FIELD OF THE INVENTION
[0001] The invention relates to a device for processing measured signals which correspond
to implant parameters or biological parameters for monitoring and/or controlling medical
implants, diagnostic devices or biological processes.
[0002] Monitoring and controlling of medical implant behaviour has become more and more
important. The measurement of implant parameters as strain, displacement, transferred
force gives valuable information about the process of bone healing and/or implant
distraction. Current wireless techniques allow only short measurements providing restricted
information or need to transfer huge amounts of data from the implanted measurement
device to an external receiver.
DESCRIPTION OF THE PRIOR ART
[0003] A device for providing in vivo diagnostics of loads, wear, and infection in orthopaedic
implants is known from
US 7,097,662 EVANS. This known device includes a signal processing device which is operable to receive
an output signal from at least one sensor and to transmit a signal corresponding with
this output signal.
[0005] The important factors for an implantable data transfer unit are energy consumption
and required space. A disadvantage of this known device would be that relatively large
lithium button cell (diameter 24mm x 5mm, 3V) which has a capacity of 540mAh would
have to be implanted. At 5mW this would mean a theoretical lifetime of this known
system of approximatively 13.5 days. Therefore an external power supply via induction
is used. Only real-time data can be transmitted since no memory is on board. During
the measurements, the patient has to carry a bulky induction coil around his leg plus
the RF receiver, since 5mW only allow a maximum of 0.5m transmission range.
[0006] A system for storing and processing physiological data in a medical recording device
that allows continuous data collection and storage of such data is known from
US-A 2005/113647 LEE ET AL.
[0008] From
WO 2008/052082 LEYDE a telemetry receive unit for use in an implantable medical device is known.
[0009] US2006/052782 is the closest prior art and discloses features A) to D) and G) to J) of claim 1.
SUMMARY OF THE INVENTION
[0010] It is an object of the invention to provide an electronic device for monitoring of
implants which allows to obtain long term measurements of relevant parameters at an
implant under minimal energy consumption and minimal required space of the implanted
electronic device.
[0011] The invention solves the posed problem with a device for processing measured signals
which correspond to implant parameters or biological parameters for monitoring medical
implants or biological processes that incorporates the features of claim 1.
[0012] The advantages achieved by the invention are essentially to be seen in the fact that,
thanks to the device according to the invention:
- long term measurements which are most relevant for gaining information about bone
healing can be performed by summing up the amplitudes of a cyclic sensor response
during physiological loading/unloading and transferring only the sum, the number of
cycles and the current sensor value to a wireless receiver outside of the patient;
- a complete assembly including the inventive device and a sensor can be implanted in
the patient's body; and
- the data volume can be significantly reduced by providing long term information of
the medical implant behaviour at the same time.
[0013] The important factors for an implantable data transfer unit are energy consumption
and required space. Both are somehow related, the more energy is needed, the bigger
the energy carrier has to be. The wireless data transfer is the process requiring
the major portion of the energy when using active radio frequency transmission.
[0014] energy carrier has to be. The wireless data transfer is the process requiring the
major portion of the energy when using active radio frequency transmission.
[0015] By minimizing the amount of data to be transferred, the proposed system guarantees
autonomous function for theoretically 9 month, which can also cover healing periods
of complicated fractures like mal-unions or critical size defects at an overall size:
diameter 30 mm x height 10 mm. Furthermore, the data is believed to be more meaningful
since the complete time period is reflected in the values. Particularly relevant statistical
data are the sum of the measured signals, the number of measured signals, average
value, minimal value and maximal value.
[0016] In a special embodiment said signal processing device comprises a programmable electronic
data processing unit. The programmable electronic data processing unit can be a programmable
microprocessor which allows further data processing and if necessary provides the
processed data for a closed control loop e.g. in case of an application of the device
as a controller (Measurement of blood sugar and controlling of a device for the deliverance
of the medication).
[0017] In another embodiment said data transmission device is configured as transreceiver
allowing to transmit data and to receive data from an external transmitting source.
This configuration allows a transfer of data in both directions, particularly between
the device and an external computer.
[0018] Said device comprises an electronic data processing unit with an integrator.
[0019] In still another embodiment said device further comprises a power supply arranged
in said covering. Preferably the power supply is a battery, e.g. a lithium button
cell.
[0020] Said electronic data processing unit comprises a counter unit allowing to supply
the amount of processed signal samples to the data memory. Further, the device can
be provided with a timer, an analog/digital converter and signal conditioner.
[0021] In yet another embodiment said electronic data processing unit comprises a minimum/
maximum unit allowing to identify extreme values in the curve of measured signals.
