TECHNICAL FIELD
[0001] The present invention relates generally to a composition comprising multi-polymer
hydrogel materials and methods of making the composition, and specifically to an implantable
article formed from multi-polymer hydrogel materials.
BACKGROUND
[0002] Hydrogels are water-swellable or water-swollen materials having a structure defined
by a crosslinked network of hydrophilic homopolymers or copolymers. The hydrophilic
homopolymers or copolymers may or may not be water-soluble in free form, but in a
hydrogel are rendered insoluble (but swellable) in water due to covalent, ionic, or
physical crosslinking. In the case of physical crosslinking, the linking may take
the form of entanglements, crystallites, or hydrogen-bonded structures. The crosslinks
in a hydrogel provide structure and physical integrity to the network.
[0003] Hydrogels have been made from a variety of hydrophilic polymers and copolymers. Poly(ethylene
glycol), poly(vinyl pyrrolidone), polyacrylamide, poly(hydroxyethyl methacrylate),
and copolymers of the foregoing, are examples of polymers that may be used to make
hydrogels. Hydrogels have also been made from biopolymers such as chitosan, agarose,
hyaluronic acid and gelatin, in addition from semi-interpenetrating network ("IPN")
hydrogels and gelatin crosslinked with poly(ethylene glycol) diacrylate.
[0004] Poly(vinyl alcohol) ("PVA") has been studied extensively for potential biomedical
applications. PVA hydrogels can be produced, for example, from an aqueous solution
via repeated freezing and thawing cycles that increase the order of the crystals,
changing the dissolution properties, mesh size, and diffusion properties of the polymer.
[0005] Hydrogels have shown promise in biomedical and pharmaceutical applications, due,
in part, to their high water content and rubbery or pliable nature, which may mimic
natural tissue and may facilitate the release of bioactive substances at a desired
physiological site. For example, hydrogels have been used or proposed for use in a
variety of tissue treatment applications, including implants, tissue adhesives, bone
grafts as well as in meniscus and articular cartilage replacement. Hydrogels may also
act as a carrier for delivering bioactive substances including drugs, peptides, and
proteins to a physiological site.
[0006] However, many biomedical applications require that the implanted article possess
different characteristics, such as mechanical and chemical properties, at different
locations or surfaces of the article. Thus, there is a need to provide hydrogel materials
and articles that present different characteristics at different locations of the
implanted article.
SUMMARY OF THE INVENTION
[0007] The present invention provides a multi-polymer hydrogel article comprising a first
polymeric, water-swellable material and a second polymeric material. The multi-polymer
hydrogel article has a first region that substantially comprises the first polymeric,
water-swellable material, a second region adjacent the first region that comprises
a mixture of the first polymeric, water-swellable material and the second polymeric
material, and a third region adjacent the second region that substantially comprises
the second polymeric material. The multi-polymer hydrogel article exhibits an increasing
concentration gradient in the second polymeric material moving from the first region,
through the second region, to the third region.
[0008] The present invention also provides a method of forming a multi-polymer hydrogel
article. The inventive method comprises forming a hydrogel structure comprising a
first polymeric, water-swellable material. An aerogel structure comprising a plurality
of open pores is formed by dehydrating the hydrogel structure. The aerogel structure
is then contacted with a second polymeric material. The second polymeric material
incorporates into at least a portion of the plurality of open pores in the aerogel
structure to form a multi-polymer hydrogel article. The resulting multi-polymer hydrogel
article is then rehydrated.
DETAILED DESCRIPTION
[0009] The present invention provides for a multi-polymer hydrogel article comprising a
first polymeric, water-swellable material and a second polymeric material. The multi-polymer
hydrogel article is organized into a first, second, and third region, wherein the
first region substantially comprises the first polymeric, water-swellable material,
the second region adjacent the first region comprises a mixture of the first polymeric,
water-swellable material and the second polymeric material, and the third region adjacent
the second region substantially comprises the second polymeric material. Further,
the second polymeric material exhibits an increasing concentration gradient moving
from the first region, through the second region, to the third region. In one embodiment,
the second polymeric material is a water-swellable material.
[0010] As used in this specification, the terms "water-swellable" or "hydrogel" indicate
that the article is able to take on and retain water within a network of polymers.
[0011] Suitable water-swellable materials include at least one of a hydrophilic polymer,
a homopolymer, a combination of a hydrophilic polymer and a hydrophobic polymer, a
blend of polymers, a copolymer, or a thermoplastic material, or combinations thereof.
In one embodiment, the water-swellable material is selected from the group consisting
of polymers and copolymers of polyvinyl alcohol, polyglycols, polyethylene glycol
dimethacrylate, polyethylene glycol diacrylate, polyhydroxyethyl methacrylate, polyvinyl
pyrrolidone, polyacrylamide, polyacrylic acid, hydrolyzed polyacrylonitrile, polyethyleneimine,
ethoxylated polyethyleneimine, polyallyl alcohol, and polyallylamine, and combinations
thereof.
