BACKGROUND
Field
[0001] The disclosed concept pertains generally to electrical switching apparatus and, more
particularly, to electrical switching apparatus, such as, for example, relays, contactors
or solenoid-actuated switches, including a coil and a number of auxiliary switches.
The disclosed concept also pertains to methods of controlling such electrical switching
apparatus. The disclosed concept further pertains to control systems for such electrical
switching apparatus.
Background Information
[0002] Figure 1 shows a conventional three-phase contactor 2 including three main contacts
4,6,8 controlled by a coil 10. A number of sets of electromechanical auxiliary contacts
12 are responsive to the closed position or the open position of the three main contacts
4,6,8. The contactor 2 employs two conductors, such as 14,16, for each set of the
electromechanical auxiliary contacts 12. The contactor 2 has a relatively large size
and weight, includes individual mechanical adjustments (e.g., without limitation,
an adjustment to provide "wear allowance" to ensure proper function as various parts
wear). For example, each set of the electromechanical auxiliary contacts 12 requires
adjustment to ensure that it is actuated when the main contacts 4,6,8 are actuated.
Each set of the electromechanical auxiliary contacts 12 includes an electromechanical
auxiliary switch that provides the corresponding auxiliary contact function (e.g.,
normally closed (NC); normally open (NO)). While no power is required for NC auxiliary
switches, the electromechanical auxiliary switches are susceptible to foreign object
debris (FOD) and contaminates.
[0003] European Patent Application Publication No.
1998351 provides a switchgear operated by an electromagnetic actuator and having a condition-monitoring
device for monitoring a condition of the actuator. The actuator includes a stationary
core, a moveable core, magnetic coils for moving the core, and a permanent magnet
disposed around the moveable core. The condition-monitoring device is configured to
measure current flowing through the magnetic coils and magnetic flux in the stationary
core and to calculate, based on these, a condition of the actuator, such as driving
velocity, or start and end timing of an actuation. The condition determination result
may be transmitted to a monitoring system by an output signal.
[0004] There is room for improvement in electrical switching apparatus, such as relays,
contactors or solenoid-actuated switches, including a coil and a number of auxiliary
switches. It would be desirable to provide an improved electrical switching apparatus
in which the auxiliary switches can be changed to their proper state without the need
for multiple mechanical adjustments, such those required to provide for wear allowance.
This can ensure proper function of the electrical switching apparatus is maintained
and can improve reliability and life expectancy.
[0005] There is also room for improvement in methods of controlling such electrical switching
apparatus.
[0006] There is further room for improvement in control systems for such electrical switching
apparatus.
SUMMARY
[0007] These needs and others are met by embodiments of the disclosed concept, which monitor
a magnetic field of a magnetic frame cooperating with a coil, detect a predetermined
characteristic of a current flowing through the coil, and change a state of a number
of auxiliary switches if the magnetic field is greater than a predetermined value
and if the predetermined characteristic is detected.
[0008] In accordance with a first aspect of the disclosed concept, a method controls an
electrical switching apparatus including a coil which controls main contacts, a magnetic
frame cooperating with the coil, and a number of auxiliary switches that are responsive
to a position of the main contacts. The method comprises: monitoring a magnetic field
of the magnetic frame; detecting a predetermined characteristic of a current flowing
through the coil, wherein the predetermined characteristic is a momentary decrease
in the current flowing through the coil before subsequently reaching a larger current
value; and changing a state of the number of auxiliary switches to a first state if
the magnetic field is greater than a first predetermined value and if the predetermined
characteristic is detected.
[0009] The method further comprises reducing the current flowing through the coil; and determining
if the magnetic field decreases to less than a second predetermined value, which is
smaller than the first predetermined value, and responsively changing the state of
the number of auxiliary switches to a different second state.
[0010] When power is applied to the coil, the coil current increases to a final value that
is a function of the coil resistance. However, the wave shape of increasing coil current
is influenced by several factors, including a magnetic back-EMF effect. When the power
is applied to the coil, with a normal result, the magnetic back-EMF effect causes
a momentary decrease in the current flowing through the coil before it subsequently
reaches a larger current value. This predetermined characteristic, or 'glitch', indicates
a normal result. However, with an abnormal result, the back-EMF may not be sufficient
to cause a dip in the coil current and so the glitch is not present, even though the
coil current still reaches the full inrush value.
[0011] By monitoring the magnetic field of the magnetic frame and also detecting the predetermined
characteristic of the current flowing through the coil, and changing the state of
the auxiliary switches based on both characteristics, the control system can ensure
that the auxiliary switches are in their proper state.
[0012] The method may further comprise employing a ferrous plunger with the coil; and detecting
the predetermined characteristic of the current flowing through the coil when the
ferrous plunger moves both far enough and fast enough responsive to the magnetic field.
[0013] The method may further comprise determining a magnitude of the current flowing through
the coil; and adjusting the predetermined value as a function of the magnitude of
the current.
