

Europäisches
Patentamt
European
Patent Office
Office européen
des brevets

(11)

EP 2 441 831 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

(15) Correction information:

Corrected version no 1 (W1 B1)

Corrections, see

Description Paragraph(s) 10, 15, 23, 25, 35,
39, 40, 112, 114, 117, 126, 133,
134, 136, 138, 139, 140, 156

Claims DE 1, 3, 15

Claims EN 15

Claims FR 1, 3, 9, 15

(48) Corrigendum issued on:

06.03.2019 Bulletin 2019/10

(45) Date of publication and mention

of the grant of the patent:

22.08.2018 Bulletin 2018/34

(21) Application number: 10786229.4

(22) Date of filing: 10.06.2010

(51) Int Cl.:

C12N 15/00 (2006.01) **C12N 5/10 (2006.01)**

C12N 15/09 (2006.01) **C12P 21/02 (2006.01)**

C12P 21/08 (2006.01) **C12N 15/85 (2006.01)**

(86) International application number:

PCT/JP2010/059881

(87) International publication number:

WO 2010/143698 (16.12.2010 Gazette 2010/50)

(54) **PROCESS FOR PRODUCTION OF PROTEIN**

VERFAHREN ZUR HERSTELLUNG EINES PROTEINS

PROCÉDÉ DE PRODUCTION D'UNE PROTÉINE

(84) Designated Contracting States:

**AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO SE SI SK SM TR**

(30) Priority: 11.06.2009 JP 2009140626

11.06.2009 US 186138 P

(43) Date of publication of application:

18.04.2012 Bulletin 2012/16

(73) Proprietors:

- **Inter-University Research Institute Corporation**
Research Organization of Information and
Systems
Tachikawa-shi
Tokyo 190-0014 (JP)
- **Kyowa Hakko Kirin Co., Ltd.**
Tokyo 100-8185 (JP)

(72) Inventors:

- **KAWAKAMI, Koichi**
Shizuoka 411-8540 (JP)
- **YAMAGUCHI, Keina**
Gunma 370-0013 (JP)
- **OGAWA, Risa**
Gunma 370-0013 (JP)
- **TSUKAHARA, Masayoshi**
Gunma 370-0013 (JP)

(74) Representative: **J A Kemp**
14 South Square
Gray's Inn
London WC1R 5JJ (GB)

(56) References cited:

WO-A1-00/65042 JP-A- 2002 262 879

- **KAWAKAMI, K.: 'Tol2: a versatile gene transfer vector in vertebrates' GENOME BIOLOGY vol. 8, no. 1, 2007, pages S7.1 - S7.10, XP008156743**

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- URASAKI, A. ET AL.: 'Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition' GENETICS vol. 174, October 2006, pages 639 - 649, XP008156737
- KOGA, A. ET AL.: 'Germline transgenesis of Zebrafish using the medaka Toll transposon system' DEVELOPMENTAL DYNAMICS vol. 237, 2008, pages 2466 - 2474, XP008156738
- KOGA, A. ET AL.: 'The Toll element of medaka fish is transposed with only terminal regions and can deliver large DNA fragments into chromosomes' JOURNAL OF HUMAN GENETICS vol. 52, 2007, pages 1026 - 1030, XP019545326
- KOGA, A. ET AL.: 'The Toll transposable element of the medaka fish moves in human and mouse cells' JOURNAL OF HUMAN GENETICS vol. 52, 2007, pages 628 - 635, XP019493753
- KODAMA, K. ET AL.: 'The Toll element of the medaka fish, a member of the hAT transposable element family, jumps in *Caenorhabditis elegans*' HEREDITY vol. 101, 2008, pages 222 - 227, XP008156740
- SCHIFFERLI, K. P. ET AL.: 'Transfection of suspension cultures of CHO cells' FOCUS vol. 21, no. 1, 1999, pages 16 - 17, XP008156741
- KOO, T. Y. ET AL.: 'Beneficial effect of 30Kc6 gene expression on production of recombinant interferon- β in serum-free suspension culture of CHO cells' PROCESS BIOCHEMISTRY vol. 44, February 2009, pages 146 - 153, XP025769083
- KAWAKAMI ET AL: "Tol2: a versatile gene transfer vector in vertebrates", GENOME BIOLOGY (ONL, BIOMED CENTRAL LTD, GB, vol. 8, no. Suppl. 1, 1 January 2007 (2007-01-01), pages S7.1-S7.10, XP008156743, ISSN: 1465-6914, DOI: 10.1186/GB-2007-8-S1-S7
- URASAKI ET AL: "Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition", GENE, GENETICS SOCIETY OF AMERICA, AUSTIN, TX, US, vol. 174, no. 2, 1 October 2006 (2006-10-01), pages 639-649, XP008156737, ISSN: 0016-6731, DOI: 10.1534/GENETICS.106.060244

Description

Technical Field

5 [0001] This invention relates to a method for producing a protein of interest, comprising introducing a protein expression vector which comprises a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and transposon sequences at both terminals of the gene fragment, into a suspension mammalian cell, integrating the gene fragment inserted between a pair of the transposon sequences into a chromosome of the mammalian cell to obtain a mammalian cell capable of expressing the protein of interest; and suspension-culturing the mammalian cell; and a
10 suspension mammalian cell capable of expressing the protein of interest.

Background Art

15 [0002] Production of exogeneous proteins by recombinant DNA techniques is used in various industries such as pharmaceutical industry and food industry. In most cases, production of recombinant proteins is carried out by introducing an expression vector comprising a nucleotide sequence encoding a protein of interest into a host, such as *Escherichia coli*, yeast, insect cell, plant cell, and animal cell, selecting a transformant in which the expression vector is integrated into the chromosome, and further culturing the cell line under appropriate culture conditions.

20 [0003] However, in order to develop a host which can produce an exogeneous protein efficiently, it is necessary to select a host cell having good productivity for each protein of interest, so that a further technical innovation is desired on the exogeneous protein production techniques for individual host.

25 [0004] In the bacteria systems, such as *Escherichia coli*, and yeast systems, different from animal cells, post-translational modifications, such as sugar chain modification, are difficult to attain in many cases and thus cause a problem in producing a protein having its activity.

30 [0005] Since the produced protein is subject to a post-translational modification such as phosphorylation and addition of sugar chains in the insect system, this system has a merit that the protein having its original physiological activity can be expressed. However, since the sugar chain structure of the secreted protein is different from that of mammals-derived cells, antigenicity and the like become a problem when the protein is applied to pharmaceutical use.

35 [0006] In addition, since a recombinant virus is used in the insect cell system when an exogeneous gene is introduced, there is a problem that its inactivation and containment of the virus are required from the viewpoint of safety.

40 [0007] In the animal cell system, post-translational modifications, such as phosphorylation, sugar chain addition, and folding, can be conducted to proteins derived from higher animals including human, in more similar manner to those produced in the living body. Such accurate post-translational modifications are necessary for recreating the physiological activity originally possessed by a protein in its recombinant protein, and a protein production system in which a mammalian cell is used as a host is usually applied to pharmaceutical products and the like that requires such physiological activity.

45 [0008] However, a protein expression system in which a mammalian cell is used as the host is generally low in productivity, and also causes a problem of the stability of introduced genes in many cases. Improvement of productivity of a protein using a mammalian culture cell as a host is not only very important in producing medicaments for treatment, diagnostic agents and the like, but also greatly contributes to research and development of them. Thus, it is urgent to develop a gene expression system which easily makes it possible to obtain a cell line of a high productivity using a mammalian culture cell, particularly Chinese hamster ovary cell (CHO cell), as the host.

50 [0009] A transposon is a transposable genetic element which can transfer from one locus to other locus on the chromosome. A transposon is a strong tool for the study on molecular biology and genetics and used for a purpose, such as mutagenesis, gene trapping, and preparation of transgenic individuals, in insects or nematode (e.g., *Drosophila melanogaster* or *Caenorhabditis elegans*) and plants. However, development of such a technique has been delayed for vertebral animals including mammalian cells.

55 [0010] In recent years, however, transposons which have activities also in vertebral animals have been reported, and some of them were shown to have an activity in mammalian cells, such as cell derived from mouse and human. Typical examples include transposons Tol1 (Patent Reference 1) and Tol2 (Non-patent Reference 1 and Non-patent Reference 13) cloned from a medaka (killifish), Sleeping Beauty reconstructed from a non-autonomous transposon existed in *Onchorhynchus* fish genome (Non-patent Reference 2), an artificial transposon Frog prince (Non-patent Reference 3) which is derived from frog and a transposon piggyBac (Non-patent Reference 4) which is derived from insect.

[0011] These DNA transposons have been used for mutagenesis, gene trapping, preparation of transgenic individuals, expression of drug-resistant proteins, and the like, as a gene transfer tool for bringing a new phenotype in a genome of a mammalian cell (Non-patent References 5 to 12).

[0012] In the case of insects, a method in which an exogeneous gene is introduced into silkworm chromosome using the transposon piggyBac derived from a Lepidoptera insect to express the protein encoded by said exogeneous gene was studied, and a protein production method using the above techniques has been disclosed (Patent Reference 2).

[0013] However, since the expressed protein of interest is not sufficient in expression level and is produced in the whole body of silkworm, it causes an economical problem due to the necessity of an advanced purification technique for recovering the expressed exogenous protein in a highly purified form from the body fluid including a large amount of contaminated proteins.

5 [0014] In addition, an example in which a protein relating to G418 resistance is expressed in a mammalian cell using the medaka-derived transposon Tol2 (Non-patent Reference 12) is known.

[0015] The minimal cis-sequence and a highly repetitive sequence in the sub-terminal region of the Tol2 transposon that is essential for transposition have been identified (Non-patent Reference 14).

10 [0016] A technique for selecting cells, into which a gene has been transferred in a stable state, by using a novel drug resistance gene as a stable marker, and a technique for obtaining cells in which a gene is highly expressed are disclosed in Patent Reference 3.

Citation List

15 Patent Literature

[0017]

Patent Literature 1 WO2008/072540

20 Patent Literature 2 Japanese Published Unexamined Patent Application No. 2001-532188

Patent Literature 3 Japanese Published Patent Application No. 2002-262879 Non Patent Literature

[0018]

25 Non Patent Literature 1 Nature 383, 30 (1996)
 Non Patent Literature 2 Cell 91, 501-510 (1997)
 Non Patent Literature 3 Nucleic Acids Res, 31, 6873-6881 (2003)
 Non Patent Literature 4 Insect Mol.Biol.5, 141-151 (1996)
 Non Patent Literature 5 Genetics.166, 895-899 (2004)
 30 Non Patent Literature 6 PLoS Genet, 2, e169 (2006)
 Non Patent Literature 7 Proc. Natl. Acad. Sci. USA 95, 10769-10773 (1998)
 Non Patent Literature 8 Proc. Natl. Acad. Sci. USA 98:6759-6764 (2001)
 Non Patent Literature 9 Nature 436,221-22 6 (2005)
 Non Patent Literature 10 Nucleic Acids Res., 31, 6873-6881 (2003)
 35 Non Patent Literature 11 Nucleic Acids Res., 35, e87 (2007)
 Non Patent Literature 12 Proc Natl. Acad. Sci. USA, 103, 15008-15013 (2006)
 Non Patent Literature 13 Genome Biology, 8 suppl I, S7.1-S7.10 (2007)
 Non Patent Literature 14 Genetics 174, 639-649 (2006)

40 Summary of Invention

Technical Problem

[0019] In order to produce and analyze a protein of interest, it is necessary to select a cell line which stably and highly expresses a protein of interest, using a mammalian-derived culture cell, but preparation and culture of the cell that produces the protein of interest require considerable labor and time.

45 [0020] In addition, though it is known that a protein of interest is expressed in a mammalian cell using a transposon sequence, preparation of a cell which can highly express a protein of interest and thus can be used as a protein production system by using a transposon sequence; preparation method of a mammalian cell which can highly produce a protein of interest by using a transposon sequence; and a production method of a protein using the cell are not known.

50 [0021] As described in the above, the expression of a protein of interest in a large amount by establishing a protein production system which can highly produce a protein of interest using a mammalian culture cell efficiently and within a short period has been required. Thus, the objects of the invention are to provide a cell capable of highly expressing a protein of interest which can be efficiently established, and a method for producing the protein of interest using the cell.

55 Solution to Problems

[0022] To solve the above-mentioned problems, the present inventors have conducted intensive studies and found

as a result that a mammalian cell capable of highly expressing a protein of interest can be efficiently prepared by introducing a protein expression vector which comprises a gene fragment comprising a DNA encoding the protein of interest and a selectable marker gene and transposon sequences at both terminals of the gene fragment, into a suspension mammalian cell; and integrating the gene fragment inserted between a pair (two) of the transposon sequences into a chromosome of the mammalian cell. In addition, it was found that the protein of interest can be produced efficiently by using the cell, and thereby the invention was accomplished.

Detailed Description of the Invention

10 [0023] Specifically, the invention is as follows:

1. A method for producing a protein of interest, comprising introducing a protein expression vector which comprises a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and, both terminals of the gene fragment, a pair of transposon sequences which are the Tol1 nucleotide sequences shown in SEQ ID NO:14 and SEQ ID NO:15 or the Tol2 nucleotide sequences shown in SEQ ID NO:2 and SEQ ID NO:3 into a suspension CHO cell capable of surviving and proliferating in a serum-free medium; introducing an expression vector (b) which comprises a DNA encoding a transposase which recognizes the transposon sequences and has activity of transferring a gene fragment inserted between the transposon sequences into a chromosome into the CHO cell; integrating the gene fragment inserted between the transposon sequences into a chromosome of the CHO cell to obtain a said CHO cell capable of expressing the protein of interest; and suspension-culturing the CHO cell;
2. A method described in the aforementioned item 1 for producing a protein of interest, comprising:
 - (A) simultaneously introducing the expression vectors (a) and (b) into the CHO cell,
 - (B) expressing transiently the transposase from the expression vector introduced in the step (A) to integrate the gene fragment inserted between the transposon sequences into a chromosome of the CHO cell to obtain a suspension CHO cell capable of expressing the protein of interest, and
 - (C) suspension-culturing the suspension CHO cell capable of expressing the protein of interest obtained in the step (B) to produce the protein of interest;
3. A method for obtaining a suspension CHO cell capable of expressing a protein of interest, comprising introducing a protein expression vector which comprises a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and, at both terminals of the gene fragment, a pair of transposon sequences which are the Tol1 nucleotide sequences shown in SEQ ID NO:14 and SEQ ID NO:15 or the Tol2 nucleotide sequences shown in SEQ ID NO:2 and SEQ ID NO:3 into a suspension CHO cell capable of surviving and proliferating in a serum-free medium; introducing an expression vector (b) which comprises a DNA encoding a transposase which recognizes the transposon sequences and has activity of transferring a gene fragment inserted between the transposon sequences into a chromosome into the CHO cell; and integrating the gene fragment inserted between a pair of the transposon sequences, into a chromosome of the CHO cell;
4. The method described in any one of the aforementioned items 1 to 3, wherein the CHO cell is at least one selected from CHO-K1, CHO-K1SV, DUKXB11, CHO/DG44, Pro-3 and CHO-S;
5. The method described in any one of the aforementioned items 1 to 4, wherein the selectable marker gene is a cycloheximide resistance gene;
6. The method described in the aforementioned item 5, wherein the cycloheximide resistance gene is a gene encoding a mutant of human ribosomal protein L36a;
7. The method described in the aforementioned item 6, wherein the mutant is a mutant in which proline at position 54 of the human ribosomal protein L36a is substituted with other amino acid;
8. The method described in the aforementioned item 7, wherein the other amino acid is glutamine;
9. A suspension CHO cell capable of surviving and proliferating in a serum-free medium and of producing a protein of interest, which cell comprises an expression vector (a) comprising a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and, at both terminals of the gene fragment, a pair of transposon sequences which are the Tol1 nucleotide sequences shown in SEQ ID NO:14 and SEQ ID NO:15 or the Tol2 nucleotide sequences shown in SEQ ID NO:2 and SEQ ID NO:3 and an expression vector (b) comprising a DNA encoding a transposase (a transferase) which recognizes the transposon sequences and has activity of transferring the gene fragment inserted between the transposon sequences into a chromosome to integrate the gene fragment inserted between the transposon sequences a the chromosome of the CHO cell;
10. The cell described in the aforementioned item 9, wherein the CHO cell is at least one selected from CHO-K1, CHO-K1SV, DUKXB11, CHO/DG44, Pro-3 and CHO-S;

11. The cell described in the aforementioned item 9 or 10, wherein the selectable marker gene is a cycloheximide
resistance gene;

12. The cell described in the aforementioned item 11, wherein the cycloheximide resistance gene is a gene encoding
a mutant of human ribosomal protein L36a;

5 13. The cell described in the aforementioned item 12, wherein the mutant is a mutant in which proline at position
54 of the human ribosomal protein L36a is substituted with other amino acid;

14. The cell described in the aforementioned item 13, wherein the other amino acid is glutamine; and

10 15. Use of a protein expression vector (a) comprising a gene fragment comprising a DNA encoding a protein of
interest and a selectable marker gene and, at both terminals of the gene fragment, a pair of transposon sequences
which are the Tol1 nucleotide sequences shown in SEQ ID NO:14 and SEQ ID NO:15 or the Tol2 nucleotide
sequences shown in SEQ ID NO:2 and SEQ ID NO:3 and an expression vector (b) comprising a DNA encoding a
transposase which recognizes the transposon sequences and has activity of transferring a gene fragment inserted
between the transposon sequences into a chromosome, to integrate the gene fragment inserted between the trans-
poson sequences into a chromosome of a suspension CHO cell capable of surviving and proliferating in a serum-
free medium.

15 Advantageous Effects of Invention

20 [0024] According to the protein production method of the invention, a protein of interest can be efficiently produced
by the use of a mammalian cell. In addition, the cell of the invention can be used as a protein production cell for producing
a recombinant protein with a high efficiency.