[0012] In some embodiments, the second polymeric material is a polyurethane elastomer, silicone
elastomer, hydrogel, or lyogel, or combinations thereof. In one embodiment, the first
polymeric, water-swellable material and the second polymeric material comprise a common
monomer. The second polymeric material may also be water-swellable, with the first
and second water-swellable materials being different, with a common monomer or without
a common monomer. For example, in one embodiment, the first polymeric, water-swellable
material is a polyvinyl alcohol (PVA)/polyethylene-co-vinyl alcohol (EVAL) copolymer
and the second polymeric material is polyvinyl alcohol (PVA). In some embodiments,
the first polymeric, water-swellable material, the second polymeric material, the
aerogel structure, and/or the multi-polymer hydrogel article is thermoplastic. Further
examples of suitable materials to be used as the first polymeric, water-swellable
material and/or the second polymeric material can be found in
U.S. Patent Application No. 11/614,389, incorporated by reference herein in its entirety.
[0013] The organization of the multi-polymer hydrogel article is such that the first region
extends from a first point to a first interface with the second region, the second
region extends from the first interface to a second interface with the third region,
and the third region extends from the second interface to a second point. Further,
the percent volume ratio of the first polymeric, water-swellable material to the second
polymeric material is about 100:0 at the first point and about 0:100 at the second
point and continuously changes from 100:0 at the first point to 0:100 at the second
point. Each of the first and second points may reside at exterior surfaces of the
article, or may reside interiorly within the respective first and third regions.
[0014] The present invention also provides a method of forming a multi-polymer hydrogel
article. The method comprises (a) forming a hydrogel structure comprising a first
polymeric, water-swellable material, (b) creating an aerogel structure comprising
a plurality of open pores by dehydrating the hydrogel structure, (c) contacting the
aerogel structure with a second polymeric material to incorporate the second polymeric
material into at least a portion of the plurality of open pores to form a multi-polymer
hydrogel article, and (d) rehydrating the multi-polymer hydrogel article.
[0015] The method of the present invention may be used to impart desireable characteristics
in a hydrogel material or device, such as reinforcing particular areas, providing
hoop stress support, creating transition zones between different materials, and/or
changing mechanical properties, e.g., compressive modulus, tensile strength, etc.
[0016] In one embodiment, forming the hydrogel structure comprises casting, injection molding,
or compression molding the first polymeric, water-swellable material into a shape.
In another embodiment, forming the hydrogel structure further comprises dip coating,
casting or molding the first polymeric, water-swellable material at least partially
encompassing a third sacrificial material. In some embodiments, the third sacrificial
material is soluble in an aqueous solution. The third sacrificial material may comprise
a variety of materials including sugars, waxes, gelatins, salts, low molecular weight
water-soluble polymers, ice, and biodegradable polymers, and combinations thereof.
[0017] In one embodiment of the present method, the third sacrificial material is dissolved
to form a void at least partially encompassed by the first polymeric, water-swellable
material. In various embdoiments, the third sacrificial material is dissolved
in vivo. In one embodiment, the void is limited at its periphery by the first polymeric, water-swellable
material such that the first polymeric, water-swellable material substantially surrounds
the void. In some embodiments, the first polymeric, water-swellable material forms
a ballon or a bubble. The void and/or the hydrogel structure may be tailored to any
desired shape and size. In some embodiments, the void created by the third sacrificial
material may be at least partially filled with a second polymeric material that is
in liquid form. The liquid polymer may be injected by a needle or cannula into the
void formed by the third sacrificial material.
[0018] In another embodiment, the third sacrifical material is included in the first polymeric,
water-swellable material such that when the third sacrifical material is dissolved,
open pores are formed in addition to those formed when creating the aerogel structure.
In some embodiments, the third sacrificial material is soluble in an aqueous solution.
The third sacrificial material may comprise a variety of materials including sugars,
waxes, gelatins, salts, low molecular weight water-soluble polymers, ice, and biodegradable
polymers, and combinations thereof.
[0019] In one embodiment, the formation of the hydrogel structure includes using a surfactant
or rapid agitation to create spheres, rods, globules, ellipsoidal shapes, cylindrical
shapes, and/or disc-like shapes. In one embodiment, a surfactant is used in the polymerization
process to create hydrogel beads, for example, polymerization of hydroxymethylmethacrylate
in a surfactant. In another embodiment, the surfactant may be polymerized in a self-emulsifying
polymerization to create the hydrogel beads, for example, the polymerization of sodium
methacrlate in water. Monomers that may be polymerized in the prescense of surfactants
to create hydrogel beads may include glycidyl methacrylate modified hyaluronate, acrylate
modified polyethylene glycol, or the polymerization of vinyl acetate followed by post
hydrolysis to create polyvinyl alcohol. Suitable surfactants for these polymerizations
may include perfluorocarboxlyic acid salts, tetraethylene glycol dodecyl ether, decaethylene
glycol hexadecyl ether, carboxylic acid salts, Alkanol
®, Merpol
®, Brij
®, Adogen
®, Igepal
®, Tergitol
®, or Triton
®.