[0014] As a second aspect of the disclosed concept, a control system is for an electrical
switching apparatus including a coil which controls main contacts, a magnetic frame
cooperating with the coil, and a number of auxiliary switches that are responsive
to a position of the main contacts. The control system comprises: a current sensor
structured to sense a current flowing through the coil; a magnetic sensor structured
to sense a magnetic field of the magnetic frame; and a circuit structured to detect
a predetermined characteristic of the sensed current flowing through the coil and
output a control signal responsive to the magnetic field being greater than a predetermined
value and the predetermined characteristic being detected, wherein the predetermined
characteristic is a momentary decrease in the current flowing through the coil before
subsequently reaching a larger current value; wherein the control signal is structured
to cause a change in state of the number of auxiliary switches to a first state when
the magnetic field is greater than said predetermined value and the predetermined
characteristic is detected; wherein the predetermined value is a first predetermined
value; wherein a second predetermined value is smaller than the first predetermined
value; and wherein the circuit is further structured to determine if the magnetic
field is subsequently less than the smaller second predetermined value and to cause
a further change in state of the number of auxiliary switches to a different second
state.
[0015] As a third aspect of the disclosed concept, an electrical switching apparatus comprises:
a control system according to the first aspect and a number of separable contacts
controlled by the coil of the control system.
[0016] The coil may include a ferrous plunger; the separable contacts may include a number
of fixed contacts and a number of movable contacts movable by the ferrous plunger;
and the current flowing through the coil may cooperate with the magnetic frame to
cause the magnetic field to move the ferrous plunger from a first position wherein
the separable contacts are open to a different second position wherein the number
of movable contacts electrically engage the number of fixed contacts.
[0017] The circuit may be further structured to determine a magnitude of the current flowing
through the coil and adjust the predetermined value as a function of the magnitude
of the current.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] A full understanding of the disclosed concept can be gained from the following description
of the preferred embodiments when read in conjunction with the accompanying drawings
in which:
Figure 1 is a block diagram of a contactor.
Figure 2 is a block diagram of a contactor including electronic auxiliary switches
and actuation logic therefor in accordance with embodiments of the disclosed concept.
Figure 3 is a block diagram of a contactor including electronic auxiliary switches
and actuation logic therefor in accordance with another embodiment of the disclosed
concept.
Figure 4 includes plots of magnetic frame magnetic field, coil current and the state
of the main contacts of a contactor or relay switch being switched to a first state
in accordance with another embodiment of the disclosed concept.
Figure 5 includes plots of magnetic frame magnetic field, coil current and the state
of the main contacts of a contactor or relay switch being switched to a second state
with an abnormal result in accordance with another embodiment of the disclosed concept.
Figure 6 includes plots of magnetic frame magnetic field, coil current and the state
of the main contacts of a contactor or relay switch being switched to a second state
with a normal result in accordance with another embodiment of the disclosed concept.
Figure 7 is a block diagram in schematic form of the auxiliary switch actuation logic
of Figure 2 and corresponding current and magnetic sensors in accordance with another
embodiment of the disclosed concept.
Figure 8 is a cross section of a vertical elevation view of a relay in accordance
with another embodiment of the disclosed concept.
Figure 9 is a block diagram in schematic form of the economizer and coil of Figure
2.
Figure 10 is a flowchart of a routine executed by the logic circuit of Figure 7.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0019] As employed herein, the term "number" shall mean one or an integer greater than one
(
i.
e., a plurality).
[0020] As employed herein, the term "processor" means a programmable analog and/or digital
device that can store, retrieve, and process data; a computer; a workstation; a personal
computer; a microprocessor; a microcontroller; a microcomputer; a central processing
unit; a mainframe computer; a mini-computer; a server; a networked processor; or any
suitable processing device or apparatus.
[0021] As employed herein, the term "glitch" means a momentary decrease in a current flowing
through a coil before it subsequently reaches a larger current value.
[0022] As employed herein, the term "auxiliary switch" means auxiliary contacts, an electromechanical
auxiliary switch or an electronic auxiliary switch.
[0023] As employed herein, the term "coil" means a relay coil, a contactor coil or a solenoid
coil.
[0024] The disclosed concept is described in association with three-phase relays and three-phase
contactors having a plurality of electronic auxiliary switches, although the disclosed
concept is applicable to a wide range of electrical switching apparatus including
a coil, any number of phases, and any number of auxiliary switches, such as auxiliary
contacts, electromechanical auxiliary switches or electronic auxiliary switches.
Example 1
[0025] Figure 2 shows a contactor 20 including a plurality of bi-directional electronic
auxiliary switches 22 and actuation logic 24 therefor. The example bi-directional
electronic auxiliary switches 22 mimic electromechanical auxiliary switches, such
as 12 of Figure 1. A power input 26 provides power to activate any normally closed
(NC) electronic auxiliary switches 22. A control input 28 is provided to an economizer
30, which is discussed, below, in connection with Figure 9. The economizer 30, in
turn, controls a coil 54, which controls the main contacts 4,6,8 with a plunger 52.
The actuation logic 24 is discussed, below, in connection with Figures 7 and 10.
Example 2
[0026] Figure 3 shows another contactor 40 including a plurality of electronic auxiliary
switches 42 and actuation logic 44 therefor. The example electronic auxiliary switches
42 mimic electromechanical auxiliary switches, such as 12 of Figure 1, except that
a common and independent auxiliary switch ground 45 of power input 46 is employed
to provide single-ended auxiliary outputs 43, in order to reduce external conductor
count. The independent auxiliary switch ground 45 preferably reduces EMI issues. The
electronic auxiliary switches 42 can employ any suitable relatively high or relatively
low voltage logic, and corresponding power connections. For example, MOSFET or bipolar
transistors (not shown) can be employed depending on individual auxiliary switch needs.
High-side or low-side transistor circuits (not shown) can be employed. The example
contactor 40 employs switch-to-ground low side auxiliary switches 42 as shown in Figure
3.
