiques hydraulique fourni par son fabriquant représentant le différentiel de pression (ΔP_{vanne}) entre l'entrée et la sortie de la vanne d'équilibrage en fonction du débit (Q) pour une position donnée du clapet de la vanne d'équilibrage.

[0023] Cette disposition permet de déterminer facilement avec une bonne approximation une position du clapet de la vanne correspondant à un différentiel de pression de la vanne supposé variable afin d'assurer un débit déterminé égal au débit d'équilibrage souhaité.

[0024] Selon un mode de réalisation, au cours de l'équilibrage statique automatique, les moyens de traitement calculent le coefficient caractéristique de référence du dimensionnement du réseau hydraulique ($Z_{réf}$) considéré en fonction de deux ou plusieurs valeurs déterminées de débit par exemple à 75% et à 50% de la pleine ouverture ($Q_{Kv 75\%}$, $Q_{Kv 50\%}$) pour deux positionnement ($P_{75\%}$, $P_{50\%}$) du clapet différents, et des valeurs correspondantes des coefficients caractéristiques du dimensionnement ($Kv_{75\%}$, $K_{V50\%}$) de la vanne d'équilibrage déduites des différentiels de pression (ΔP_{vanne}) données par les caractéristiques hydrauliques intrinsèques de la vanne.

[0025] Cette disposition permet de réaliser une auto-calibration de la vanne pour augmenter la précision des caractéristiques théoriques intrinsèques de la vanne. Elle peut également permettre de corroborer la valeur calculée du coefficient caractéristique de référence du dimensionnement du réseau hydraulique avec la valeur théorique donnée par les plans de l'architecte dans le cas d'un bâtiment neuf ou rénové.

[0026] Selon un mode de réalisation, les paramètres extrinsèques de la vanne d'équilibrage comprennent une valeur de consigne (Q_{consigne}) du débit de la vanne d'équilibrage correspondant à l'estimation du besoin d'un élément de régulation thermique dans une branche concernée du réseau hydraulique, tel un radiateur ou un ventilo-convecteur.

[0027] Cette disposition permet d'adapter spécifiquement une vanne d'équilibrage à la branche du réseau hydraulique dans laquelle elle est installée. Cette estimation du débit est quantifiable par le besoin énergétique requis par les conditions de températures de fonctionnement des éléments de chauffage et/ou de climatisation.

[0028] Selon le même mode de réalisation, la valeur de consigne (Q_{consigne}) du débit est programmable dans les moyens de stockage de données de la vanne d'équilibrage automatique.

[0029] Cette disposition permet de modifier automatiquement la valeur de consigne en fonction du temps et donc des conditions environnementales externes et internes.

[0030] Selon un mode de réalisation, au cours de l'équilibrage automatique statique, les moyens de traitement calculent une valeur réactualisée ($Kv_{réactualisée}$) pour le coefficient caractéristique du dimensionnement (Kv) de la vanne en fonction du débit déterminé ($Q_{mesuré}$) à la position du clapet correspondant à la valeur de consigne ($Q_{consigne}$) et de son coefficient caractéristique du dimensionnement ($Kv_{consigne}$) de la vanne d'équilibrage correspondant, et du coefficient caractéristique de référence du dimensionnement du réseau hydraulique ($Z_{réf}$).

[0031] Cette disposition permet de compenser les effets du réseau perceptibles au travers de la différence entre la valeur du débit de consigne (Q_{consigne}) et la valeur réellement déterminée (Q_{mesuré}).

[0032] Selon un mode de réalisation, au cours de l'équilibrage automatique statique, les moyens de traitement calculent un différentiel de pression de référence ($\Delta P_{r\acute{e}f}$) de la branche du réseau hydraulique avec un coefficient caractéristique du dimensionnement de la vanne réactualisé ($KV_{r\acute{e}actualis\acute{e}e}$) à partir de la formule :

$$\Delta P_{r\acute{e}f} = \left(\frac{Q_{mesur\acute{e}}}{K_{\nu_{r\acute{e}actualis\acute{e}}}}\right)^{2}$$

[0033] Cette disposition permet d'acquérir des valeurs de référence pouvant être exploitées pour une utilisation de contrôle d'installation ou toute autre intervention sur le réseau.

[0034] Selon un mode de réalisation, au cours de l'équilibrage automatique dynamique, les moyens de traitement agissent sur les moyens de commande du positionnement du clapet à l'aide d'un actionneur pour conserver un différentiel de pression de référence ($\Delta P_{réf}$) sensiblement constante dans la branche du réseau quelque soit le besoin du réseau hydraulique.

[0035] Cette disposition permet de conserver un différentiel de pression quasi constant dans la branche dans laquelle se trouve la vanne d'équilibrage et l'élément de régulation thermique quelque soit le besoin du réseau hydraulique.

[0036] La présente invention a également pour objet un procédé d'équilibrage automatique dit statique des conditions hydrauliques d'un ou plusieurs éléments de régulation thermique intégrés à une branche d'un réseau hydraulique soumise à un différentiel de pression (ΔP) sensiblement constant comportant une vanne d'équilibrage telle que décrite précédemment caractérisé en ce qu'il comprend dans cet ordre les étapes consistant à :