[0020] The aerogel structure is created by dehydrating, e.g. removing water and/or plasticizers,
from the hydrogel structure. It may be understood that dehydration includes partial
to complete removal of water and/or plasticizers from the hydrogel structure. In various
embodiments, the water and/or plasticizer is removed from the hydrogel structure by,
for example, heating, evaporating, subjecting to a vacuum, freeze-drying, or solvent
exchange, or combinations thereof. In embodiments where the water and/or plasticizer
is partially removed from the hydrogel structure, a semiporous material is created.
In some embodiments, after dehydrating the hydrogel structure to create the aerogel
structure, the aerogel structure is formed into a desired shape. Forming the aerogel
structure includes cutting, molding, and/or shaping the aerogel structure. In some
embodiments, water-swellable sheets may be dehydrated before creating a desired shape.
[0021] After formation of the aerogel structure, the aerogel structure is contacted with
a second polymeric material. As used herein "contacted" includes filling, pressing,
interlocking, impregnating, penetrating or intercalating. Furthermore, the aerogel
structure may be contacted by the second polymeric material in a variety of ways including
immersing at least a portion of the aerogel structure in the second polymeric material,
injecting the second polymeric material into at least a portion of the aerogel structure,
compressing the second polymeric material into at least a portion of the aerogel structure,
and contacting less than the entire surface area of the aerogel structure with the
second polymeric material.
[0022] In an alternative embodiment, the first polymeric, water-swellable material, absent
formation of the aerogel structure, may be contacted with the second polymeric material
and introduced into the first polymeric, water-swellable material by solvent bonding
techniques. Solvent bonding requires compatible solvents for the first polymeric,
water-swellable material and the second polymeric material. The solvent bonding creates
an interlocking of the two polymer layers. Compatible solvents may include tetrahydrofuran,
toluene, dimethylformamide, dimethylacetamide, acetone, acetonitrile, cyclohexane,
cyclopentane, 1,4-dioxane, ethyl acetate, glyme, methyl tert-butyl ether, methyl ethyl
ketone, pyridine, water, dimethylsulfoxide, or chlorobenzene, or combination thereof.
The subsequent solvent bonded structure formed following contact between the first
polymeric, water-swellable material and the second polymeric material is amenable
to all the embodiments described herein.
[0023] The method of the present invention results in the formation of a multi-polymer hydrogel
article comprising the first polymeric, water-swellable material and the second polymeric
material. The multi-polymer hydrogel article is organized into a first region substantially
comprising the first polymeric, water-swellable material, a second region adjacent
the first region comprising a mixture of the first polymeric, water-swellable material
and the second polymeric material, and a third region adjacent the second region substantially
comprising the second polymeric material. Further, the second polymeric material exhibits
an increasing concentration gradient moving from the first region, through the second
region, to the third region.
[0024] Additionally, the first region extends from a first point to a first interface with
the second region, the second region extends from the first interface to a second
interface with the third region and includes therein a second point, and the third
region extends from the second interface to a third point. In one embodiment, the
multi-polymer hydrogel article formed by the present method has a percent volume ratio
of the first polymeric, water-swellable material to the second polymeric material
that continuously changes from about 100:0 at the first point, to about 50:50 at the
second point, to about 0:100 at the third point. In one embodiment, pore blockers
are present during the present method such that some portion of the pores in the aerogel
structure are resistant to penetration by the second polymeric material. In embodiments
where a pore blocker is present, the second point is moved towards the third point
in the multi-polymer hydrogel article. Pore blockers that may be used in the present
method include sugars, salts, low molecular weight water-soluble polymers, waxes,
liquids, and biodegradable polymers, and combinations thereof.
[0025] In addition to the incorporation of the second polymeric material into at least a
portion of the plurality of open pores in the aerogel structure to form a multi-polymer
hydrogel article, in some embodiments, the second polymeric material is also introduced
into the void created by dissolving the third sacrificial material such as sugars,
salts, or waxes. In another embodiment, a material is introduced into the void created
by dissolving the third sacrificial material and may include materials such as lyogels,
hydrogels, monomers, beads, urethanes, acrylates, methacrylates, or other injectable
polymeric materials or precursors. In various embodiments, the second polymeric material
may contact the first polymeric, water-swellable material
in situ and/or be cured
in situ as part of an implantation procedure or cured
ex-vivo before implantation.