The minmax unit supplies the actual count of cycles in the signal received from the
sensor above a predefined threshold to the data memory. This value represents the
amount of physiological load cycles or other cyclic processes during a period of time
and is a measure for the activity of the patient.
[0022] Said data transmission device includes a radio frequency based transmission means.
A radio frequency identification device (RFID) is used. The device sends the information
by means of Radio Frequency Identification (RFID) through the skin. The use of RFID
is a further reason for minimizing the data. Here, no internal energy is needed, since
the process is fed by induction from outside. Typical data volumes to be transmitted
by RFID range between Bytes and 1kB. RFID is a preferred solution, since required
space for the transponder is minimal and the transmission process is fast and simple.
[0023] In still another embodiment said device further includes a multi-channel multiplexer.
The multiplexer allows to electronically connect a plurality of sensors to the device
and to intermittently process the signals received from said sensors.
[0024] According to the invention, the device comprises a sensor in form of a strain gauge.
Examples of sensors types not necessarily falling under the scope of the claims are
the following:
- Displacement, inductivity or other known principles; and/or
- Strain, Strain gauges, particularly wire resistance strain gauges; and/or
- Force, Load cells, strain gage or Piezo based Pressure sensors; and/or
- Acceleration sensors or Temperature sensors; and/or
- Sensors for arterial blood gas parameters (e.g. CO2; O2); and/or
- Sensors for blood sugar; and/or
- Sensors for lactate concentration.
A BRIEF DESCRIPTION OF THE DRAWINGS
[0025] The preferred embodiment of the invention will be described in the following by way
of example and with reference to the accompanying drawing in which:
Fig. 1 illustrates a schematic block diagram of an embodiment of the device according
to the invention.
[0026] The embodiment of the device 1 for processing measured signals illustrated in Fig.
1 comprises a biocompatible sterilizable covering 9 in which an electronic signal
processing device 2 allowing to process measured signals received from a sensor 5,
a data memory 16 allowing to store data received from said signal processing device
2 and a data transmission device 4 for transmitting data received from said data memory
16 to a remote data receiving device 6 are arranged and electrically connected to
each other. Said signal processing device 2 is programmed to calculate statistically
relevant data obtained from the said measured signals to reduce the stored data. Particularly,
relevant statistical data are the sum of the measured signals, the number of measured
signals, average value, minimal value and maximal value. The electronic data processing
unit 7 can include an integrator 13, a counter unit 14 allowing to supply the amount
of processed signal samples to the data memory 16, a timer 12, an analog/digital signal
converter 11 and a signal conditioner 10. Further, the electronic data processing
unit 7 is provided with a minmax unit 15 allowing to identify extreme values in the
curve of measured signals. The data transmission device 4 is configured as a RFID
transponder (Radio Frequency Identification transponder). A power supply 3 is additionally
arranged in said covering 9 to operate the device 1 and the sensor 5 (dotted line
in fig. 1) but excluding the data transmission device 4 since the RFID transponder
is fed by induction from an external source.
Implantation:
[0027] The device 1 comprising the signal processing device 2 and the data transmission
device 4 and a power supply 3 in the form of a battery is placed in a biocompatible
and sterilizable covering 9 or housing or may be covered by an elastic and biocompatible
skin like Latex or Silicon. The sensor 5 is connected via a cable to the device 1.
A unit of sensor 5 and the device 1 shall be sterilized prior implantation. In case
the sensor 5 can not be mounted to the implant interoperatively (e.g. strain gages)
the complete unit of the implant, the device 1 and the sensor 5 have to be preassembled
and sterilized together. Another possible solution would be a plug connection between
the sensor 5 and the device 1. The complete assembly will then be placed subcutaneously
into a pocket of two skin layers.
Internal data processing:
[0028] The analog signal of the sensor 5 is conditioned by a signal conditioner 10, i.e.
a measuring-amplifier and converted to digital data by an 16bit A/D converter 11 at
about 64Hz sample frequency. All values received from the sensor 5 and further processed
by the signal conditioner 10 and the analog/digital converter 11 are digitally summed
by an integrator 13 and the sum is stored in the internal data memory 16. Moreover
a counter unit 14 is supplying the amount of processed samples (running time) to the
data memory 16. A minmax unit 15 identifies extreme values in the curve of measured
values and supplies the actual count of cycles in the sensor signal above a predefined
threshold to the internal data memory 16. This value represents the amount of physiological
load cycles during a time period and is a measure for the activity of the patient.
As 4th parameter the actual sensor signal is provided to the data memory 16.