[0027] It will be appreciated that although example contactors 20 and 40 of Figures 2 and
3 are shown, the disclosed concept is applicable to a wide range of different contactors,
relays or solenoid-actuated electrical switch configurations in order to address a
wide range of electrical switching applications.
[0028] In addition, the example electronic auxiliary switches 22,42 of Figures 2 and 3 can
be logic level switches and/or can control other relays within a system. As non-limiting
examples, the electronic auxiliary switches 22,42 can drive up to about 1 A for logic
level applications, while relay-type auxiliary switches can typically be rated up
to about 10 A.
Example 3
[0029] Referring to Figures 4-6, when a relay or contactor coil, such as 54, is energized,
the magnetic field strength inside a corresponding magnetic frame (not shown, but
see magnetic frame 50 of Figures 7 and 8) generally does not reach full strength until
the moving plunger (not shown, but see plunger 52 of Figures 7 and 8) of the coil
(see coil 54 of Figures 7 and 8) is moved completely to the energized position where
it comes to rest in such a way as to reduce the reluctance of the magnetic frame magnetic
circuit. The decrease in reluctance, which occurs when the plunger completes the magnetic
circuit path, allows the magnetic field strength inside the plunger to reach its fullest
strength.
[0030] Figure 4 includes plots 60, 62 and 64 of magnetic frame magnetic field 66, coil current
68 and the state 70 (e.g., off or open is high; on or closed is low) of the main contacts
(see 4,6,8 of Figure 2) of an electrical switching apparatus, such as a contactor
or relay switch, being switched to a first state (e.g., off), respectively. When turning-off
the example relay or contactor, in response to a removal or sufficient drop in the
coil current 68 (e.g., at 72), the magnetic field 66 of the magnetic frame 50 (Figures
7 and 8) drops to a magnetic strength (e.g., at 74) where the auxiliary switches 22,42
(Figures 2 and 3) change state (and function) and the main contacts open (e.g., at
76).
[0031] Figure 5 includes plots 80, 82 and 84 of magnetic frame magnetic field 86, coil current
88 and the state 90 of the main contacts (see 4,6,8 of Figure 2) being attempted to
be switched to a second state (e.g., on), respectively, but with an abnormal result
since the state 90 does not change. When power is applied to the contactor or relay
coil 54 (Figures 7 and 8), the coil current 88 increases to a final value 92 that
is a function of the coil resistance; however, the wave shape of the increasing coil
current 88 is influenced by several factors. Current waveforms observed during the
period following the initial application of power normally display a "glitch" 94 (Figure
6) resulting from the magnetic "back-EMF" effect of the moving plunger (not shown,
but see plunger 52 of Figures 7 and 8), which momentarily results in coil current
decreasing before achieving the final value 92. If the plunger does not move, or if
it moves slowly or partially (e.g., not far enough; not fast enough), then the glitch
94 (Figure 6) will not be present as shown in area 94' of Figure 5. This is because
the moving plunger, in this instance, does not create "back-EMF" sufficient to cause
the dip in the coil current 88. Although the coil current 88 still reaches the full
inrush value 92 (e.g., based on the coil resistance) (e.g., without limitation, about
3.1 A at 25°C), because the plunger did not seat, there is an air gap that limits
the final value 96 of the magnetic field 86. As a result, the state 90 remains high
corresponding to the open or off state of the main contacts.
[0032] As will be discussed, below, in connection with Figure 10, a control method to change
the state of the auxiliary switches 22,42 (Figures 2 and 3) includes: (1) determining
if the glitch 94 (Figure 6) is present; and (2) determining if the magnetic field
strength 96,96' is sufficient; and (3) creating a control signal 27,47 (Figures 2
and 3) from the actuation logic 24,44 (Figures 2 and 3), which changes the state of
the corresponding auxiliary switches 22,42 (i.e., to a state corresponding to the
main contacts 4,6,8 being closed).
[0033] Figure 6 includes plots 100,102,104 of magnetic frame magnetic field 106, coil current
108 and the state 110 of the main contacts (see 4,6,8 of Figure 2) being switched
to a second state (e.g., on), respectively, with a normal result. Here, the "glitch"
94 is detected. This detection is ANDed with the detection of the magnetic field strength
signal 96' being over the threshold 112. As is shown in Figure 5, the "glitch" 94
is not present in area 94' when, for example, the plunger (not shown, but see plunger
52 of Figures 7 and 8) is stalled. A coil current value 113 is detected with a suitable
sensor (e.g., without limitation, a Hall sensor 114 (Figure 7)). This current value
113 can be used, as will be explained, to set or adjust the threshold 112 for the
magnetic field strength 86,106. The threshold 112 of the magnetic field strength 86,106
can be determined using the coil current value 113, as is discussed in Examples 4,
9 and 10, below.
Example 4
[0034] One of the variables controlling the final magnetic field strength 96,96' in the
magnetic frame (not shown, but see magnetic frame 50 of Figures 7 and 8) is the final
magnitude 92,113 of the current 88,108. The magnitude of the current 88,108 varies
with temperature inversely. To set the threshold 112 for determining whether the magnetic
field strength 96,96' is sufficient, the magnitude 92,113 of the coil current 88,108
can be employed to set this threshold for such magnetic field strength.
