

(11)

EP 2 434 439 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:
28.03.2012 Bulletin 2012/13

(51) Int Cl.:
G06Q 10/00 (2012.01)

(21) Application number: 11007234.5

(22) Date of filing: 06.09.2011

(84) Designated Contracting States:
**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR**

Designated Extension States:

BA ME

(30) Priority: 23.09.2010 US 888718

(71) Applicant: **Accenture Global Services Limited**
Dublin 4 (IE)

(72) Inventors:

- **Kolluri, Surya P.**
Ellicott City
MD 21042 (US)
- **Mei, Zhu-Song**
Chicago
IL 60654 (US)

- **Feferman, Dmitriy**
Chicago
IL 60657 (US)
- **Lee, Kevin P.**
Cupertino
CA 95014 (US)
- **Irish, Michael**
San Francisco
CA 94131 (US)
- **Nelson, Heather E.**
Chicago
IL 60614 (US)
- **Kil, David**
Santa Clara
CA 95051 (US)

(74) Representative: **Müller-Boré & Partner**
Patentanwälte
Grafinger Straße 2
81671 München (DE)

(54) Analysis of object structures such as benefits and provider contracts

(57) The hierarchical relationships between objects in different levels of an object structure (such as a contract) are stored as elements in two-dimensional matrix representations. In general, the matrix representations facilitate queries, clustering of like objects and contracts, and comparisons that identify common objects and contracts.

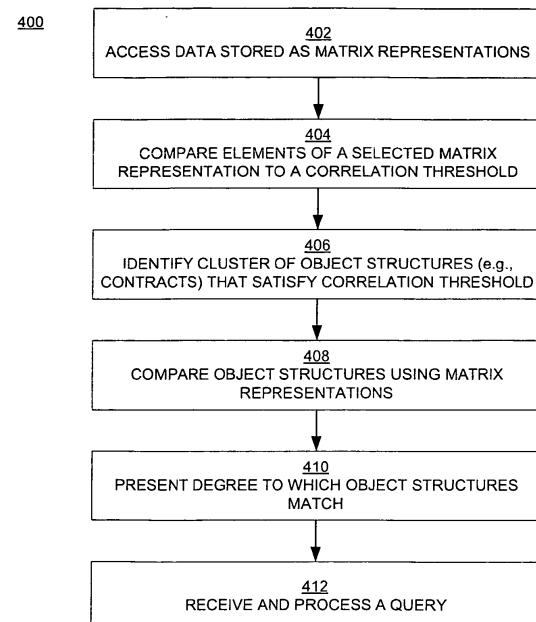


FIG. 4

Description

BACKGROUND

[0001] A tremendous amount of information and data is associated with the business of providing healthcare services and benefits. For example, there are as many benefits contracts as there are clients/consumers, and many different types of contracts, with different structures, elements, and requirements. Over time, the number and types of contracts continue to increase.

[0002] The amount, complexity, and dimensionality of the information and data make it challenging to explore the relationships between contracted benefits and their impact on business and operations. The daunting nature of this challenge prevents payers from running efficient benefits and claims processing systems. Furthermore, the complexity of such systems increases the training times for benefits coders, causes inconsistencies in the construction of benefits rules, increases the lead time to market for new products (new contracts), and makes it difficult to create innovative benefits products that adequately embrace the concept of consumerism in healthcare.

[0003] Conventionally, the analysis of existing contract data requires significant manual effort and the use of multiple spreadsheets. Significant manual effort is also needed to identify the correlation between the benefits structures across various contracts and to identify all contracts with a given benefit or benefits structure. Moreover, answering questions about current benefits structures is difficult and time-consuming.

SUMMARY

[0004] Embodiments according to the present invention pertain to methods and systems for analyzing "object structures" such as contracts, in particular benefits contracts and provider (payer) contracts used in the field of healthcare. According to embodiments of the invention, complex hierarchical object relationships are mapped in terms of a series of pair-wise and connected parent-child matrix representations. Consequently, the volume of data is reduced and contract information and data can be more efficiently stored. Also, queries, searches, and comparisons can be performed readily and quickly. For example, highly correlated objects and contracts can be identified and clustered.

[0005] These and other objects and advantages of the present invention will be recognized by one skilled in the art after having read the following detailed description, which are illustrated in the various drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the de-

scription, serve to explain the principles of the invention. Like numbers denote like elements throughout the drawings and specification.

[0007] Figure 1 is a block diagram of an example of a computer system upon which embodiments of the present invention can be implemented.

[0008] Figure 2 is a block diagram of functionalities associated with analysis tools according to embodiments of the invention.

[0009] Figure 3 is a block diagram illustrating elements of analysis tools according to an embodiment of the invention.

[0010] Figure 4 is a flowchart summarizing methods for analyzing object structures according to an embodiment of the invention.

DETAILED DESCRIPTION

[0011] In the following detailed description of embodiments according to the present invention, numerous specific details are set forth in order to provide a thorough understanding of those embodiments. However, it will be recognized by one skilled in the art that the present invention may be practiced without these specific details

20 or with equivalents thereof. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.

