FIELD OF THE INVENTION
[0001] The present invention generally relates to olive oil production and more specifically
to olive oil production at a prolonged time after olive harvesting.
BACKGROUND OF THE INVENTION
[0002] Olive oil is produced by grinding fresh olives into a paste and extracting the oil
from the paste by mechanical or chemical means. The amount of oil contained in the
olive depends on the particular cultivar and the degree of ripeness. Typically 1 Kg
of olives yields about 150 - 200ml of oil. The oil is accumulated in the mesocarp
cells, mostly in the vacuoles and to a smaller extent in the cytoplasm. Grinding or
crushing of the olives breaks the olive stones and flesh, creating a paste. Typically,
grinding is followed by malaxation of the paste to facilitate breaking of the mesocarp
cells, assisted by the sharp stone segments, thus releasing the oil contained in the
vacuoles and resulting in coalescence of the oil droplets and separation of the liquids
from the solids. The liquid, which contains both oil and vegetation water, is extracted
from the paste by applying pressure or centrifugation and is then separated into oil
and water. Depending on the specific method and equipment, the separation of the paste
into liquid and solid and the separation of the liquid into oil and water may be performed
sequentially or concurrently. There exist various modifications of these basic steps.
For example, the method known as "Sinolea" is based on the different surface tension
of the vegetable water and the oil. According to this method, rows of metal discs
or plates are dipped into the paste. The oil adheres to the metal disks and is removed
with scrapers in a continuous process while the solid and water phases stay behind.
[0003] The quality of olive oil depends on the extraction method, the olive cultivar, the
maturity (ripeness) index of the olives and also, to a great extent, on the time delay
between olive harvest and oil extraction. Because olive oil is extracted from the
fruit flesh, the time elapsing from harvesting to oil extraction is very crucial.
In the period between harvesting and oil extraction, the fruits' enzymes are very
active. The oxidation and enzymatic reactions, which begin in the fruit immediately
upon harvesting, increasingly degrade the quality of the oil. Therefore, olive oil
needs to be extracted from the fresh harvested olives as soon as possible, preferably
within no more than 24 hours. Oil obtained after a longer wait is of lower quality
presenting higher acidity levels. Thus, unlike seed oils (eg., sunflower oil, sesame
oil, soybeans oil, etc.) which are extracted from seeds or nuts that can be stored
for prolonged time and processed all year round, the olive oil industry is a seasonal
industry which depends on availability of fresh olives. Harvesting time varies in
each country and with the season and the cultivar. Generally, fresh olives are available
for about four months during opposing seasons in the Northern and Southern hemispheres
(October to January in the Northern Hemisphere and April to July in the Southern hemisphere).
Another important factor that influences the oil quality is the freshness of the olive
oil itself, namely the storage period and the storage conditions until consumption.
Olive oil, even when stored under optimal conditions, deteriorates over time. It is
therefore recommended to consume olive oil close to its production time.
[0004] The quality of olive oil can be characterized by various analytic and organoleptic
parameters, the most common being the free fatty acid (FFA) expressed as percent of
oleic acid. Other characteristics include peroxide value and various positive and
negative organoleptic attributes. Most countries use the International Olive Council
(IOC) standards for defining oil quality and oil category. The IOC, which has a United
Nations charter to develop criteria for olive oil quality and purity, consolidates
standards for olive oils categories as well as guidelines for analyzing and tasting
the oils. For example, olive oils that can be qualified under the category of virgin
olive oils are oils that are obtained from the olives by using only mechanical or
other physical means which do not involve any chemical processes such as use of solvents
or re-esterification. Additionally, they should meet the specific standards set by
the IOC with regard to the concentration of specific ingredients and organoleptic
tests. Within the Virgin Olive Oil category, the oils fit for consumption are classified
as Extra Virgin Olive Oil, Virgin Olive Oil and Ordinary Virgin Olive Oil according
to their FFA level (≤ 0.8%, ≤ 2% and ≤ 3.3, respectively).
[0005] Olive oil production is a traditional industry originating in the Mediterranean and
known since as early as 3,000 B.C. Today, olives are cultivated in many regions of
the world and olive oil is used throughout the world. However, olive oil production
and consumption is still the highest in the Mediterranean. The oil is considered to
be a prime component of the so called 'Mediterranean diet'.