[0026] In one embodiment, the aerogel structure is contacted with the second polymeric material
under pressure. Using the previously described organization of the resultant multi-polymer
hydrogel article where the first region extends from a first point to a first interface
with the second region, the second region extends from the first interface to a second
interface with the third region and includes therein a second point, and the third
region extends from the second interface to a third point and where a percent volume
ratio of the first polymeric, water-swellable material to the second polymeric material
continuously changes from about 100:0 at the first point, to about 50:50 at the second
point, to about 0:100 at the third point, the affect of contacting the aerogel structure
with the second polymeric material under pressure is to move the second point towards
the first point. The extent of the movement of the second point towards the first
point is affected by many factors including the amount of pressure exerted on the
second polymeric material.
[0027] In yet another embodiment of the present method, a multilayered, multi-polymer hydrogel
article is produced. In one embodiment, at least one of the method steps (a-d) described
above is repeated. For instance, following contacting of the aerogel with the second
polymeric material, the resulting aerogel structure incorporating the second polymeric
material is dehydrated to form a second aerogel structure. This second aerogel structure
can be contacted with a third polymeric material such that the third polymeric material
incorporates into at least a portion of the second aerogel structure. The process
can be repeated such that n aerogel structures are contacted with n + 1 polymeric
materials and with each cycle of dehydration and incorporation, another layer is added
to the resultant multi-polymer hydrogel article. The n + 1 polymeric material can
be any of the potential materials described for either the first polymeric, water-swellable
material or the second polymeric material. Also, any of the n aerogel structures are
subject to the embodiments described above for the aerogel structure. In various embodiments,
the multilayers are comprised of different polymeric materials or the same polymeric
material. In one embodiment, the multilayered, multi-polymer hydrogel article is composed
of variations of the same polymer. For instance, the polymer may vary by concentration,
molecular weight, degree of branching, tacticity, extent of crosslinking, etc.
[0028] In still another embodiment, the multilayered, multi-polymer hydrogel article can
be accomplished utilizing insert-molding techniques known to one skilled in the art.
Examples of methods to create the layering may include liquid injection molding. Compression
molding may also be used and insures good interlocking of the first polymeric, water-swellable
material and the second polymeric material.
[0029] In another embodiment, a multilayered, multi-polymer hydrogel article may be formed
using solvent bonding by at least partially covering a first polymeric, water-swellable
material with a second polymeric material, both containing compatible solvents, to
create a multi-polymer hydrogel article. The multi-polymer hydrogel article may then
be contacted with a third polymeric material, also containing compatible solvents,
resulting in a multilayered, multi-polymer hydrogel article. The process may be repeated
such that each cycle of incorporation results in another layer being added to the
resultant multi-polymer hydrogel article. In various embodiments, the multilayers
are comprised of different polymeric materials or the same polymeric material. In
one embodiment, the multilayered, multi-polymer hydrogel article is composed of variations
of the same polymer. For instance, the polymer may vary by concentration, molecular
weight, extent of crosslinking, etc.
[0030] The present method for forming a multi-polymer hydrogel article may also include
crosslinking of all or a portion of the multi-polymer hydrogel article. In various
embodiments, crosslinking can occur by radiation crosslinking, physical crosslinking,
or chemical crosslinking, or combinations thereof. Examples of radiation crosslinking
includes exposing the multi-polymer hydrogel article to at least one of visible light
radiation, infrared radiation, ultraviolet radiation, electron beam radiation, gamma
radiation, or x-ray radiation. An example of physical crosslinking is exposing the
multi-polymer hydrogel article to freezing and thawing. Examples of chemical crosslinking
includes exposing the multi-polymer hydrogel article to a monoaldehyde or a diisocyanate.
Crosslinking may be carried out after forming the hydrogel structure, after forming
the multi-polymer hydrogel article, after shaping the multi-polymer hydrogel article
into a desired shape, after
in situ formation of the article, or at any other suitable point during processing.
[0031] The multi-polymer hydrogel article of the present invention may be suitable for use
in a wide variety of applications, including tissue replacement or augmentation, biomedical
applications, and pharmaceutical applications. Also, the article will have utility
for many orthopedic conditions, particularly those that involve repair of a cartilage,
repair of soft tissue defects, e. g., treating damaged or diseased hyaline cartilage,
replacement of damaged cartilage surface, and use in spinal discs. The article of
the present invention can be used as an implant to replace at least a portion of an
artificial hip, hip liner, knee, knee liner, disk replacement, shoulder, elbow, foot,
ankle, finger, or mandible.
[0032] The following examples are provided to illustrate the invention and are not intended
to limit the same.