- extraire des moyens de stockage de données une valeur de consigne de débit (Q_{consigne}),
- calibrer la vanne d'équilibrage en déterminant les débits pour deux ou plusieurs positions connues du clapet de la vanne d'équilibrage correspondant respectivement aux coefficients caractéristiques de la vanne d'équilibrage automatique, par exemple à 75% et 50% de l'ouverture maximale de la vanne,
 - calculer le coefficient caractéristique du dimensionnement du réseau hydraulique (Z réf) et le coefficient caractéristique du dimensionnement (Kv_{consigne}) de la vanne d'équilibrage correspondant,
 - positionner le clapet de la vanne sur sa position correspondant à la valeur calculée,
- déterminer le débit (Qmesuré),

si

10

15

20

25

35

40

- Le débit déterminé (Q_{mesuré}) est compris dans une plage de valeur déterminé par exemple à plus ou moins 5% de la valeur du débit de consigne (Q_{consigne}), alors :
- la valeur du débit de consigne (Q_{consigne}) est remplacée par la valeur du débit déterminé (Q_{mesuré}),
- le coefficient caractéristique du dimensionnement (Kv_{consigne}) de la vanne d'équilibrage correspondant au coefficient caractéristique du dimensionnement du réseau hydraulique (Z_{réf}) devient le coefficient caractéristique du dimensionnement de référence (Kv_{réf}), et
- le différentiel de pression de référence (ΔP_{réf}) d'une branche (4) du réseau hydraulique (5) est calculé à partir du coefficient caractéristique du dimensionnement de référence (Kv_{réf}) et du débit déterminé (Q_{mesuré}), sinon :
 - revenir à l'étape de calcul du coefficient caractéristique du dimensionnement du réseau hydraulique (Z réf) et du coefficient caractéristique du dimensionnement (Kv_{consigne}) de la vanne d'équilibrage correspondant.
- [0037] La présente invention a également pour objet un procédé d'équilibrage automatique dit dynamique de la pression d'entrée d'un ou plusieurs éléments de régulation thermique intégrés à une branche d'un réseau hydraulique soumise à un différentiel de pression (ΔP) sensiblement constant comportant une vanne d'équilibrage telle que décrite précédemment caractérisé en ce qu'il comprend dans cet ordre les étapes consistant à :
 - effectuer en premier lieu les étapes de caractérisation décrites dans le procédé d'équilibrage automatique dit statique afin de déterminer les conditions hydraulique de la branche
 - attendre après un premier temps déterminé la stabilisation de l'écoulement du fluide au travers de la vanne d'équilibrage (1), ce temps étant paramétrable et de préférence égal à 30 minutes.
 - déterminer le débit (Q), en déduire le différentiel de pression (ΔP),
 - si le différentiel de pression (ΔP) est compris dans une plage de valeur déterminé par exemple à plus ou moins 5% de la valeur du différentiel de pression de référence (ΔP_{réf}) :
 - revenir à la première étape consistant à attendre après un premier temps déterminé,

sinon:

45

55

- calculer le coefficient caractéristique du dimensionnement du réseau hydraulique (Z) et le coefficient caractéristique du dimensionnement (Kv) de la vanne d'équilibrage automatique correspondant,
- positionner le clapet de la vanne d'équilibrage sur sa position correspondant au coefficient caractéristique du dimensionnement (Kv) de la vanne d'équilibrage automatique,
- attendre après un deuxième temps déterminé puis revenir au début de cette étape, ce temps étant paramétrable et de préférence égal à cinq minutes.

[0038] De toute façon, l'invention sera bien comprise à l'aide de la description qui suit, en référence au dessin schématique annexé représentant, à titre d'exemple non limitatif, le principe de fonctionnement d'une vanne d'équilibrage selon l'invention.

La figure 1 montre le schéma de principe d'un réseau hydraulique de distribution équipé de vannes équilibrantes selon l'invention.

La figure 2 montre un exemple d'abaque fourni par le constructeur d'une vanne d'équilibrage.

La figure 3 explique l'adaptabilité en vectoriel de la vanne d'équilibrage selon l'invention.

La figure 4 explique l'adaptabilité sur l'abaque du fabricant de la vanne d'équilibrage selon l'invention.

La figure 5 illustre les différentes étapes de la mise en oeuvre d'une vanne d'équilibrage selon l'invention.

La figure 6 représente un schéma de la vanne d'équilibrage.

5

10

15

20

30

35

40

45

50

55

[0039] Comme illustrée à la figure 1, une vanne d'équilibrage (1) à clapet (2) comporte une entrée A et une sortie B, et est montée en aval d'un élément de régulation thermique (3) intégré à une branche (4) d'un réseau hydraulique (5) soumise à un différentiel de pression (ΔP) sensiblement constant de la part d'une pompe (6).

[0040] En partant de l'hypothèse selon laquelle le réseau hydraulique (5) est soumis à un différentiel de pression sensiblement constant de la part de la pompe (6), il est possible d'écrire l'équation:

$$\Delta P_{pump} = \Delta P_{\acute{e}l\acute{e}mentsurler\acute{e}seau} + \Delta P_{vanne}$$

[0041] Dans laquelle, de manière connue en soi : $\Delta P_{\acute{e}l\acute{e}mentsurler\acute{e}seau} = Q^2 Z$, avec Zsymbolisant le coefficient caractéristique du dimensionnement du réseau hydraulique (5), d'une branche (4) ou d'un organe de réglage comme la vanne d'équilibrage (1), et $\Delta P_{vanne} = (Q/Kv)^2$, avec K_v symbolisant le coefficient caractéristique du dimensionnement de la vanne 1.

[0042] Ce coefficient K_v caractéristique du dimensionnement de la vanne 1 est représentatif de la pente des droites correspondant aux diverses positions du clapet (2) de la vanne d'équilibrage (1) des abaques illustrés aux figures 2 et 4.

[0043] L'adaptabilité de l'ouverture de la vanne d'équilibrage (1) s'opère en deux phases : une première phase d'équilibrage automatique dite statique ayant pour but d'identifier les différents paramètres caractérisant le réseau hydraulique (5) et la vanne d'équilibrage (1) considérée, et une deuxième phase d'équilibrage automatique dite dynamique ayant pour but d'adapter la pression entrant dans un élément de régulation thermique (3) en fonction du besoin estimé de cet élément (3), cette estimation pouvant varier au cours du temps de manière prédéterminée.

[0044] La première phase d'équilibrage automatique dite statique permet tout d'abord de faire une auto calibration, à partir des débits Q passant au travers de la vanne d'équilibrage (1), pour deux ou plusieurs positions d'ouverture du clapet (2) de vanne (1) connues.