25 Brief Description of the Drawings

[0025]

30 [Fig. 1] Fig. 1 shows a schematic illustration of a transposon vector for expressing an anti-human influenza M2
antibody. Tol2-L represents a left end Tol2 transposon (SEQ ID NO:2), Tol2-R represents a right end Tol2 transposon
(SEQ ID NO:3), CMV represents a CMV promoter, poly A represents a polyadenylation site, Hc represents a human
antibody H chain cDNA, Lc represents a human antibody L chain cDNA, and CHX-r represents a cycloheximide
resistance gene.

35 [Fig. 2] Fig. 2 shows a schematic illustration of an anti-human influenza M2 antibody expression vector. CMV
represents a CMV promoter, poly A represents a polyadenylation site, Hc represents a human antibody H chain
cDNA, Lc represents a human antibody L chain cDNA and CHX-r represents a cycloheximide resistance gene.

[Fig. 3] Fig. 3 shows a schematic illustration of a Tol2 transposase expression vector. CAGGS represents a CAGGS
promoter, poly A represents a polyadenylation site, and TPase cDNA represents a Tol2 transposase cDNA.

[Fig. 4A] Fig. 4A shows a result of examining expression level of an anti-human influenza M2 antibody in a suspension
CHO-K1 cell when a Tol2 transposon vector for expressing an anti-human influenza M2 antibody was used. The
ordinate shows the amount of antibody production (μ g/ml), and the abscissa shows the number of transgenic clones
40 of the suspension CHO-K1 cell.

[Fig. 4B] Fig. 4B shows a result of examining expression level of an anti-human influenza M2 antibody in an adhesive
CHO-K1 cell when a Tol2 transposon vector for expressing an anti-human influenza M2 antibody was used. The
ordinate shows the amount of antibody production (μ g/ml), and the abscissa shows the number of transgenic clones
of the adhesive CHO-K1 cell.

45 [Fig. 5] Fig. 5 shows a schematic illustration of a Tol1 transposon vector for expressing an anti-human influenza M2
antibody. Tol1-L represents a left end Tol1 transposon (SEQ ID NO:14), Tol1-R represents a right end Tol1 trans-
poson (SEQ ID NO:15), CMV represents a CMV promoter, poly A represents a polyadenylation site, Hc represents
a human antibody H chain cDNA, Lc represents a human antibody L chain cDNA, and CHX-r represents a cyclohex-
imide resistance gene.

50 [Fig. 6] Fig. 6 shows a schematic illustration of a Tol1 transposase expression vector. CAGGS represents a CAGGS
promoter, poly A represents a polyadenylation site, and TPase cDNA represents a Tol1 transposase cDNA.

[Fig. 7] Fig. 7 shows a result of examining expression level of an anti-human influenza M2 antibody in a suspension
CHO-K1 cell when a Tol1 transposon vector for expressing an anti-human influenza M2 antibody was used. The
ordinate shows the amount of antibody production (μ g/ml), and the abscissa shows the number of transgenic clones
55 of the suspension CHO-K1 cell.

[0026] This invention relates to a method for producing a protein of interest, comprising introducing a protein expression
vector comprising a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and

transposon sequences at both terminals of the gene fragment, into a suspension mammalian cell; integrating the gene fragment inserted between a pair (two) of the transposon sequences, into a chromosome of the mammalian cell to obtain a mammalian cell capable of expressing said protein of interest; and suspension-culturing the mammalian cell.

[0027] Examples of the method for producing a protein of interest of the present invention include a method, comprising the following steps (A) to (C):

(A) a step of simultaneously introducing the following expression vectors (a) and (b) into a suspension mammalian cell:

- (a) an expression vector which comprises a gene fragment comprising a DNA encoding a protein of interest and transposon sequences at both terminals of the gene fragment,
- (b) an expression vector which comprises a DNA encoding a transposase which recognizes the transposon sequences and has activity of transferring a gene fragment inserted between a pair of the transposon sequences into a chromosome,

(B) a step of expressing transiently the transposase transiently from the expression vector introduced in the step (A) to integrate the gene fragment inserted between a pair of the transposon sequences into a chromosome of the mammalian cell to obtain a suspension mammalian cell capable of expressing the protein of interest, and

(C) a step of suspension-culturing the suspension mammalian cell capable of expressing the protein of interest obtained in the step (B) to produce the protein of interest.

[0028] In addition, the present invention relates to a suspension mammalian cell capable of producing a protein of interest, into which a protein expression vector comprising a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and transposon sequences at both terminals of the gene fragment is introduced, to integrate the gene fragment inserted between a pair of the transposon sequences into a chromosome.

[0029] Furthermore, the present invention relates to a suspension mammalian cell capable of producing a protein of interest, into which an expression vector (a) comprising a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and transposon sequences at both terminals of the gene fragment, and an expression vector (b) comprising a DNA encoding a transposase (a transferase) which recognizes the transposon sequences and has activity of transferring the gene fragment inserted between a pair of the transposon sequences into a chromosome to integrate the gene fragment inserted between a pair of the transposon sequences into the chromosome.

[0030] The term "transposon" in the present specification is a transposable genetic element and means a gene unit which moves on a chromosome or from a chromosome to other chromosome (transposition) while keeping a certain structure.

[0031] The transposon comprises a gene unit of a repeating transposon sequences (also called inverted repeat sequence (IR sequence) or terminal inverted repeat sequence (TIR sequence)) which positions in the same direction or the reverse direction at both terminals of the gene unit and a nucleotide sequence encoding a transposase which recognizes the transposon sequence to transfer a gene existing between the transposon sequences.

[0032] The transposase translated from the transposon can transfer a DNA by recognizing transposon sequences of both terminals of the transposon, cutting out the DNA fragment inserted between a pair of the transposon sequences and inserting the fragment into the site to be transferred.

[0033] The term "transposon sequence" in the present specification means the nucleotide sequence of a transposon recognized by a transposase and has the same meaning as the IR sequence or TIR sequence. A DNA comprising the nucleotide sequence may comprise an imperfect repeating moiety as long as it can be transferred (inserted into other position in the genome) by the activity of a transposase, and comprise a transposon sequence specific to the transposase.

[0034] As the transposon sequence to be used in the invention, a nucleotide sequence derived from a pair of natural or artificial DNA-type transposons, which can be recognized by a transposase and be transposed in mammalian cells, is used.

[0035] The nucleotide sequence derived from a DNA-type transposon is a pair of nucleotide sequences derived from the medaka fish-derived Tol1 transposon or Tol2 transposon.

[0036] Medaka fish-derived Tol2 and Tol1 transposon nucleotide sequences are shown in SEQ ID NO:6 and SEQ ID NO:13, respectively.

[0037] Examples of a nucleotide sequence derived from a pair of Tol2 transposons include the nucleotide sequence at positions 1 to 2229 and the nucleotide sequence at positions 4148 to 4682 in the Tol2 transposon nucleotide sequence shown in SEQ ID NO:6 of Sequence Listing.

[0038] As the nucleotide sequence derived from a pair of Tol2 transposons, the nucleotide sequence at positions 1 to 200 (SEQ ID NO:2) (hereinafter referred to as "Tol2-L sequence") and the nucleotide sequence at positions 2285 to 2788 (SEQ ID NO:3) (hereinafter referred to as "Tol2-R sequence") in the Tol2 transposon nucleotide sequence shown in SEQ ID NO:1 of Sequence Listing are used.

[0039] Examples of a nucleotide sequence derived from a pair of Tol1 transposons include the nucleotide sequence comprising a nucleotide sequence at positions 1 to 157 and the nucleotide sequence at positions 1748 to 1855 in the Tol1 transposon nucleotide sequence shown in SEQ ID NO:13 of Sequence Listing.

5 [0040] As the nucleotide sequence derived from a pair of Tol1 transposons, the nucleotide sequence at positions 1 to 200 (SEQ ID NO:14) (hereinafter referred to as "Tol1-L sequence") and the nucleotide sequence at positions 1351 to 1855 (SEQ ID NO:15) (hereinafter referred to as "Tol1-R sequence") in the Tol2 transposon nucleotide sequence shown in SEQ ID NO:1 of Sequence Listing are used.

10 [0041] Examples of the transposon sequence include transposon sequences of which transfer reactions are controlled by using a partial sequence of a transposon sequence derived from the above-mentioned transposon, by adjusting the length of the nucleotide sequence and by modifying the nucleotide sequence due to addition, deletion or substitution.

[0042] Regarding the control of the transfer reaction of a transposon, the transfer reaction can be accelerated or suppressed by accelerating or suppressing recognition of the transposon sequence by a transposase, respectively.

15 [0043] The term "transposase" in the present specification means an enzyme which recognizes nucleotide sequences having transposon sequences and transfers a DNA existing between the nucleotide sequences into a chromosome or from the chromosome to other chromosome.

[0044] Examples of the transposase include the Tol1 and Tol2 which are derived from medaka fish, the Sleeping Beauty reconstructed from a non-autonomous transposon existed in an *Onchorhynchus* fish genome, the artificial transposon Frog prince which is derived from frog and the transposon PiggyBac which is derived from insect.

20 [0045] As the transposase, a native enzyme may be used, and any transposase in which a part of its amino acids are substituted, deleted, inserted and/or added may be used as long as the same transfer activity as the transposase is maintained. By controlling the enzyme activity of the transposase, the transfer reaction of the DNA existing between the transposon sequences can be controlled.

25 [0046] In order to analyze whether or not it possesses a transfer activity similar to that of transposase, it can be measured by the 2-components analyzing system disclosed in Japanese Published Unexamined Patent Application No.235575/2003.

[0047] Illustratively, whether or not a non-automatic Tol2 element can be transferred and inserted into a mammalian cell chromosome by the activity of a transposase can be analyzed by separately using a plasmid comprising a Tol2 transposase-deleted Tol2 transposon (Tol2-derived non-autonomous transposon) and a plasmid comprising Tol2 transposase.

30 [0048] The term "non-autonomous transposon" in the present specification means a transposon which is lost a transposase existed inside the transposon and cannot therefore perform its autonomous transfer. The non-autonomous transposon can transfer the DNA inserted between transposon sequences of the non-autonomous transposon into the host cell chromosome, by allowing a transposase protein, an mRNA encoding the transposase protein or a DNA encoding the transposase protein to simultaneously present in the cell.

35 [0049] The transposase gene means a gene encoding a transposase. In order to improve its expression efficiency in a mammalian cell, a sequence which adjusts a space between the Kozak's consensus sequence (Kozak M., Nucleic Acids Res., 12, 857 - 872 (1984)) or a ribosome binding sequence, Shine-Dalgarno sequence and the initiation codon, to an appropriate distance (e.g., from 6 to 18 bases) may be connected to an upstream site of the translation initiation codon ATG of the gene.

40 [0050] According to the method of the invention, in order to integrate a gene fragment comprising a DNA encoding the protein of interest and a selectable marker gene in an expression vector into the chromosome of a host cell, an expression vector which comprises the gene fragment comprising a DNA encoding the protein of interest and a selectable marker gene and transposon sequences at both terminals of the gene fragment is introduced into the host cell, and a transposase is allowed to act upon the transposon sequences comprised in the expression vector which is introduced into the cell.

45 [0051] In order to allow a transposase to act upon the transposon sequences comprised in the expression vector which is introduced into the cell, the transposase may be injected into the cell, or an expression vector comprising a DNA encoding the transposase may be introduced into the host cell together with an expression vector comprising a DNA encoding the protein of interest and a selectable marker gene. In addition, by introducing an RNA encoding a transposase gene into the host cell, the transposase may be expressed in the cell.

50 [0052] The expression vector is not particularly limited. Any expression vector can be used by optionally selecting from the expression vectors known to those skilled in the art, depending on a host cell into which an expression vector comprising a transposase gene is introduced; the use; and the like.

55 [0053] In order that a protein constituted from two or more polypeptides is produced by the method of the invention, the DNA can be integrated into the chromosome of the cell by integrating a DNA encoding the two or more polypeptides into the same or different expression vectors and then introducing the expression vectors into a host cell.

[0054] The transposase may be inserted into an expression vector to express together with the protein of interest or may be inserted into a vector different from the expression vector. The transposase may be allowed to act transiently

or may be allowed to act continuously, but it is preferably to allow the transposase to act transiently in order to prepare a cell for stable production.

[0055] As the method for allowing the transposase to act transiently, examples include a method comprising preparing an expression vector which comprises a DNA encoding the transposase and an expression vector comprising a DNA encoding a protein of interest and then introducing both of the expression plasmids simultaneously into a host cell.

[0056] The term "expression vector" in the present specification means an expression vector to be used for introducing a mammalian cell in order to express a protein of interest. The expression vector used in the invention has a structure in which at least a pair of transposon sequences is present at both sides of an expression cassette.

[0057] The term "expression cassette" in the present specification means a nucleotide sequence which has a gene expression controlling region necessary for expressing a protein of interest and a sequence encoding the protein of interest. Examples of the gene expression controlling region include an enhancer, a promoter, and a terminator. the expression cassette may contain a selectable marker gene.

[0058] Any promoter can be used, so long as it can function in an animal cell. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), SV40 early promoter, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SR α promoter, moloney murine leukemia virus, an enhancer and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0059] The "selectable marker gene" means an arbalit other marker gene which can be used for distinguishing a cell to which a plasmid vector is introduced from a cell lacking of the vector.

[0060] Examples of the selectable marker gene include a drug resistance gene (a neomycin resistance gene, a DHFR gene, a puromycin resistance gene, a blasticidin resistance gene, a hygromycin resistance gene, and a cycloheximide resistance gene (Japanese Published Unexamined Patent Application No.262879/2002)), fluorescence and bio-luminescence marker genes (such as green fluorescent protein GFP) and the like.

[0061] In the invention, preferable selectable marker is a drug resistance gene and particularly preferable selectable marker is a cycloheximide resistance gene. In addition, by carrying out a gene modification of the selectable marker gene, drug resistance performance and luminescence performance of the selectable marker protein can also be modified.

[0062] Cycloheximide (hereinafter sometimes referred to as CHX) is a protein synthesis inhibitor, and as examples of the use of the CHX resistance gene as a selectable marker gene, the cases of yeast (Kondo K. J. Bacteriol., 177, 24, 7171 - 7177 (1995)) and animal cells (Japanese Published Unexamined Patent Application No.262879/2002) are known.

[0063] In the case of the animal cells, it has been found that the resistance to cycloheximide is provided by a transformant which expresses a protein encoded by the nucleotide sequence shown in SEQ ID NO:7 of Sequence Listing in which proline at position 54 in human ribosomal protein subunit L36a encoded by the nucleotide sequence shown in SEQ ID NO:5 of Sequence Listing is substituted with glutamine.

[0064] The method for introducing the above-mentioned protein expression vector comprising a transposon sequence, a transposase expressing plasmid vector and RNA is not particularly limited. Examples include calcium phosphate transfection, electroporation, a liposome method, a gene gun method, lipofection and the like.

[0065] Examples of the method for directly introducing a transposase in the form of a protein include by microinjection or endocytosis for supplying into a cell. The gene transfer can be carried out by the method described in Shin Idenshi Kogaku Handbook (New Genetic Engineering Handbook), edited by Masami Muramatsu and Tadashi Yamamoto, published by Yodo-sha, ISBN 9784897063737.

[0066] The host cell is a suspension mammalian cell. The mammalian cell is a Chinese hamster ovarian cell CHO cell (Journal of Experimental Medicine, 108, 945 (1958); Proc. Natl. Acad. Sci. USA., 601275 (1968); Genetics, 55, 513 (1968); Chromosoma, 41, 129 (1973); Methods in Cell Science, 18, 115 (1996); Radiation Research, 148, 260 (1997); Proc. Natl. Acad. Sci. USA., 77, 4216 (1980); Proc. Natl. Acad. Sci., 60, 1275 (1968); Cell, 6, 121 (1975); Molecular Cell Genetics, Appendix I,II (pp. 883-900)). Examples of the CHO cell include CHO/DG44, CHO-K1 (ATCC CCL-61), DUKXB11 (ATCC CCL-9096), Pro-5 (ATCC CCL-1781), CHO-S (Life Technologies, Cat #11619), Pro-3 and substrain of CHO cell.

[0067] In addition, the above-mentioned host cell can also be used in the protein production method of the invention by modifying it so as to be suitable for the protein production, by modification of chromosomal DNA, introduction of an exogeneous gene, and the like.

[0068] Further, in order to control the sugar chain structure bound to a protein of interest to be produced, Lec13 which acquired lectin resistance [Somatic Cell and Molecular Genetics, 12, 55 (1986)] and CHO cell from which α 1,6-fucosyl-transferase gene is deleted (WO2005/35586, WO2002/31140) can also be used as the host cell.

[0069] The protein of interest may be any protein so long as it can be expressed by the method of the invention. Specifically, examples include a human serum protein, a peptide hormone, a growth factor, a cytokine, a blood coagulation factor, a fibrinolysis system protein, an antibody and partial fragments of various proteins, and the like.

[0070] Preferable examples of the protein of interest include a monoclonal antibody such as a chimeric antibody, a humanized antibody and a human antibody; Fc fusion protein; and albumin-bound protein; and a fragment thereof.

[0071] An effector activity of a monoclonal antibody obtained by the method of the present invention can be controlled

by various methods. For example, known methods are a method for controlling an amount of fucose (hereinafter, referred to also as "core fucose") which is bound N-acetylglucosamine (GlcNAc) through α -1,6 bond in a reducing end of a complex type N-linked sugar chain which is bound to asparagine (Asn) at position 297 of an Fc region of an antibody (WO2005/035586, WO2002/31140, and WO00/61739), a method for controlling an effector activity of a monoclonal antibody by modifying amino acid group(s) of an Fc region of the antibody, and the like. The effector activity of the monoclonal antibody produced by the method of the present invention can be controlled by using any of the methods.

[0072] The "effector activity" means an antibody-dependent activity which is induced via an Fc region of an antibody. As the effector activity, an antibody-dependent cellular cytotoxicity (ADCC activity), a complement-dependent cytotoxicity (CDC activity), an antibody-dependent phagocytosis (ADP activity) by phagocytic cells such as macrophages or dendritic cells, and the like are known.