[0034] Synthesis Of The First Polymeric, Water-swellable Material
[0035] To a 1000 ml beaker equipped with a mechanical stirrer was added 60 g polyvinyl alcohol,
30 ml deionized water, and 270 ml of dimethylsulfoxide (DMSO). The polyvinyl alcohol
was 99+ % hydrolyzed with an average molecular weight of 124 kiloDalton (kDa) to 186
kDa and was used as received from Sigma-Aldrich (St. Louis, MO). The DMSO was used
as received from Sigma-Aldrich and contained
< 0.4% water. The solution was heated to 90° C for three hours.
[0036] After three hours, the solution was poured into one-cm
3 aluminum molds. The solution was allowed to cool slowly to room temperature, and
the aluminum molds were then placed into a freezer at -30° C for three hours. The
aluminum molds were removed from the freezer.
[0037] The resulting material was translucent, flexible, and pliable. The one cm
3 polymeric samples were extracted with 700 ml reagent-grade alcohol (ethanol) followed
by solvent exchange with deionized water over a three-day period. The resulting material
remained translucent, flexible, and pliable.
[0038] Dehydration was performed on a vacuum glass Schlenck line by using a freeze-thaw
technique in which the sample was frozen followed by evacuation of the liquid vapor
phase. The freeze-thaw procedure was performed as follows: the samples were frozen
at -196° C and a dynamic vacuum was placed on the sample as it warmed to room temperature.
The freeze-dried samples served as the aerogel structure.
[0039] Synthesis Of The Second Polymeric Material
[0040] To a one-gallon sigma mixer/extruder (Jaygo Incorporated, New Jersey) fitted with
a 3 mm fiber die was added 625.89 g polyethylene-co-vinyl alcohol, 100 ml of water,
1350 g DMSO, and 626.79 g polyvinyl alcohol. The materials were mixed at 240° F (116°
C) for 70 minutes. The polyvinyl alcohol was 99+ % hydrolyzed with an average molecular
weight of 146,000 to 186,000 and was used as received from Sigma-Aldrich. The polyethylene-co-vinyl
alcohol had an ethylene content of 44 mole-percent and was used as received from Sigma-Aldrich.
The DMSO was used as received from Sigma-Aldrich and contained
< 0.4% water.
[0041] After 70 minutes, the sample was extruded through a 3 mm fiber die with a draw rate
of 4 X and into a 50% alcohol/50% water cooling bath for a residence time of 1-3 seconds.
The fiber was allowed to cool and cut into fine pellets using a fiber chopper. The
resulting material remained translucent, flexible, and pliable.
[0042] Synthesis Of The Multi-polymer Hydrogel Article
[0043] The multi-polymer hydrogel article was formed on a Morgan Press ram injection molder
G-100T from Morgan Industries Inc. (Long Beach, CA). The aerogel structure was placed
in an aluminum mold. The second polymeric material pellets were placed into the barrel
of the injection molder. The material was injection molded at 270° C barrel and 280°
C nozzle temperature. Injection pressure was 7000 psi with 18 tons clamping pressure.
After injection, the mold was cooled with circulating water at 10° C for five minutes
prior to removing the sample. The multi-polymer hydrogel article was extracted with
700 ml reagent-grade alcohol (ethanol) followed by solvent exchange with deionized
water over a three-day period. The resulting multi-polymer hydrogel article showed
a transparent material in the middle of the sample (substantially comprising the first
polymeric material) transitioning to an opaque material in the periphery (substantially
comprising the second polymeric material). The material in the article remained flexible
and pliable.
[0045] Synthesis Of The First Polymeric, Water-swellable Material
[0046] To a 1000 ml beaker equipped with a mechanical stirrer was added 60 g polyvinyl alcohol,
30 ml deionized water, and 270 ml of DMSO. The polyvinyl alcohol was 99+ % hydrolyzed
with an average molecular weight of 124 kDa to 186 kDa and was used as received from
Sigma-Aldrich. The DMSO was used as received from Sigma-Aldrich and contained ≤ 0.4%
water. The solution was heated to 90° C for three hours.
[0047] After three hours, the solution was cast between two glass plates to create a hydrogel
structure as a sheet. The solution was allowed to cool slowly to room temperature,
and the plates were then placed into a freezer at -30° C for three hours. The plates
were removed from the freezer.
[0048] The resulting material was translucent, flexible, and pliable. The polymeric sample
was extracted with 700 ml reagent-grade alcohol (ethanol) followed by solvent exchange
with deionized water over a three-day period. The resulting material remained translucent,
flexible, and pliable.
[0049] Dehydration was performed on a vacuum glass Schlenck line by using a freeze-thaw
technique. The samples were frozen at -196° C and a dynamic vacuum was placed on the
sample as it warmed to room temperature. The freeze-dried samples served as the aerogel
structure.