[0012] Some portions of the detailed descriptions 30 which follow are presented in terms of procedures, logic blocks, processing and other symbolic representations of operations on data bits within a computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. In the present application, a procedure, logic block, process, or the like, is conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, although not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system such as computer system 100 of Figure

35 1.

[0013] It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present application, discussions utilizing the terms such as "accessing," "comparing," "identifying," "using," "displaying," "receiving," "filtering," "presenting," "assembling," "evaluating," or the like, may refer to the actions and processes 40 of a computer system (e.g., flowchart 400 of Figure 4), or similar electronic computing device, that manipulates and transforms data represented as physical (electronic)

45 50 55

quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.

[0014] Embodiments described herein may be discussed in the general context of computer-executable instructions residing on some form of computer-usable medium, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, etc., that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or distributed as desired in various embodiments.

[0015] Figure 1 shows a block diagram of an example of a computer system 100 upon which the embodiments described herein may be implemented. In its most basic configuration, the system 100 includes at least one processing unit 102 and memory 104. This most basic configuration is illustrated in Figure 1 by dashed line 106. The system 100 may also have additional features/functionality. For example, the system 100 may also include additional storage (removable and/or non-removable) including, but not limited to, magnetic or optical disks or tape. Such additional storage is illustrated in Figure 1 by removable storage 108 and non-removable storage 120. The system 100 may also contain communications connection(s) 122 that allow the device to communicate with other devices.

[0016] Generally speaking, the system 100 includes at least some form of computer-usable media. Computer-usable media can be any available media that can be accessed by the system 100. By way of example, and not limitation, computer-usable media may comprise computer storage media and communication media.

[0017] Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, random access memory (RAM), read only memory (ROM), electrically erasable programmable ROM (EEPROM), flash memory or other memory technology, compact disk ROM (CD-ROM), digital versatile disks (DVDs) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and that can be accessed by the system 100. Any such computer storage media may be part of the system 100. The memory 104, removable storage 108 and non-removable storage 120 are all examples of computer storage media.

[0018] Communication media can embody computer-readable instructions, data structures, program modules or other data and includes any information delivery media. By way of example, and not limitation, communica-

tion media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared and other wireless media. Combinations of any of the above can also be included within the scope of computer-readable media. The communications connection(s) 122 is/are an example of communication media.

[0019] The system 100 may also have input device(s) 124 such as keyboard, mouse, pen, voice input device, touch input device, etc. Output device(s) 126 such as a display, speakers, printer, etc., may also be included.

[0020] The system 100 may operate in a networked environment using logical connections to one or more remote computers. When used in a networking environment, the system 100 can be connected to the network through the communication connection(s) 122.

[0021] In the example of Figure 1, the memory 104 includes computer-readable instructions, data structures, program modules, and the like associated with analysis tools 150. However, the analysis tools 150 may instead reside in any one of the computer storage media used by the system 100, or may be distributed over some combination of the computer storage media, or may be distributed over some combination of networked computers. Elements and functionalities associated with the analysis tools 150 are described further in conjunction with Figures 2, 3, and 4.

[0022] Figure 2 is a block diagram that provides an overview of some of the functionalities associated with the analysis tools 150 according to embodiments of the invention. In block 202, object structures such as contracts are decomposed into metadata.

[0023] In general, a contract includes a hierarchical arrangement of objects. For example, a contract will include various sections each identified by a heading, each section may include subsections identified by subheadings, and so on. Furthermore, a contract may be separated into different categories, and within each category there may be a hierarchical arrangement of different rules, benefit types, service types, procedure codes, and so on. Each of those elements—the contract, headings, sub-headings, categories, rule, etc.—corresponds to an object associated with the contract, and there is a hierarchical relationship between those objects.

[0024] Thus, more specifically, in block 202 each unique object in each of the contracts being evaluated is identified and associated with a unique value (a unique number or index). In other words, each object can be uniquely identified by a number/index.

[0025] In block 204, the object structures (e.g., the contracts) are transformed into metadata tables that can be represented as two-dimensional matrixes. More specifically, an individual two-dimensional matrix can be generated for each level of detail in the contracts. Each matrix pair-wise maps an object in one level of the object hierarchy to an object in another level of the object hierarchy. For example, a matrix can be generated that maps the categories contained in each contract to the contracts-

the matrix will contain a row for each contract, and a column for each category. Similarly, another matrix can be generated that maps the rules in each category to the categories—that matrix will contain a row for each category, and a column for each rule. Other matrixes that map objects in one level to objects in another level can be similarly generated.

[0026] The name associated with each row and the name associated with each column are referred to herein as matrix elements, while the items in the contracts that are represented by the matrix elements are referred to as objects as in the preceding discussion. The matrix elements can each be identified using the unique indexes referred to above.