Example 5
[0035] When it is desired to return the state of the auxiliary switches 22,42 (i.e., to
a state corresponding to the main contacts 4,6,8 being open with the coil 54 being
de-energized with no or sufficiently reduced current flowing therethrough), suitable
control logic (e.g., an algorithm) can be employed. This control logic includes: (1)
determining if the magnetic field 66,106 in the magnetic frame 50 decreases below
a different predefined threshold (e.g., without limitation, smaller than the threshold
112; determined empirically; adjusted for ambient temperature, coil current and/or
coil voltage) (see, for example, 74 of Figure 4) known to be less than that needed
to maintain contact closure; and (2) providing the control signal 27,47 to command
the auxiliary switches 22,42 to revert to their original state.
Example 6
[0036] Figure 7 shows the auxiliary switch actuation logic 24 of Figure 2, the corresponding
current sensor 114 structured to sense current flowing through the coil 54, and the
corresponding magnetic field sensor 120 structured to sense the magnetic field 106
(Figure 6) of the magnetic frame 50. It will be appreciated that the actuation logic
44 of Figure 3 can be the same as or similar to the actuation logic 24. Both of the
actuation logics 24,44 can be implemented with a suitable processor, such as for example
and without limitation, a microcontroller or microcomputer including a suitable analog
to digital converter 122. The actuation logic 24 and sensors 114,120 provide a control
system (control circuit) to control the auxiliary switches 22,42 for an electrical
switching apparatus based on the sensed magnetic field 124 of the magnetic frame 50
and the sensed current 126 flowing through the coil 54. This control system monitors
and detects the strength of the magnetic field in the magnetic frame 50 and detects
the "glitch" characteristic 94 of the coil current waveform.
[0037] A relay 130 (portions of which are shown in Figure 8) includes a positive electrical
terminal 132 and a negative electrical terminal 134, which input a single actuation
signal (e.g., without limitation, 28 VDC; any suitable DC voltage). The actuation
logic 24 outputs the electronic auxiliary switch control signal 27, which is structured
to change the state of the auxiliary switches 22,42 (Figures 2 and 3). The magnetic
field sensor 120 is preferably sensitive to the full range of the magnetic strength
present during the operation of the coil 54. The actuation logic 24 is structured
to detect a predetermined characteristic, such as the glitch 94 of the sensed current
126 flowing through the coil 54, and output the control signal 27 responsive to the
sensed magnetic field 124 being greater than the threshold 112 (Figure 6) and the
predetermined characteristic being detected.
Example 7
[0038] Referring to Figure 8, an electrical switching apparatus (e.g., without limitation,
such as the example relay 130; a contactor; a solenoid-actuated electrical switch)
includes the coil 54 (also shown in Figure 9), the magnetic frame 50 cooperating with
the coil 54, a number of separable contacts 137 (not fully shown, but see the main
contacts 4,6,8 of Figure 2) controlled by the coil 54, a number of auxiliary switches
136 (e.g., auxiliary switches 22,42 of Figures 2 or 3), the current sensor 114 (Figure
7) structured to sense the current flowing through the coil 54, the magnetic sensor
120 structured to sense the magnetic field of the magnetic frame 50, a circuit, such
as 24, and the economizer 30.
[0039] The relay 130 functions as a coil-actuated (e.g., solenoid-actuated) electrical switch
in which the magnetic field generated by an electromagnet formed by the coil 54 and
the magnetic frame 50 causes the axial ferrous plunger 52 to move from a rest position
(e.g., up with respect to Figures 7 and 8) to an energized position (e.g., down with
respect to Figures 7 and 8) when the coil 54 is suitably energized. The predetermined
characteristic (e.g., glitch 94) of the sensed current 126 flowing through the coil
54 is responsive to a magnetic "back-EMF" effect of the ferrous plunger 52 when moved
by the magnetic field of the electromagnet. The actuation logic 24 detects this predetermined
characteristic when the ferrous plunger 52 moves both far enough and fast enough responsive
to the magnetic field.
[0040] The separable contacts 137 (not fully shown, but see the main contacts 4,6,8 of Figure
2), which are coupled to the plunger 52, can be moved from a rest position to an energized
position. As shown in Figure 2, the separable contacts 137 can include a number of
fixed contacts 138 and a number of movable contacts 140 (also shown in Figure 8) movable
by the ferrous plunger 52. The current flowing through the coil 54 cooperates with
the magnetic frame 50 to cause the magnetic field to move the ferrous plunger 52 from
a first position (e.g., up with respect to Figures 7 and 8) wherein the separable
contacts 137 are open to a different second position (e.g., down with respect to Figures
7 and 8) wherein the number of movable contacts 140 electrically engage the number
of fixed contacts 138. The separable contacts 137 can switch any suitable voltage
(e.g., AC; DC). Although three sets of separable contacts 137 are shown, any suitable
number can be employed. In the example of Figure 2, the three sets of movable contacts
140 are driven by the plunger 52 of the coil 54.
[0041] The example relay 130 also includes a cover (not shown), a printed circuit board
(PCB) 142 including the electronic auxiliary contacts 136, a PCB 144 including the
actuating logic 24 and the economizer 30, a base 146, and a plurality of terminals
148 in electrical communication with the fixed contacts 138 of Figure 2 (only three
of six terminals 148 are shown). A terminal 150 provides the power input 26 (Figure
2) to activate any NC electronic auxiliary switches 22. The terminals 132,134 provide
power to the economizer 30 and the PCB 144 as shown in Figure 7. The terminals 132,134,150
can be employed as part of a common connector. Power terminals, such as 148, typically
include bus bars (not shown) or threaded stud terminals (not shown) for external electrical
connections.