[0050] Synthesis Of The Second Polymeric Material
[0051] To a Jaygo one-gallon sigma mixer/extruder fitted with a 3 mm fiber die was added
625.89 g polyethylene-co-vinyl alcohol, 100 ml of water, 1350 g DMSO, and 626.79 g
polyvinyl alcohol. The materials were mixed at 240° F (116° C) for 70 minutes. The
polyvinyl alcohol was 99+ % hydrolyzed with an average molecular weight of 146,000
to 186,000 and was used as received from Sigma-Aldrich. The polyethylene-co-vinyl
alcohol had an ethylene content of 44 mole-percent and was used as received from Sigma-Aldrich.
The DMSO was used as received from Sigma-Aldrich and contained ≤ 0.4% water.
[0052] After 70 minutes, the sample was extruded through a 3 mm fiber die with a draw rate
of 4 X and into a 50% alcohol/50% water cooling bath for a residence time of 1-3 seconds.
The fiber was allowed to cool and cut into fine pellets using a fiber chopper. The
resulting material remained translucent, flexible, and pliable.
[0053] Synthesis Of The Multi-polymer Hydrogel Article
[0054] The multi-polymer hydrogel article was formed on a Morgan-Press G-100T ram injection
molder. The aerogel structure was placed in an aluminum mold. The second polymeric
material pellets were placed into the barrel of the injection molder. The material
was injection molded at 270° C barrel and 280° C nozzle temperature. Injection pressure
was 7000 psi with 18 tons clamping pressure. After injection, the mold was cooled
with circulating water at 10° C for five minutes prior to removing the sample. The
multi-polymer hydrogel article was extracted with 700 ml reagent-grade alcohol (ethanol)
followed by solvent exchange with deionized water over a three-day period. The resulting
multi-polymer hydrogel article showed a transparent material in the middle of the
sample (substantially comprising the first polymeric material) transitioning to an
opaque material in the periphery (substantially comprising the second polymeric material).
The multi-polymer hydrogel article remained flexible and pliable.
[0056] Synthesis Of The First Polymeric, Water-swellable Material
[0057] To a 1000 ml beaker equipped with a mechanical stirrer was added 20 g polyvinyl alcohol,
10 ml deionized water, and 170 ml of DMSO. The polyvinyl alcohol was 99+ % hydrolyzed
with an average molecular weight of 124 kDa to 186 kDa and was used as received from
Sigma-Aldrich. The DMSO was used as received from Sigma-Aldrich and contained
< 0.4% water. The solution was heated to 80° C for three hours.
[0058] After three hours, the solution was poured into a 50 ml flask to form a ¼ inch layer.
The layer was allowed to cool to room temperature. A molded piece of sugar was placed
on top of the layer and additional polymer solution was poured on top of the layer
to form the hydrogel structure. The hydrogel structure was quickly frozen to -30°
C in a methanol/liquid nitrogen slush bath. The hydrogel structure was allowed to
warm to room temperature over a two hour period. The hydrogel structure was submersed
in methanol for 12 hours followed by solvent exchange in water for three days to dissolve
the sugar. The hydrogel structure was then dehydrated and vacuum dried to produce
a void.
[0059] Synthesis Of The Second Polymeric Material
[0060] To a 50 ml beaker equipped with a mechanical stirrer was added 15 ml DMSO, 1 ml deionized
water, 1.5 g polyvinyl alcohol and 1 g polyethylene-co-vinyl alcohol. The materials
were mixed at 80° C for 3 hours.
[0061] Synthesis Of The Multi-polymer Hydrogel Article
[0062] The second polymeric material was injected into the void created by the sugar using
an 18-gauge needle and syringe. The final article was placed in water for solvent
exchange. The subsequent article was cross-sectioned showing that the void was in
fact filled with the second polymeric material and the material was attached to the
first polymeric material.
[0064] Mechanical performance properties for selected hydrogels were measured on a Model
3345 from Instron Corporation. The sample from Example 1 showed a push out strength
of 1649 psi, which indicates that the first polymeric, water-swellable material and
the second polymeric material are interlocked. Push out strength refers to the amount
of force required to separate the first polmeric material from the second polymeric
material. In this case, the two materials have different mechanical strengths. The
high push out strength shows that the two materials were in fact bound together.
[0065] Annexe
- 1. A method of forming a multi-polymer hydrogel article comprising:
- (a) forming a hydrogel structure comprising a first polymeric, water-swellable material,
- (b) creating an aerogel structure comprising a plurality of open pores by dehydrating
the hydrogel structure,
- (c) contacting the aerogel structure with a second polymeric material to incorporate
the second polymeric material into at least a portion of the plurality of open pores
to form the multi-polymer hydrogel article, and
- (d) rehydrating the multi-polymer hydrogel article.