[0006] In recent years, the olive oil market has been growing dramatically. The increasing
interest in olive oil stems from both its unique rich taste and its health benefits
and coincides with the growing public awareness to health food, as well as with the
general increasing interest in gourmet food. The health benefits associated with olive
oil consumption include controlling LDL level while raising HDL level and reducing
risk of coronary heart diseases. These health benefits are attributed to the high
level of monounsaturated fatty acids, mainly oleic acid, and to the relatively high
content of minor nutrients, in particular antioxidants such as polyphenols. Studies
also suggest beneficial effects of olive oil consumption on blood sugar level and
on the gastrointestinal tract, including reducing the risk of ulcers, gastritis and
colon cancer. Indeed, olive oil is considered by many to be superior to other vegetable
oils. However, side by side with the prosperity in the olive oil market, the olive
oil fraud industry flourishes as well. Olive oil is one of the most adulterated agricultural
products. Customers are therefore becoming increasingly aware of the possibility that
oil distributed as high quality olive oil is actually adulterated oil mixed with,
or even consists almost entirely of, inferior oils of lower cost.
[0007] The awareness to health food products, as well as to their freshness and authenticity,
has brought with it a new trend of small scale production of basic food products (e.g.
bread) for self consumption at home or in small food establishments such as restaurants,
delicatessen and specialized boutiques. This way control over freshness and ingredients
is ensured. In accordance with this trend, small scale appliances, sized to be placed
on a kitchen counter, such as bread machine, home-use coffee roasting device, etc.,
are now gaining popularity. With respect to olive oil, recent years show an increasing
number of olive oil boutiques which specialize in production of high quality oil by
careful selection of olives and close control over production. A household countertop
cold press machine for producing small quantities of olive oil designed by the inventors
of the present invention is described in international publication
W02010/007610. However, although olive oil can be consumed as is when freshly pressed from the
fruit, the need to extract olive oil within a very short time from harvesting does
not enable producing olive oil out of season or in countries distant from olive growing
regions.
[0008] It is therefore the general object of the present invention to provide olives suitable
for oil extraction all year round and/or at locations remote from olive growing regions.
[0009] In particular, it is an object of the invention to provide olives which retain their
oil qualities for a prolonged storage period without adding chemical food preservatives.
[0010] It is a further object of the invention to provide methods for treating freshly harvested
olives to substantially retain their oil quality for a prolonged time after being
treated so as to enable extraction of high quality oil from the olives at a prolonged
time after they have been harvested.
SUMMARY OF THE PRESENT INVENTION
[0011] One aspect of the invention is a method for treating freshly harvested olives to
substantially retain the quality of oil contained therewithin for enabling production
of high quality olive oil from said treated olives at a prolonged time after harvest.
The method comprises: washing the freshly harvested olives in a washing liquid; heating
the olives to a temperature sufficient to achieve enzymatic inactivation; rapidly
cooling the heated olives to a temperature in the range of 0 to -10°C; vacuum packaging
a predetermined quantity of olives; and storing the packed olives at a refrigerating
temperature. The specific conditions in each step of the method are preselected in
accordance with the cultivar and maturity index of the treated olives. The washing
liquid may be water or ethanol or a mixture thereof. Preferably, the heating is to
a predetermined temperature in the range of 40 to 80°C. The heating may be performed
by subjecting the olives to microwave radiation or by immersing the olives in a liquid
bath of said predetermined temperature. In accordance with some embodiments of the
invention, a salt or a mineral powder is added to the treated olives before packaging.
The salt or mineral powder may be NaCl, KCI, NAHCO
3, talcum powder and lime powder, or a combination thereof.
[0012] Another aspect of the invention is treated freshly harvested olives with retained
oil qualities characterized in that the oil extracted from the treated olives at a
prolonged storage time after being treated is characterized by having a Free Fatty
Acid (FFA) level of no more than 2%. According to some embodiments of the invention,
the treated freshly harvested olives with retained oil qualities are obtainable by
the method described above and characterized in that the oil extracted from the treated
olives at a prolonged storage time after being treated is characterized by having
a Free Fatty Acid (FFA) level of no more than 2%. According to some embodiments, the
Free Fatty Acid level may be of less than or equal to 0.8 %. The prolonged storage
time is of at least one month. For some embodiments, the prolong storage time may
be of at least three months or of at least six months. Preferably, the oil extracted
from the treated olives after a storage time of at least 2 months has a Free Fatty
Acid (FFA) level which does not exceed the FFA level in the oil extracted at the time
immediately after treatment by more than 1 %. Preferably, the freshly harvested olives
are treated within 24 hours from being harvested and are vacuum packaged and kept
at refrigerating temperatures until use. Extraction of oil from the treated olives
of the invention for the purpose of measuring FFA level or other parameters is preferably
performed by using an Abencor system.