Example 8
[0042] Figure 9 shows the economizer 30 and coil 54 of Figure 2. The economizer 30 is a
conventional coil relay/contactor control circuit that allows for a relatively much
greater magnetic field in an electrical switching apparatus during, for instance,
the initial (e.g., without limitation, 50 mS) time following application of power
to ensure that the plunger 52 completes it travel and overcomes its own inertia, friction
and spring forces. This is achieved by using a dual coil arrangement in which there
is a suitable relatively low resistance circuit or coil 160 and a suitable relatively
high resistance circuit or coil 162 in series with the coil 160. Initially, the economizer
30 allows current to flow through the low resistance circuit 160, but after a suitable
time period, the economizer 30 turns off the low resistance path. This approach reduces
the amount of power consumed during static states (e.g., relatively long periods of
being energized).
[0043] The dual bifilar coil 54 is employed inside the magnetic frame 50. The RC timing
components 164 control the inrush time period. The coil 160 is, for example and without
limitation, 9 ohms and the coil 162 is, for example and without limitation, 90 ohms.
When the coil 162 is shunted by FET 166 during the initial time after the application
of power, the current is relatively high (e.g., without limitation, 28 VDC / 9 ohms
= 3.1 A). The FET 166 provides a coil current shunt path to dramatically increase
current through the coil 160 during the initial period after the application of power.
Based on the coil design, the coil 160 creates a relatively very strong magnetic field
even though no appreciable current flows through the other coil 162 during this time.
Magnetic field strength is a function of the product of the coil current and the number
of turns of the corresponding coil(s) 160,162.
[0044] When the capacitor 168 charges to a predefined threshold voltage, the control logic
170 turns FET 166 off, the shunt path is no longer present, and the coil current now
flows through both of the coils 160,162. The coil design is such that the coil current
creates enough magnetic force to hold the electrical switching apparatus in the energized
state. In this case, the current would be reduced to (e.g., without limitation, 28
VDC / (9 + 90 ohms) or about 0.28 A), which is fewer amps, but with many more turns
of the coils 160,162.
[0045] Because the power is a function of the current squared times the resistance, a reduction
of the coil current by a factor of about 11 causes the power needed to hold the corresponding
electrical switching apparatus closed to be significantly reduced. The relatively
high power at the time of the application of power ensures that the electrical switching
apparatus closes properly and completely.
Example 9
[0046] Figure 10 shows a routine 180 executed by the actuation logic 24 of Figure 7. Initially,
at 182, the control input 28 (control voltage) (Figure 2) is applied between the electrical
terminals 132,134. Next, at 184, the coil economizer 30 and actuation logic circuit
24 are activated, and the actuation logic circuit 24 begins to monitor the coil current
for the glitch 94 (Figure 6). Then, at 186, it is determined if the inrush current
glitch 94 is present. If not, then at 188, the state of the auxiliary switches 22
(Figure 2) is not changed (e.g., maintain the normally open auxiliary switches and
the normally closed auxiliary switches in their prior states). Otherwise, at 190,
if the magnetic field strength is within acceptable limits (e.g., above a suitable
predetermined value (threshold 112 of Figure 6); above a suitable empirically determined
value; above a value from a look-up table as a function of a suitable predetermined
value, ambient temperature, voltage and/or current), then, at 192, the normally open
auxiliary switches are activated and the normally closed auxiliary switches are de-activated
by changing the state of the control signal 27 (Figure 2).
[0047] Otherwise, at 194, the state of the auxiliary switches 22 (Figure 2) is not changed
(the state of the control signal 27 is not changed). The routine 180 monitors the
magnetic field of the magnetic frame 50, detects the predetermined characteristic
of the current flowing through the coil 54, and changes the state of the number of
auxiliary switches 22,42 if the sensed magnetic field 124 is greater than the predetermined
value (threshold 112) and if the predetermined characteristic 94 is detected.
Example 10
[0048] The magnetic field of the magnetic frame 50 is preferably characterized throughout
the voltage/temperature range of the corresponding electrical switching apparatus.
For example, as a typical contactor or relay is energized, the magnetic field is changing.
The magnetic field in the magnetic frame 50 is influenced by the amount of coil current
flowing and the effect of position and movement of the plunger 52. Copper resistance
(R) varies dramatically with temperature (T), therefore, the current that flows through
the coil 54 varies as a function of temperature as shown in Equation 1.

wherein:
R0 is the initial resistance (ohms);
T0 is the initial temperature (°C); and
α is the temperature coefficient of the material (e.g., α for copper is 3.9 x 10-10/°C).
[0049] If the coil current varies as a function of temperature, then the force on the plunger
52 when it is energized is changed resulting in more or less acceleration of the plunger
52 from its de-energized position to its energized position. The energized state is
defined by the completion of transfer of position of the plunger 52 and the separable
contacts 137 coming to rest in the transferred (e.g., closed) position. After the
electrical switching apparatus coil 54 is energized, the coil current 108 (Figure
6) continues to increase for a brief period of time as a result of the inductance
of the coil 54. The magnetic field in the magnetic frame 50 is in a dynamic state
until this time and it is different from apparatus to apparatus depending on temperature
and variations in spring and friction forces. Hence, by determining the magnitude
of the current flowing through the coil 54, a suitable adjustment of the predetermined
value (threshold 112) can be made as a function of the magnitude of the coil current.