- 2. The method of clause 1, wherein forming the hydrogel structure comprises dip coating,
casting, injection molding, or compression molding the first polymeric, water-swellable
material into a shape.
- 3. The method of clause 2, wherein forming the hydrogel structure further comprises
dip coating, casting or molding the first polymeric, water-swellable material at least
partially encompassing a third sacrificial material.
- 4. The method of clause 3, wherein the third sacrificial material is soluble in an
aqueous solution.
- 5. The method of clause 3, wherein the third sacrificial material is selected from
the group consisting of sugars, waxes, gelatins, salts, low molecular weight water-soluble
polymers, ice, and biodegradable polymers, and combinations thereof.
- 6. The method of clause 3, further comprising dissolving the third sacrificial material
to form a void at least partially encompassed by the first polymeric, water-swellable
material.
- 7. The method of clause 6, wherein the void is limited at its periphery by the first
polymeric, water-swellable material such that the first polymeric, water-swellable
material substantially surrounds the void.
- 8. The method of clause 6, wherein dissolving the third sacrificial material occurs
in vivo.
- 9. The method of clause 1, further comprising, prior to forming the hydrogel structure,
introducing a third sacrificial material into the first polymeric, water-swellable
material,
and wherein creating the aerogel structure further includes dissolving the third sacrificial
material to thereby form additional open pores.
- 10. The method of clause 9, wherein the third sacrificial material is soluble in an
aqueous solution.
- 11. The method of clause 9, wherein the third sacrificial material is selected from
the group consisting of sugars, waxes, gelatins, salts, low molecular weight water-soluble
polymers, ice, and biodegradable polymers, and combinations thereof.
- 12. The method of clause 1, wherein forming the hydrogel structure further comprises
using a surfactant or rapid agitation to create spheres, rods, globules, ellipsoidal
shapes, cylindrical shapes, or disc shapes.
- 13. The method of clause 12, further comprising polymerizing the surfactant in the
case of a self emulsifying polymerization to create hydrogel beads.
- 14. The method of clause 1, wherein dehydrating the hydrogel structure includes removing
water and/or plasticizers from the hydrogel structure by heating, subjecting to a
vacuum, solvent exchange, or freeze-drying, or combinations thereof.
- 15. The method of clause 1, wherein creating the aerogel structure further comprises
forming the aerogel structure following dehydrating the hydrogel structure, wherein
forming comprises cutting, molding, and/or shaping the aerogel structure.
- 16. The method of clause 1, wherein the contacting results in a first region substantially
comprising the first polymeric, water-swellable material, a second region adjacent
the first region comprising a mixture of the first polymeric, water-swellable material
and the second polymeric material, and a third region adjacent the second region substantially
comprising the second polymeric material, wherein the second polymeric material exhibits
an increasing concentration gradient moving from the first region, through the second
region, to the third region.
- 17. The method of clause 16 wherein the first region extends from a first point to
a first interface with the second region, the second region extends from the first
interface to a second interface with the third region and includes therein a second
point, and the third region extends from the second interface to a third point; wherein
a percent volume ratio of the first polymeric, water-swellable material to the second
polymeric material continuously changes from about 100:0 at the first point, to about
50:50 at the second point, to about 0:100 at the third point; and wherein the presence
of pore blockers moves the second point towards the third point.
- 18. The method of clause 17 wherein the pore blockers are selected from the group
consisting of sugars, salts, low molecular weight water-soluble polymers, and biodegradable
polymers, and combinations thereof.
- 19. The method of clause 1, wherein contacting the aerogel structure with the second
polymeric material further comprises introducing the second polymeric material into
a void created by dissolving a third sacrificial material.
- 20. The method of clause 19, further comprising introducing a material into the void
created by dissolving the third sacrificial material.
- 21. The method of clause 1, wherein contacting the aerogel structure with the second
polymeric material occurs under a pressure.
- 22. The method of clause 21 wherein a first region extends from a first point to a
first interface with a second region, the second region extends from the first interface
to a second interface with a third region and includes therein a second point, and
the third region extends from the second interface to a third point; wherein a percent
volume ratio of the first polymeric, water-swellable material to the second polymeric
material continuously changes from about 100:0 at the first point, to about 50:50
at the second point, to about 0:100 at the third point; and wherein the extent of
the pressure of the second polymeric material moves the second point towards the first
point.
- 23. The method of clause 1 wherein at least two of the steps (a)-(d) are repeated
to produce a multilayered, multi-polymer hydrogel article.
- 24. The method of clause 1 further comprising crosslinking the multi-polymer hydrogel
article.
- 25. The method of clause 24 wherein crosslinking occurs by radiation crosslinking,
physical crosslinking, or chemical crosslinking, or combinations thereof.