[0073] In addition, by controlling a content of core fucose of a complex type N-linked sugar chain of Fc region of a monoclonal antibody, an effector activity of the antibody can be increased or decreased.

[0074] As a method for lowering a content of fucose which is bound to a complex type N-linked sugar chain bound to Fc of the antibody, an antibody to which fucose is not bound can be obtained by the expression of an antibody using a CHO cell which is deficient in a gene encoding α 1,6-fucosyltransferase. The antibody to which fucose is not bound has a high ADCC activity.

[0075] On the other hand, as a method for increasing a content of fucose which is bound to a complex type N-linked sugar chain bound to Fc of an antibody, an antibody to which fucose is bound can be obtained by the expression of an antibody using a host cell into which a gene encoding α 1,6-fucosyltransferase is introduced. The antibody to which fucose is bound has a lower ADCC activity than the antibody to which fucose is not bound.

[0076] Further, by modifying amino acid residue(s) in an Fc region of an antibody, the ADCC activity or CDC activity can be increased or decreased. For example, the CDC activity of an antibody can be increased by using the amino acid sequence of the Fc region described in US2007/0148165.

[0077] Further, the ADCC activity or CDC activity of an antibody can be increased or decreased by modifying the amino acid as described in US Patent Nos. 6,737,056, or 7,297,775 or 7,317,091.

[0078] The term "suspension mammalian cell" in the present invention means a cell which does not adhere to a cell culture anchorage coated for facilitating adhesion of culture cells, such as microbeads, a culture container for tissue culture (also referred to as a tissue culture or adhesion culture container and the like) and the like, and can survive and grow by suspending in the culture liquid.

[0079] When the cell does not adhere to the cell culture anchorage, it may survive and grow under a state of a single cell in the culture liquid or survive and grow under a state of a cell mass formed by the agglutination of two or more cells.

[0080] In addition, as the suspension mammalian cell to be used in the present invention, a cell which can survive and grow in a serum-free medium that does not contain fetal calf serum (hereinafter referred to as FCS) and the like, while suspending in the culture liquid without adhering to the cell culture anchorage, is preferable, and a mammalian cell which can survive and grow while suspending in a protein-free medium that does not contain protein is more preferable.

[0081] As the culture container for tissue culture, it may be any culture container such as a flask, a Petri dish and the like, so long as coating for adhesion culture is applied thereto. Specifically, for example, whether or not it is a suspension mammalian cell can be confirmed by the use of commercially available tissue culture flask (manufactured by Greiner), adhesion culture flask (manufactured by Sumitomo Bakelite) and the like.

[0082] As the suspension mammalian cell to be used in the present invention, it may be either a CHO cell prepared by further adapting a CHO cell originally having a suspension property to suspension culture or a suspension CHO cell prepared by adapting an adhesive CHO cell to suspension culture conditions.

[0083] Examples of the cell originally having a suspension property include CHO-S cell (manufactured by Invitrogen) and the like.

[0084] The aforementioned "suspension mammalian cell prepared by adapting an adhesive mammalian cell to suspension culture conditions" can be prepared by the method described in Mol. Biotechnol., 2000, 15(3), 249 - 57 or by the method shown in the following, and can be prepared by establishing a cell which shows proliferation property and surviving property similar to those before the suspension culture adaptation or superior to those before adapting to suspension culture (J. Biotechnol., 2007, 130(3), 282 - 90).

[0085] The term "similar to those before the suspension culture adaptation" means that survival ratio, proliferation rate (doubling time) and the like of the cell adapted to the suspension culture are substantially the same as those of the cell before adapting suspension culture.

[0086] Examples of the method for adapting an adhesive mammalian cell to suspension culture conditions according to the present invention include the following method. The serum content of a serum-containing medium is reduced to 1/10 and sub-culturing is repeated at relatively high concentration of cell. When the mammalian cell comes to be able to survive and proliferate, the serum content is further reduced and the sub-culturing is repeated. By this method, a suspension mammalian cell which can survive and proliferate under serum-free conditions can be prepared.

[0087] In addition, a suspension mammalian cell can also be prepared by a method comprising culturing with the

addition of an appropriate nonionic surfactant such as Pluronic-F68 or the like in the culture liquid.

[0088] In the present invention, as a property possessed by the suspension mammalian cell, when 2×10^5 cells/ml of the cell is suspension-cultured, the cell concentration after culturing for 3 or 4 days is preferably 5×10^5 cells/ml or more, more preferably 8×10^5 cells/ml or more, particularly preferably 1×10^6 cells/ml or more, most preferably 1.5×10^6 cells/ml or more.

[0089] In addition, doubling time of the suspension mammalian cell of the present invention is preferably 48 hours or less, more preferably 24 hours or less, particularly preferably 18 hours or less, most preferably 11 hours or less.

[0090] Examples of the medium for suspension culturing include commercially available media, such as CD-CHO medium (manufactured by Invitrogen), EX-CELL 325-PF medium (manufactured by SAFC Biosciences), SFM4CHO medium (manufactured by HyClone) and the like. In addition, it can also be obtained by mixing saccharides, amino and the like acids which are necessary for the culturing of mammalian cells.

[0091] The suspension mammalian cell can be cultured using a culture container which can be used for suspension culturing under a culture condition capable of suspension culturing. Examples of the culture container include a 96 well plate for cell culture (manufactured by Corning), a T-flask (manufactured by Becton Dickinson), an Erlenmeyer flask (manufactured by Corning) and the like.

[0092] Regarding the culture conditions, for example, it can be statically cultured in an atmosphere of 5% CO₂ at a culture temperature of 37°C. A shaking culture equipment, such as culturing equipment for suspension culture exclusive use, Wave Bioreactor (manufactured by GE Healthcare Bioscience), can also be used.

[0093] Regarding the suspension culture conditions of a suspension mammalian cell using the Wave Bioreactor equipment, the cell can be cultured by the method described on the GE Healthcare Bioscience homepage <http://www.gelisciences.co.jp/tech-support/manual/pdf/cellcult/wave-03-16.pdf>.

[0094] In addition to the shaking culture, culturing by a rotation agitation equipment such as a bioreactor, can also be used. Culturing using a bioreactor can be carried out by the method described in Cytotechnology, (2006) 52: 199 - 207, and the like.

[0095] In the present invention, when a cell line other than the suspension mammalian cells is used, any cell line can be used so long as it is a mammalian cell line adapted to the suspension culture by the above-mentioned method and is a cell line which can be used in the protein producing method of the present invention.

[0096] Purification of the protein of interest produced by the suspension mammalian cell is carried out by separating the protein of interest from impurities other than the protein of interest in a culture liquid or cell homogenate containing the protein of interest. Examples of the separation method include centrifugation, dialysis, ammonium sulfate precipitation, column chromatography, a filter and the like. The separation can be carried out based on the difference in physicochemical properties of the protein of interest and impurities and based on the difference in their affinity for the column carrier.

[0097] The method for purifying the protein of interest can be carried out, for example, by the method described in Protein Experimentation Note (the first volume) - Extraction, Separation and Expression of Recombinant Protein (translation of a textbook written in Japanese) (edited by Masato Okada and Kaori Miyazaki, published by Yodo-sha, ISBN 9784897069180).

[0098] The present invention has been described in the foregoing by showing preferred embodiments thereof for the sake of easy understanding. Hereinafter, the present invention is further described specifically based on examples, but the above-mentioned explanations and the following examples are provided merely for the purpose of exemplifications and not provided for the purpose of limiting the invention. Accordingly, the scope of the invention is not limited to the embodiments and examples which are specifically described herein, but is limited by the claims alone.

[0099] Various experimental techniques relating to genetic recombination described hereinafter, such as the cloning and the like were carried out in accordance with the genetic engineering techniques described in Molecular Cloning 2nd edition edited by J. Sambrook, E. F. Frisch and T. Maniatis, Current Protocols in Molecular Biology edited by Frederick M. Ausubel et al, published by Current Protocols, and the like.

EXAMPLES

[Example 1]

Preparation of transposon vector for expressing anti-human influenza M2 antibody

[0100] A plasmid which contains a gene expression cassette for mammalian cells comprising an arbitrary human antibody gene and a drug resistance marker gene inserted between a pair of Tol2 transposon sequences was used as a plasmid vector for protein expression.

[0101] Each DNA of the used genes was chemically and artificially synthesized based on a known nucleotide sequence or obtained by preparing primers for its both terminal sequences and then carrying out PCR using an appropriate DNA source as a template. In order to carry out the gene manipulation later, a restriction site for a restriction enzyme was

added to the terminal of the primer.

[0102] Among the nucleotide sequence of the non-autonomous Tol2 transposone disclosed by Japanese Published Unexamined Patent Application No.235575/2003 (SEQ ID NO:1), the nucleotide sequence at position 1 to 200 (Tol2-L sequence) (SEQ ID NO:2) and the nucleotide sequence at positions 2285 to 2788 (Tol2-R sequence) (SEQ ID NO:3) were used as the transposon sequences.

[0103] Each synthetic DNA fragments comprising a pair of transposon sequences (manufactured by TAKARA BIO INC.) was prepared by the following method. A DNA fragment comprising a nucleotide sequence in which a recognition sequence of a restriction enzyme *Nrul* was attached to both of the 5'-terminal and 3'-terminal of the Tol2-R sequence was prepared. Then, a DNA fragment comprising a nucleotide sequence in which a recognition sequence of a restriction enzyme *Fsel* was attached to the 5'-terminal of the Tol2-L sequence and a restriction enzyme *Ascl* was attached to the 3'-terminal thereof was prepared.

[0104] Next, the thus prepared DNA fragments comprising Tol2-R sequence and Tol2-L sequence were inserted into an expression vector N5LG1-M2-Z3 vector (WO2006/061723) comprising a nucleotide sequence encoding an amino acid sequence of anti-human influenza M2 antibody Z3G1.

[0105] The N5LG1-M2-Z3 vector (WO2006/061723) into which a nucleotide sequence (SEQ ID NO:8) encoding the H chain of the anti-human influenza M2 antibody Z3G1 (ATCC Deposit No. PTA-5968: deposited March 13, 2004, American Type Culture Collection, Manassas, VA, USA) and a nucleotide sequence (SEQ ID NO:10 and SEQ ID NO:11) encoding the L chain (SEQ ID NO:9) of the same were inserted under the control of the CMV enhancer/promoter control was used as an antibody gene expression cassette.

[0106] The DNA fragment comprising the Tol2-R sequence was inserted into the restriction enzyme *Nrul* site of the N5LG1-M2-Z3 vector, at the 5'-terminal side of a gene fragment comprising the antibody gene expression cassette and a resistance marker gene. Then, the DNA fragment comprising the Tol2-L sequence was inserted into the restriction enzyme *Fsel* and *Ascl* sites at the 3'-terminal side.

[0107] In addition, a transposon vector for expressing an anti-human influenza M2 antibody was constructed (Fig. 1) by inserting a cycloheximide resistance gene expression cassette connected with a nucleotide sequence (SEQ ID NO:5) encoding a resistance gene for cycloheximide (a gene in which proline at position 54 of the human ribosomal protein L36a was substituted with glutamine) into the *Fsel* recognition site of the N5LG1-M2-Z3 vector connected with the Tol2 transposon sequence, under the control of the CMV enhancer/promoter.

[0108] On the other hand, a vector containing no transposon sequences was named anti-human influenza M2 antibody expression vector and used as the control vector (Fig. 2).

[Example 2]

Preparation of transposase expression vector

[0109] The transposase was expressed using an expression vector independent of the expression vector of the antibody of interest. That is, a gene which is encoding a medaka fish-derived Tol2 transposase (SEQ ID NO:4) was inserted into a downstream of the CAGGS promoter of a pCAGGS vector (Gene, 108, 193 - 200, 1991) and used as the expression vector (Fig. 3).

[Example 3]

(1) Preparation of suspension CHO cell

[0110] An adhesive CHO cell which had been cultured using an α -MEM medium (manufactured by Invitrogen) containing 10% serum (FCS) was peeled off and recovered by a trypsin treatment and shaking-cultured at 37°C in a 5% CO₂ incubator using fresh α -MEM medium containing 10% FCS. Several days thereafter, growth of these cells was confirmed and then shaking culture was carried out by seeding them into a α -MEM medium containing 5% FCS at a concentration of 2×10^5 cells/ml.

[0111] Further several days thereafter, the inoculation was similarly carried out using the α -MEM medium containing 5% FCS. Finally, a cell adapted to the suspension culture was prepared by repeating the sub-culture and shaking culture using serum-free α -MEM medium and confirming that the cells have the same growing ability of the case of their culturing in the presence of serum.

55 (2) Preparation of antibody-producing CHO cell

[0112] The transposon vector for expressing the anti-human influenza M2 antibody prepared in Example 1 and Example 2 (hereinafter referred to as transposon vector) and Tol2 transposase expression vector pCAGGS-T2TP (Fig. 3, Kawaka-

mi K. & Noda T., Genetics, 166, 895 - 899 (2004) were used as the expression vectors. In addition, the anti-human influenza M2 antibody expression vector having no transposon sequences was used as the control.

[0113] By introducing the aforementioned expression vectors into the suspension culture-adapted CHO-K1 cell (American Type Culture Collection Cat. No. CCL-61) or HEK293 cell (FreeStyle 293F cell, manufactured by Invitrogen), the frequencies of obtaining cycloheximide-resistant clones were compared.

[0114] Each cells (4×10^6 cells) was suspended in 400 μ l of PBS, and the transposon vector for expressing the anti-human influenza M2 antibody (10 μ g) and Tol2 transposase expression vector (25 μ g) were co-transfected directly in the form of circular DNA by electroporation. In this connection, in order to express the Tol2 transposase transiently, the Tol2 transposase expression vector was directly introduced in the form of circular DNA for the purpose of preventing from integrating into the host chromosome.

[0115] In addition, as the control, the anti-human influenza M2 antibody expression vector (10 μ g) was linearized by a restriction enzyme and then introduced into each cells, in accordance with the standard gene transfer method by electroporation.

[0116] The electroporation was carried out using a cuvette of 4 mm in gap width (manufactured by Bio-Rad), using an electroporator (Gene Pulser Xcell System (manufactured by Bio-Rad)) under conditions of 300 V in voltage, 500 μ F in electrostatic capacity and room temperature.

[0117] After the transfection by electroporation, each cell was seeded into three 96-well plates and cultured in a CO₂ incubator for 3 days using the EX-CELL 325-PF medium manufactured by SAFC Biosciences for the CHO cell, and the FreeStyle-293 medium (manufactured by Invitrogen) for the HEK293 cell.

[0118] Next, from the day of medium exchange on the 4th day of the transfection, 3 μ g/ml of cycloheximide was added to the medium so that the cells were cultured in the presence of cycloheximide, followed by culturing for 3 weeks while carrying out the medium exchange in every week.

[0119] After culturing for 3 weeks, the number of wells in which cycloheximide-resistant colonies were found was counted. The results are shown in Table 1 and Table 2.

[Table 1]

[0120]

30 Table 1 Comparison of the numbers of cycloheximide-resistant cells (CHO cell)

	Transposon vector	Conventional vector
Test 1	155 / 288	0 / 288
Test 2	100 / 288	0 / 288
Test 3	94 / 288	0 / 288

[Table 2]

[0121]

40 Table 2 Comparison of the numbers of cycloheximide-resistant cells (HEK293 cell)

	Transposon vector	Conventional vector
Test 1	0 / 288	0 / 288
Test 2	0 / 288	0 / 288
Test 3	0 / 288	0 / 288

[0122] As shown in Table 1, each the anti-human influenza M2 antibody expression transposon vector or anti-human influenza M2 antibody expression vector was introduced into the suspension CHO-K1 cell. As a result, cycloheximide-resistant transformants were not obtained from the cell introduced with anti-human influenza M2 antibody expression vector like the case of other cell lines, but cycloheximide-resistant transformants were obtained from the cell introduced with transposon vector for expressing anti-human influenza M2 antibody with a high frequency.

[0123] On the other hand, as shown in Table 2, cycloheximide-resistant transformants were not obtained when either of the transposon vector for expressing anti-human influenza M2 antibody and anti-human influenza M2 antibody expression vector was introduced into the HEK293 cell.

[0124] Based on these results, it was found that the intended protein-encoded gene and cycloheximide resistance

gene which were inserted between a pair of transposon sequences are efficiently introduced into the chromosome of the host cell, namely a suspension mammalian cell.

5 (3) Examination on the antibody production by suspension CHO cell and adhesive CHO cell

[0125] In order to examine antibody production efficiency by a suspension CHO cell or an adhesive CHO cell, the amounts of antibodies produced by respective cell lines were examined. As the suspension CHO cell, the suspension CHO-K1 cell adapted to suspension culture was used. In addition, as the adhesive CHO cell, the adhesive CHO-K1 cell before adaptation to suspension culture was used.

10 [0126] The anti-human influenza M2 antibody expression transposon vector (10 µg) and Tol2 transposase expression vector (25 µg) were introduced into the suspension CHO-K1 cell and adhesive CHO-K1 cell by means of electroporation, respectively. Thereafter, the suspension CHO-K1 cell and the adhesive CHO-K1 cell were seeded into three 96-well plates for each cell.

15 [0127] A medium for suspension cells (EX-CELL 325-PF, manufactured by SAFC Biosciences) was used for the suspension CHO-K1 cell, and the α-MEM medium containing 10% serum was used for the adhesive CHO-K1 cell. Each cell was cultured in a CO₂ incubator for 3 days. From the day of medium exchange on the 4th day of the transfection, 3 µg/ml of cycloheximide was added to the medium so that the cells were cultured in the presence of cycloheximide and the cells were further cultured for 3 weeks. In this case, the medium exchange was carried out every week.

20 [0128] For the suspension CHO-K1 cell, 1 x 10⁶ of the cells were seeded into a 6-well plate and shaking-cultured in a CO₂ incubator for 3 days, and the amount of the anti-human influenza M2 antibody protein was measured by HPLC using the culture supernatant.