[0050] By monitoring the magnetic field with suitable instrumentation, it can be possible
to identify characteristics in the magnetic field to determine the state of the plunger
52. By incorporating a suitable sensing and control circuit in the apparatus that
identifies the state of the plunger 52, the actuation logic circuit 24 can control
auxiliary switches 22,42 to change their proper state according to the determined
position of the plunger 52.
[0051] The disclosed concept employs a single control input 28 (single actuation signal)
(Figure 2). This can employ electronic auxiliary switches 22,42 (Figures 2 and 3)
and, thus, avoid the need for multiple mechanical adjustments. This provides reduced
size and weight, is not susceptible to FOD or contaminants, and improves reliability
and life expectancy of the electrical switching apparatus.
[0052] The example electronic auxiliary switches 42 potentially reduce aircraft conductor
count.
[0053] While specific embodiments of the disclosed concept have been described in detail,
it will be appreciated by those skilled in the art that various modifications and
alternatives to those details could be developed in light of the overall teachings
of the disclosure. Accordingly, the particular arrangements disclosed are meant to
be illustrative only and not limiting as to the scope of the disclosed concept which
is to be given the full breadth of the claims appended and any and all equivalents
thereof.
1. A method of controlling an electrical switching apparatus (130) including a coil (54)
which controls main contacts (4, 6, 8), a magnetic frame (50) cooperating with the
coil, and a number of auxiliary switches (22) that are responsive to a position of
the main contacts (4, 6, 8), said method comprising:
monitoring (120) a magnetic field (66,106) of the magnetic frame;
detecting (186) a predetermined characteristic (94) of a current (108) flowing through
the coil, wherein the predetermined characteristic is a momentary decrease (94) in
the current flowing through the coil before subsequently reaching a larger current
value (113);
changing (192) a state of the number of auxiliary switches to a first state if (190)
the magnetic field is greater than a first predetermined value and if (186) the predetermined
characteristic is detected;
reducing the current flowing through the coil; and
determining if the magnetic field decreases to less than a second predetermined value,
which is smaller than the first predetermined value, and responsively changing the
state of the number of auxiliary switches to a different second state.
2. The method of claim 1 further comprising:
employing a ferrous plunger (52) with the coil; and
detecting (186) the predetermined characteristic of the current flowing through the
coil when the ferrous plunger moves both far enough and fast enough responsive to
the magnetic field.
3. The method of claim 1 further comprising:
determining a magnitude (113) of the current flowing through the coil; and
adjusting the predetermined value (112) as a function of the magnitude of the current.
4. A control system (144) for an electrical switching apparatus (130) including a coil
(54) adapted to control main contacts (4, 6, 8), a magnetic frame (50) cooperating
with the coil, and a number of auxiliary switches (22) that are responsive to a position
of the main contacts (4, 6, 8), said control system comprising:
a current sensor (114) structured to sense a current (108,126) flowing through the
coil;
a magnetic sensor (120) structured to sense a magnetic field (66,106) of the magnetic
frame; and
a circuit (24) structured (180) to detect a predetermined characteristic (94) of the
sensed current (126) flowing through the coil and output a control signal (27) responsive
to the magnetic field being greater than a predetermined value and the predetermined
characteristic being detected, wherein the predetermined characteristic is a momentary
decrease (94) in the current flowing through the coil before subsequently reaching
a larger current value (113); wherein the control signal is structured to cause a
change in state of the number of auxiliary switches to a first state when the magnetic
field is greater than said predetermined value and the predetermined characteristic
is detected; wherein the predetermined value is a first predetermined value; wherein
a second predetermined value (74) is smaller than the first predetermined value; and
wherein the circuit is further structured to determine if the magnetic field is subsequently
less than the smaller second predetermined value and to cause a further change in
state of the number of auxiliary switches to a different second state.
5. The control system (144) of Claim 4 wherein said number of auxiliary switches are
a number of electronic auxiliary switches (22); and wherein said control signal is
an electronic signal (27) structured to open or close said number of electronic auxiliary
switches.
6. The control system (144) of Claim 4 wherein said coil includes a ferrous plunger (52);
and wherein the predetermined characteristic of the sensed current flowing through
the coil is responsive to a magnetic "back-EMF" effect of the ferrous plunger when
moved by the magnetic field of the magnetic frame.
7. An electrical switching apparatus (130) comprising the control system (144) of Claim
4, said electrical switching apparatus further including:
a number of separable contacts (137) controlled by said coil (54).
8. The electrical switching apparatus (130) of Claim 7 wherein said coil includes a ferrous
plunger (52); wherein said separable contacts include a number of fixed contacts (138)
and a number of movable contacts (140) movable by said ferrous plunger; and wherein
the current flowing through the coil cooperates with the magnetic frame to cause the
magnetic field to move the ferrous plunger from a first position wherein said separable
contacts are open to a different second position wherein said number of movable contacts
electrically engage said number of fixed contacts.
9. The electrical switching apparatus (130) of Claim 7 wherein said circuit is further
structured to determine a magnitude (113) of the current flowing through the coil
and adjust the predetermined value as a function of the magnitude of the current.