[0013] According to some embodiments of the invention, the oil extracted from said treated
olives by an Abencor system at any time of up to at least three months after being
treated is characterized by having a Free Fatty Acid (FFA) level of no more than 2%.
[0014] According to some embodiments of the invention, the oil extracted from said treated
olives by an Abencor system at any time of up to at least six months after being treated
is characterized by having a Free Fatty Acid (FFA) level of no more than 2%.
[0015] According to some embodiments of the invention the oil extracted from the treated
olives after the prolonged storage time is further characterized by having a peroxide
value that meets the standard of the International Olive Council (IOC) for peroxide
value in Virgin Olive Oils and/or organoleptic characteristics that meet the standards
of the International Olive Council (IOC) for organoleptic characteristics of Virgin
Olive Oils.
[0016] In an embodiment of the invention, the treated olives of the invention are vacuum
packaged and are kept at refrigerating temperatures until use.
[0017] Yet a further aspect of the invention is a vacuum package comprising treated olives
of the invention, optionally further comprising a salt or mineral powder selected
from one or more of the following: NaCl, KCI, NAHCO
3, talcum powder and lime powder.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018] The present invention will be better understood and appreciated from the following
detailed description taken in conjunction with the drawings in which:
Fig. 1 is an overall flow chart illustrating the method of treating freshly harvested
olives in accordance with an embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
[0019] The present invention is generally directed at enabling off-seasonal olive oil production
and/or at areas remote from olive growing regions. In accordance with the invention,
freshly harvested olives are treated to substantially retain their oil qualities for
a prolonged time after treatment such that when stored under appropriate conditions
they can be used as a "raw material" for olive oil production at a prolonged time
after being harvested. The treated olives can be stored for at least one month and
up to at least ten months or even for longer periods, providing the capability to
produce fresh olive oil all year round. Preferably, the treated olives are packaged
into relatively small quantities of 0.5 to 5 Kg that can be shipped and distributed
to retailers and consumers. Preferably, the treated olives maintain the appearance
and texture of fresh olives.
[0020] The oil extracted from the stored treated olives of the invention is characterized
by having Free Fatty Acidity (FFA) of no more than 2% and other characteristics, such
as peroxide value and organoleptic characteristics that meet the standards of the
International Olive Council (IOC) for the category of Virgin Olive Oils. In this respect,
it should be emphasized that in the context of the invention, extraction of oil mainly
refers to purely mechanical or other physical extraction methods that do not involve
chemical processing. Thus, the expression "oil extracted from the treated olives"
should be understood as oil extracted by purely mechanical or other physical means.
More specifically, since even when the oil is extracted by purely mechanical means,
its composition may vary with specific method and specific conditions, extraction
of oil from the treated olives of the invention for the purpose of assessment is preferably
performed using an Abencor system.
[0021] The invention further provides methods for treating freshly harvested olives to substantially
retain their oil qualities for a prolonged storage time under refrigerating temperatures
without adding any chemical food preservative.
[0022] The olives selected to undergo the treatment process of the invention should be freshly
harvested, high quality olives carefully selected. Any bruised, defected or otherwise
poor quality olives and any twigs, stems and leaves should be carefully removed before
treatment. The selected olives may be of any maturity index, preferably in the range
of 2-6, and of any olive cultivar, or a mixture of different cultivars. In accordance
with some embodiments of the invention, the olives are organically grown olives.
[0023] Fig. 1 is a flow chart of the process of treating freshly harvested olives, in accordance
with an embodiment of the invention. The process may be performed in a batch manner
or may be a continuous process with any degree of automation. In order to obtain high
quality oil from the end product of the process, the treatment is preferably performed
within 24 hours from harvesting. The exact conditions in each step (e.g. temperatures,
duration of step, etc.) vary with the specific cultivar and maturity index of the
treated olives and are pre-selected for each cultivar/maturity-index combination to
optimize results.