Data transmission:
[0029] The data transmission between the device 1 and an external data processing device
8, e.g. a computer is performed by means of the known technology of Radio Frequency
Identification. Four current integer values representing the above described parameters
will be provided from the internal data memory 16 to the data transmission device
4, e.g. a RFID transponder and can be transferred to the data receiving device 6,
e.g. an RFID receiver at time points to be chosen by the operator. Reasonable data
acquisition intervals may range between 1 day and 1 week but depend on the application
of the device 1.
[0030] The device 1 including the electronic for data acquisition and internal data processing
is provided with electrical energy, preferable from a battery like a lithium button
cell or comparable. The data transmission device 4 itself is fed by induction based
on the RFID principle. With an overall size of the device 1 of: diameter 30mm x height
10mm, an autonomous function for theoretically 9 month is possible. The data acquisition
frequency is 64Hz to account for the sampling theorem assuming fast walking or running
of the patient. The electronic device 1 is supposed to be implanted subcutaneously
and separated to the implant.
Operation of the device 1:
[0031] The assembly including the device 1 and the sensor 5 is in continuous function from
the point in time when the power supply 3, i.e. the battery is inserted. This should
be when assembling the covering or housing prior sterilization and surgery. The operation
of the device 1 ends with removal of the power supply 3, i.e. the battery or loss
of electric power, resulting in loss of data in the data memory 16. The current content
in the data memory 16 can be read out at any time by means of the data transfer system
including the data transmission device 4 and the data receiving device 6.
External data processing:
[0032] The parameters may be either downloaded and stored on an external data processing
device 8, e.g. a computer or directly processed in the data receiving device 6, i.e.
the RFID receiver. The sum of sensor response is calibrated to actual units using
a linear approach. Subtracting the values of the previous time point from the actual
values deliver information about the current period. The sample count divided by the
sample frequency provides the running time. The sum of sensor response divided by
number of samples gives the mean sensor response of the current period. The sum of
sensor response divided by the number of physiological load cycles represents a measure
for the sensor response per load cycle.
Meaning of the results and presentation:
[0033] The mentioned evaluations may be visualized by plotting the measured and processed
values over time. For instance, the healing process may be visualized with decreasing
average sensor response over time. A threshold can be set for determining the optimal
time point for implant removal. For research purposes different dynamization protocols
can be evaluated, mal-unions may be identified at an early stage. The progression
of the number of physiological load cycles gives information about the patients activity
over time and therefore about the stimulation of the bone. For monitoring distraction
implants, the current sensor value provides valuable information about the progression
of the distraction process.
Application Examples:
[0034]
- 1. Monitoring of bone healing in osteosynthesis following the principle of secondary
healing. The strain in a standard bone plate or intramedullary nail measured by strain
gages, could be acquired and processed with the proposed device 1. Reduction of strain
could be interpreted as enhanced load sharing of the bone and as progress in the bone
consolidation. Knowledge about the healing progression is valuable information to
detect mal-unions at an early stage or to determine an optimal time-point for implant
removal.
Mechanical stimulation of bone is known to foster bone formation. A tool to monitor
dynamization of newly proposed dynamic implants and its progression over time is also
an interesting application field for the device 1. It offers the opportunity to acquire
long term data rather than repeated short term measurements as done by known techniques.
- 2. Monitoring of a distraction implant. The method of distracting bone is used for
generation of new bone tissue for critical size defects or bone lengthening. The exact
telescoping of the implant, like an intramedullary distraction nail is essential to
know for optimized bone generation. The inventive device 1 can be used for transmitting
the current distraction of the implant as well as the progression of the distraction
over time.
The following examples are not part of the claimed invention:
- 3. Measurement of blood sugar and counteraction by controlled release of Insulin.
Blood sugar values are monitored and processed over a certain time period and used
for controlling deliverance of medication. This can be realized as autonomous control
loop inside the body. The values have to be transferred to an external receiver to
control the process.
[0035] Other application examples are:
- Arterial blood gas monitoring (O2, CO2, blood pressure)
- Lactate concentrations
[0036] While various descriptions of the present invention are described above, it should
be understood that the various features can be used singly or in any combination thereof.
The scope of the present invention is accordingly defined as set forth in the appended
claims.