[0045] Ces mesures sont effectuées par des moyens de mesure (7) disposés dans la vanne d'équilibrage (1) ou sur la branche (4) sur laquelle est installée la vanne 1.

[0046] En outre, la vanne d'équilibrage (1) comprend également des moyens de commande (8) du positionnement du clapet (2) de la vanne d'équilibrage (1), ainsi que des moyens de stockage de données (11) dans laquelle sont stockés divers paramètres intrinsèques propres à la vanne d'équilibrage (1) et divers paramètres extrinsèques dépendant de l'utilisation et du fonctionnement de la vanne d'équilibrage (1).

[0047] La figure 6 schématise la vanned'équilibrage (1).

[0048] Le corps (9) de la vanne d'équilibrage (1) supporte tous les éléments. Le clapet (2) est mis en mouvement par le moyen de commande (8), tel un actionneur. Les moyens de mesure (7) envoient les informations hydrauliques réelles aux moyens de traitement (10) qui traitent les informations et transmettent au moyen de commande (8) la position du clapet (2). Les moyens de traitement (10) assurent la communication avec les moyens de stockage (11) des informations nécessaires et transmet les informations vers un système collecteur(12).

[0049] Les moyens de mesure (7), les moyens de commande (8) du positionnement du clapet (2) de la vanne d'équilibrage (1), ainsi que les moyens de stockage de données (11) sont tous reliés aux moyens de traitement (10) indépendants disposés dans la vanne d'équilibrage (1) et compilant, au cours de l'équilibrage automatique dit statique, les paramètres disponibles dans les moyens de stockage de données (11) avec les mesures recueillies par les moyens de mesure (7) pour commander, au cours de l'équilibrage automatique dit dynamique, les moyens de commande (8) du positionnement du clapet (2) afin de conserver un différentiel de pression constant dans la branche (4) du réseau hydraulique (5) dans laquelle la vanne d'équilibrage (1) est installée.

[0050] Les deux ou plusieurs positions d'ouverture de vanne connues sont choisies arbitrairement et correspondent par exemple à 75% et 50% de l'ouverture maximale de la vanne d'équilibrage (1).

[0051] Ce processus calculatoire permet d'apprécier le coefficient Z caractéristique du dimensionnement du réseau hydraulique (5).

[0052] Par là même, il permet de corroborer les plans d'architecte avec le réseau hydraulique (5) réellement installé.

[0053] Avec une vanne d'équilibrage 1 ouverte à 75%, on obtient l'équation :

$$\Delta P_{pump} = (Q_{Kv75\%})^2 Z + \left(\frac{Q_{Kv75\%}}{Kv_{75\%}}\right)^2$$

[0054] Avec une vanne d'équilibrage 1 ouverte à 50%, on obtient l'équation :

$$\Delta P'_{pump} = (Q_{Kv50\%})^2 Z + \left(\frac{Q_{Kv50\%}}{Kv_{50\%}}\right)^2$$

[0055] Or, il a été admis comme hypothèse que la pompe (6) travail à ΔP constant donc $\Delta P'_{pump} = \Delta P_{pump}$, donc :

$$(Q_{Kv75\%})^2 Z_{circuit} + \left(\frac{Q_{Kv75\%}}{Kv_{75\%}}\right)^2 = (Q_{Kv50\%})^2 Z_{circuit} + \left(\frac{Q_{Kv50\%}}{Kv_{50\%}}\right)^2$$

et donc :

5

10

15

20

35

40

45

50

55

$$Z_{ref} = Z_{circuit} = \frac{1}{Q_{Kv75\%}^{2} - Q_{Kv50\%}^{2}} \times \left[\left(\frac{Q_{Kv50\%}}{Kv_{50\%}} \right)^{2} - \left(\frac{Q_{Kv75\%}}{Kv_{75\%}} \right)^{2} \right]$$

[0056] Ce calcul est effectué par les moyens de traitements (10) et la valeur calculée de ce coefficient Z_{réf} caractéristique du dimensionnement du réseau hydraulique (5) est stockée dans les moyens de stockage de données (11).

[0057] Une valeur prédéterminée de débit $Q_{consigne}$, correspondant à l'estimation du besoin dans la branche (4) concernée, est extraite des moyens de stockage de données (11) dans laquelle elle est stockée.

[0058] Le débit de consigne $Q_{consigne}$ est facilement estimable dans le neuf mais aussi dans la rénovation.

[0059] Dans le neuf, il correspond aux calculs architecte.

[0060] Dans la rénovation, les plans et la documentation architecte se font plus rares. Cependant, une estimation du débit est quantifiable par le besoin énergétique requis par les conditions de températures de fonctionnement des éléments de régulation thermique (3), tels un chauffage et une climatisation.

[0061] Toujours en partant de l'hypothèse selon laquelle le réseau hydraulique (5) est soumis à une pression sensiblement constante de la part de la pompe (6), il est possible d'écrire l'équation:

$$\Delta P_{pump} = (Q_{Kv75\%})^2 Z + \left(\frac{Q_{Kv75\%}}{Kv_{75\%}}\right)^2 = (Q_{consigne})^2 Z_{r\acute{e}f} + \left(\frac{Q_{consigne}}{Kv_{consigne}}\right)^2$$

ďoù:

$$Kv_{consigne} = \frac{Q_{consigne}}{\sqrt{Z_{ref} \times \left(Q^2_{Kv75\%} - Q^2_{consigne}\right) + \left(\frac{Q_{KV75\%}}{Kv_{75\%}}\right)^2}}$$

[0062] La vanne d'équilibrage (1) prend alors en considération la valeur du coefficient caractéristique du dimension-

nement de la vanne de consigne K_v consigne.

10

15

20

25

30

35

40

45

50

55

[0063] Néanmoins, il existe un décalage entre le débit de consigne renseignée $Q_{consigne}$ et la valeur du débit effectivement mesuré $Q_{mesuré}$.

[0064] Ce décalage, dont il convient de s'affranchir, est essentiellement dû aux effets du réseau hydraulique (5).