[0129] For the adhesive CHO-K1 cell, medium exchange was carried out when the cell reached confluent on a 6-well plate (2 x 10⁶ cells), and 3 days after static culture, the amount of the antibody protein was measured by HPLC using the culture supernatant.

25 [0130] The antibody concentration in the culture supernatant was measured in accordance with the method described in Yeast Res., 7 (2007), 1307 - 1316. The results are shown in Fig. 4A and Fig. 4B.

[0131] As shown in Fig. 4A, a large number of cells showing a markedly high antibody expression level were obtained when the CHO-K1 cell adapted to suspension culture was used. On the other hand, as shown in Fig. 4B, only the cells showing an expression level of the HPLC detection limit (5 µg/ml) or less were obtained when the adhesive CHO-K1 cell was used.

30 [0132] Based on these results, it was found that, for the expression of a protein of interest using a transposon vector, the protein of interest can be expressed at a high level when a suspension mammalian cell is used.

[0133] In addition, it was found from the results of Examples 1 to 3 that the method of the invention can be used as a novel method for producing a protein of interest, by efficiently preparing a production cell which can highly express an exogenous gene using a suspension mammalian cell adapted to suspension culture.

35 [Example 4]

40 Preparation of Tol1 transposon vector for expressing anti-human influenza M2 antibody

[0134] In the same manner as in Example 1, a plasmid which contains a gene expression cassette for mammalian cells, comprising an arbitrary human antibody gene and a drug resistance marker gene inserted between a pair of Tol1 transposon sequences, was used as a protein expression plasmid vector.

45 [0135] Each DNA of the used genes was chemically synthesized artificially based on the known sequence information or obtained by preparing primers of its both terminal sequences and carrying out PCR using an appropriate DNA source as the template. For the gene manipulation to be carried out later, a site cleaved by a restriction enzyme was added to the end of the primer.

50 [0136] Among the non-autonomous Tol1 transposon nucleotide sequence shown in SEQ ID NO:13 of Sequence Listing (WO2008/072540), the nucleotide sequence at positions 1 to 200 (Tol1-L sequence) (SEQ ID NO:14) and the nucleotide sequence at positions 1351 to 1855 (Tol1-R sequence) (SEQ ID NO:15) were used as the transposon sequences.

55 [0137] Each of the synthetic DNA fragments comprising each a pair of transposon sequences was prepared by the following method. A DNA fragment comprising a nucleotide sequence in which a recognition sequence of a restriction enzyme *Nru*1 was connected to both of the 5'-terminal and 3'-terminal of the Tol1-R sequence. Then, a DNA fragment comprising a nucleotide sequence in which a recognition sequence of a restriction enzyme *Fse*1 was connected to the 5'-terminal of the Tol1-L sequence and a restriction enzyme *Ascl* was connected to the 3'-terminal thereof.

[0138] Next, the thus prepared DNA fragments comprising Tol1-R sequence and Tol1-L sequence were inserted into the expression vector N5LG1-M2-Z3 vector. The DNA fragment comprising the Tol1-R sequence was inserted into the

restriction enzyme *Nru*1 site of the N5LG1-M2-Z3 vector, existing on the 5'-terminal side of a gene fragment comprising the antibody gene expression cassette and a resistance marker gene, and the DNA fragment comprising the Tol1-L sequence was inserted into the restriction enzyme *Fse*1 and *Ascl* sites existing on the 3'-terminal side.

[0139] In addition, Tol1 transposon vector for expressing an anti-human influenza M2 antibody was constructed (Fig. 5) by inserting a cycloheximide resistance gene expression cassette connected with a resistance gene for cycloheximide (a gene in which proline at position 54 in the human ribosomal protein L36a was mutated to glutamine) into the *Fse*1 recognition site of the N5LG1-M2-Z3 vector connected with the Tol1 transposon sequence, under the control of the CMV enhancer/promoter.

10 [Example 5]

Preparation of Tol1 transposase expression vector

[0140] The transposase was expressed using an expression vector independent from the expression vector of the antibody of interest. That is, a Tol1 transposase gene expression cassette connected with a DNA fragment encoding a medaka fish-derived Tol1 transposase, containing the nucleotide sequence shown in SEQ ID NO:16 of Sequence Listing, was inserted into pBluescriptII SK (+) (manufactured by Stratagene) under the CMV enhancer/promoter control and used as the expression vector pTol1ase (Fig. 6).

20 [Example 6]

(1) Preparation of antibody-producing CHO cell

[0141] The Tol1 transposon vector for expressing the anti-human influenza M2 antibody (hereinafter referred to as Tol1 transposon vector) and Tol1 transposase expression vector pTol1ase of Example 4 and Example 5 were used as the expression vectors. In addition, the CHO-K1 cell prepared by adapting to suspension culture in the same manner as in Example 3(1) was used as the cell.

[0142] The aforementioned expression vectors were introduced into the CHO-K1 cell adapted to suspension culture, and the frequency of obtaining clones resistant to cycloheximide was measured. The CHO-K1 cell adapted to suspension culture (4×10^6 cells) were suspended in 400 μ l of PBS, and the Tol1 transposon vector for expressing the anti-human influenza M2 antibody (10 μ g) and Tol1 transposase expression vector (50 μ g) were co-transfected directly in the form of circular DNA by electroporation. In order to effect transient expression of the Tol1 transposase, the Tol1 transposase expression vector was directly introduced in the form of circular DNA for the purpose of preventing from integrating into the host chromosome.

[0143] The electroporation was carried out using a cuvette of 4 mm in gap width (manufactured by Bio-Rad), using an electroporator (Gene Pulser Xcell System (manufactured by Bio-Rad)) under conditions of 300 V in voltage, 500 μ F in electrostatic capacity and room temperature.

[0144] After the transfection by electroporation, each cell was seeded into two 96-well plates and cultured in a CO_2 incubator for 3 days using the EX-CELL 325-PF medium (manufactured by SAFC Biosciences) for the CHO cell. Next, from the day of medium exchange on the 4th day of the transfection, 3 μ g/ml of cycloheximide was added to the medium so that the cells were cultured in the presence of cycloheximide, followed by culturing for 3 weeks while carrying out the medium exchange every week.

[0145] After the culturing for 3 weeks, the number of wells in which cycloheximide-resistant colonies were found was counted. The results are shown in Table 3. Each of the tests 1 to 3 in Table 3 shows a result of carrying out the gene transfer three times.

[Table 3]

Tol1 transposon vector	
Tests 1	133 / 192
Tests 2	67 / 192
Tests 3	122 / 192

[0146] As shown in Table 3, when the Tol1 transposon vector for expressing the anti-human influenza M2 antibody was introduced into the suspension CHO-K1 cell, cycloheximide-resistant transformants were obtained at a high frequency similarly to Example 3 in which the Tol2 transposon vector for expressing the anti-human influenza M2 antibody was introduced.

[0147] It was found based on these results that the antibody gene and cycloheximide resistance gene inserted between a pair of transposon sequences are efficiently transduced into the chromosome of the host cell, namely the suspension mammalian cell, in the case of using the Tol1 transposon, too.

5 (2) Examination on antibody production by suspension CHO-K1 cell

[0148] Antibody production efficiency of the suspension CHO-K1 cell was examined using the suspension CHO-K1 cell. The transposon vector for expressing the anti-human influenza M2 antibody (10 µg) and Tol1 transposase expression vector (50 µg) were introduced by electroporation into the suspension CHO-K1 cell adapted to suspension culture.

10 [0149] Thereafter, the cells were seeded into respective two 96-well plates and cultured for 3 days in a CO₂ incubator using the suspension culture medium EX-CELL 325-PF. From the medium exchange on the 4th days after the electroporation, the cells were cultured for 3 weeks in the presence of 3 µg/ml of cycloheximide. In this case, the medium exchange was carried out every week.

15 [0150] For the suspension CHO-K1 cell, 1 x 10⁶ of the cells were seeded into a 6-well plate and shaking-cultured in a CO₂ incubator for 3 days, and amount of the anti-human influenza M2 antibody protein was measured by HPLC using the culture supernatant.

[0151] The antibody concentration in culture supernatant was measured in accordance with the method described in Yeast Res., 7 (2007), 1307 - 1316. The results are shown in Fig. 7.

20 [0152] As shown in Fig. 7, a large number of cells showing a markedly high antibody expression level were obtained in the case of the use of the Tol1 transposon, too. From this result, it was found that similar to the case of the use of the Tol2 transposon-derived nucleotide sequence, a suspension mammalian cell capable of highly expressing the protein of interest can also be obtained when a Tol1 transposon-derived nucleotide sequence is used as the transposon sequence.

25 [0153] This application is based on Japanese application No. 2009-140626, filed on June 11, 2009, and U.S. provisional application No. 61/186,138, filed on June 11, 2009.

Industrial Applicability

30 [0154] By the method for producing the protein of the present invention, a protein of interest can be efficiently produced using a suspension mammalian cell. The cell of the present invention can be used as a protein producing cell for producing a recombinant protein.

Sequence Listing Free Text

35 [0155]

SEQ ID NO:1 - Description of Artificial sequence: Nucleotide sequence of non-autonomous Tol2 transposon
 SEQ ID NO:2 - Description of Artificial sequence: Tol2-L sequence
 SEQ ID NO:3 - Description of Artificial sequence: Tol2-R sequence
 40 SEQ ID NO:7 - Description of Artificial sequence: Nucleotide sequence of cycloheximide resistance gene
 SEQ ID NO:8 - Description of Artificial sequence: Amino acid sequence of protein encoded by cycloheximide resistance gene
 SEQ ID NO:9 - Description of Artificial sequence: Nucleotide sequence encoding H chain of M2Z3 antibody
 SEQ ID NO:10 - Description of Artificial sequence: Nucleotide sequence encoding H chain of M2Z3 antibody
 45 SEQ ID NO:11 - Description of Artificial sequence: Nucleotide sequence encoding L chain of M2Z3 antibody
 SEQ ID NO:12 - Description of Artificial sequence: Amino acid sequence encoding L chain of M2Z3 antibody
 SEQ ID NO:13 - Description of Artificial sequence: Nucleotide sequence of non-autonomous Tol1 transposon
 SEQ ID NO:14 - Description of Artificial sequence: Tol1-L sequence
 50 SEQ ID NO:15 - Description of Artificial sequence: Tol1-R sequence

SEQUENCE LISTING

[0156]

55 <110> Kyowa Hakko Kirin Co., Ltd.
 Inter-University Research Institute Corporation Research Organization of Information and Systems

<120> Protein production method

<130> WO69874

<150> JP2009-140626

<151> 2009-06-11

5

<150> US61/186138

<151> 2009-06-11

10

<160> 17

15

<170> PatentIn version 3.3

<210> 1

<211> 2788

20

<212> DNA

<213> Artificial

<220>

<223> Description of artificial sequence; nonautologous Tol2 transposon

25

<400> 1

	cagaggtgta aagtacttga gtaatttac ttgattactg tacttaagta ttatTTTgg	60
25	ggattttac tttactttag tacaattaaa aatcaatact tttactttta cttaattaca	120
	ttttttaga aaaaaaaagta ctTTTactc cttacaattt tatttacagt caaaaagtac	180
30	ttatTTTtg gagatcaattt cattctattt tcccttgcta ttaccaaacc aattgaattt	240
	cgctgatgcc cagtttaatt taaatgttat ttattctgcc tatgaaaatc gtttccat	300
35	tatatgaaat tggtcagaca tggTCATTgg tcctttggaa gtgacgtcat gtcacatcta	360
	ttaccacaat gcacagcacc ttgacctgga aattaggaa attataacag tcaatcagt	420
40	gaagaaaaatg gaggaagtat gtgattcatc agcagctcg agcagcacag tccaaaatca	480
	gccacaggat caagagcacc cgtggccgta tcttcgcgaa ttctttctt taagtgggt	540
45	aaataaaagat tcattcaaga tgaaatgtgt cctctgtctc ccgcttaata aagaaatatc	600
	ggccttcaaa agttcgccat caaacctaag gaagcatatt gaggttaagta cattaagtat	660
50	tttgtttac tgatagttt tttttttttt tttttttttt tttttgggtg tgcattttt	720
	gacgttgatg gcgccctt tataatgtgt gtggcctat ttcaactaat gcatgcgatt	780
55	gacaatataa ggctcacgta ataaaaatgct aaaatgcatt tggtaattggt aacgttaggt	840
	ccacgggaaa ttggcgcctt attgcagctt tgaataatca ttatcattcc gtgcctctcat	900
	tgtgtttgaa ttcatgcaaa acacaagaaa accaagcgag aaatTTTTTt ccaaacatgt	960
	tgtattgtca aaacggtaac actttacaat gaggttgatt agttcatgtt ttaactaaca	1020
	ttaaataacc atgagcaata catttggtaat tggatctgtt aatctttgtt aacgttagtt	1080

	aatagaaaata cagatgttca ttgtttgttc atgttagttc acagtgcatt aactaatgtt	1140
	aacaagatataa aagtattatg taaatgttga aattaacatg tatacgtgca gttcattatt	1200
5	agttcatgtt aactaatgtt aactaactaac gaaccttattt gtaaaagtgt taccatcaaa	1260
	actaatgtaa tgaaatcaat tcaccctgtc atgtcagcct tacagtcctg tggtttgtc	1320
10	aatataatca gaaataaaaat taatgtttga ttgtcaactaa atgctactgt atttctaaaa	1380
	tcaacaagta tttaacatta taaagtgtgc aattggctgc aaatgtcagt tttattaaag	1440
	ggtttagttca cccaaaaatg aaaataatgt catataatgac tcgcctcat gtcgtccaa	1500
15	gcccgtaaga cctccgttca tcttcagaac acagtttaag atatttaga ttttagtccga	1560
	gagcttctg tgcctccatt gagaatgtat gtacggata ctgtccatgt ccagaaaggt	1620
	aataaaaaca tcaaagttagt ccatgtgaca tcagtgggtt agttagaatt ttttgaagca	1680
20	tcgaatacat tttggtccaa aaataacaaa acctacgact ttattcggca ttgttattctc	1740
	ttccgggtct gttgtcaatc cgcgttcacg acttcgcagt gacgctacaa tgctgaataa	1800
25	agtcgttaggt tttgttattt ttggacccaa atgtattttc gatgcttcaa ataattctac	1860
	ctaaccact gatgtcacat ggactacttt gatgtttta ttaccttct ggacatggac	1920
	agtataccgt acatacattt tcagtgagg gacagaaaagc tctcgacta aatctaaaat	1980
30	atcttaaact gtgttccgaa gatgaacgga ggtgttacgg gcttggaaacg acatgagggt	2040
	gagtcattaa tgacatctt tcattttgg gtgaactaac ccttaatgc tgtaatcaga	2100
	gagtgtagt gtaattgtt cattattgc atacaatata aatattttt tttttttttt	2160
35	acagagaatg cacccaaattt acctaaaaaa ctactctaaa ttgacagcac agaagagaaa	2220
	gatcgggaca gatctcatat gctcgaggc ccatctggcc tgggtttcag acaccaggaa	2280
	gtctctgctc acgtttctg ctatttgcag cctctctatc aagactaata cacctttcc	2340
40	cgcacatggctt gcctgtgaga ggctttcag cactgcagga ttgctttca gccccaaaag	2400
	agctaggctt gacactaaca attttgagaa tcagcttcta ctgaagttaa atctgagggtt	2460
45	ttacaacttt gagtagcgtg tactggcatt agattgtctg tcttatagtt tgataattaa	2520
	atacaaacag ttctaaagca ggataaaacc ttgtatgcat ttcatatata gtttttttag	2580
	attaaaagct taaacaagaa tctctagttt tcttttttgc ttttactttt acttccttaa	2640
50	tactcaagta caattttaat ggagtacttt tttactttta ctcaagtaag attctagcca	2700
	gataactttta cttttaattt agaaaaattt tccctaagta ctgtacttt cacttgagta	2760
	aaatttttga gtactttta cacctctg	2788
55	<210> 2	
	<211> 200	
	<212> DNA	

5 <213> Artificial

10 <220>

15 <223> Description of artificial sequence; Tol2-L transposon sequence

20 <400> 2

10	cagaggtgta aagtacttga gtaatttac ttgattactg tacttaagta ttatTTTgg	60
15	ggatTTTAC tttacttgag tacaattaaa aatcaatact tttactTTA cttAAattaca	120
	ttttTTTAgA aaaaaaAGTA cttttTACTc cttacaattt tatttacAGT caaaaAGTAC	180
	ttatTTTtg gagatcacTT	200

25 <210> 3

30 <211> 504

35 <212> DNA

40 <213> Artificial

45 <220>

50 <223> Description of artificial sequence; Tol2-R transposon sequence

55 <400> 3

30	ctgctcacgt ttcctgctat ttgcAGCCTC tctatcaaga ctaatacacc tctTCCCgca	60
35	tcggctgcct gtgagaggct tttcagcact gcaggattgc tttcagccc caaaAGAGCT	120
40	aggcttgaca ctaacaattt tgagaatcag cttctactga agttaaatct gaggtttac	180
45	aacttgagt agcgtgtact ggcatttagat tgtctgtctt atagtttgat aattaaatac	240
50	aaacagttct aaagcaggat aaaacTTTGT atgcatttca tttaatgttt tttgagatta	300
55	aaagcttaaa caagaatctc tagTTTCTT tcttgctttt acTTTactt ccttaatact	360
	caagtacaat tttaatggag tactTTTta cttttactca agtaagattc tagccagata	420
	cttttacttt taatttgagta aaattttccc taagtacttg tactttcact tgagtAAAAT	480
	ttttgagTAC ttTTTACACC tctg	504

55 <210> 4

60 <211> 2156

65 <212> DNA

70 <213> Oryzias latipes

75 <220>

80 <221> CDS

85 <222> (85)..(2034)

85 <400> 4

EP 2 441 831 B9

```

acgtcatgtc acatctatta ccacaatgca cagcaccttg acctggaaat tagggaaatt 60
ataacagtca atcagtggaa gaaa atg gag gaa gta tgt gat tca tca gca 111
                     Met Glu Glu Val Cys Asp Ser Ser Ala
                     1           5