[0027] If the order of the elements in the matrixes does not matter, then the presence of an element in a matrix can be represented by simply entering a "1" at the appropriate point in the matrix. In other words, if category-1 is present in contract-1, then a "1" can be entered at the intersection of the column corresponding to category-1 and the row corresponding to contract-1. Consequently, if the order of the elements does not matter, then the matrixes can be transformed into and stored as sparse matrixes, thus significantly reducing the volume of stored data.

[0028] If the order of the elements in the matrixes does matter, then the matrixes can be stored as sets of ordered pairs, which also reduces the volume of stored data although not as much relative to the use of sparse matrixes.

[0029] Generally speaking, in blocks 202 and 204, text-based objects are represented as matrixes; conversely, matrixes are used for text storage and subsequent retrieval. In general, by storing contracts and objects in matrix form using indexes to represent the objects, the volume of stored data is reduced.

[0030] In block 206, the contracts can be evaluated in different ways, facilitated by the matrix representations of the information in those contracts. Conventionally, evaluations of contracts are performed using a series of SQL (Structured Query Language) queries of a relational database that contains contracts data. Such queries can be time-consuming and resource-intensive. According to embodiments of the invention, contracts evaluations are more efficiently performed by executing what are essentially table lookups that entail traversing the various matrix representations of the contracts data to search for and/or retrieve specific information, and then manipulating that information depending on the type of evaluation being performed.

[0031] The types of evaluations that can be performed include comparing contracts to identify common objects as well as differences, and/or to identify interesting relationships across contracts and the variables they contain. Correlated contracts can be identified and clustered for further evaluation. Contracts can be compared to a standard or model contract (e.g., a template) to identify similarities and differences. Commonly used objects can be identified and assembled into new products. Queries

and searches of individual contracts or groups of contracts can be performed to efficiently answer questions about benefits and the benefits structure.

[0032] The analysis tools 150 can also be used for "rule mapping," to perform rule discovery on any set of objects (e.g., benefits, claim data). More specifically, the conditions of the contract can be stored as a sequence of if/then (include/exclude) statements so that a mapping between each object and the applicable benefit rules can be automatically produced. Each if/then statement provides direction on how to process a claim based on supplementary claim line details that might impact payment of the claim (examples include the age of the patient and the type of specialist performing the procedure). The if/then statements can then be expanded into a series of "rule paths"—logical possibilities for how a claim may pass through rules processing before reaching a final result. The rule paths may also be prioritized based on those that should be considered first. This provides automation of the possible outcomes of any given set of claim data, including claim adjudication codes (reject, suspend, pay, etc.) and cost sharing considerations (e.g., coinsurance, copay, etc.), where the necessary conditions to reach the result are defined by the rules that constitute each path. The rule mapping capability just described can be used to determine, for any set of data that may be in a claim, how claims are handled by a claims processing system without having to test every possible claim ahead of time. Also, claim information for claims that follow the same rule path or that lead to the same result can be grouped so that rules associated with that information can be extracted; this can be used to identify, for example, similar services that are associated with a group of claim information. Furthermore, the rule mapping capability can be used to select any item of information in a claim and determine which rules are processed against that item.

[0033] The analysis tools 150 also can be used for "rule replacement," to modify contract rule data according to user-specified patterns. Operations include: 1) direct modification of an existing rule, 2) removal of an existing rule, 3) removal of a portion of an existing rule, or 4) addition to an existing rule. The user provides a mapping between existing data and the intended modification. For example, the user may direct the tools to look for rules that specify patient age in general, or a specific age in particular, and to perform one of the operations listed above on the rules that are found. Data transformations can be performed automatically, and the newly formatted rule can then be displayed.

[0034] In block 208, subject matter experts (SMEs) can interact with the analysis tools 150 for a variety of purposes, depending on their area of interest. For example, software engineering SMEs can interact with the analysis tools 150 to refine and further develop those tools, while healthcare SMEs can interact with the tools to develop model contracts and to efficiently handle benefits and claims processing. Impact analyses can also be per-

formed. For example, the impact of a potential change can be determined by identifying how many clients would be affected by the change and in what manner. Furthermore, results and data can be exported to other tools.

[0035] Figure 3 is a block diagram illustrating elements of the analysis tools 150 according to an embodiment of the invention. In the example of Figure 3, the analysis tools include a graphical user interface (GUI) 302, a source database 304, a query browser component 306, a database retrieval component 308, a comparison component 310, a clustering component 312, and a database 320 that includes the transformed data (e.g., matrix representations of the objects and data in the database 304).

[0036] In one embodiment, the analysis tools 150 are implemented as computer-executable components stored in a computer-usable/computer-readable medium. Although represented in Figure 3 as separate components, the analysis tools 150 effectively is an integrated tool capable of providing the overall functionality about to be described.

[0037] The database 304 represents one or more legacy relational databases. In other words, the analysis tools 150 can operate on conventional databases. The database 304 also represents different sources of data. In other words, data can be imported into the analysis tools 150 from multiple databases (e.g., member and client databases).