[0065] Durant un laps de temps de stabilisation, les vannes d'équilibrage (1) restent en réglage suivant un interval de tolérance borné par $Q_{consigne}$, cet interval de tolérance est paramétrable par exemple à $\pm 5\%$.

$$Q_{consigne-5\%} < Q_{mesur\acute{e}} < Q_{consigne+5\%}$$

[0066] Cette compensation se fait en reprenant la précédente formule où Q devient Q devient Q devient Q devient Q consigne, ce qui donne :

$$Kv_{\textit{r\'eactualis\'e}} = \frac{Q_{\textit{mesur\'e}}}{\sqrt{Z_{\textit{ref}} \times \left(Q^2_{\textit{consigne}} - Q^2_{\textit{mesur\'e}}\right) + \left(\frac{Q_{\textit{consigne}}}{Kv_{\textit{consigne}}}\right)^2}}$$

[0067] A la stabilisation, le coefficient K_v caractéristique du dimensionnement de la vanne d'équilibrage (1) et le le coefficient Z caractéristique du dimensionnement du réseau hydraulique (5) « dit de référence » sont calculés ou recalculés.

[0068] Ces coefficients Z, K_v serviront pour une utilisation de contrôle d'installation ou tout autre intervention sur le réseau hydraulique (5).

[0069] A cet instant, le système calcule également le différentiel de pression de référence ΔP_{ref} du circuit. Ce ΔP_{ref} servira dans la phase dite dynamique, détaillée ci-dessous dans le texte.

[0070] Dans cette deuxième phase d'équilibrage automatique dite dynamique, l'hypothèse selon laquelle le réseau hydraulique (5) est soumis à un différentiel de pression sensiblement constant de la part de la pompe (6) est toujours considérée.

[0071] Les concepteurs de vanne d'équilibrage (1) fournissent les diagrammes de réponse ou abaque liés à la vanne d'équilibrage (1) telle que celui représenté à la figure 2.

[0072] Ceux-ci expriment le différentiel de pression ΔP entre la sortie B et l'entrée A de la vanne 1 en fonction du débit Q de fluide la traversant. Sur la figure 2, cet abaque correspond au modèle de vanne DN32 de la société COMAP[®].

[0073] Les traits diagonaux représentent les différentes positions de réglage que peut offrir la vanne (1). Ces positions sont référencées sur la manette de commande de la vanne (1). Leur pente est caractéristique du coefficient K_v caractéristique du dimensionnement de la vanne d'équilibrage (1).

[0074] Cette abaque ne demande que peu de connaissances pour être interprétable. En effet, à partir du débit nominal requis et du différentiel de pression ΔP_{vanne} , du fluide traversant la vanne d'équilibrage (1) situé dans une branche (4) du réseau hydraulique (5), nous pouvons régler la vanne d'équilibrage (1) à la position requise.

[0075] Par exemple, pour un différentiel de pression ΔP_{vanne} = 0,1 bar dans la branche (4) et pour un débit nominal requis égal à 900l/h, la position de réglage de la vanne 1 doit être amenée à la position numéro 16.

[0076] Il convient donc d'adapter l'ouverture du clapet (2) de la vanne d'équilibrage (1) au débit nominal requis par exemple lors de l'ouverture ou la fermeture d'un élément de régulation thermique 3, tel un radiateur, et maintenant tant que possible un différentiel de pression constant dans la branche (4) dans laquelle se trouve la vanne d'équilibrage (1).

[0077] La figure 3 illustre vectoriellement une telle adaptabilité selon des conditions de fonctionnement d'un radiateur (3).

[0078] A la fermeture du radiateur (3), le débit Q diminue dans la vanne d'équilibrage (1), ce qui provoque une augmentation de l'impédance du réseau hydraulique (5) et donc une augmentation du différentiel de pression ΔP de la branche (4) du réseau hydraulique (5).

[0079] Or, la vanne d'équilibrage (1) à l'instant t est à la position ouverte, comme si le radiateur 3 était en position ouverte. L'adaptabilité provoque une compensation du différentiel de pression ΔP par une diminution du différentiel de pression ΔP_{vanne} entre la sortie B et l'entrée A de la vanne d'équilibrage (1) à l'instant t1.

[0080] Sur la figure 3, il apparaît clairement qu'une vanne d'équilibrage (1) selon la présente invention veille à contrôler que le différentiel de pression de référence $\Delta P_{\text{réf}}$ de la branche (4), calculé à la fin de la phase automatique dite statique, tend à rester constant quelque soit le besoin du réseau hydraulique (5).

[0081] De même, si le radiateur (3) vient à s'ouvrir la vanne d'équilibrage (1) selon la présente invention veillera à

adapter l'ouverture de la vanne d'équilibrage (1) en ajustant la position de son clapet (2), en l'occurrence en s'ouvrant davantage.

[0082] La figure 4 illustre la fermeture d'un radiateur (3) sur l'abaque de la figure 2.

[0083] Dans ce cas précis, le débit Q dans la branche (4) vient à diminuer donc la vanne d'équilibrage (1) tend à se fermer.

[0084] Sur cette même figure 4, la position de la vanne avant la prise de mesure était la position P16.

[0085] A la prise de mesure, l'utilisateur ferme le radiateur (3), ce qui revient à une chute de débit Q dans la branche (4). Dans ce cas, le débit Q passe de 900l/h à 270l/h. Donc, sur l'abaque il apparaît une modification du différentiel de pression ΔP_{vanne} de la vanne d'équilibrage (1) au vu de la formule :

$$\Delta P_{circuitd\acute{e}riv\acute{e}} = (Q)^2 Z_{ref} + \left(\frac{Q}{K v_{ref}}\right)^2.$$

[0086] La présente invention vient comparer $\Delta P_{\text{réf}}$ et ΔP à l'instant de mesure, puis rectifie la position de réglage de la vanne d'équilibrage (1), dans ce cas la vanne d'équilibrage (1) passe de la position P16 à la position P8. Ainsi la vanne d'équilibrage (1) est réglée au débit Q correspondant au besoin.