1. A monitoring and/or controlling device (1) for processing and transmitting measured
signals which correspond to implant parameters for monitoring and/or controlling of
bone healing in osteosynthesis comprising:
A) a biocompatible sterilizable covering (9);
B) an electronic signal processing device (2) arranged in said covering (9) and electrically
connectable to at least one sensor (5) allowing to process measured signals received
from said at least one sensor (5);
C) a data memory (16) arranged in said covering (9) and electrically connected to
said signal processing device (2) allowing to store data received from said signal
processing device (2); and
D) a data transmission device (4) arranged in said covering (9) and electrically connected
to said data memory (16) for transmitting data received from said data memory (16)
to a remote data receiving device (6) which is connectable to an external data processing
device (8), and
E) the monitoring and/or controlling device (1) comprising an electronic data processing
unit (7) comprising a counter unit (14) allowing to supply the amount of processed
signal samples to the data memory (16), wherein
F) the electronic data processing unit (7) comprises an integrator (13); wherein
G) said signal processing device (2) is programmed to calculate statistically relevant
data obtained from the said measured signals to reduce the stored data; wherein
H) the monitoring and/or controlling device (1) further comprises at least one sensor
(5), wherein
I) the monitoring and/or controlling device (1) further comprises a bone plate or
an intramedullary nail; and
J) the at least one sensor (5) is a strain gauge suitable to measure the strain in
the bone plate or intramedullary nail.
2. The device (1) according to claim 1, wherein said signal processing device (2) comprises
a programmable electronic data processing unit (7).
3. The device (1) according to claim 1 or 2, wherein said data transmission device (4)
is configure as transreceiver allowing to transmit data and to receive data from an
external transmitting source.
4. The device (1) according to one of the claims 1 to 3, wherein said device (1) further
comprises a power supply (3) arranged in said covering.
5. The device (1) according to one of the claims 1 to 4, wherein said electronic data
processing unit (7) comprises a minimum/maximum unit (15) allowing to identify extreme
values in the curve of measured signals.
6. The device (1) according to one of the claims 1 to 5, wherein said data transmission
device (4) includes a radio frequency based transmission means.
7. The device (1) according to one of the claims 1 to 6, wherein said device (1) further
includes a multi-channel multiplexer.
8. Use of the device (1) according to one of the claims 1 to 7 for providing the processed
data in a closed control loop.
1. Überwachungs- und/oder Kontrollvorrichtung (1) zum Verarbeiten und Senden von gemessenen
Signalen, die Implantatparametern entsprechen, zum Überwachen und/oder Kontrollieren
der Knochenheilung bei der Osteosynthese, umfassend:
A) eine biokompatible sterilisierbare Abdeckung (9);
B) eine elektronische Signalverarbeitungsvorrichtung (2), die in der Abdeckung (9)
angeordnet und mit mindestens einem Sensor (5) elektrisch verbindbar ist, um zu ermöglichen,
von dem mindestens einen Sensor (5) empfangene gemessene Signale zu verarbeiten;
C) einen Datenspeicher (16), der in der Abdeckung (9) angeordnet und mit der Signalverarbeitungsvorrichtung
(2) elektrisch verbunden ist, um zu ermöglichen, von der Signalverarbeitungsvorrichtung
(2) empfangene Daten zu speichern; und
D) eine Datensendevorrichtung (4), die in der Abdeckung (9) angeordnet und mit dem
Datenspeicher (16) elektrisch verbunden ist, um von dem Datenspeicher (16) empfangene
Daten zu einer entfernten Datenempfangsvorrichtung (6) zu senden, die mit einer externen
Datenverarbeitungsvorrichtung (8) verbindbar ist, und
E) wobei die Überwachungs- und/oder Kontrollvorrichtung (1) eine elektronische Datenverarbeitungseinheit
(7) umfasst, die eine Zählereinheit (14) umfasst, um zu ermöglichen, dass die Menge
an verarbeiteten Signalproben dem Datenspeicher (16) zugeführt wird, wobei
F) die elektronische Datenverarbeitungseinheit (7) einen Integrator (13) umfasst;
wobei
G) die Signalverarbeitungsvorrichtung (2) dazu programmiert ist, statistisch relevante
Daten zu berechnen, die aus den gemessenen Signalen erhalten werden, um die gespeicherten
Daten zu reduzieren; wobei
H) die Überwachungs- und/oder Steuervorrichtung (1) ferner mindestens einen Sensor
(5) umfasst,
wobei
I) die Überwachungs- und/oder Kontrollvorrichtung (1) ferner eine Knochenplatte oder
einen Marknagel umfasst; und
J) der mindestens eine Sensor (5) ein Dehnungsmesser ist, der geeignet ist, die Dehnung
in der Knochenplatte oder in dem Marknagel zu messen.
2. Vorrichtung (1) nach Anspruch 1, wobei die Signalverarbeitungsvorrichtung (2) eine
programmierbare elektronische Datenverarbeitungseinheit (7) umfasst.
3. Vorrichtung (1) nach Anspruch 1 oder 2, wobei die Datensendevorrichtung (4) als Transceiver
ausgebildet ist, um zu ermöglichen, Daten zu senden und Daten von einer externen Sendequelle
zu empfangen.