[0038] The database retrieval component 308 operates to retrieve and evaluate contracts data and information from the database 304, and transform that data and information into metadata as previously described herein. In one embodiment, a series of SQL queries are executed to extract objects and develop the connections between the various levels of detail (the various levels of the object hierarchy) as discussed above. The results of those queries are recorded and then formed into matrix representations 320 as discussed above. Generally speaking, the database retrieval component 308 transforms text-based information (e.g., objects in contracts) into a matrix format to save space during storage, and to save run time during retrieval and analysis.

[0039] The query browser component 306 is useful for searches, queries, and the like. A user can input search conditions via the GUI 302, and those search conditions can be used to filter the matrix representations 320. In one embodiment, in response to a query or search, selected matrix representations 320 are converted into lookup tables in order to accommodate high-speed lookups based on the search conditions. Other techniques can be utilized to search the matrix representations.

[0040] The query browser function can be used to slice the population of contracts into different groups depending on user-specified search conditions.

For example, contracts can be stratified based on production distribution (e.g., percent preferred provider organization versus health maintenance organization, etc.), group size distribution, major headings in the con-

tract, or any other variable or combination of variables of interest to a user (e.g., SME). The query browser function can also be used to perform the rule mapping and rule replacement functions described previously herein.

[0041] The matrix representations 320 also lend themselves to comparison evaluations and clustering evaluations by the comparison component 310 and the clustering component 312, respectively. A particular contract can be used as the basis for comparison; the particular contract may be a standard or model contract. Contracts evaluated by the comparison component 310 can be identified along with information that indicates the degree to which those contracts match the model contract. Alternatively, only the contracts with a degree of match that satisfies a user-specified comparison threshold may be identified and presented.

[0042] Comparisons can be performed at or across any level of detail (level in the object hierarchy), and comparison results can be presented for any level of detail.

Results in addition to the degree of match can also be provided. For example, objects that contracts have in common can be presented via GUI 302, and objects included in one or more contracts but not in another can also be presented. Also, objects that match at one level of detail but do not match at another level of detail can be presented. For example, two contracts may each provide ambulance services, but the conditions attached to that service may be different.

[0043] The comparison results can be presented in a variety of different formats. The results can be presented in list form, for example, with visual cues (e.g., color coding) to indicate objects that match, objects that are different, or objects present in at least one contract but absent from another.

[0044] The clustering (or correlation) component 312 can be used to identify and sort (cluster) contracts that satisfy a correlation threshold that is specified by a user. Thus, contracts that correlate to a degree that satisfies a user-specified correlation threshold can be found and identified. In other words, if the correlation threshold is 80%, for example, then contracts that correlate with the model contract by at least 80% are found and identified. The contracts in a cluster may be used as the basis for developing a new contract model.

[0045] In many situations, it may be useful to execute the clustering function in combination with the comparison function. Thus, a subset of contracts that highly correlate (that satisfy a correlation threshold) is identified first. Then, the comparison function is performed using only that subset.

[0046] Correlation results can be presented graphically using any of a variety of different visualization techniques. A color-coded heat map can be used, for example. Alternatively, the order of the elements in a matrix representation can be changed to reflect the correlation results. For example, the highest-level matrix representation (the matrix that includes contracts as row elements) can be reordered so that the elements are ranked

in order of their degree of correlation. In other words, contracts that correlate highly will be clustered together in the matrix when the matrix is displayed.

[0047] Other types of techniques for visualizing data to enhance sense-making can be used. These techniques include, but are not limited to, cluster analysis (clustering), link arrays, and geographic information system (GIS) overlays. With cluster analysis, correlation results that are similar in some manner are clustered when displayed. For example, a graphical element (e.g., an icon) representing a contract will be displayed in proximity to an icon representing another contract that correlates to the first contract, with the distance between the two contracts representing the degree of correlation (a smaller distance represents a higher degree of correlation). Link arrays represent (display) chosen properties as different planes with links (lines) connecting the planes to indicate relationships between the information in the planes. Each plane may represent a different contract, a different level in the object hierarchy, or a different object that appears across contracts, for example. GIS overlays render information based on properties such as geographic location or demographics, for example.

[0048] In general, the analysis tools 150 incorporate different ways of representing information (e.g., objects, correlation results, etc.) that allow humans to intuitively and quickly understand and interpret large amount of information and the relationships in that information.

[0049] The correlation function is useful for identifying objects that are not in all contracts as well as objects that are in all contracts. The objects present in all contracts (or a specified number of contracts, such as a large majority of the contracts) can serve as building blocks for constructing new contracts and products. Thus, the correlation function can be useful for developing a model or standard contract/product. Accordingly, the time needed to develop a new contract/product can be greatly reduced.

[0050] To summarize, the analysis tools 150 can be used to systematically highlight contract correlations. For example, the tools can be used to identify the percentage of contracts that are highly correlated, and the amount of variation accounted for by the remaining contracts. The analysis tools 150 can also be used to automate the discovery of the correlation between contracts at lower level objects (at relatively low levels of the hierarchy of contract objects). Furthermore, the analysis tools 150 can visually represent information and results from the analysis that information in meaningful ways that are quickly and intuitively understood and interpreted.