- 26. The method of clause 25 wherein radiation cross linking comprises exposing the
multi-polymer hydrogel article to at least one of visible light radiation, ultraviolet
radiation, infrared radiation, electron beam radiation, gamma radiation, or x-ray
radiation.
- 27. The method of clause 25 wherein physical crosslinking comprises exposing the multi-polymer
hydrogel article to freezing and thawing.
- 28. The method of clause 25 wherein chemical crosslinking comprises exposing the multi-polymer
hydrogel article to a monoaldehyde or a diisocyanate.
- 29. An implantable article produced according to the method of clause 1.
1. A method of forming a multi-polymer hydrogel article comprising:
(a) forming a hydrogel structure comprising a first polymeric, water-swellable material,
(b) creating an aerogel structure comprising a plurality of open pores by dehydrating
the hydrogel structure,
(c) contacting the aerogel structure with a second polymeric material to incorporate
the second polymeric material into at least a portion of the plurality of open pores
to form the multi-polymer hydrogel article, and
(d) rehydrating the multi-polymer hydrogel article.
2. The method of claim 1, wherein forming the hydrogel structure further comprises dip
coating, casting or molding the first polymeric, water-swellable material at least
partially encompassing a third sacrificial material.
3. The method of claim 2, further comprising dissolving the third sacrificial material
to form a void at least partially encompassed by the first polymeric, water-swellable
material, optionally wherein dissolving the third sacrificial material occurs in vivo.
4. The method of claim 1, further comprising, prior to forming the hydrogel structure,
introducing a third sacrificial material into the first polymeric, water-swellable
material, and wherein creating the aerogel structure further includes dissolving the
third sacrificial material to thereby form additional open pores.
5. The method of claim 1, wherein contacting the aerogel structure with the second polymeric
material further comprises introducing the second polymeric material into a void created
by dissolving a third sacrificial material.
6. The method of any one claims 2 through 5, wherein the third sacrificial material is
selected from the group consisting of sugars, waxes, gelatins, salts, low molecular
weight water-soluble polymers, ice, and biodegradable polymers, and combinations thereof,
optionally the third sacrificial material is soluble in an aqueous solution.
7. The method of claim 1, wherein forming the hydrogel structure further comprises using
a surfactant or rapid agitation to create spheres, rods, globules, ellipsoidal shapes,
cylindrical shapes, or disc shapes.
8. The method of claim 7, further comprising polymerizing the surfactant in the case
of a self emulsifying polymerization to create hydrogel beads.
9. The method of claim 1, wherein dehydrating the hydrogel structure includes removing
water and/or plasticizers from the hydrogel structure by heating, subjecting to a
vacuum, solvent exchange, or freeze-drying, or combinations thereof.
10. The method of claim 1, wherein the contacting results in a first region substantially
comprising the first polymeric, water-swellable material, a second region adjacent
the first region comprising a mixture of the first polymeric, water-swellable material
and the second polymeric material, and a third region adjacent the second region substantially
comprising the second polymeric material, wherein the second polymeric material exhibits
an increasing concentration gradient moving from the first region, through the second
region, to the third region.
11. The method of claim 11 wherein the first region extends from a first point to a first
interface with the second region, the second region extends from the first interface
to a second interface with the third region and includes therein a second point, and
the third region extends from the second interface to a third point; wherein a percent
volume ratio of the first polymeric, water-swellable material to the second polymeric
material continuously changes from about 100:0 at the first point, to about 50:50
at the second point, to about 0:100 at the third point; and wherein the presence of
pore blockers, optionally selected from the group consisting of sugars, salts, low
molecular weight water-soluble polymers, and biodegradable polymers, and combinations
thereof, moves the second point towards the third point.
12. The method of claim 1, wherein contacting the aerogel structure with the second polymeric
material occurs under a pressure.
13. The method of claim 13 wherein a first region extends from a first point to a first
interface with a second region, the second region extends from the first interface
to a second interface with a third region and includes therein a second point, and
the third region extends from the second interface to a third point; wherein a percent
volume ratio of the first polymeric, water-swellable material to the second polymeric
material continuously changes from about 100:0 at the first point, to about 50:50
at the second point, to about 0:100 at the third point; and wherein the extent of
the pressure of the second polymeric material moves the second point towards the first
point.
14. The method of claim 1 wherein at least two of the steps (a)-(d) are repeated to produce
a multilayered, multi-polymer hydrogel article.
15. The method of claim 1 further comprising crosslinking the multi-polymer hydrogel article,
wherein crosslinking optionally occurs by radiation crosslinking preferably selected
from visible light radiation, ultraviolet radiation, infrared radiation, electron
beam radiation, gamma radiation, or x-ray radiation, physical crosslinking preferably
by exposure to freezing and thawing, chemical crosslinking preferably by exposure
to a monoaldehyde or a diisocyanate, or combinations thereof.