4. Vorrichtung (1) nach einem der Ansprüche 1 bis 3, wobei die Vorrichtung (1) ferner
eine Stromversorgung (3) umfasst, die in der Abdeckung angeordnet ist.
5. Vorrichtung (1) nach einem der Ansprüche 1 bis 4, wobei die elektronische Datenverarbeitungseinheit
(7) eine Minimum/Maximum-Einheit (15) umfasst, um zu ermöglichen, Extremwerte in der
Kurve von gemessenen Signalen zu identifizieren.
6. Vorrichtung (1) nach einem der Ansprüche 1 bis 5, wobei die Datensendevorrichtung
(4) eine hochfrequenzbasierte Sendeeinrichtung enthält.
7. Vorrichtung (1) nach einem der Ansprüche 1 bis 6, wobei die Vorrichtung (1) ferner
einen Mehrkanal-Multiplexer enthält.
8. Verwendung der Vorrichtung (1) nach einem der Ansprüche 1 bis 7 zum Bereitstellen
der verarbeiteten Daten in einem geschlossenen Regelkreis.
1. Dispositif de surveillance et/ou de régulation (1) pour traiter et transmettre des
signaux mesurés qui correspondent à des paramètres d'implant pour surveiller et/ou
réguler la consolidation osseuse dans une ostéosynthèse, comprenant :
A) une enveloppe biocompatible stérilisable (9) ;
B) un dispositif de traitement de signaux électroniques (2) disposé dans ladite enveloppe
(9) et pouvant être connecté électriquement à au moins un capteur (5) permettant de
traiter des signaux mesurés reçus en provenance dudit au moins un capteur (5) ;
C) une mémoire de données (16) disposée dans ladite enveloppe (9) et électriquement
connectée audit dispositif de traitement de signaux (2) permettant de stocker des
données reçues en provenance dudit dispositif de traitement de signaux (2) ; et
D) un dispositif de transmission de données (4) disposé dans ladite enveloppe (9)
et électriquement connecté à ladite mémoire de données (16) pour transmettre des données
reçues en provenance de ladite mémoire de données (16) à un dispositif de réception
de données distant (6) qui peut être connecté à un dispositif de traitement de données
externe (8), et
E) le dispositif de surveillance et/ou de régulation (1) comprenant une unité de traitement
de données électroniques (7) comprenant une unité de compteur (14) permettant d'appliquer
la quantité d'échantillons de signaux traités à la mémoire de données (16), dans lequel
F) l'unité de traitement de données électroniques (7) comprend un intégrateur (13)
; dans lequel
G) ledit dispositif de traitement de signaux (2) est programmé pour calculer des données
statistiquement pertinentes obtenues à partir desdits signaux mesurés pour réduire
les données stockées ; dans lequel
H) le dispositif de surveillance et/ou de régulation (1) comprend en outre au moins
un capteur (5), dans lequel
I) le dispositif de surveillance et/ou de régulation (1) comprend en outre une plaque
d'ostéosynthèse ou un clou intramédullaire ; et
J) l'au moins un capteur (5) est une jauge de déformation adaptée pour mesurer la
déformation dans la plaque d'ostéosynthèse ou le clou intramédullaire.
2. Dispositif (1) selon la revendication 1, dans lequel ledit dispositif de traitement
de signaux (2) comprend une unité de traitement de données électroniques programmable
(7).
3. Dispositif (1) selon la revendication 1 ou 2, dans lequel ledit dispositif de transmission
de données (4) est configuré en tant qu'émetteur-récepteur permettant d'émettre des
données et de recevoir des données d'une source de transmission externe.
4. Dispositif (1) selon l'une des revendications 1 à 3, dans lequel ledit dispositif
(1) comprend en outre une alimentation électrique (3) disposée dans ladite enveloppe.
5. Dispositif (1) selon l'une des revendications 1 à 4, dans lequel ladite unité de traitement
de données électroniques (7) comprend une unité de minimum/maximum (15) permettant
d'identifier des valeurs extrêmes sur la courbe de signaux mesurés.
6. Dispositif (1) selon l'une des revendications 1 à 5, dans lequel ledit dispositif
de transmission de données (4) comprend un moyen de transmission basé sur les radiofréquences.
7. Dispositif (1) selon l'une des revendications 1 à 6, dans lequel ledit dispositif
(1) comprend en outre un multiplexeur multi-canal.
8. Utilisation du dispositif (1) selon l'une des revendications 1 à 7 pour appliquer
les données traitées dans une boucle d'asservissement fermée.