[0051] The analysis tools 150 can also be used to systematically identify contracts, or objects (e.g., benefits, features, etc.) in those contracts, that are not in current use. Also, the tools can be used to automate the discovery of contracts that provide essentially the same benefits, perhaps differing only by values associated with lower level features and variables (as in the ambulance service example mentioned above). In addition, the analysis

tools 150 can be used to quickly consolidate benefits structures from multiple sources into a single, consolidated contract. Each of these capabilities provides the opportunity to reduce the overall number of contracts and/or streamline claims and benefits processing systems.

[0052] Furthermore, the analysis tools 150 can be used to identify potential anomalies, outliers, and conflicts across contracts and their terms, features, etc. Other uses for the analysis tools 150 include data mining and mapping of legacy contracts to existing contracts (e.g., for migration from one claims and benefits processing system to another).

[0053] Thus, embodiments according to the present invention can be used to map complex, hierarchical benefit-object relationships in terms of a series of pair-wise parent-child matrixes, with mapping between the matrixes to facilitate different types of analyses. Highly correlated objects can be searched for and identified. Building blocks in multiple levels of the hierarchy can be identified so that higher-order objects and contracts can be constructed in terms of the building blocks.

[0054] Figure 4 is a flowchart 400 summarizing methods for analyzing object structures such as contracts, particularly benefits and provider contracts in the health-care field. Although specific steps are disclosed in the flowchart 400, such steps are examples only. That is, various other steps or variations of the steps recited in the flowchart 400 can be performed. The steps in the flowchart 400 may be performed in an order different than presented. In one embodiment, the flowchart 400 is implemented as computer-readable instructions stored in a computer-readable medium.

[0055] In block 402, data that represents the hierarchy of information included in different object structures (e.g., contracts) is accessed. In one embodiment, the data is stored as a series of two-dimensional matrix representations, with each of the matrix representations storing pair-wise connections between objects from one level of the hierarchy of information (e.g., a first level, where "first" is used as a distinguishing term and does not necessarily imply the highest or lowest level of the hierarchy) and objects from another level of the hierarchy (e.g., a second level, where "second" is used as a distinguishing term and does not necessarily imply a level adjacent to the first level).

[0056] In block 404, elements of a selected matrix representation are compared to a correlation threshold.

[0057] In block 406, a cluster of the object structures is identified and presented, where the object structures in the cluster are each associated with elements of the selected matrix representation that satisfy the correlation threshold. In one embodiment, elements of the selected matrix representation are presented (e.g., displayed) in an order that is based on their degree of correlation. In another embodiment, a color-coded heat map is used. In yet other embodiments, visualization techniques such as cluster arrays, link arrays, and GIS overlays are used.

[0058] In block 408, object structures are compared to each other. More specifically, elements of a selected matrix representation are compared to one another. In one embodiment, object structures in the aforementioned cluster are compared to each other. In other words, the correlation tool is applied first to identify a subset of correlated contracts, and the comparison tool is then applied to that subset. In one embodiment, object structures are compared to a standard or model.

[0059] In one embodiment, building blocks that are made up of elements that share a specified degree of commonality are assembled. The building blocks can in turn be used to assemble a new contract.

[0060] In block 410, the degree to which the compared object structures match each other is presented. In one embodiment, object structures that match to a degree that satisfies a comparison threshold are identified. In one embodiment, different types of visual cues are used to distinguish between objects that match other objects, objects that do not match other objects, and objects that are absent from at least one of the object structures.

[0061] In block 412, a query that specifies a set of search conditions is received. In response to the query, data is filtered to identify object structures or objects that satisfy the search conditions. The search can be narrowed by selecting one of the objects included in the search results; in effect, this adds another search condition.

[0062] In summary, embodiments according to the present invention provide methods and systems for analyzing object structures such as contracts, in particular benefits contracts and provider (payer) contracts used in the field of healthcare. According to embodiments of the invention, complex hierarchical object relationships are mapped in terms of a series of pair-wise and connected parent-child matrix representations. Consequently, the volume of data is reduced and contract information and data can be more efficiently stored. Also, queries, searches, and comparisons can be performed readily and quickly.

[0063] Accordingly, payers can improve the efficiency of benefits and claims processing systems, which can result in reduced training times for benefits coders. Benefits rules can be constructed more consistently, and the lead time to market for new products (e.g., new contracts) can be reduced.

[0064] The effort needed for analysis of existing contract data, to identify the correlation between the benefits structures across various contracts, and to identify all contracts with a given benefit or benefits structure is reduced. Moreover, the process for answering questions about current benefits structures is streamlined.

[0065] Although described in the context of healthcare products and services, embodiments according to the invention are not so limited, and may be applied in other fields.

[0066] The foregoing descriptions of specific embodiments according to the present invention have been pre-

sented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and many modifications and variations are possible in light of the above teaching.

5 The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular 10 use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.