[0087] Par le même processus de calcul, la vanne d'équilibrage (1) peut prendre une position supérieure dans le cas où le débit augmente consécutivement à l'ouverture du radiateur (3).

[0088] Ainsi, la vanne d'équilibrage (1) est flexible, autonome et s'adapte à chaque instant aux besoins du réseau hydraulique (5).

[0089] De plus, cette dernière fonctionne avec une seule donnée d'entrée, le débit de consigne $Q_{consigne}$ qui est soit estimé dans le neuf par les données architecte, soit dans la rénovation correspondant à des données estimatives des anciennes maintenances ou obtenu par estimation d'un logiciel simple délivrable par la société COMAP®.

[0090] Cette vanne d'équilibrage (1) est simple d'utilisation, à la portée de tous et fait gagner du temps lors de son installation et de l'argent tout au long de son cycle de vie.

[0091] Au-delà, de sa fonction d'équilibrage une telle vanne d'équilibrage (1) permettra de faire du contrôle ou maintenance d'installation de réseau hydraulique (5).

[0092] Bien que l'invention ait été décrite en liaison avec des exemples particuliers de réalisation et de mise en oeuvre, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons.

Revendications

10

15

20

30

35

40

45

50

- 1. Vanne d'équilibrage (1) à clapet (2) comportant une entrée (A) et une sortie (B), montée en aval d'un élément de régulation thermique (3) intégré à une branche (4) d'un réseau hydraulique (5) soumise à une pression (Δ*P*) sensiblement constante, **caractérisée en ce qu'**elle comporte :
 - des moyens de mesure (7) d'une grandeur caractéristique du fluide traversant la vanne d'équilibrage (1),
 - des moyens de commande (8) du positionnement du clapet (2) de la vanne d'équilibrage (1),
 - des moyens de stockage de données (11) dans laquelle sont stockés des paramètres intrinsèques et extrinsèques de la vanne d'équilibrage (1),
 - des moyens de traitement (10) indépendants agencés pour réaliser l'équilibrage automatique, dans la branche (4) à partir des valeurs de la grandeur caractéristique du fluide mesuré par les moyens de mesure (7), des moyens de commande (8) et des données stockées dans les moyens de stockage (11).
- 2. Vanne d'équilibrage (1) selon la revendication 1, dans laquelle les moyens de traitement (10) permettent un équilibrage dit statique dans lequel les paramètres disponibles dans les moyens de stockage de données (11) sont compilés avec les mesures recueillies par les moyens de mesure (7) afin d'obtenir des valeurs de référence caractéristiques du réseau hydraulique (5).
- 3. Vanne d'équilibrage (1) selon l'une des revendications 1 ou 2, dans laquelle les moyens de traitement (10) permettent un équilibrage dit dynamique dans lequel des valeurs de référence, de préférence celles déterminées à la revendication 2, sont exploitées pour commander les moyens de commande (8) du positionnement du clapet (2) de manière à conserver un différentiel de pression ou un débit suivant le cas sensiblement constant dans la branche

du réseau hydraulique (ΔP) dans laquelle la vanne d'équilibrage (1) est installée.

5

20

25

35

40

45

50

55

- **4.** Vanne d'équilibrage (1) selon l'une des revendications 1 à 3 dans laquelle les moyens de traitement (10) permettent d'échanger et de modifier des données d'équilibrage à des fin d'adaptation, de diagnostique de tout le réseau hydraulique (5).
- **5.** Vanne d'équilibrage (1) selon l'une des revendications 1 à 4, dans laquelle la grandeur caractéristique mesurée du fluide traversant la vanne d'équilibrage (1) concerne son débit (Q).
- 6. Vanne d'équilibrage (1) selon la revendication 5, dans laquelle les paramètres intrinsèques de la vanne d'équilibrage (1) fournis par son fabriquant représentent la variation de pression (ΔP_{vanne}) entre l'entrée et la sortie de la vanne d'équilibrage (1) en fonction du débit (Q) pour une position donnée du clapet (2) de la vanne d'équilibrage (1).
- 7. Vanne d'équilibrage (1) selon la revendication 6, dans laquelle au cours de l'équilibrage statique, les moyens de traitement (10) calculent le coefficient caractéristique de référence (Z_{réf}) du dimensionnement du réseau hydraulique (5) considéré en fonction :
 - de deux ou plusieurs valeurs de débit ($Q_{Kv\,75\%}$, $Q_{Kv\,50\%}$) déterminées pour deux ou plusieurs positionnements ($P_{75\%}$, $P_{50\%}$) du clapet (2) différents, et
 - des valeurs correspondantes des coefficients caractéristiques du dimensionnement ($Kv_{75\%}$, $Kv_{50\%}$) de la vanne d'équilibrage (1) déduites des différentiels de pression (ΔP_{vanne}) données par les paramètres intrinsèques de la vanne d'équilibrage (1).
 - 8. Vanne d'équilibrage (1) selon l'une des revendications 1 à 7, dans laquelle les paramètres extrinsèques de la vanne d'équilibrage (1) comprennent une valeur de consigne (Q_{consigne}) du débit de la vanne d'équilibrage (1) correspondant à l'estimation du besoin d'un élément de régulation thermique (3) dans une branche (4) concernée du réseau hydraulique (5), tel un radiateur (3) ou un ventilo-convecteur.
- **9.** Vanne d'équilibrage (1) selon la revendication 8, dans laquelle la valeur de consigne (Q_{consigne}) du débit est programmable dans les moyens de stockage de données (11) de la vanne d'équilibrage (1).
 - 10. Vanne d'équilibrage (1) selon l'une des revendications 8 à 9, pourvu que la revendication 6 soit dépendante de la revendication 5, dans laquelle au cours de l'équilibrage statique, les moyens de traitement (10) calculent une valeur réactualisée (Kv_{réactualisée}) pour le coefficient caractéristique du dimensionnement (Kv) de la vanne en fonction :
 - du débit mesuré ($Q_{mesuré}$) à la position du clapet correspondant à la valeur de consigne ($Q_{consigne}$) du débit donné par les caractéristiques hydrauliques intrinsèques de la vanne,
 - du débit de consigne ($Q_{consigne}$) et de son coefficient caractéristique du dimensionnement ($Kv_{consigne}$) de la vanne d'équilibrage (1) correspondant, et
 - du coefficient caractéristique de référence du dimensionnement du réseau hydraulique (Z_{réf}).
 - 11. Vanne d'équilibrage (1) selon la revendication 10, dans laquelle au cours de l'équilibrage statique, les moyens de traitement (10) calculent un différentiel de pression de référence (ΔP_{réf}) de la branche (4) du réseau hydraulique (5) avec un coefficient caractéristique du dimensionnement de la vanne réactualisé (Kv_{réactualisée}) à partir de la formule :