[0024] Referring to Fig. 1, the first step (10) in the process is washing the olives to
remove pesticides, dust, and any dirt left on the surface of the fruit. Preferably,
this step is performed by immersing the olives in a liquid bath at room temperature
for about 0.5 to 10 minutes. The washing liquid may be water or ethanol or a mixture
thereof. Use of ethanol in the washing step provides the benefits of disinfection
in addition to general cleaning. It also facilitates evaporation of the washing liquid
from the olives' surface upon drying.
[0025] In the next step (20) the olives are heated to a predetermined temperature in the
range of about from 40 to 80°C for deactivating the enzymes present in the fruit so
as to stop any enzymatic reactions. In accordance with one embodiment, step 20 is
performed by immersing the olives in a liquid bath at the selected temperature for
about 2 to 10 minutes. The liquid may be water or ethanol or a mixture thereof. Alternatively,
heating may be performed by subjecting the olives to microwave radiation.
[0026] In the next step (30), the heated olives are rapidly cooled to a temperature in the
range of 0° to -10°C to prevent over-heating and possible oxidation or any other reactions.
Step (30) may be performed by immersing the olives in an ice-water, by cold air blowers
or by any other method known in the art.
[0027] In the next step (40) the olives are dried, if necessary, by blowing dry air to remove
any water left on their skins and in the following step (60) predetermined quantities
of olives are packaged in sealed vacuum packages in air impervious flexible film,
using standard equipment typical in the art. The packaged olives are then stored at
regular refrigeration temperatures of 0 - 4°C (step 70). Once the treated olives are
sealed in packages, the packages can be handled in an integral manner from the packaging
area to storage and through distribution channels to the final consumption site using
regular refrigeration equipment.
[0028] Optionally, different salts and/or mineral powders may be added to the olives (step
50) before packaging for inhibiting mold growth and for maintaining the fruit texture
by lowering the water activity of the olives. The added salts and mineral powders
also facilitate phase separation between the oil and vegetable water during the oil
extraction process. Optional added minerals are selected from sodium chloride, potassium
chloride, sodium bicarbonate, micronized talc and lime powder. The amount of added
salts and/or minerals is preferably 50g or more per 1 Kg of packed olives.
EXAMPLE 1
[0029] Fresh olives from three different harvests in winter 2007-2008 were treated according
to a first treatment procedure (treatment procedure 1 ) of the invention as in the
following: After cleaning and washing, the freshly harvested olives were subjected
to microwave radiation of 600 Watt for 1 minute, followed by immediate cooling in
ice water. The olives were dried, vacuum packed into packages of 700g (using a LEVAC
C30 M8 vacuum packaging machine, manufactured by Lerica, Italy) and stored at 4°C.
At one, three and five months after treatment, oil was extracted from one or more
packages of the olives using an Abencor system (MC2 Ingenieria y Sistemas, Barcelona,
Spain). Organoleptic characteristics assessment and analysis of the extracted oil
for Free acidity (FFA), peroxide level and polyphenols concentration were carried
out according to the IOC guidelines. The results are summarized in Table 1.
[0030] Analysis methods: Determination of free acidity and peroxide value were carried out following the analytical
methods recommended by Commission Regulation EEC n°2568/91 of July 11, 1991.
Free acidity given as a percentage of oleic acid, was determined by titration of a solution of
oil in ethanol-ether (1:1) with ethanolic potash
. Peroxide value, expressed in milliequivalents of active oxygen per kilogram of oil (meq/kg) was determined
as follows: a mixture of oil and isooctane-acetic acid 3:2 was left to react in darkness
with a potassium iodide solution; the free iodine was then titrated with a sodium
thiosulfate solution
. Extraction and Analysis of Phenolics.: Phenolic fraction was isolated from a solution of oil in hexane by triple extraction
with water-methanol (60:40 v/v). Total phenols, expressed as catechin equivalents
(ppm), were determined with a UV-visible spectrophotometer (Beckman Coulter, Inc.
Fullerton, California, US) at 735nm using the Folin-Ciocalteu reagent. Phenolic compounds
were separated by a HPLC system consisting of a TSP P4000 pump coupled to a UV 6000LP
Diode Array detector and with Chromquest software. Analytical separation was achieved
on an Ultrasphere RP-C18, 5 µm column (250x4.6 mm i.d.) (Beckman, USA). Phenolic compounds
were monitored at 280 nm, and identified on the basis of their absorbance spectrum
and retention times compared to those of standard compounds following the IOC official
method (COI/T.20/Doc No. 29).