15 **Claims**

1. A computer-readable medium having computer-readable program code embodied therein for causing a computer system to perform operations comprising:

20 accessing data that represents a hierarchy of information included in a plurality of different object structures, wherein said data is stored as a plurality of two-dimensional matrix representations, each of said matrix representations storing pair-wise connections between objects from a first level of said hierarchy of information and objects from a second level of said hierarchy; comparing elements of a first matrix representation selected from said matrix representations to a correlation threshold; and identifying a cluster of said object structures associated with elements of said first matrix representation that satisfy said correlation threshold.

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 9305 9310 9315 9320 9325 9330 9335 9340 9345 9350 9355 9360 9365 9370 9375 9380 9385 9390 9395 9400 9405 9410 9415 9420 9425 9430 9435 9440 9445 9450 9455 9460 9465 9470 9475 9480 9485 9490 9495 9500 9505 9510 9515 9520 9525 9530 9535 9540 9545 9550 9555 9560 9565 9570 9575 9580 9585 9590 9595 9600 9605 9610 9615 9620 9625 9630 9635 9640 9645 9650 9655 9660 9665 9670 9675 9680 9685 9690 9695 9700 9705 9710 9715 9720 9725 9730 9735 9740 9745 9750 9755 9760 9765 9770 9775 9780 9785 9790 9795 9800 9805 9810 9815 9820 9825 9830 9835 9840 9845 9850 9855 9860 9865 9870 9875 9880 9885 9890 9895 9900 9905 9910 9915 9920 9925 9930 9935 9940 9945 9950 9955 9960 9965

objects that are absent from said object structure in comparison to said standard object structure.

4. The computer-readable medium of any one of the preceding Claims
wherein said operations further comprise an operation selected from the group consisting of: displaying elements of said first matrix representation in an order based on their degree of correlation; and displaying a graphical view comprising a color-coded heat map of said first matrix representation. 5

5. The computer-readable medium of any one of the preceding Claims
wherein said operations further comprise displaying information associated with said object structures in a format selected from the group consisting of: a cluster array; a link array; and a graphical information system overlay. 10 15

6. The computer-readable medium of any one of the preceding Claims
wherein said first matrix representation comprises a sparse matrix. 20 25

7. The computer-readable medium of any one of the preceding Claims
wherein said operations further comprise:

receiving a query that specifies a set of search conditions;
filtering data to identify said plurality of object structures, wherein said plurality of object structures comprises object structures that satisfy said search conditions;
receiving a selection of an object included in an object structure of said plurality of object structures; and
in response to receiving said selection, filtering data representing said plurality of object structures to identify other object structures that include said object. 30 35 40

8. A computer-readable medium having computer-executable components comprising analysis tools, said components comprising:

a query browser tool operable for accessing data that represents a hierarchy of information included in a plurality of different contracts, wherein said data is stored as a plurality of pair-wise parent-child matrix representations that map connections between an object from a first level of said hierarchy of information and an object from a second level of said hierarchy, said query browser tool as operable for filtering said data based on specified search conditions;
a clustering tool coupled to said query browser 45 50 55

tool and operable for comparing elements of a first matrix representation selected from said matrix representations to a correlation threshold to identify a cluster of said contracts associated with elements of said first matrix representation that satisfy said correlation threshold; and a comparison tool coupled to said query browser tool and operable for comparing said contracts to identify a degree of match between said contracts.

9. The computer-readable medium of Claim 8 wherein said comparison tool is operable for comparing said contracts to each other and for comparing said contracts to a standard contract;
wherein said clustering tool is further operable for presenting different types of visual cues to distinguish between objects in said contracts that match objects in said standard contract, objects in said contracts that do not match objects in said standard contract, and objects that are absent from said contracts in comparison to said standard contract, and wherein said clustering tool is further operable for performing an operation selected from the group consisting of: displaying elements of said first matrix representation in an order based on their degree of correlation; and displaying a graphical view comprising a color-coded heat map of said first matrix representation, and wherein said clustering tool is further operable for displaying information associated with said contracts in a format selected from the group consisting of: a cluster array; a link array; and a graphical information system overlay.

10. The computer-readable medium of Claim 8 or 9 wherein said analysis tools are further operable for rule mapping, said rule mapping comprising representing conditions of a contract as if/then statements and using said if/then statements to identify a rule path that defines a result for a claim against said contract according to information in said claim.

11. The computer-readable medium of any one of the preceding Claims 8 to 10 wherein said analysis tools are further operable for rule replacement, said rule replacement comprising modifying a rule in a contract that is selected according to a user-specified pattern.