$$\Delta P_{r\acute{e}f} = \left(\frac{Q_{mesur\acute{e}}}{K_{\nu_{r\acute{e}actualis\acute{e}}}}\right)^2$$

- 12. Vanne d'équilibrage (1) selon la revendication 11, dans laquelle au cours de l'équilibrage dynamique, les moyens de traitement (10) agissent sur les moyens de commande (8) du positionnement du clapet (2) à l'aide d'un actionneur pour conserver une variation de pression de référence (ΔP_{réf}) sensiblement constante dans la branche (4) du réseau (5) quelque soit le besoin du réseau hydraulique (5).
- **13.** Procédé d'équilibrage automatique dit statique des conditions hydrauliques d'un ou plusieurs éléments de régulation thermique (3) intégrés à une branche (4) d'un réseau hydraulique (5) soumise à un différentiel de pression (ΔP)

sensiblement constante comportant une vanne d'équilibrage (1) selon l'une des revendications 1 à 12 caractérisé en ce qu'il comprend dans cet ordre les étapes consistant à :

- extraire des moyens de stockage de données (11) une valeur de consigne de débit (Q_{consigne}),
- calibrer la vanne d'équilibrage (1) en déterminant les débits pour deux ou plusieurs positions connues du clapet (2) de la vanne d'équilibrage (1) correspondant respectivement à deux coefficients caractéristiques de la vanne (1), par exemple à 75% et 50% de l'ouverture maximale de la vanne (1),
- calculer le coefficient ($Z_{r\acute{e}f}$) caractéristique du dimensionnement du réseau hydraulique (5) et le coefficient caractéristique du dimensionnement ($Kv_{consigne}$) de la vanne d'équilibrage (1) correspondant,
- positionner le clapet (2) de la vanne (1) sur sa position correspondant à la valeur calculée,
- déterminer le débit (Q_{mesuré}),
- si le débit déterminé ($Q_{mesur\acute{e}}$) est compris dans une plage de valeur déterminée par exemple à plus ou moins 5% de la valeur du débit de consigne ($Q_{consigne}$), alors :
- la valeur du débit de consigne ($Q_{consigne}$) est remplacée par la valeur du débit déterminée ($Q_{mesur\acute{e}}$),
- le coefficient caractéristique du dimensionnement ($Kv_{consigne}$) de la vanne d'équilibrage (1) correspondant au coefficient ($Z_{réf}$) caractéristique du dimensionnement du réseau hydraulique (5) devient le coefficient ($Kv_{réf}$) caractéristique du dimensionnement de référence, et
- le différentiel de pression de référence ($\Delta P_{r\acute{e}f}$) d'une branche (4) du réseau hydraulique (5) est calculé à partir du coefficient caractéristique du dimensionnement de référence ($Kv_{r\acute{e}f}$) et du débit déterminé ($Q_{mesur\acute{e}}$), sinon :
- revenir à l'étape de calcul du coefficient (Z $_{réf}$) caractéristique du dimensionnement du réseau hydraulique (5) et du coefficient (Kv $_{consigne}$) caractéristique du dimensionnement de la vanne d'équilibrage (1) correspondant.
- **14.** Procédé d'équilibrage automatique dit dynamique de la pression d'entrée d'un ou plusieurs éléments de régulation thermique (3) intégrés à une branche (4) d'un réseau hydraulique (5) soumise à un différentiel de pression (ΔP) sensiblement constante comportant une vanne d'équilibrage (1) selon l'une des revendications 1 à 12, **caractérisé en ce qu**'il comprend dans cet ordre les étapes consistant à :
 - attendre après un premier temps déterminé (t1) la stabilisation de l'écoulement du fluide au travers de la vanne d'équilibrage (1), ce temps étant paramétrable et de préférence égal à 30 minutes,
 - déterminer le débit (Q), en déduire le différentiel de pression (ΔP),
 - si le différentiel de pression (ΔP) est compris dans une plage de valeur déterminée par exemple à plus ou moins 5% de la valeur du différentiel de pression de référence ($\Delta P_{\text{réf}}$) :
 - revenir à la première étape consistant à attendre après un premier temps déterminé (t1),

sinon:

5

10

15

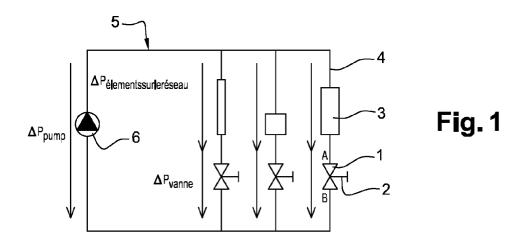
20

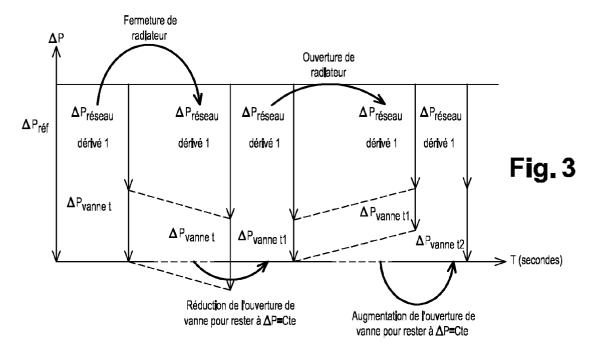
25

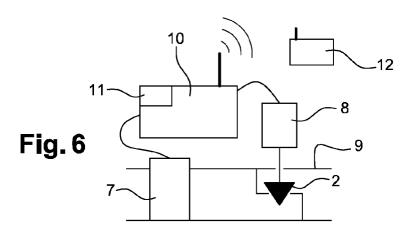
30

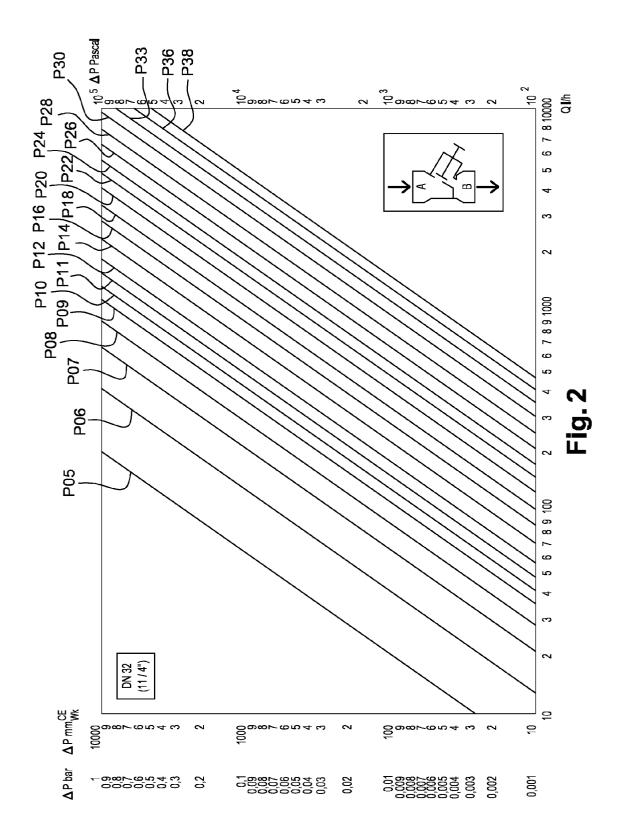
35

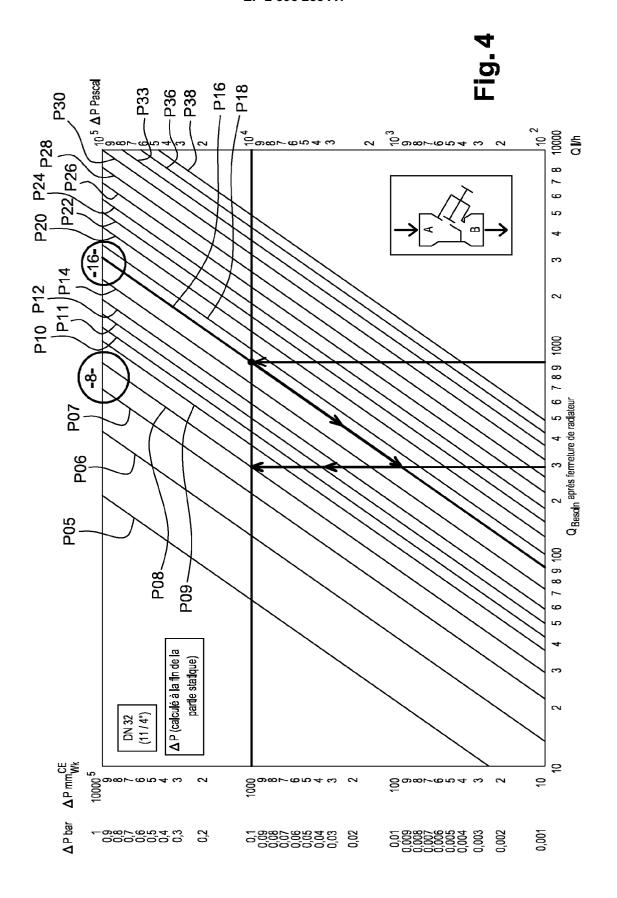
40


45


50


55


- calculer le coefficient (Z) caractéristique du dimensionnement du réseau hydraulique (5) et le coefficient (Kv) caractéristique du dimensionnement de la vanne d'équilibrage (1) correspondant,
- positionner le clapet (2) de la vanne d'équilibrage (1) sur sa position correspondant au coefficient (Kv) caractéristique du dimensionnement de la vanne d'équilibrage (1),
- attendre après un deuxième temps déterminé puis revenir au début de cette étape, ce temps étant paramétrable par exemple égal à cinq minutes.