1. Verfahren zum Steuern eines elektrischen Schaltgeräts (130), das eine Spule (54),
die Hauptkontakte (4, 6, 8) steuert, einen magnetischen Rahmen (50), der mit der Spule
zusammenwirkt, und eine Anzahl von Hilfsschaltern (22), die auf eine Position der
Hauptkontakte (4, 6, 8) ansprechend sind, enthält, wobei das Verfahren aufweist:
Überwachen (120) eines magnetischen Feldes (66, 106) des magnetischen Rahmens,
Erfassen (186) einer vorbestimmten Charakteristik (94) eines Stroms (108), der durch
die Spule fließt, wobei die vorbestimmte Charakteristik eine momentane Verringerung
(94) bei dem Strom, der durch die Spule fließt, vor einem nachfolgenden Erreichen
eines größeren Stromwerts (113) ist,
Ändern (192) eines Zustands der Anzahl von Hilfsschaltern in einen ersten Zustand,
wenn (190) das magnetische Feld größer als ein erster vorbestimmter Wert ist und wenn
(186) die vorbestimmte Charakteristik erfasst wird,
Verringern des Stroms, der durch die Spule fließt, und
Bestimmen, wenn das magnetische Feld sich auf weniger als einen zweiten vorbestimmten
Wert, der kleiner als der erste vorbestimmte Wert ist, verringert und ansprechend
Ändern des Zustands der Anzahl von Hilfsschaltern in einen verschiedenen zweiten Zustand.
2. Verfahren nach Anspruch 1, das außerdem aufweist:
Verwenden eines Eisenkolbens (52) mit der Spule, und
Erfassen (186) der vorbestimmten Charakteristik des Stroms, der durch die Spule fließt,
wenn der Eisenkolben sich auf beide Weisen, weit genug und auf das magnetische Feld
ansprechend schnell genug, bewegt.
3. Verfahren nach Anspruch 1, das außerdem aufweist:
Bestimmen einer Größe (113) des Stroms, der durch die Spule fließt, und
Einstellen des vorbestimmten Wertes (112) als eine Funktion der Größe des Stroms.
4. Steuerungssystem (144) für ein elektrisches Schaltgerät (130), das eine Spule (54),
die angepasst ist, um Hauptkontakte (4, 6, 8) zu steuern, einen magnetischen Rahmen
(50), der mit der Spule zusammenwirkt, und eine Anzahl von Hilfsschaltern (22), die
auf eine Position der Hauptkontakte (4, 6, 8) ansprechend sind, enthält, wobei das
Steuerungssystem aufweist:
einen Stromsensor (114), der strukturiert ist, um einen Strom (108, 126), der durch
die Spule fließt, wahrzunehmen,
einen magnetischen Sensor (120), der strukturiert ist, um ein magnetisches Feld (66,
106) des magnetischen Rahmens wahrzunehmen, und
eine Schaltung (24), die strukturiert ist (180), um eine vorbestimmte Charakteristik
(94) des wahrgenommenen Stroms (126), der durch die Spule fließt, zu erfassen und
ein Steuerungssignal (27), das auf das magnetische Feld, das größer als ein vorbestimmter
Wert ist, und die vorbestimmte Charakteristik, die erfasst wird, ansprechend ist,
auszugeben, wobei die vorbestimmte Charakteristik eine momentane Verringerung (94)
bei dem Strom, der durch die Spule fließt, vor einem nachfolgenden Erreichen eines
größeren Stromwerts (113) ist, wobei das Steuerungssignal strukturiert ist, um eine
Änderung beim Zustand der Anzahl von Hilfsschaltern in einen ersten Zustand zu veranlassen,
wenn das magnetische Feld größer als der vorbestimmte Wert ist und die vorbestimmte
Charakteristik erfasst wird, wobei der vorbestimmte Wert ein erster vorbestimmter
Wert ist, wobei ein zweiter vorbestimmter Wert (74) kleiner als der erste vorbestimmte
Wert ist und wobei die Schaltung außerdem strukturiert ist, um zu bestimmen, wenn
das magnetische Feld nachfolgend geringer als der kleinere zweite vorbestimmte Wert
ist und um eine weitere Änderung beim Zustand der Anzahl von Hilfsschaltern in einen
verschiedenen zweiten Zustand zu veranlassen.
5. Steuerungssystem (144) nach Anspruch 4, wobei die Anzahl von Hilfsschaltern eine Anzahl
von elektronischen Hilfsschaltern (22) sind und wobei das Steuerungssignal ein elektronisches
Signal (27), das strukturiert ist, um die Anzahl von elektronischen Hilfsschaltern
zu öffnen oder zu schließen, ist.
6. Steuerungssystem (144) nach Anspruch 4, wobei die Spule einen Eisenkolben (52) enthält
und wobei die vorbestimmte Charakteristik des wahrgenommenen Stroms, der durch die
Spule fließt, auf einen magnetischen "Rück-EMF"-Effekt des Eisenkolbens, wenn er durch
das magnetische Feld des magnetischen Rahmens bewegt wird, ansprechend ist.
7. Elektrisches Schaltgerät (130), das das Steuerungssystem (144) nach Anspruch 4 aufweist,
wobei das elektrische Schaltgerät außerdem enthält:
eine Anzahl von trennbaren Kontakten (137), die durch die Spule (54) gesteuert wird.
8. Elektrisches Schaltgerät (130) nach Anspruch 7, wobei die Spule einen Eisenkolben
(52) enthält, wobei die trennbaren Kontakte eine Anzahl von befestigten Kontakten
(138) und eine Anzahl von bewegbaren Kontakten (140), die durch den Eisenkolben bewegbar
sind, aufweisen und wobei der Strom, der durch die Spule fließt, mit dem magnetischen
Rahmen zusammenwirkt, um das magnetische Feld zu veranlassen, den Eisenkolben von
einer ersten Position, bei der die trennbaren Kontakte offen sind, zu einer verschiedenen
zweiten Position, wobei die Anzahl von bewegbaren Kontakten mit der Anzahl von befestigten
Kontakten elektrisch in Eingriff stehen, zu bewegen.