```

gct gcg agc agc aca gtc caa aat cag cca cag gat caa gag cac ccg 159
Ala Ala Ser Ser Thr Val Gln Asn Gln Pro Gln Asp Gln Glu His Pro
10 15 20 25

tgg ccg tat ctt cgc gaa ttc ttt tct tta agt ggt gta aat aaa gat 207
 Trp Pro Tyr Leu Arg Glu Phe Phe Ser Leu Ser Gly Val Asn Lys Asp
 30 35 40

15

20

25

30

35

40

45

50

55

EP 2 441 831 B9

	tca ttc aag atg aaa tgt gtc ctc tgt ctc ccg ctt aat aaa gaa ata Ser Phe Lys Met Lys Cys Val Leu Cys Leu Pro Leu Asn Lys Glu Ile 45	50	55	255
5	tcg gcc ttc aaa agt tcg cca tca aac cta agg aag cat att gag aga Ser Ala Phe Lys Ser Ser Pro Ser Asn Leu Arg Lys His Ile Glu Arg 60	65	70	303
10	atg cac cca aat tac ctc aaa aac tac tct aaa ttg aca gca cag aag Met His Pro Asn Tyr Leu Lys Asn Tyr Ser Lys Leu Thr Ala Gln Lys 75	80	85	351
	aga aag atc ggg acc tcc acc cat gct tcc agc agt aag caa ctg aaa Arg Lys Ile Gly Thr Ser Thr His Ala Ser Ser Lys Gln Leu Lys 90	95	100	399
15	105			
	gtt gac tca gtt ttc cca gtc aaa cat gtg tct cca gtc act gtg aac Val Asp Ser Val Phe Pro Val Lys His Val Ser Pro Val Thr Val Asn 110	115	120	447
20	aaa gct ata tta agg tac atc att caa gga ctt cat cct ttc agc act Lys Ala Ile Leu Arg Tyr Ile Ile Gln Gly Leu His Pro Phe Ser Thr 125	130	135	495
	gtt gat ctg cca tca ttt aaa gag ctg att agt aca ctg cag cct ggc Val Asp Leu Pro Ser Phe Lys Glu Leu Ile Ser Thr Leu Gln Pro Gly 140	145	150	543
25	att tct gtc att aca agg cct act tta cgc tcc aag ata gct gaa gct Ile Ser Val Ile Thr Arg Pro Thr Leu Arg Ser Lys Ile Ala Glu Ala 155	160	165	591
	gct ctg atc atg aaa cag aaa gtg act gct gcc atg agt gaa gtt gaa Ala Leu Ile Met Lys Gln Lys Val Thr Ala Ala Met Ser Glu Val Glu 170	175	180	639
30	185			
	tgg att gca acc aca acg gat tgt tgg act gca cgt aga aag tca ttc Trp Ile Ala Thr Thr Asp Cys Trp Thr Ala Arg Arg Lys Ser Phe 190	195	200	687
35	att ggt gta act gct cac tgg atc aac cct gga agt ctt gaa aga cat Ile Gly Val Thr Ala His Trp Ile Asn Pro Gly Ser Leu Glu Arg His 205	210	215	735
	735			
40	tcc gct gca ctt gcc tgc aaa aga tta atg ggc tct cat act ttt gag Ser Ala Ala Leu Ala Cys Lys Arg Leu Met Gly Ser His Thr Phe Glu 220	225	230	783
	783			
	gta ctg gcc agt gcc atg aat gat atc cac tca gag tat gaa ata cgt Val Leu Ala Ser Ala Met Asn Asp Ile His Ser Glu Tyr Glu Ile Arg 235	240	245	831
45				831
	gac aag gtt gtt tgc aca acc aca gac agt ggt tcc aac ttt atg aag Asp Lys Val Val Cys Thr Thr Asp Ser Gly Ser Asn Phe Met Lys 250	255	260	879
	265			
50	gct ttc aga gtt ttt ggt gtg gaa aac aat gat atc gag act gag gca Ala Phe Arg Val Phe Gly Val Glu Asn Asn Asp Ile Glu Thr Glu Ala 270	275	280	927
	927			
	aga agg tgt gaa agt gat gac act gat tct gaa ggc tgt ggt gag gga Arg Arg Cys Glu Ser Asp Asp Thr Asp Ser Glu Gly Cys Gly Glu Gly 285	290	295	975
55				975
	agt gat ggt gtg gaa ttc caa gat gcc tca cga gtc ctg gac caa gac			1023

EP 2 441 831 B9

	Ser Asp Gly Val Glu Phe Gln Asp Ala Ser Arg Val Leu Asp Gln Asp	300	305	310		
5	gat ggc ttc gaa ttc cag cta cca aaa cat caa aag tgt gcc tgt cac Asp Gly Phe Glu Phe Gln Leu Pro Lys His Gln Lys Cys Ala Cys His	315	320	325	1071	
10	tta ctt aac cta gtc tca agc gtt gat gcc caa aaa gct ctc tca aat Leu Leu Asn Leu Val Ser Ser Val Asp Ala Gln Lys Ala Leu Ser Asn	330	335	340	345	1119
15	gaa cac tac aag aaa ctc tac aga tct gtc ttt ggc aaa tgc caa gct Glu His Tyr Lys Lys Leu Tyr Arg Ser Val Phe Gly Lys Cys Gln Ala	350	355	360	1167	
20	tta tgg aat aaa agc agc cga tcg gct cta gca gct gaa gct gtt gaa Leu Trp Asn Lys Ser Ser Arg Ser Ala Leu Ala Ala Glu Ala Val Glu	365	370	375	1215	
25	tca gaa agc cgg ctt cag ctt tta agg cca aac caa acg cgg tgg aat Ser Glu Ser Arg Leu Gln Leu Leu Arg Pro Asn Gln Thr Arg Trp Asn	380	385	390	1263	
30	tca act ttt atg gct gtt gac aga att ctt caa att tgc aaa gaa gca Ser Thr Phe Met Ala Val Asp Arg Ile Leu Gln Ile Cys Lys Glu Ala	395	400	405	1311	
35	gga gaa ggc gca ctt cgg aat ata tgc acc tct ctt gag gtt cca atg Gly Glu Gly Ala Leu Arg Asn Ile Cys Thr Ser Leu Glu Val Pro Met	410	415	420	425	1359
40	ttt aat cca gca gaa atg ctg ttc ttg aca gag tgg gcc aac aca atg Phe Asn Pro Ala Glu Met Leu Phe Leu Thr Glu Trp Ala Asn Thr Met	430	435	440	1407	
45	cgt cca gtt gca aaa gta ctc gac atc ttg caa gcg gaa acg aat aca Arg Pro Val Ala Lys Val Leu Asp Ile Leu Gln Ala Glu Thr Asn Thr	445	450	455	1455	
50	cag ctg ggg tgg ctg ctg cct agt gtc cat cag tta agc ttg aaa ctt Gln Leu Gly Trp Leu Leu Pro Ser Val His Gln Leu Ser Leu Lys Leu	460	465	470	1503	
55	cag cga ctc cac cat tct ctc agg tac tgt gac cca ctt gtg gat gcc Gln Arg Leu His His Ser Ile Arg Tyr Cys Asp Pro Leu Val Asp Ala	475	480	485	1551	
	cta caa caa gga atc caa aca cga ttc aag cat atg ttt gaa gat cct Leu Gln Gln Gly Ile Gln Thr Arg Phe Lys His Met Phe Glu Asp Pro	490	495	500	505	1599
	gag atc ata gca gct gcc atc ctt ctc cct aaa ttt cgg acc tct tgg Glu Ile Ile Ala Ala Ile Leu Leu Pro Lys Phe Arg Thr Ser Trp	510	515	520	1647	
	aca aat gat gaa acc atc ata aaa cga ggc atg gac tac atc aga gtg Thr Asn Asp Glu Thr Ile Ile Lys Arg Gly Met Asp Tyr Ile Arg Val	525	530	535	1695	
	cat ctg gag cct ttg gac cac aag aag gaa ttg gcc aac agt tca tct His Leu Glu Pro Leu Asp His Lys Lys Glu Leu Ala Asn Ser Ser Ser	540	545	550	1743	
	gat gat gaa gat ttt ttc gct tct ttg aaa ccg aca aca cat gaa gcc Asp Asp Glu Asp Phe Phe Ala Ser Leu Lys Pro Thr Thr His Glu Ala				1791	

EP 2 441 831 B9

	555	560	565	
5	agc aaa gag ttg gat gga tat ctg gcc tgt gtt tca gac acc agg gag Ser Lys Glu Leu Asp Gly Tyr Leu Ala Cys Val Ser Asp Thr Arg Glu 570 575 580 585			1839
10	tct ctg ctc acg ttt cct gct att tgc agc ctc tct atc aag act aat Ser Leu Leu Thr Phe Pro Ala Ile Cys Ser Leu Ser Ile Lys Thr Asn 590 595 600			1887
15	aca cct ctt ccc gca tcg gct gcc tgt gag agg ctt ttc agc act gca Thr Pro Leu Pro Ala Ser Ala Ala Cys Glu Arg Leu Phe Ser Thr Ala 605 610 615			1935
20	gga ttg ctt ttc agc ccc aaa aga gct agg ctt gac act aac aat ttt Gly Leu Leu Phe Ser Pro Lys Arg Ala Arg Leu Asp Thr Asn Asn Phe 620 625 630			1983
25	gag aat cag ctt cta ctg aag tta aat ctg agg ttt tac aac ttt gag Glu Asn Gln Leu Leu Leu Lys Leu Asn Leu Arg Phe Tyr Asn Phe Glu 635 640 645			2031
30	tag cgtgtactgg cattagattg tctgtcttat agtttgataa ttaaatacaa acagttctaa agcaggataa aaccttgtat gcatttcatt taatgtttt tgagattaaa <210> 5 <211> 649 <212> PRT <213> Oryzias latipes			2084 2144 2156
35	<400> 5			
40				
45				
50				
55				

EP 2 441 831 B9

Met Glu Glu Val Cys Asp Ser Ser Ala Ala Ala Ser Ser Thr Val Gln
1 5 10 15

5 Asn Gln Pro Gln Asp Gln Glu His Pro Trp Pro Tyr Leu Arg Glu Phe
20 25 30

10 Phe Ser Leu Ser Gly Val Asn Lys Asp Ser Phe Lys Met Lys Cys Val
35 40 45

15 Leu Cys Leu Pro Leu Asn Lys Glu Ile Ser Ala Phe Lys Ser Ser Pro
50 55 60

Ser Asn Leu Arg Lys His Ile Glu Arg Met His Pro Asn Tyr Leu Lys
65 70 75 80

20 Asn Tyr Ser Lys Leu Thr Ala Gln Lys Arg Lys Ile Gly Thr Ser Thr
85 90 95

25 His Ala Ser Ser Ser Lys Gln Leu Lys Val Asp Ser Val Phe Pro Val
100 105 110

30 Lys His Val Ser Pro Val Thr Val Asn Lys Ala Ile Leu Arg Tyr Ile

35

40

45

50

55

EP 2 441 831 B9

Leu Arg Pro Asn Gln Thr Arg Trp Asn Ser Thr Phe Met Ala Val Asp
 385 390 395 400

5 Arg Ile Leu Gln Ile Cys Lys Glu Ala Gly Glu Gly Ala Leu Arg Asn
 405 410 415

10 Ile Cys Thr Ser Leu Glu Val Pro Met Phe Asn Pro Ala Glu Met Leu
 420 425 430

Phe Leu Thr Glu Trp Ala Asn Thr Met Arg Pro Val Ala Lys Val Leu
 435 440 445

15 Asp Ile Leu Gln Ala Glu Thr Asn Thr Gln Leu Gly Trp Leu Leu Pro
 450 455 460

20 Ser Val His Gln Leu Ser Leu Lys Leu Gln Arg Leu His His Ser Leu
 465 470 475 480

Arg Tyr Cys Asp Pro Leu Val Asp Ala Leu Gln Gln Gly Ile Gln Thr
 485 490 495

25 Arg Phe Lys His Met Phe Glu Asp Pro Glu Ile Ile Ala Ala Ala Ile
 500 505 510

30 Leu Leu Pro Lys Phe Arg Thr Ser Trp Thr Asn Asp Glu Thr Ile Ile
 515 520 525

35 Lys Arg Gly Met Asp Tyr Ile Arg Val His Leu Glu Pro Leu Asp His
 530 535 540

Lys Lys Glu Leu Ala Asn Ser Ser Asp Asp Glu Asp Phe Phe Ala
 545 550 555 560

40 Ser Leu Lys Pro Thr Thr His Glu Ala Ser Lys Glu Leu Asp Gly Tyr
 565 570 575

45 Leu Ala Cys Val Ser Asp Thr Arg Glu Ser Leu Leu Thr Phe Pro Ala
 580 585 590

50 Ile Cys Ser Leu Ser Ile Lys Thr Asn Thr Pro Leu Pro Ala Ser Ala
 595 600 605

Ala Cys Glu Arg Leu Phe Ser Thr Ala Gly Leu Leu Phe Ser Pro Lys
 610 615 620

55 Arg Ala Arg Leu Asp Thr Asn Asn Phe Glu Asn Gln Leu Leu Leu Lys
 625 630 635 640

Leu Asn Leu Arg Phe Tyr Asn Phe Glu
645

5 <210> 6
 <211> 4682
 <212> DNA
 <213> Oryzias latipes

10 <400> 6

15

20

25

30

35

40

45

50

55

	cagaggtgta aagtacttga gtaattttac ttgattactg tacttaagta ttatTTTgg	60
5	ggattttac ttacttgag tacaattaaa aatcaatact tttactttta cttaattaca	120
	ttttttaga aaaaaaaagta ctTTTactc cttacaattt tatttacagt caaaaagtagc	180
	ttatTTTtg gagatcactt cattctattt tcccttgcta ttaccaaacc aattgaattt	240
10	cgctgatgcc cagTTtaatt taaatgttat ttattctgcc tatgaaaatc gttttcacat	300
	tatATgaaat tggTCagaca tgTTcattgg tcTTTggaa gtgacgtcat gtcacatcta	360
	ttaccacaat gcacagcacc ttgacctgga aattaggaa attataacag tcaatcagt	420
15	gaagaaaaatg gaggaagtat gtgattcatc agcagctgcg agcagcacag tccaaaatca	480
	gccacaggat caagagcacc cgtggccgta tcttcgcgaa ttTTTctt taagtgggt	540
	aaataaaagat tcattcaaga tgaaatgtgt cctctgtctc ccgcttaata aagaaatatc	600
20	ggcTTcaaa agttcgccat caaacctaag gaagcatatt gaggtaaatgtt cattaagtat	660
	tttggTTac tgatagttt ttttttttt ttttttttt ttttgggtg tgcatgttt	720
25	gacgTTgatg gcgccctt tataatgtta gtaggcctat ttTcaactat gcatgcgatt	780
	gacaatataa ggctcacgta ataaaatgct aaaatgcatt tgaattgggt aacgttaggt	840
	ccacggggaaa ttggcgccctt attgcagctt tgaataatca ttatcattcc gtgcTctcat	900
30	tgtgTTTgaa ttcatgcaaa acacaagaaa accaagcgag aaattttttt ccaaacatgt	960
	tgtattgtca aaacggtaac actttacaat gaggttgatt agttcatgtt ttaactaaca	1020
	ttaaataacc atgagcaata catttggTTac tgaattctgtt aatctttgtt aacgttagtt	1080
35	aatagaaata cagatgttca ttgTTTgttc atgttagttc acagtgcatt aactaatgtt	1140
	aacaagatataa aagtatttag taaatgttga aattaacatg tatacgtgca gttcatttt	1200
	agttcatgtt aactaatgtt gttaaactaac gaaccttatt gtaaaagtgt taccatcaa	1260
40	actaatgtaa tgaatcaat tcaccctgtc atgtcagcct tacagtccctg tgTTTgtc	1320
	aatataatca gaaataaaat taatgtttga ttgtcactaa atgctactgt atttctaaaa	1380
45	tcaacaagta tttaacatTTa taaagtgtgc aattggctgc aaatgtcagt ttatTTaaag	1440
	ggttagttca cccaaaaatg aaaataatgt cattaatgac tcgcctcat gtcgttccaa	1500
	gcccgttaaga cctccgttca tcttcagaac acagTTtaag atatTTtaga tttagtccga	1560
50	gagctttctg tgcctccatt gagaatgtat gtacggtata ctgtccatgt ccagaaaggt	1620

	aataaaaaca tcaaagttagt ccatgtgaca tcagtgggtt agttagaatt ttttgaagca	1680
5	tcgaatacat tttggtccaa aaataacaaa acctacgact ttattcggca ttgtattctc	1740
	ttccgggtct gttgtcaatc cgcggtcactg acttcgcagt gacgctacaa tgctgaataa	1800
	agtctgttaggt tttgttattt ttggacccaa atgtattttc gatgcttcaa ataattctac	1860
10	ctaacccact gatgtcacat ggactacttt gatgtttta ttaccttct ggacatggac	1920
	agtataccgt acatacattt tcagtggagg gacagaaagc tctcgacta aatctaaaat	1980
	atcttaaact gtgttccgaa gatgaacgga ggtgttacgg gcttggaaacg acatgagggt	2040
15	gagtcattaa tgacatctt tcattttgg gtgaactaac ccttaatgc tgtaatcaga	2100
	gagtgtatgt gtaattgtta catttattgc atacaatata aatatttatt tgggttttt	2160
	acagagaatg cacccaaatt acctaaaaaa ctactctaaa ttgacagcac agaagagaaa	2220
20	gatcgggacc tccacccatg cttccagcag taagcaactg aaagttgact cagttttccc	2280
	agtcaaacat gtgtctccag tcactgtgaa caaagctata ttaaggtaca tcattcaagg	2340
	acttcatcct ttcagcactg ttgatctgcc atcatttaaa gagctgatta gtacactgca	2400
25	gcctggcatt tctgtcatta caaggcctac tttacgctcc aagatagctg aagctgctct	2460
	gatcatgaaa cagaaagtga ctgctccat gagtgaagtt gaatggattg caaccacaac	2520
	ggattgttgg actgcacgta gaaagtcatt cattggtgta actgctact ggatcaaccc	2580
30	tggaagtctt gaaagacatt ccgctgcact tgcctgcaaa agattaatgg gctctcatac	2640
	ttttgaggtt ctggccagtg ccatgaatga tatccactca gagttatgaaa tacgtgacaa	2700
	ggttgttgc acaaccacag acagtggttc caactttatg aaggcttca gagttttgg	2760
35	tgtggaaaac aatgatatcg agactgaggc aagaagggtgt gaaagtgtatg acactgattc	2820
	tgaaggctgt ggtgaggaa gtgatgggtgt ggaattccaa gatgcctcac gagtcctgga	2880
	ccaagacgat ggcttcgaat tccagctacc aaaacatcaa aagtgtgcct gtcacttact	2940
40	taacctagtc tcaagcggtt atgccccaaa agctctctca aatgaacact acaagaaact	3000
	ctacagatct gtcttggca aatgccaagc tttatggaaat aaaaggcagcc gatcggtct	3060
	agcagctgaa gctgttgaat cagaaagccg gcttcagctt ttaaggccaa accaaacgcg	3120
45	gtggaattca acttttatgg ctgttgacag aattcttcaa atttgcaaag aagcaggaga	3180
	aggcgcactt cgaaatataat gcacccctct tgagggttcca atgtaagtgt ttttccccctc	3240
	tatcgatgt aacaaatgtg ggttgggtttt gtttaataact ctttgattat gctgatttct	3300
50	cctgttaggtt taatccagca gaaatgctgt tcttgacaga gtggggccaa acaatgcgtc	3360
	cagttgcaaa agtactcgac atcttgcaag cggaaacgaa tacacagctg gggtggctgc	3420
	tgccttagtgc ccatcagtttta agcttggaaac ttccagcact ccaccattct ctcaggtact	3480
55	gtgaccact tggatgccc ctacaacaag gaatccaaac acgattcaag catatgttg	3540
	aagatcctga gatcatagca gctgcccattcc ttctccctaa atttcggacc tcttggacaa	3600