10

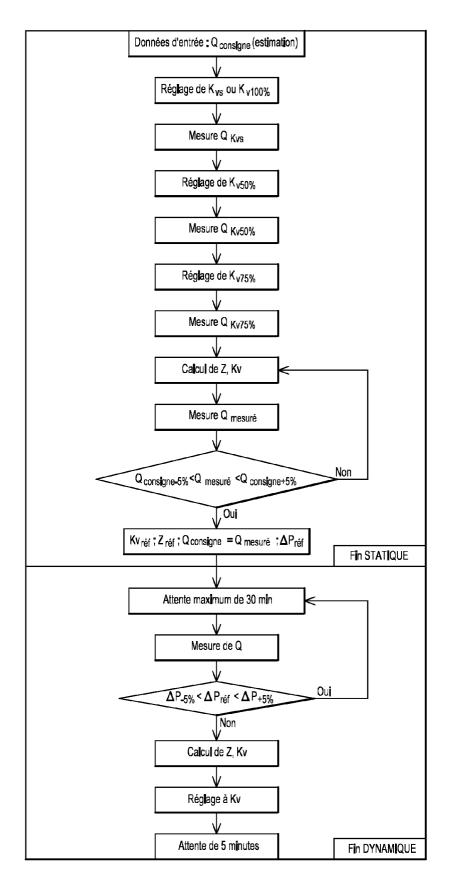


Fig. 5

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 10 16 5219

Catégorie	Citation du document avec des parties pertin	indication, en cas de besoin, entes	Revendication concernée	CLASSEMENT DE LA DEMANDE (IPC)	
X Y A	AG [DE]) 25 juin 19 * abrégé * * colonne 1, ligne * colonne 2, ligne 31 *	•	1,3,5,6, 9 4,8 7,12	INV. F24D19/10	
X A	* abrégé *	IMEIER GMBH METALL vier 1992 (1992-01-02) 57 - colonne 5, ligne	1-4,8,9		
Υ	FR 2 903 763 A1 (TE SIMPLIF [FR]) 18 ja * page 3 - page 8 * * figures 1, 2 *	COFI SOC PAR ACTIONS nvier 2008 (2008-01-18)	4,8	DOMAINES TECHNIQUES RECHERCHES (IPC)	
A	FR 2 870 927 A1 (DE GEFEN LYCEE MAXIMIL 2 décembre 2005 (20 * pages 5-11, 14 * * figures 1, 2 *	IEN PERRET [FR])	7,10,11,	F24D G05D	
A	EP 0 189 614 A1 (TN 6 août 1986 (1986-0 * le document en en	8-06)	1,13,14		
Α	EP 0 795 724 A1 (C0 17 septembre 1997 (* le document en en	1997-09-17)	1,13,14		
•	ésent rapport a été établi pour tou Lieu de la recherche	tes les revendications Date d'achèvement de la recherche		Fromington	
Munich		16 mars 2011	Schwaiger, Bernd		
CATEGORIE DES DOCUMENTS CITES X : particulièrement pertinent à lui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-plan technologique		E : document de bro date de dépôt ou avec un D : cité dans la dem L : cité pour d'autre:	T : théorie ou principe à la base de l'invention E : document de brevet antérieur, mais publié à la date de dépôt ou après cette date D : cité dans la demande L : cité pour d'autres raisons		

Numéro de la demande

EP 10 16 5219

REVENDICATIONS DONNANT LIEU AU PAIEMENT DE TAXES
La présente demande de brevet européen comportait lors de son dépôt les revendications dont le paiement était dû.
Une partie seulement des taxes de revendication ayant été acquittée dans les délais prescrits, le présent rapport de recherche européenne a été établi pour les revendications pour lesquelles aucun paiement n'était dû ainsi que pour celles dont les taxes de revendication ont été acquittées, à savoir les revendication(s):
Aucune taxe de revendication n'ayant été acquittée dans les délais prescrits, le présent rapport de recherche européenne a été établi pour les revendications pour lesquelles aucun paiement n'était dû.
ABSENCE D'UNITE D'INVENTION
La division de la recherche estime que la présente demande de brevet européen ne satisfait pas à l'exigence relative à l'unité d'invention et concerne plusieurs inventions ou pluralités d'inventions, à savoir:
voir feuille supplémentaire B
Toutes les nouvelles taxes de recherche ayant été acquittées dans les délais impartis, le présent rapport de recherche européenne a été établi pour toutes les revendications.
Comme toutes les recherches portant sur les revendications qui s'y prêtaient ont pu être effectuées sans effort particulier justifiant une taxe additionnelle, la division de la recherche n'a sollicité le paiement d'aucune taxe de cette nature.
Une partie seulement des nouvelles taxes de recherche ayant été acquittée dans les délais impartis, le présent rapport de recherche européenne a été établi pour les parties qui se rapportent aux inventions pour lesquelles les taxes de recherche ont été acquittées, à savoir les revendications:
Aucune nouvelle taxe de recherche n'ayant été acquittée dans les délais impartis, le présent rapport de recherche européenne a été établi pour les parties de la demande de brevet européen qui se rapportent à l'invention mentionnée en premier lieu dans les revendications, à savoir les revendications:
Le present rapport supplémentaire de recherche européenne a été établi pour les parties de la demande de brevet européen qui se rapportent a l'invention mentionée en premier lieu dans le revendications (Règle 164 (1) CBE)

ABSENCE D'UNITÉ D'INVENTION FEUILLE SUPPLÉMENTAIRE B

Numéro de la demande

EP 10 16 5219

La division de la recherche estime que la présente demande de brevet européen ne satisfait pas à l'exigence relative à l'unité d'invention et concerne plusieurs inventions ou pluralités d'inventions, à savoir : 1. revendications: 1-13 une vanne d'équilibrage et un procédé dit statique d'auto-calibration $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{$ 2. revendication: 14 un procédé dit dynamique pour le réglage du système

EPO FORM P0402

ANNEXE AU RAPPORT DE RECHERCHE EUROPEENNE RELATIF A LA DEMANDE DE BREVET EUROPEEN NO.

EP 10 16 5219

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche européenne visé ci-dessus.

Lesdits members sont contenus au fichier informatique de l'Office européen des brevets à la date du

Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets.

16-03-2011

Document brevet au rapport de reche		Date de publication	Membre(s) de la famille de brevet(s)		Date de publication	
DE 19725376	A1	25-06-1998	AUCL	JN		<u> </u>
DE 4019503	A1	02-01-1992	AUCL	JN		
FR 2903763	A1	18-01-2008	AUCL	JN		
FR 2870927	A1	02-12-2005	EP WO	1754005 2005119129		21-02-20 15-12-20
EP 0189614	A1	06-08-1986	DE DK US	3568859 604885 4708287	Α	20-04-19 25-06-19 24-11-19
EP 0795724	A1	17-09-1997	DE DE FR	69706458 69706458 2746168	T2	11-10-26 11-04-26 19-09-19

EPO FORM P0460

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82