9. Elektrisches Schaltgerät (130) nach Anspruch 7, wobei die Schaltung außerdem strukturiert
ist, um eine Größe (113) des Stroms, der durch die Spule fließt, zu bestimmen und
den vorbestimmten Wert als eine Funktion der Größe des Stroms einzustellen.
1. Procédé de commande d'un appareil de commutation électrique (130) comportant une bobine
(54) qui commande des contacts principaux (4, 6, 8), un châssis magnétique (50) coopérant
avec la bobine et un nombre de commutateurs auxiliaires (22) répondant à la position
des contacts principaux (4, 6, 8), procédé consistant à :
- contrôler (120) le champ magnétique (66, 106) du châssis magnétique,
- détecter (186) une caractéristique prédéfinie (94) du courant (108) traversant la
bobine, cette caractéristique prédéterminée étant une diminution instantanée (84)
du courant dans la bobine avant d'atteindre ensuite une intensité (113) plus grande,
- changer (192) l'état du nombre de commutateurs auxiliaires au premier état si (190)
le champ magnétique est supérieur à une première valeur prédéterminée et si (186),
la caractéristique prédéterminée est détectée ;
- réduire le courant traversant la bobine et,
- déterminer si le champ magnétique diminue en dessous d'une seconde valeur prédéterminée
qui est inférieure à la première valeur prédéterminée et ainsi change l'état du nombre
de commutateurs auxiliaires en un second état différent.
2. Procédé selon la revendication 1, consistant en outre à
- employer un plongeur ferreux (52) avec la bobine et,
- détecter (186) la caractéristique prédéterminée du courant traversant la bobine
lorsque le plongeur ferreux se déplace à la fois suffisamment loin et suffisamment
rapidement sous l'effet du champ magnétique.
3. Procédé selon la revendication 1, consistant en outre à
- déterminer l'intensité (113) du courant traversant la bobine et,
- régler la valeur prédéterminée (112) en fonction de l'intensité du courant.
4. système de commande (144) d'un appareil de commutation électrique (130) comportant
une bobine (54) adaptée à commander des contacts principaux (4, 6, 8), un châssis
magnétique (50) coopérant avec la bobine et un nombre de commutateurs auxiliaires
(22) répondant à une position des contacts principaux (4, 6, 8),
système de commande comprenant :
- un capteur de courant (114) structuré pour détecter un courant (108, 126) traversant
la bobine,
- un capteur magnétique (120) structuré pour détecter un champ magnétique (66, 106)
du châssis magnétique et,
- un circuit (24) structuré (180) pour détecter une caractéristique prédéterminée
(94) du courant détecté (126) traversant la bobine et donner un signal de commande
(27) correspondant au champ magnétique supérieur à une valeur prédéterminée et détecter
la caractéristique prédéterminée,
* la caractéristique prédéterminée étant une diminution momentanée (94) du courant
traversant la bobine avant ensuite d'atteindre un niveau d'intensité (113) plus fort,
* le signal de commande est structuré pour produire un changement d'état du nombre
de commutateurs auxiliaires passés à un premier état lorsque le champ magnétique est
supérieur à la valeur prédéterminée et que la caractéristique prédéterminée est détectée,
* la valeur prédéterminée étant une première valeur et dans lequel
* une seconde valeur prédéterminée (74) est inférieure à la première valeur prédéterminée
et
* le circuit est en outre structuré pour déterminer si le champ magnétique est ensuite
inférieur à la plus petite seconde valeur prédéterminée et produire un autre changement
d'état du nombre de commutateurs auxiliaires pour un second état différent.
5. Système de commande (144) de la revendication 4,
dans lequel le nombre de commutateurs auxiliaires est un nombre de commutateurs auxiliaires
électroniques (22) et le signal de commande est un signal électronique (27) structuré
pour ouvrir ou fermer ce nombre de commutateurs auxiliaires électroniques.
6. Système de commande (144) de la revendication 4,
dans lequel la bobine comporte un plongeur ferreux (52) et la caractéristique prédéterminée
du courant détecté traversant la bobine répond à un effet magnétique de contre force
électromagnétique du plongeur ferreux lorsqu'il est déplacé par le champ magnétique
du châssis magnétique.
7. Commutateur électrique (130) comportant un système de commande (144) selon la revendication
4, ce commutateur électrique comportant en outre :
un nombre de contacts séparables (137) commandés par cette bobine (54).
8. Appareil de commutation électrique (130) selon la revendication 7, selon lequel
- la bobine comporte un plongeur ferreux (52),
- les contacts séparables ont un nombre de contacts fixes (138) et un nombre de contacts
mobiles (140) déplacés par le plongeur ferreux et
- le courant traversant la bobine coopère avec le châssis magnétique pour que le champ
magnétique déplace le plongeur ferreux de sa première position
- les contacts séparables sont ouverts jusqu'à une seconde position, différente
- les contacts mobiles sont en contact avec les contacts fixes.
9. Appareil de commutation électrique (130) selon la revendication 7, selon lequel le
circuit est en outre structuré pour déterminer une intensité (113) du courant traversant
la bobine et régler la valeur prédéterminée en fonction de l'intensité du courant.