5	atgatgaaac catcataaaa cgaggtaaat gaatgcaagc aacatacact tgacgaattc	3660
	taatctggc aacctttgag ccataccaaa attattctt tatttattta tttttgcact	3720
	tttttaggaat gttatatccc atcttggct gtgatctcaa tatgaatatt gatgtaaagt	3780
	attcttgcag caggttgtag ttatccctca gtgttcttg aaaccaaact catatgtatc	3840
10	atatgtggtt tggaaatgca gtttagattt atgctaaaat aagggatttg catgattta	3900
	gatgtagatg actgcacgta aatgttagtta atgacaaaat ccataaaatt tgttcccagt	3960
	cagaagcccc tcaaccaaac ttttcttgt gtctgctcac tggcttgta ggcatggact	4020
15	acatcagagt gcatctggag ccttggacc acaagaagga attggccaac agttcatctg	4080
	atgatgaaga tttttcgct tcttgaaac cgacaacaca tgaagccagc aaagagttgg	4140
	atggatatct ggcctgtgtt tcagacacca gggagtcct gctcacgtt cctgctattt	4200
20	gcagcctctc tatcaagact aatacacctc ttcccgcatc ggctgcctgt gagaggcttt	4260
	tcagcactgc aggattgctt ttcagccca aaagagctag gcttgacact aacaattttg	4320
	agaatcagct tctactgaag ttaaatctga ggtttacaa ctttgagtag cgtgtactgg	4380
25	cattagattt tctgtcttat agttgataa ttaaatacaa acagttctaa agcaggataa	4440
	aaccttgtat gcatttcatt taatgtttt tgagattaaa agcttaaaca agaatctcta	4500
	gttttcttc ttgctttac ttttacttcc ttaataactca agtacaattt taatggagta	4560
30	ctttttact ttactcaag taagattcta gccagatact ttactttta attgagtaaa	4620
	attttcccta agtacttgta ctccacttg agtaaaattt ttgagtagtt ttacacctc	4680
35	tg	4682

<210> 7

<211> 321

<212> DNA

40 <213> Artificial

<220>

<223> Description of artificial sequence; Cycloheximide resistant gene

45 <220>

<221> CDS

<222> (1)..(321)

50 <400> 7

atg gtc aac gta cct aaa acc cga aga acc ttc tgt aag aag tgt ggc Met Val Asn Val Pro Lys Thr Arg Arg Thr Phe Cys Lys Lys Cys Gly 1 5 10 15	48
5 aag cat cag cct cac aaa gtg aca cag tat aag aag ggc aag gat tct Lys His Gln Pro His Lys Val Thr Gln Tyr Lys Lys Gly Lys Asp Ser 20 25 30	96
10 ttg tat gcc cag gga agg agg cgc tat gat cgg aag cag agt ggc tat Leu Tyr Ala Gln Gly Arg Arg Tyr Asp Arg Lys Gln Ser Gly Tyr 35 40 45	144
15 ggt ggg cag aca aag caa att ttc cgg aag aag gct aag acc aca aag Gly Gly Gln Thr Lys Gln Ile Phe Arg Lys Lys Ala Lys Thr Thr Lys 50 55 60	192
20 aag att gtg cta agg ctg gaa tgt gtt gag cct aac tgc aga tcc aag Lys Ile Val Leu Arg Leu Glu Cys Val Glu Pro Asn Cys Arg Ser Lys 65 70 75 80	240
25 agg atg ctg gcc att aag aga tgc aag cat ttt gaa ctg gga gga gat Arg Met Leu Ala Ile Lys Arg Cys Lys His Phe Glu Leu Gly Gly Asp 85 90 95	288
30 aag aag aga aag ggc caa gtg atc cag ttc taa Lys Lys Arg Gly Gln Val Ile Gln Phe 100 105	321
35 <210> 8 <211> 106 <212> PRT <213> Artificial	
40 <220> <223> Synthetic Construct	
45 <400> 8	
50	
55	

Met Val Asn Val Pro Lys Thr Arg Arg Thr Phe Cys Lys Lys Cys Gly
 1 5 10 15

5 Lys His Gln Pro His Lys Val Thr Gln Tyr Lys Lys Gly Lys Asp Ser
 20 25 30

10 Leu Tyr Ala Gln Gly Arg Arg Tyr Asp Arg Lys Gln Ser Gly Tyr
 35 40 45

15 Gly Gly Gln Thr Lys Gln Ile Phe Arg Lys Lys Ala Lys Thr Thr Lys
 50 55 60

20 Lys Ile Val Leu Arg Leu Glu Cys Val Glu Pro Asn Cys Arg Ser Lys
 65 70 75 80

25 Arg Met Leu Ala Ile Lys Arg Cys Lys His Phe Glu Leu Gly Gly Asp
 85 90 95

30 Lys Lys Arg Lys Gly Gln Val Ile Gln Phe
 100 105

<210> 9

<211> 1404

<212> DNA

35 <213> Artificial

<220>

<223> M2Z3 Heavy chain

40 <220>

<221> CDS

<222> (1)..(1404)

<400> 9

45

50

55

atg	gac	tgg	acc	tgg	agc	atc	ctt	ttc	ttg	gtg	gca	gca	gca	aca	ggt	48
Met	Asp	Trp	Thr	Trp	Ser	Ile	Leu	Phe	Leu	Val	Ala	Ala	Ala	Ala	Thr	Gly
1				5					10						15	
5																
gcc	cac	tcc	cag	gtt	cag	ctg	gtg	cag	tct	gga	gct	gag	gtg	aag	aag	96
Ala	His	Ser	Gln	Val	Gln	Leu	Val	Gln	Ser	Gly	Ala	Glu	Val	Lys	Lys	
				20					25				30			
10																
cct	ggg	gcc	tca	gtg	aag	gtc	tcc	tgc	aag	gct	tct	gtt	tac	acc	ttt	144
Pro	Gly	Ala	Ser	Val	Lys	Val	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Thr	Phe	
				35				40				45				
15																
acc	agc	tat	gtt	atc	agc	tgg	gtg	cga	cag	gcc	cct	gga	caa	ggg	ctt	192
Thr	Ser	Tyr	Gly	Ile	Ser	Trp	Val	Arg	Gln	Ala	Pro	Gly	Gln	Gly	Leu	
				50				55			60					
20																
gag	tgg	atg	gga	tgg	atc	agc	gct	tac	aat	gtt	aac	aca	aac	tat	gca	240
Glu	Trp	Met	Gly	Trp	Ile	Ser	Ala	Tyr	Asn	Gly	Asn	Thr	Asn	Tyr	Ala	
				65				70			75			80		
25																
cag	aag	ctc	cag	ggc	aga	gtc	acc	atg	acc	aca	gac	aca	tcc	acg	agc	288
Gln	Lys	Leu	Gln	Gly	Arg	Val	Thr	Met	Thr	Thr	Asp	Thr	Ser	Thr	Ser	
				85				90			95					
30																
aca	gcc	tac	atg	gag	ctg	agg	agc	ctg	aga	tct	gac	gac	acg	gcc	gtg	336
Thr	Ala	Tyr	Met	Glu	Leu	Arg	Ser	Leu	Arg	Ser	Asp	Asp	Thr	Ala	Val	
				100				105			110					
35																
tat	tac	tgt	gcg	agg	gca	gca	gct	ggc	gga	tac	ttc	cag	cac	tgg	ggc	384
Tyr	Tyr	Cys	Ala	Arg	Ala	Ala	Gly	Gly	Tyr	Phe	Gln	His	Trp	Gly		
				115				120			125					
40																
cag	ggc	acc	ctg	gtc	acc	gtc	tcc	tca	gct	agc	acc	aag	ggc	cca	tcg	432
Gln	Gly	Thr	Leu	Val	Thr	Val	Ser	Ser	Ala	Ser	Thr	Lys	Gly	Pro	Ser	
				130			135			140						
45																
gtc	tcc	ccc	ctg	gca	ccc	tcc	tcc	aag	agc	acc	tct	ggg	ggc	aca	gct	480
Val	Phe	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	
				145			150			155			160			
50																
gcc	ctg	ggc	tgc	ctg	gtc	aag	gac	tac	ttc	ccc	gaa	ccg	gtg	acg	gtg	528
Ala	Leu	Gly	Cys	Leu	Val	Lys	Asp	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	
				165			170			175						
55																
tcg	tgg	aac	tca	ggc	gcc	ctg	acc	agc	ggc	gtg	cac	acc	ttc	ccg	gct	576
Ser	Trp	Asn	Ser	Gly	Ala	Leu	Thr	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	
				180			185			190						
60																
gtc	cta	cag	tcc	tca	gga	ctc	tac	tcc	ctc	agc	agc	gtg	gtg	acc	gtg	624
Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser	Val	Val	Thr	Val	
				195			200			205						
65																
ccc	tcc	agc	agc	ttg	ggc	acc	cag	acc	tac	atc	tgc	aac	gtg	aat	cac	672
Pro	Ser	Ser	Ser	Leu	Gly	Thr	Gln	Thr	Tyr	Ile	Cys	Asn	Val	Asn	His	
				210			215			220						
70																
aag	ccc	agc	aac	acc	aag	gtg	gac	aag	aaa	gtt	gag	ccc	aaa	tct	tgt	720
Lys	Pro	Ser	Asn	Thr	Lys	Val	Asp	Lys	Lys	Val	Glu	Pro	Lys	Ser	Cys	
				225			230			235			240			

gac	aaa	act	cac	aca	tgc	cca	ccg	tgc	cca	gca	cct	gaa	ctc	ctg	ggg	768	
Asp	Lys	Thr	His	Thr	Cys	Pro	Pro	Cys	Pro	Ala	Pro	Glu	Leu	Leu	Gly		
245									250						255		
5																	
gga	ccg	tca	gtc	ttc	ctc	ttc	ccc	cca	aaa	ccc	aag	gac	acc	ctc	atg	816	
Gly	Pro	Ser	Val	Phe	Leu	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met		
				260					265						270		
10																	
atc	tcc	cg	acc	cct	gag	gtc	aca	tgc	gtg	gtg	gac	gtg	agc	cac	864		
Ile	Ser	Arg	Thr	Pro	Glu	Val	Thr	Cys	Val	Val	Val	Asp	Val	Ser	His		
				275					280						285		
15																	
gaa	gac	cct	gag	gtc	aag	ttc	aac	tgg	ta	c	gtg	gac	ggc	gtg	gag	912	
Glu	Asp	Pro	Glu	Val	Lys	Phe	Asn	Trp	Tyr	Val	Asp	Gly	Val	Glu	Val		
				290					295						300		
20																	
cat	aat	gcc	aag	aca	aag	ccg	cg	gag	ca	g	ta	ac	ac	ac	ta	960	
His	Asn	Ala	Lys	Thr	Lys	Pro	Arg	Glu	Glu	Gln	Tyr	Asn	Ser	Thr	Tyr		
				305					310						320		
25																	
cgt	gtg	gtc	agc	gtc	ctc	acc	gtc	ctg	ca	ca	g	tgg	ctg	aat	ggc	1008	
Arg	Val	Val	Ser	Val	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly		
				325					330						335		
30																	
aag	gag	ta	aag	tgc	aag	gtc	tcc	aa	aa	g	cc	ctc	cca	gcc	ccc	atc	1056
Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	Lys	Ala	Leu	Pro	Ala	Pro	Ile		
				340					345						350		
35																	
gag	aaa	acc	atc	tcc	aaa	gcc	aaa	ggg	cag	ccc	cga	gaa	cca	cag	gtg	1104	
Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln	Val		
				355					360						365		
40																	
tac	acc	ctg	ccc	cca	tcc	cg	gat	ga	ct	ac	a	ag	c	gt	ac	1152	
Tyr	Thr	Leu	Pro	Pro	Ser	Arg	Asp	Glu	Leu	Thr	Lys	Asn	Gln	Val	Ser		
				370					375						380		
45																	
ctg	acc	tgc	ctg	gtc	aaa	ggc	ttc	tat	ccc	agc	g	atc	gc	cc	gt	gag	1200
Leu	Thr	Cys	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu		
				385					390						400		
50																	
tgg	gag	agc	aat	ggg	cag	ccg	ga	aa	ca	ta	a	ag	ac	ac	cct	1248	
Trp	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro		
				405					410						415		
45																	
gtg	ctg	gac	tcc	gac	ggc	tcc	ttc	ctc	ta	ca	a	ag	ctc	ac	gt	1296	
Val	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr	Ser	Lys	Leu	Thr	Val		
				420					425						430		
55																	
gac	aag	agc	agg	tgg	cag	cag	ggg	aa	gt	tc	tc	tcc	gt	at	1344		
Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val	Met		
				435					440						445		
50																	
cat	gag	gct	ctg	ca	ctc	tc	tc	1392									
His	Glu	Ala	Leu	His	Asn	His	Tyr	Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser		
				450					455						460		
55																	
ccg	ggt	aaa	tga													1404	
Pro	Gly	Lys															
			465														

<211> 467
<212> PRT
<213> Artificial

5 <220>
 <223> Synthetic Construct

 <400> 10

10

15

20

25

30

35

40

45

50

55

Met Asp Trp Thr Trp Ser Ile Leu Phe Leu Val Ala Ala Ala Thr Gly
 1 5 10 15

5 Ala His Ser Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys
 20 25 30

10 Pro Gly Ala Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe
 35 40 45

15 Thr Ser Tyr Gly Ile Ser Trp Val Arg Gln Ala Pro Gly Gln Gly Leu
 50 55 60

Glu Trp Met Gly Trp Ile Ser Ala Tyr Asn Gly Asn Thr Asn Tyr Ala
 65 70 75 80

20 Gln Lys Leu Gln Gly Arg Val Thr Met Thr Thr Asp Thr Ser Thr Ser
 85 90 95

25 Thr Ala Tyr Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val
 100 105 110

30 Tyr Tyr Cys Ala Arg Ala Ala Gly Gly Tyr Phe Gln His Trp Gly
 115 120 125

Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser
 130 135 140

35 Val Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala
 145 150 155 160

40 Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val
 165 170 175

45 Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala
 180 185 190

Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val
 195 200 205

50 Pro Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His
 210 215 220

55 Lys Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys
 225 230 235 240

	Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly			
	245	250	255	
5	Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met			
	260	265	270	
10	Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His			
	275	280	285	
15	Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val			
	290	295	300	
20	His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr			
	305	310	315	320
25	Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly			
	325	330	335	
30	Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile			
	340	345	350	
35	Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val			
	355	360	365	
40	Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser			
	370	375	380	
45	Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu			
	385	390	395	400
50	Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro			
	405	410	415	
55	Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val			
	420	425	430	
	Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met			
	435	440	445	
	His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser			
	450	455	460	
	Pro Gly Lys			
	465			