12. A computer-implemented method comprising:

accessing data that represents a hierarchy of information included in a plurality of different contracts, wherein said data is stored as a plurality of two-dimensional matrix representations, each of said matrix representations storing pair-wise connections between objects in different levels of said hierarchy;

identifying building blocks comprising elements
of said matrix representations that share a spec-
ified degree of commonality; and
assembling a new contract based on said build-
ing blocks. 5

13. The method of Claim 12 further comprising:

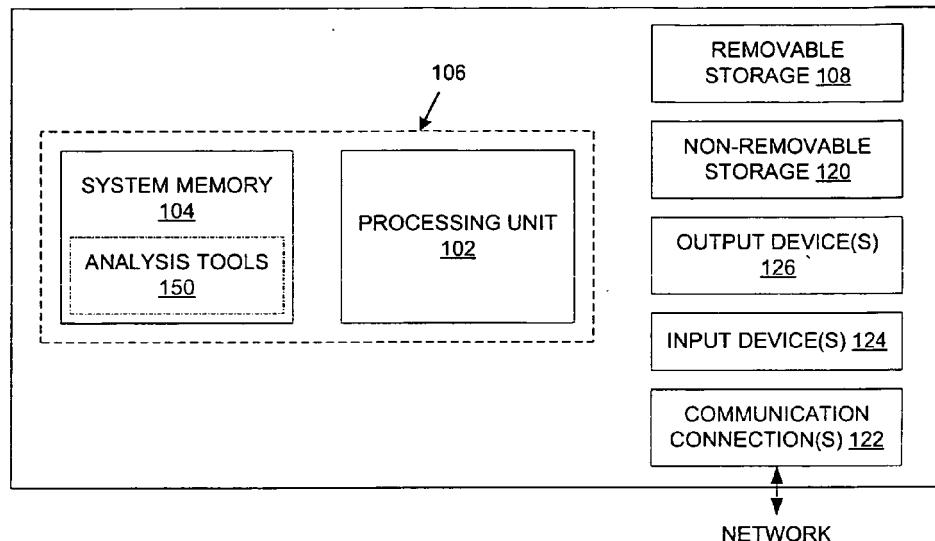
evaluating said contracts to identify contracts
that match each other to a degree that satisfies 10
a comparison threshold; and
identifying objects in said contracts that match,
objects in said contracts that do not match, and
objects that are absent from at least one of said
contracts. 15

14. The method of Claim 12 or 13 further comprising:

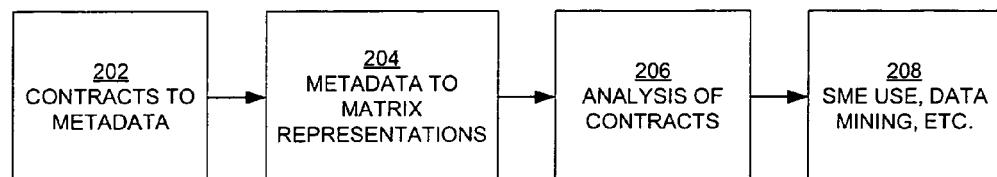
comparing elements of a first matrix represen-
tation selected from said matrix representations 20
to a correlation threshold; and
identifying contracts associated with elements
of said first matrix representation that satisfy
said correlation threshold. 25

15. The method of any one of the preceding Claims 12
to 14 further comprising:

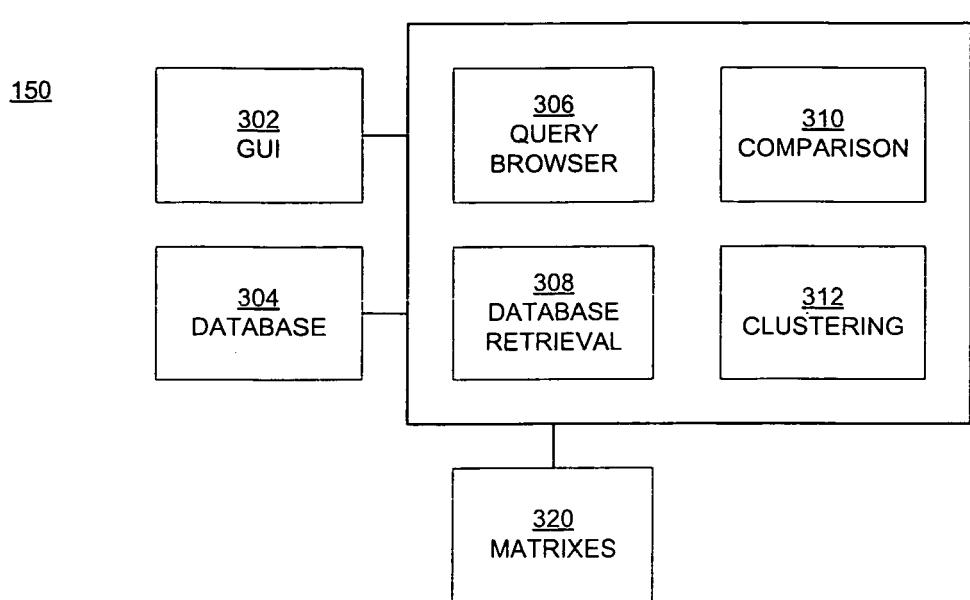
receiving a query that specifies a set of search
conditions; 30
filtering said data to identify objects that satisfy
said search conditions;
receiving a selection of an object that satisfies
said search conditions; and
in response to receiving said selection, identify- 35
ing other contracts that include said object.