Table1: Assessment of oil extracted from three harvests (treatment procedure # 1)
Variety, orchard & Date |
Storage period (months) |
FFA1 (%) |
Peroxide Value2 |
Polyphenols content in [mg/kg Oil] |
Organoleptic assessment |
Picual, Kish 14.12.2007 |
1 |
0.23 |
3.28 |
210.0 |
Bitterness level 1, pungency level 0 |
3 |
0.30 |
2.03 |
141.0 |
|
5 |
0.64 |
8.76 |
142.0 |
|
Picual, Revivim, 27.12.2007 |
0 |
0.10 |
2.20 |
175.0 |
Fruity and grassy oil (level 4-5), Bitterness level 0, pungency level 3 |
1 |
0.64 |
3.17 |
125 |
|
3 |
1.57 |
3.55 |
108.0 |
|
5 |
1.45 |
6.80 |
130.0 |
|
Picholine, Gshur 03.01.2008 |
0 |
0.06 |
5.50 |
168.0 |
Strong "apple smell" and aroma, Bitterness level 1, pungency level 2-3 |
1 |
0.24 |
2.48 |
136.0 |
Fine "apple smell", Bitterness level 1, pungency level 2 |
3 |
0.27 |
3.35 |
100.0 |
|
5 |
0.35 |
4.08 |
111.0 |
|
1 FFA is expressed as % free oleic acid (grams of oleic acid per 100 grams oil);
2 Peroxide level measured in millieq. of oxygen / kg Oil |
[0031] The results clearly demonstrate that the free acid level remains below 2% for all
samples, including those extracted after 5-months storage period. The peroxide value
remains well below the standard of the IOC for Virgin Olive Oil (≤ 20 millieq. Peroxide
oxygen per Kg/oil)
EXAMPLE 2
[0032] Picual olives from the same harvest (Revivim, 18.12.2008) were treated by four different
procedures as in the following:
Treatment procedure # 2: 1 min in 70% EtOH / Ice water cooling / Vacuum packaging
/ 4 C° storage
Treatment procedure # 3: 1 min in 70% EtOH / Ice water cooling / 100 gr KCl per 700
gr olives/ Vacuum packaging / 4 C° storage
Treatment procedure # 4: 4min at 60° / Ice water cooling / Vacuum packaging / 4 C°
storage
Treatment procedure # 5: 4min at 60° / Ice water cooling / 100 gr KCl per 700 gr olives
/ Vacuum packaging / 4 C° storage
[0033] Oil was extracted from treated olives immediately after treatment (t=0) and after
2.5 month storage period. Oil assessment and analysis was performed as in Example
1. The results are summarized in Table 2.
Table 2: Assessment of oil extracted from olives of the same harvest treated according to
different procedures
Treatment procedure number |
Storage period (months) |
FFA1(%) |
Peroxide Value2 |
Polyphenols content in [mg/kg Oil] |
Organoleptic assessment |
2 |
0 |
0.17 |
6.34 |
103.84 |
Strong fruitness, "orange smell", Bitterness level 2-3, pungency level 0 |
2.5 |
0.37 |
5.89 |
65.09 |
|
3 |
0 |
0.13 |
5.89 |
281.30 |
|
2.5 |
0.20 |
5.43 |
189.86 |
|
4 |
0 |
0.24 |
11.10 |
87.18 |
Delicate oil, fruity aroma |
2.5 |
0.35 |
4.98 |
33.71 |
Good oil, neutral |
5 |
0 |
0.21 |
7.93 |
91.05 |
Good oil, balanced (slightly strong), low bitterness, pungency level 2 |
2.5 |
0.22 |
8.15 |
54.24 |
Good oil |
EXAMPLE 3
[0034] The procedure 5 in Example 2 was repeated with Koroneiki olives. Oil was extracted
from treated olives immediately after treatment (t=0) and after 2.5 month storage
period. Oil assessment and analysis was performed as in Example 1. The results are
summarized in Table 3.