<210> 11
<211> 708

<212> DNA
<213> Artificial

5 <220>
 <223> M2Z3 Light chian

10 <220>
 <221> CDS
 <222> (1)..(708)
 <400> 11

15

20

25

30

35

40

45

50

55

1	atg gcc agc ttc cct ctc ctc acc ctc ctc act cac tgt gca ggg Met Ala Ser Phe Pro Leu Leu Leu Thr Leu Leu Thr His Cys Ala Gly 5	5	10	15	48
5	tcc tgg gcc cag tct gtg ctg act cag cca ccc tca gcg tct ggg acc Ser Trp Ala Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr 20	25	30		96
10	ccc ggg cag agg gtc acc atc tct tgt tct gga agc aac tcc aac atc Pro Gly Gln Arg Val Thr Ile Ser Cys Ser Gly Ser Asn Ser Asn Ile 35	40	45		144
15	gga agt aaa act gta aac tgg tac cag cag ctc cca gga acg gcc ccc Gly Ser Lys Thr Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro 50	55	60		192
20	aaa ctc ctc atc tct agt aat aat cag cgg ccc tca ggg gtc cct gac Lys Leu Leu Ile Ser Ser Asn Asn Gln Arg Pro Ser Gly Val Pro Asp 65	70	75	80	240
25	cga ttc tct ggc tcc aag tct ggc acc tca gcc tcc ctg gcc atc agt Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser 85	90	95		288
30	ggg ctc cag tct gag gat gag gct gat tat tac tgt gca gca tgg gat Gly Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp 100	105	110		336
35	gac agc ctg aat ggt gtg gta ttc ggc gga ggg acc aag ctg acc gtc Asp Ser Leu Asn Gly Val Val Phe Gly Gly Thr Lys Leu Thr Val 115	120	125		384
40	cta ggt cag ccc aag gct gcc ccc tcg gtc act ctg ttc cca ccc tcc Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser 130	135	140		432
45	tct gag gag ctt caa gcc aac aag gcc aca ctg gtg tgt ctc ata agt Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser 145	150	155	160	480
50	gac ttc tac ccg gga gcc gtg aca gtg gcc tgg aag gca gat agc agc Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser 165	170	175		528
55	ccc gtc aag gcg gga gtg gag acc acc aca ccc tcc aaa caa agc aac Pro Val Lys Ala Gly Val Glu Thr Thr Pro Ser Lys Gln Ser Asn 180	185	190		576
60	aac aag tac gcg gcc agc agc tac ctg agc ctg acg cct gag cag tgg Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp 195	200	205		624
65	aag tcc cac aaa agc tac agc tgc cag gtc acg cat gaa ggg agc acc Lys Ser His Lys Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr 210	215	220		672
70	gtg gag aag aca gtg gcc cct aca gaa tgt tca tag Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser 225	230	235		708

<211> 235
<212> PRT
<213> Artificial

5 <220>
<223> Synthetic Construct

<400> 12

10 Met Ala Ser Phe Pro Leu Leu Leu Thr Leu Leu Thr His Cys Ala Gly
1 5 10 15

15 Ser Trp Ala Gln Ser Val Leu Thr Gln Pro Pro Ser Ala Ser Gly Thr
20 25 30

Pro Gly Gln Arg Val Thr Ile Ser Cys Ser Gly Ser Asn Ser Asn Ile
 35 40 45

20

Gly Ser Lys Thr Val Asn Trp Tyr Gln Gln Leu Pro Gly Thr Ala Pro
50 55 60

25

Lys Leu Leu Ile Ser Ser Asn Asn Gln Arg Pro Ser Gly Val Pro Asp
65 70 75 80

Arg Phe Ser Gly Ser Lys Ser Gly Thr Ser Ala Ser Leu Ala Ile Ser
85 90 95

35

Gly Leu Gln Ser Glu Asp Glu Ala Asp Tyr Tyr Cys Ala Ala Trp Asp
 100 105 110

Asp Ser Leu Asn Gly Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val
 115 120 125

40

Leu Gly Gln Pro Lys Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser

45

Ser Glu Glu Leu Gln Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser
145 150 155 160

Asp Phe Tyr Pro Gly Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser
165 170 175

Pro Val Lys Ala Gly Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn
 180 185 190

55

Asn Lys Tyr Ala Ala Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp

195

200

205

5 Lys Ser His Lys Ser Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr
 210 215 220

Val Glu Lys Thr Val Ala Pro Thr Glu Cys Ser
225 230 235

10
<210> 13
<211> 1855
<212> DNA
<213> artificial

15 <220>
<223> nonautologous Tol1 transposon

<400> 13

25

30

35

40

45

50

55

	cagtagcggt tctaggcacg ggccgtccgg gcgggtggcct ggggcggaaa actgaagggg	60
5	ggcggcaccg gcggctcagc cctttgtaat atattaatat gcaccactat tggttactt	120
	atgtcacagt ttgttaagttt gtaacagcct gaacctggcc ggcgcggccgc ctcgcggcc	180
10	cagctgcgct ctccctgtctt tgagaagtag acacaaaatgt gtgtgaagaa ggagaaggga	240
	ggggggcgccgg ggtgagcacg gagcgtcgcc gcgtttgcgc atgcgcaaaaa cctggctggc	300
15	tcatcttca ggggaggcga cggtcgcggg cttgatgaaa aaaataaaaag taaaaactgc	360
	gactgcgcgc tcatgttagcg aatcagcgcc cctggctgta gctgcacgcg ctcctgctgg	420
20	aaatgtgtga agaggggggg ggggggggg gctgcggggaa atcagttcaa ttgtggacg	480
	cttccaaatt aagtggctag gtggggacaa gggcgggggt ttgaatctac ttcataaaaac	540
25	ctttttatata tataagtccag tcataagggtg acattctata acctacattt taataaaggt	600
	ataaaaaata tattctgctt tttttgggtt aattttgtgt gaaatgtcca aataaaaaaaa	660
	atggcaacac aaaacaatgc tgcactaag gtgacagttt gttcagtcga cggacttgat	720
30	gccttcttcg tgacgtgagg acatttatgc caaacaacg ccaataaaaca tctaaaatata	780
	ggaaaaagaaa aggtcaaagc catctggtgc ccaattttaga aagaaaagaa aagaagaaga	840
	ggagaaaaaga gataaaagaaa agggtaagtc ctcacagctt gatgcattttt ttttctaaat	900
35	tctaattgcta cctgcctac aacaacgttg ccgtatggaaa ctttattttt gtcgatgacc	960
	aacactgaat taggccccaaa tggtaat agcgtcattt tttttttttt ttttagattt	1020
	tattcttaaa aatttgctct gccttaactt gtaacattag ttatgattca tgcgtctgtc	1080
40	tgctctgctg taacacaaaag gttttgttgg gttttgtgt tgataactag ctcataatgt	1140
	taaaaaagct gtgatggta cacagcatgc tggtgctgcc ataagatgct aatggggcaa	1200
	ataatttgag attggtcatt aatttaataa tcatttgg cagcctaaac gttttcacaa	1260
45	tgtttttttgc acatttaact ggggatttag gggtaat ttgagcctgca tatgaagttt	1320
	attttttatt tggtaacaa atgtggatt atatttttag ccaatagaat ttccataat	1380

50

55

	ctgttaggtag ttttaaaaat gaatatttac catttactgc aactctatgg ggacaaaaca	1440
	taatgtaca ggtcataact aaaaatgtgc caatcaaagg attgaagacg gaaaacatga	1500
5	gttaattttt cttctctgaa gtagagatcg atatagaaca tgacaattta aatttccat	1560
	tcataaaatgt ttttaaaata tttattttat attatttatt taacatttag tttgattcaa	1620
10	tatttctta gctaactgta ttttgccat gcttatggtc ttttattttt tgtgttctga	1680
	taacttttat aatgcttttc agaatttga catctttgt atccacttct taatttcaat	1740
	gacaataaaa catttcagtt gacgaagaca aacaaagttc tgggtgact atgggggggg	1800
15	ggggcgcctg gggatggtct cgcccgaaaa gtaattcagg gtagaaccgc cactg	1855
	<210> 14	
	<211> 200	
	<212> DNA	
20	<213> artificial	
	<220>	
	<223> Tol1-L transposon sequence	
25	<400> 14	
	cagtagcggt tctaggcacg ggccgtccgg gcgggtggcct gggcggaaa actgaagggg	60
30	ggcggcaccg gcggctcagc cttttaat atattaatat gcaccactat tggtttactt	120
	atgtcacagt ttgttaagttt gtaacagcct gaacctggcc gcgcgcgcgc ctcgcggcg	180
	cagctgcgct ctcctgtctt	200
35	<210> 15	
	<211> 505	
	<212> DNA	
40	<213> artificial	
	<220>	
	<223> Tol1-R transposon sequence	
	<400> 15	
45		

50

55

	atatttttag ccaatagaat ttccataaaat ctgttaggtag tttaaaaat gaatattac	60
	catttactgc aactctatgg ggacaaaaca taatgtaaca ggtcataact aaaaatgtgc	120
5	caatcaaagg attgaagacg gaaaacatga gttaattttt cttctctgaa gtagagatcg	180
	atatagaaca tgacaattta aatttccaat tcataaatgt tttaaaata tttatttat	240
10	attatttatt taacattgag tttgattcaa tattttctta gctaactgta ttttgccat	300
	gcttatggtc ttttattttt tgtgttctga taactttat aatgctttc agaattttga	360
	catctttgt atccacttct taatttcaat gacaataaaa catttcagtt gacgaagaca	420
15	aacaaagttc tgggtgtgact atgggggggg ggggcgcctg gggatggtct cgcccgggga	480
	gtaattcagg gtagaaccgc cactg	505

<210> 16

<211> 2745

<212> DNA

<213> Oryzias latipes

<220>

<221> CDS

<222> (30)..(2585)

<400> 16

30

35

40

45

50

55

5	gccaacaaaa cgcacaaaaat atctaaaat atg gag aaa aaa agg tca aag cca Met Glu Lys Lys Arg Ser Lys Pro 1 5	53
10	tct ggt gcc caa ttt aga aag aaa aga aaa gaa gaa gag gag aaa aga Ser Gly Ala Gln Phe Arg Lys Lys Arg Lys Glu Glu Glu Lys Arg 10 15 20	101
15	gat aaa gaa aag ggg gca ctt cta aga tat ttt gga tcg tct acc act Asp Lys Glu Lys Gly Ala Leu Leu Arg Tyr Phe Gly Ser Ser Thr Thr 25 30 35 40	149
20	gct caa gat gag aca tct acc tcc ctg cca gct atc tca tca gcc aca Ala Gln Asp Glu Thr Ser Thr Ser Leu Pro Ala Ile Ser Ser Ala Thr 45 50 55	197
25	gtc aca gtc tca ccc cct cag gat gag cta cca tct aca tcc tct gct Val Thr Val Ser Pro Pro Gln Asp Glu Leu Pro Ser Thr Ser Ser Ala 60 65 70	245
30	act cat gta gtt cca cag ttg tta cct gag caa agt ttt gat agt gag Thr His Val Val Pro Gln Leu Leu Pro Glu Gln Ser Phe Asp Ser Glu 75 80 85	293
35	gct gaa gac gtt gtt cca tct acg tct acc cag ctt gag act tca gaa Ala Glu Asp Val Val Pro Ser Thr Ser Thr Gln Leu Glu Thr Ser Glu 90 95 100	341
40	atg cct ggt gat gaa acc cca ctg acc ccg act gct gag gac cag cct Met Pro Gly Asp Glu Thr Pro Leu Thr Pro Thr Ala Glu Asp Gln Pro 105 110 115 120	389
45	cta cca act gac cct gca aag tgg ccc tca cct ctg act gac agg ata Leu Pro Thr Asp Pro Ala Lys Trp Pro Ser Pro Leu Thr Asp Arg Ile 125 130 135	437
50	cgg atg gag ctg gtt cga aga gga cca agt agc ata cca cct gac ttt Arg Met Glu Leu Val Arg Arg Gly Pro Ser Ser Ile Pro Pro Asp Phe 140 145 150	485
55	gtt ttc cca aga aat gac agt gat ggg aga agt tgt cat cac cac tat Val Phe Pro Arg Asn Asp Ser Asp Gly Arg Ser Cys His His His Tyr 155 160 165	533
60	ttc agg aag aca cta gta agt ggt gaa aaa ata gca aga act tgg ttg Phe Arg Lys Thr Leu Val Ser Gly Glu Lys Ile Ala Arg Thr Trp Leu 170 175 180	581
65	atg tat tca aaa gtg aag aac agc ctc ttt tgc ttt tgt tgc aaa ttg Met Tyr Ser Lys Val Lys Asn Ser Leu Phe Cys Phe Cys Cys Lys Leu 185 190 195 200	629
70	ttt tcc aac aaa aac att aat tta aca act tct ggt aca gca aac tgg Phe Ser Asn Lys Asn Ile Asn Leu Thr Thr Ser Gly Thr Ala Asn Trp 205 210 215	677

EP 2 441 831 B9

	aaa cat gca agc aca tac ctc aca gca cac gaa aaa agc cca gaa cac	725
	Lys His Ala Ser Thr Tyr Leu Thr Ala His Glu Lys Ser Pro Glu His	
	220 225 230	
5	ctc aat tgt atg aaa gca tgg aag gaa ctg tca ggg agg atc aga agt	773
	Leu Asn Cys Met Lys Ala Trp Lys Glu Leu Ser Gly Arg Ile Arg Ser	
	235 240 245	
10	ggg aaa aca att gat aag cag gag atg gca ctt ctg gaa gag gag cgg	821
	Gly Lys Thr Ile Asp Lys Gln Glu Met Ala Leu Leu Glu Glu Arg	
	250 255 260	
15	gtg aga tgg aga gca gtg cta acc cgt ctc att gct att gtg cag tca	869
	Val Arg Trp Arg Ala Val Leu Thr Arg Leu Ile Ala Ile Val Gln Ser	
	265 270 275 280	
20	ctg gca gtt cgg aat ttg gct cta agg gga cac aca gaa aca ctg ttc	917
	Leu Ala Val Arg Asn Leu Ala Leu Arg Gly His Thr Glu Thr Leu Phe	
	285 290 295	
25	aca tca tca aat ggg aat ttt ttg aaa gag gtt gaa ctg atg gcc agg	965
	Thr Ser Ser Asn Gly Asn Phe Leu Lys Glu Val Glu Leu Met Ala Arg	
	300 305 310	
30	ttt gat ccc ata atg aaa gat cat ctt aac cgt gta tta aga gga aca	1013
	Phe Asp Pro Ile Met Lys Asp His Leu Asn Arg Val Leu Arg Gly Thr	
	315 320 325	
35	gca agt cac aac agc tac ata ggc cat cat gtg cag aat gaa ctt att	1061
	Ala Ser His Asn Ser Tyr Ile Gly His His Val Gln Asn Glu Leu Ile	
	330 335 340	
40	gat ttg ttg agc agc aaa atc cta tcc gct ata gtg gat gac atc aaa	1109
	Asp Leu Leu Ser Ser Lys Ile Leu Ser Ala Ile Val Asp Asp Ile Lys	
	345 350 355 360	
45	aag gca aaa tat ttt tca ata att ctg gac tgc act ctg gat ata agc	1157
	Lys Ala Lys Tyr Phe Ser Ile Ile Leu Asp Cys Thr Leu Asp Ile Ser	
	365 370 375	
50	cac aca gaa cag ttg tca gtt ata att aga gtg gtg tca ctg atg gag	1205
	His Thr Glu Gln Leu Ser Val Ile Ile Arg Val Val Ser Leu Met Glu	
	380 385 390	
55	aag cct cag atc agg gaa cat ttt atg ggg ttt ttg gag gca gag gag	1253
	Lys Pro Gln Ile Arg Glu His Phe Met Gly Phe Leu Glu Ala Glu Glu	
	395 400 405	
60	tcc aca ggc cag cac ttg gca tcc atg atc tta aac aga ctt gag gag	1301
	Ser Thr Gly Gln His Leu Ala Ser Met Ile Leu Asn Arg Leu Glu Glu	
	410 415 420	
65	tta gga att tct ttt gaa gac tgc aga gga caa tca tat gat aat ggg	1349
	Leu Gly Ile Ser Phe Glu Asp Cys Arg Gly Gln Ser Tyr Asp Asn Gly	
	425 430 435 440	
70	gca aat atg aaa ggc aaa aat aag gga gta caa gcc agg ctc tta gaa	1397
	Ala Asn Met Lys Gly Lys Asn Lys Gly Val Gln Ala Arg Leu Leu Glu	
	445 450 455	
75	aag aat ccc cgt gct ctg ttt ttg cca tgc ggt gca cac aca ttg aat	1445
	Lys Asn Pro Arg Ala Leu Phe Leu Pro Cys Gly Ala His Thr Leu Asn	
	460 465 470	

EP 2 441 831 B9

	tta gtt gtg tgt gat gct gct aag aga tct gtt gat gct atg agc tac Leu Val Val Cys Asp Ala Ala Lys Arg Ser Val Asp Ala Met Ser Tyr 475 480 485	1493
5	ttt ggt gtc ctg caa aag ctt tac act tta ttt tca gcc tct gcc caa Phe Gly Val Leu Gln Lys Leu Tyr Thr Leu Phe Ser Ala Ser Ala Gln 490 495 500	1541
10	cga tgg gcc ata ctg aag agt cag gtg agc atc act cta aag tcg tgg Arg Trp Ala Ile Leu Lys Ser Gln Val Ser Ile Thr Leu Lys Ser Trp 505 510 515 520	1589
	aca gaa aca agg tgg gag agc aaa atc aaa agc atc gag ccc atg agg Thr Glu Thr Arg Trp Glu Ser Lys Ile Lys Ser Ile Glu Pro Met Arg 525 530 535	1637
15	tac cag gga gct gca gtg aga gag gct tta ata gaa gtg aga gac aag Tyr Gln Gly Ala Ala Val Arg Glu Ala Leu Ile Glu Val Arg Asp Lys 540 545 550	1685
20	acc aaa gac cca gtt ata aag gct gag gcc cag tct ttg tct gaa gag Thr Lys Asp Pro Val Ile Lys Ala Glu Ala Gln Ser Leu Ser Glu Glu 555 560 565	1733
	gta ggg tcg tac cgc ttc aac atc tgc aca gtc gta tgg cat gac att Val Gly Ser Tyr Arg Phe Asn Ile Cys Thr Val Val Trp His Asp Ile 570 575 580	1781
25	cta tct aca ata aag cat gtc agc aaa ctc atg cag tct cca aat atg Leu Ser Thr Ile Lys His Val Ser Lys Leu Met Gln Ser Pro Asn Met 585 590 595 600	1829
30	cat gtg gac cta gct gtg agt ctt ttg aag aag act gaa caa agt ctc His Val Asp Leu Ala Val Ser Leu Leu Lys Lys Thr Glu Gln Ser Leu 605 610 615	1877
	cag agc tac agg gca aat ggc ttt gtg aat gca cag atg gca gcc aaa Gln Ser Tyr Arg Ala Asn Gly Phe Val Asn Ala Gln Met Ala Ala Lys 620 625 630	1925
35	gaa atg tgc aag gaa atg aat gtc gag gct att ttg aaa caa aaa aga Glu Met Cys Lys Glu Met Asn Val Glu Ala Ile Leu Lys Gln Lys Arg 635 640 645	1973
40	ata aga tcc aca aag tgc caa ttc tcg tat gaa tca cac gat gag cct Ile Arg Ser Thr Lys Cys Gln Phe Ser Tyr Glu Ser His Asp Glu Pro 650 655 660	2021
	ttc agt gac gca ctt aaa aag ttg gag gtt gaa ttt ttc aat gtt gtt Phe Ser Asp Ala Leu Lys Leu Glu Val Glu Phe Phe Asn Val Val 665 670 675 680	2069
45	gtt gat gaa gcc ttg tca gcc atc gcg gag agg ttt tcc aca ttg gaa Val Asp Glu Ala Leu Ser Ala Ile Ala Glu Arg Phe Ser Thr Leu Glu 685 690 695	2117
	gtt gta caa aac aga ttt ggg gtt ttg acc aat ttc cca agc ctt gga Val Val Gln Asn Arg Phe Gly Val Leu Thr Asn Phe Pro Ser Leu Gly 700 705 710	2165
50	gac gag gag ctg acg gag caa tgc gag gca cta ggc aac ata ctc cat Asp Glu Glu Leu Thr Glu Gln Cys Glu Ala Leu Gly Asn Ile Leu His 715 720 725	2213
55	ttt gag aag aac tgg gat ttg gac agt aga gag ctt gtt cag gaa atc	2261