40

45


50

55


100

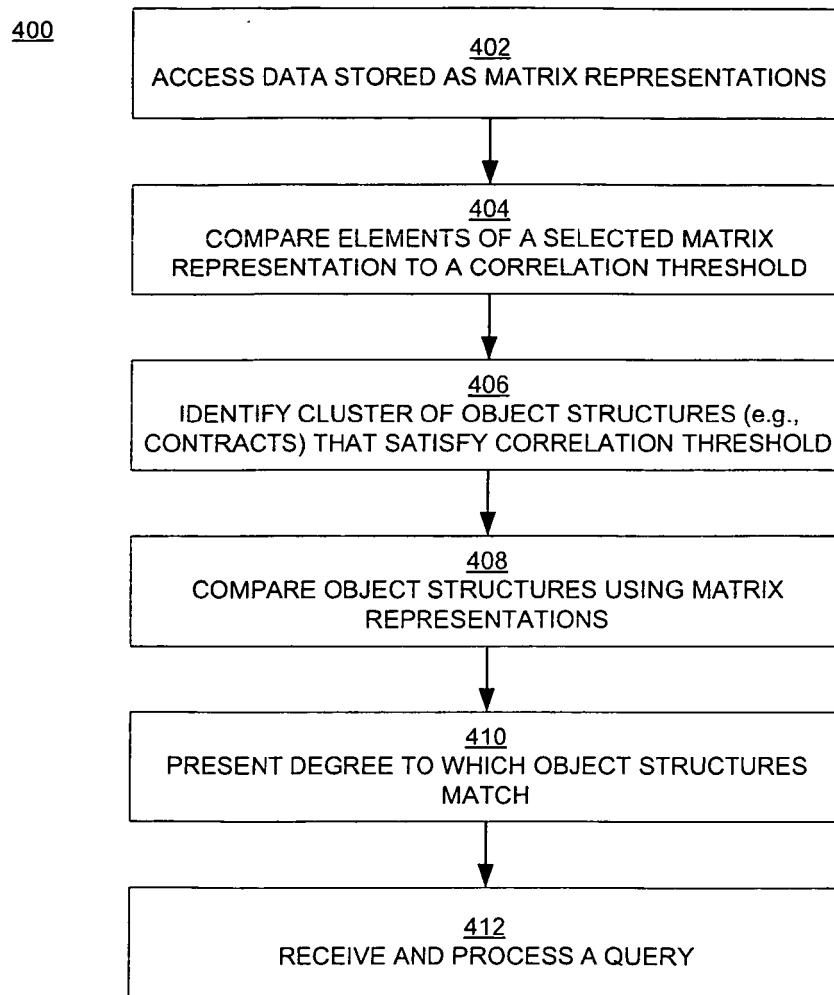

FIG. 1

FIG. 2

FIG. 3

FIG. 4

EUROPEAN SEARCH REPORT

Application Number
EP 11 00 7234

DOCUMENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
X	<p>SALTON G ET AL: "Generation and search of clustered files", INTERNET CITATION, December 1978 (1978-12), XP002269456, Retrieved from the Internet: URL:http://delivery.acm.org/10.1145/330000/320291/p321-salton.pdf?key1=320291&key2=8533806701&coll=portal&dl=ACM&CFID=2181828&CFTOKEN=68827537 [retrieved on 2004-02-06]</p> <p>* abstract; figure 1; table 1 *</p> <p>* page 321 - page 325 *</p> <p>* page 333 - page 334 *</p> <p>-----</p>	1-15	INV. G06Q10/00
X	<p>US 2007/005589 A1 (GOLLAPUDI SREENIVAS [US]) 4 January 2007 (2007-01-04)</p> <p>* abstract *</p> <p>* paragraph [0019] - paragraph [0026] *</p> <p>-----</p>	1-15	
A	<p>CHEN P-K ET AL: "HVQS: THE HIERARCHICAL VISUAL QUERY SYSTEM FOR DATABASES", JOURNAL OF VISUAL LANGUAGES AND COMPUTING, LONDON, GB, vol. 11, no. 1, 1 February 2000 (2000-02-01), pages 1-26, XP001100070, DOI: 10.1006/JVLC.1999.0140</p> <p>* page 15 - page 16 *</p> <p>-----</p>	1-15	<p>TECHNICAL FIELDS SEARCHED (IPC)</p> <p>G06Q</p>
2 The present search report has been drawn up for all claims			
2	Place of search	Date of completion of the search	Examiner
	The Hague	29 November 2011	Fiorenzo Catalano, M
<p>CATEGORY OF CITED DOCUMENTS</p> <p>X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document</p> <p>T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document</p>			

ANNEX TO THE EUROPEAN SEARCH REPORT
ON EUROPEAN PATENT APPLICATION NO.

EP 11 00 7234

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

29-11-2011

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 2007005589	A1	04-01-2007	EP	1899801 A2		19-03-2008
			US	2007005589 A1		04-01-2007
			US	2008319941 A1		25-12-2008
			WO	2007005742 A2		11-01-2007

EPO FORM P0459

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82