Table 3: Assessment of oil extracted from Koroneiki olives treated according to treatment
procedure # 5
Treatment number |
Storage period (months) |
FFA1 (%) |
Peroxide Value2 |
Polyphenols content in [mg/kg Oil] |
Organoleptic assessment |
5 |
0 |
0.24 |
4.53 |
413.42 |
Good oil, bitterness level 5, pungency level 2, fruity and grassy |
2.5 |
0.35 |
5.89 |
370.80 |
Fruity-grassy oil (balanced), high bitterness |
[0035] As can be clearly seen, the oils extracted in both Examples 2 and 3 meet the criteria
of the IOC for Extra Virgin Olive Oil with respect to free acidity and peroxide level
(≤ 0.8%, ≤ 20 millieq. Peroxide oxygen per Kg oil, respectively).
[0036] It will be appreciated by persons skilled in the art that the present invention is
not limited to what has been particularly shown and described hereinabove. Rather
the scope of the present invention is defined only by the claims which follow.
1. A method for treating freshly harvested olives to substantially retain the quality
of oil contained therewithin for enabling production of high quality olive oil from
said treated olives at a prolonged time after harvest, the method comprising:
washing the freshly harvested olives in a washing liquid;
heating the olives to a temperature sufficient to achieve enzymatic inactivation;
rapidly cooling the heated olives to a temperature in the range of 0 to -10°C; vacuum
packaging a predetermined quantity of olives; and
storing the packed olives at a refrigerating temperature.
2. The method of claim 1 wherein said washing liquid is water or ethanol or a mixture
thereof.
3. The method of claim 1 or claim 2 wherein said heating is to a predetermined temperature
in the range of 40 to 80°C.
4. The method according to anyone of claims 1 to 3 wherein said heating is performed
by subjecting the olives to microwave radiation.
5. The method according to anyone of claims 1 to 4 wherein said heating is performed
by immersing the olives in a liquid bath of said predetermined temperature.
6. The method according to anyone of claims 1 to 5 further comprising a step of adding
a salt or a mineral powder to the treated olives.
7. The method of claim 6 wherein said salt or mineral powder is selected from the group
consisting of NaCl, KCl, NAHCO3, talcum powder and lime powder, or a combination thereof.
8. The method according to anyone of claims 1 to 7 wherein the specific conditions in
each step of the method are preselected in accordance with the cultivar and maturity
index of the treated olives.
9. Treated freshly harvested olives with retained oil qualities obtainable by the method
according to anyone of claims 1 to 8 characterized in that the oil extracted from said treated olives at any time of up to at least one month
after being treated is characterized by having a Free Fatty Acid (FFA) level of no more than 2%.
10. The treated olives of claim 9 wherein said Free Fatty Acid (FFA) level is less than
or equal to 0.8 %.
11. The treated olives of claim 9 or claim 10 wherein said oil is further characterized by having a peroxide value that meets the standard of the International Olive Council
(IOC) for peroxide value of Virgin Olive Oils.
12. The treated olives according to anyone of claims 9 to 11 wherein said oil is further
characterized by having organoleptic characteristics that meet the standard of the International Olive
Council (IOC) for organoleptic attributes of Virgin Olive Oil.
13. The treated olives according to anyone of claims 9 to 12 wherein the oil is extracted
using an Abencor system.
14. The treated freshly harvested olives according to anyone of claims 9 to 13 wherein
the oil extracted from said treated olives at any time of up to at least two months
after being treated has a Free Fatty Acid (FFA) level which does not deviate from
the FFA level in the oil extracted at the time immediately after treatment by more
than 1 %.
15. The treated olives according to anyone of claims 9 to 14 wherein the freshly harvested
olives are treated within 24 hours from being harvested.
16. The treated olives according to anyone of claims 9 to 15 wherein the oil extracted
from said treated olives by an Abencor system at any time of up to at least three
months after being treated is characterized by having a Free Fatty Acid (FFA) level of no more than 2%.
17. The treated olives according to anyone of claims 9 to 16 wherein the oil extracted
from said treated olives by an Abencor system at any time of up to at least six months
after being treated is characterized by having a Free Fatty Acid (FFA) level of no more than 2%.
18. The treated olives according to anyone of claims 9 to 17 wherein said olives are vacuum
packaged and are kept at refrigerating temperatures until use.
19. A vacuum package containing treated olives according to anyone of claims 9 to 18.
20. The vacuum package of claim 19 further comprising a salt or a mineral powder selected
from the group consisting of NaCl, KCI, NAHCO3, talcum powder and lime powder, or a combination thereof.