Phe	Glu	Lys	Asn	Trp	Asp	Leu	Asp	Ser	Arg	Glu	Leu	Val	Gln	Glu	Ile		
730						735				740							
5	aag	aac	ttg	cct	aac	tta	cca	tca	acg	act	cca	agt	ctc	ctt	gag	ctc	2309
	Lys	Asn	Leu	Pro	Asn	Leu	Pro	Ser	Thr	Thr	Pro	Ser	Leu	Leu	Glu	Leu	
	745					750					755				760		
10	atc	tct	ttc	atg	tct	gat	aag	gat	cta	tca	gaa	atc	tat	ccg	aac	ttt	2357
	Ile	Ser	Phe	Met	Ser	Asp	Lys	Asp	Leu	Ser	Glu	Ile	Tyr	Pro	Asn	Phe	
						765			770				775				
15	tgg	act	gct	ctc	agg	att	gca	ctc	acc	ttg	cca	gtc	act	gtg	gct	caa	2405
	Trp	Thr	Ala	Leu	Arg	Ile	Ala	Leu	Thr	Leu	Pro	Val	Thr	Val	Ala	Gln	
						780			785				790				
20	gca	gag	agg	agc	ttt	tca	aaa	cta	aaa	ttg	atc	aag	tcg	tac	ctg	agg	2453
	Ala	Glu	Arg	Ser	Phe	Ser	Lys	Leu	Lys	Leu	Ile	Lys	Ser	Tyr	Leu	Arg	
						795			800				805				
25	tca	aca	atg	tca	cag	gag	cga	ctc	act	aac	ctt	gcc	gtt	gtt	agc	atc	2501
	Ser	Thr	Met	Ser	Gln	Glu	Arg	Leu	Thr	Asn	Leu	Ala	Val	Val	Ser	Ile	
						810			815				820				
30	aat	cac	tca	gta	ggg	gag	cag	ata	tca	tat	gat	gat	gtt	att	gac	gag	2549
	Asn	His	Ser	Val	Gly	Glu	Gln	Ile	Ser	Tyr	Asp	Asp	Val	Ile	Asp	Glu	
						825			830				835				
35	ttt	gca	tca	aga	aag	gct	agg	aag	gtt	agg	ttt	tag	ttgggtgtttt				2595
	Phe	Ala	Ser	Arg	Lys	Ala	Arg	Lys	Val	Arg	Phe						
						845			850								
40	ctgttattgt	attgggtgctg	cagttatatt	tat	tttagcg	tgc	tat	ttgtgtttt	gtgataaaag								2655
	gtttgtgctt	tataatattt	at	tttatattt	atttattcaa	tatt	gagttt	gattcaat									2715
	tttcttagct	aactgtat	ttt	ttgccc	atgct												2745
45	<210> 17																
	<211> 851																
	<212> PRT																
	<213> Oryzias latipes																
50	<400> 17																

Met Glu Lys Lys Arg Ser Lys Pro Ser Gly Ala Gln Phe Arg Lys Lys
1 5 10 15

5 Arg Lys Glu Glu Glu Lys Arg Asp Lys Glu Lys Gly Ala Leu Leu
20 25 30

10 Arg Tyr Phe Gly Ser Ser Thr Thr Ala Gln Asp Glu Thr Ser Thr Ser
35 40 45

15 Leu Pro Ala Ile Ser Ser Ala Thr Val Thr Val Ser Pro Pro Gln Asp
50 55 60

20 Glu Leu Pro Ser Thr Ser Ser Ala Thr His Val Val Pro Gln Leu Leu
65 70 75 80

25

30

35

40

45

50

55

EP 2 441 831 B9

5	Pro Glu Gln Ser Phe Asp Ser Glu Ala Glu Asp Val Val Pro Ser Thr	85	90	95	
	Ser Thr Gln Leu Glu Thr Ser Glu Met Pro Gly Asp Glu Thr Pro Leu	100	105	110	
10	Thr Pro Thr Ala Glu Asp Gln Pro Leu Pro Thr Asp Pro Ala Lys Trp	115	120	125	
	Pro Ser Pro Leu Thr Asp Arg Ile Arg Met Glu Leu Val Arg Arg Gly	130	135	140	
15	Pro Ser Ser Ile Pro Pro Asp Phe Val Phe Pro Arg Asn Asp Ser Asp	145	150	155	160
20	Gly Arg Ser Cys His His His Tyr Phe Arg Lys Thr Leu Val Ser Gly	165	170	175	
	Glu Lys Ile Ala Arg Thr Trp Leu Met Tyr Ser Lys Val Lys Asn Ser	180	185	190	
25	Leu Phe Cys Phe Cys Cys Lys Leu Phe Ser Asn Lys Asn Ile Asn Leu	195	200	205	
30	Thr Thr Ser Gly Thr Ala Asn Trp Lys His Ala Ser Thr Tyr Leu Thr	210	215	220	
	Ala His Glu Lys Ser Pro Glu His Leu Asn Cys Met Lys Ala Trp Lys	225	230	235	240
35	Glu Leu Ser Gly Arg Ile Arg Ser Gly Lys Thr Ile Asp Lys Gln Glu	245	250	255	
40	Met Ala Leu Leu Glu Glu Arg Val Arg Trp Arg Ala Val Leu Thr	260	265	270	
	Arg Leu Ile Ala Ile Val Gln Ser Leu Ala Val Arg Asn Leu Ala Leu	275	280	285	
45	Arg Gly His Thr Glu Thr Leu Phe Thr Ser Ser Asn Gly Asn Phe Leu	290	295	300	
50	Lys Glu Val Glu Leu Met Ala Arg Phe Asp Pro Ile Met Lys Asp His	305	310	315	320
	Leu Asn Arg Val Leu Arg Gly Thr Ala Ser His Asn Ser Tyr Ile Gly	325	330	335	
55	His His Val Gln Asn Glu Leu Ile Asp Leu Leu Ser Ser Lys Ile Leu				

EP 2 441 831 B9

340

345

350

5 355 360 365

10 Ile Arg Val Val Ser Leu Met Glu Lys Pro Gln Ile Arg Glu His Phe
105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180

15 Met Gly Phe Leu Glu Ala Glu Glu Ser Thr Gly Gln His Leu Ala Ser
405 410 415

Met Ile Leu Asn Arg Leu Glu Glu Leu Gly Ile Ser Phe Glu Asp Cys
420 425 430

20 Arg Gly Gln Ser Tyr Asp Asn Gly Ala Asn Met Lys Gly Lys Asn Lys
435 440 445

25 Gly Val Gln Ala Arg Leu Leu Glu Lys Asn Pro Arg Ala Leu Phe Leu
450 455 460

Pro Cys Gly Ala His Thr Leu Asn Leu Val Val Cys Asp Ala Ala Lys
465 470 475 480

35 Thr Leu Phe Ser Ala Ser Ala Gln Arg Trp Ala Ile Leu Lys Ser Gln
 500 505 510

Val Ser Ile Thr Leu Lys Ser Trp Thr Glu Thr Arg Trp Glu Ser Lys
515 520 525

Ile Lys Ser Ile Glu Pro Met Arg Tyr Gln Gly Ala Ala Val Arg Glu
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537

45 Ala Leu Ile Glu Val Arg Asp Lys Thr Lys Asp Pro Val Ile Lys Ala
545 550 555 560

Glu Ala Gln Ser Leu Ser Glu Glu Val Gly Ser Tyr Arg Phe Asn Ile
565 570 575

Cys Thr Val Val Trp His Asp Ile Leu Ser Thr Ile Lys His Val Ser
580 585 590

55 Lys Leu Met Gln Ser Pro Asn Met His Val Asp Leu Ala Val Ser Leu
595 600 605

EP 2 441 831 B9

Leu Lys Lys Thr Glu Gln Ser Leu Gln Ser Tyr Arg Ala Asn Gly Phe
 610 615 620

5 Val Asn Ala Gln Met Ala Ala Lys Glu Met Cys Lys Glu Met Asn Val
 625 630 635 640

10 Glu Ala Ile Leu Lys Gln Lys Arg Ile Arg Ser Thr Lys Cys Gln Phe
 645 650 655

15 Ser Tyr Glu Ser His Asp Glu Pro Phe Ser Asp Ala Leu Lys Lys Leu
 660 665 670

20 Glu Val Glu Phe Phe Asn Val Val Val Asp Glu Ala Leu Ser Ala Ile
 675 680 685

25 Ala Glu Arg Phe Ser Thr Leu Glu Val Val Gln Asn Arg Phe Gly Val
 690 695 700

30 Leu Thr Asn Phe Pro Ser Leu Gly Asp Glu Glu Leu Thr Glu Gln Cys
 705 710 715 720

35 Glu Ala Leu Gly Asn Ile Leu His Phe Glu Lys Asn Trp Asp Leu Asp
 725 730 735

40 Ser Arg Glu Leu Val Gln Glu Ile Lys Asn Leu Pro Asn Leu Pro Ser
 740 745 750

45 Thr Thr Pro Ser Leu Leu Glu Leu Ile Ser Phe Met Ser Asp Lys Asp
 755 760 765

50 Leu Ser Glu Ile Tyr Pro Asn Phe Trp Thr Ala Leu Arg Ile Ala Leu
 770 775 780

55 Thr Leu Pro Val Thr Val Ala Gln Ala Glu Arg Ser Phe Ser Lys Leu
 785 790 795 800

Lys Leu Ile Lys Ser Tyr Leu Arg Ser Thr Met Ser Gln Glu Arg Leu
 805 810 815

60 Thr Asn Leu Ala Val Val Ser Ile Asn His Ser Val Gly Glu Gln Ile
 820 825 830

65 Ser Tyr Asp Asp Val Ile Asp Glu Phe Ala Ser Arg Lys Ala Arg Lys
 835 840 845

70 Val Arg Phe
 850

Claims

1. A method for producing a protein of interest, comprising introducing a protein expression vector (a) which comprises a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and, at both terminals of the gene fragment, a pair of transposon sequences which are the Tol1 nucleotide sequences shown in SEQ ID NO:14 and SEQ ID NO:15 or the Tol2 nucleotide sequences shown in SEQ ID NO:2 and SEQ ID NO:3, into a suspension CHO cell capable of surviving and proliferating in a serum-free medium; introducing an expression vector (b) which comprises a DNA encoding a transposase which recognizes the transposon sequences and has activity of transferring a gene fragment inserted between the transposon sequences into a chromosome into the CHO cell; integrating the gene fragment inserted between the transposon sequences into a chromosome of the CHO cell to obtain a said CHO cell capable of expressing the protein of interest; and suspension-culturing the CHO cell.
2. A method according to claim 1, comprising:
 - (A) simultaneously introducing the expression vectors (a) and (b) into the CHO cell,
 - (B) expressing transiently the transposase from the expression vector introduced in the step (A) to integrate the gene fragment inserted between the transposon sequences into a chromosome of the CHO cell to obtain a said suspension CHO cell capable of expressing the protein of interest, and
 - (C) suspension-culturing the suspension CHO cell capable of expressing the protein of interest obtained in the step (B) to produce the protein of interest.
3. A method for obtaining a suspension CHO cell capable of expressing a protein of interest, comprising introducing a protein expression vector which comprises a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and, at both terminals of the gene fragment, a pair of transposon sequences which are the Tol1 nucleotide sequences shown in SEQ ID NO:14 and SEQ ID NO:15 or the Tol2 nucleotide sequences shown in SEQ ID NO:2 and SEQ ID NO:3, into a suspension CHO cell capable of surviving and proliferating in a serum-free medium; introducing an expression vector (b) which comprises a DNA encoding a transposase which recognizes the transposon sequences and has activity of transferring a gene fragment inserted between the transposon sequences into a chromosome into the CHO cell; and integrating the gene fragment inserted between the transposon sequences into a chromosome of the CHO cell.
4. The method according to any one of claims 1 to 3, wherein the CHO cell is at least one selected from CHO-K1, CHO-K1SV, DUKXB11, CHO/DG44, Pro-3 and CHO-S.
5. The method according to any one of the preceding claims, wherein the selectable marker gene is a cycloheximide resistance gene.
6. The method according to claim 5, wherein the cycloheximide resistance gene is a gene encoding a mutant of human ribosomal protein L36a.
7. The method according to claim 6, wherein the mutant is a mutant in which proline at position 54 of the human ribosomal protein L36a is substituted with another amino acid.
8. The method according to claim 7, wherein the other amino acid is glutamine.
9. A suspension CHO cell capable of surviving and proliferating in a serum-free medium and of producing a protein of interest, which cell comprises an expression vector (a) comprising a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and, at both terminals of the gene fragment, a pair of transposon sequences which are the Tol1 nucleotide sequences shown in SEQ ID NO:14 and SEQ ID NO:15 or the Tol2 nucleotide sequences shown in SEQ ID NO:2 and SEQ ID NO:3, and an expression vector (b) comprising a DNA encoding a transposase (a transferase) which recognizes the transposon sequences and has activity of transferring the gene fragment inserted between the transposon sequences into a chromosome to integrate the gene fragment inserted between the transposon sequences into a chromosome of the CHO cell.
10. The cell according to claim 9, wherein the CHO cell is at least one selected from CHO-K1, CHO-K1SV, DUKXB11, CHO/DG44, Pro-3 and CHO-S.

11. The cell according to claim 9 or 10, wherein the selectable marker gene is a cycloheximide resistance gene.

12. The cell according to claim 11, wherein the cycloheximide resistance gene is a gene encoding a mutant of human ribosomal protein L36a.

5 13. The cell according to claim 12, wherein the mutant is a mutant in which proline at position 54 of the human ribosomal protein L36a is substituted with another amino acid.

10 14. The cell according to claim 13, wherein the other amino acid is glutamine.

15 15. Use of a protein expression vector (a) comprising a gene fragment comprising a DNA encoding a protein of interest and a selectable marker gene and, at both terminals of the gene fragment, a pair of transposon sequences which are the Tol1 nucleotide sequences shown in SEQ ID NO:14 and SEQ ID NO:15 or the Tol2 nucleotide sequences shown in SEQ ID NO:2 and SEQ ID NO:3 and an expression vector (b) comprising a DNA encoding a transposase which recognizes the transposon sequences and has activity of transferring a gene fragment inserted between the transposon sequences into a chromosome, to integrate the gene fragment inserted between the transposon sequences into a chromosome of a suspension CHO cell capable of surviving and proliferating in a serum-free medium.

20 **Patentansprüche**

1. Verfahren zum Herstellen eines Proteins von Interesse, umfassend Einführen eines Proteinexpressionsvektors (a), der ein Genfragment umfasst, das eine DNA umfasst, die ein Protein von Interesse und ein selektierbares Markergen und an beiden Endstellen des Genfragments ein Paar von Transposonsequenzen kodiert, die die Tol1-Nukleotidsequenzen gezeigt in SEQ ID NO:14 und SEQ ID NO:15 oder die Tol2-Nukleotidsequenzen gezeigt in SEQ ID NO:2 und SEQ ID NO:3 sind, in eine CHO-Suspensionszelle, die in der Lage ist, in einem serumfreien Medium zu überleben und sich zu vermehren; Einführen eines Expressionsvektors (b), umfassend eine DNA, die eine Transposase kodiert, die die Transposonsequenzen erkennt und Aktivität des Übertragens eines Genfragments hat, das zwischen den Transposonsequenzen in ein Chromosom in die CHO-Zelle eingesetzt ist; Integrieren des Genfragments, das zwischen den Transposonsequenzen in ein Chromosom der CHO-Zelle eingesetzt ist, um eine solche CHO-Zelle zu erhalten, die in der Lage ist, das Protein von Interesse zu exprimieren; und Suspensionskultivieren der CHO-Zelle.

2. Verfahren nach Anspruch 1, umfassend:

35 (A) simultanes Einführen der Expressionsvektoren (a) und (b) in die CHO-Zelle,
 (B) vorübergehendes Exprimieren der Transposase aus dem Expressionsvektor, der in dem Schritt (A) einge-führt wird, um das Genfragment zu integrieren, das zwischen den Transposonsequenzen in ein Chromosom der CHO-Zelle eingesetzt ist, um eine solche CHO-Suspensionszelle zu erhalten, die in der Lage ist, das Protein von Interesse zu exprimieren, und
 40 (C) Suspensionskultivieren der CHO-Suspensionszelle, die in der Lage ist, das Protein von Interesse, das in dem Schritt (B) erhalten wird, zu exprimieren, um das Protein von Interesse herzustellen.

3. Verfahren zum Erhalten einer CHO-Suspensionszelle, die in der Lage ist, ein Protein von Interesse zu exprimieren, umfassend Einführen eines Proteinexpressionsvektors, der ein Genfragment umfasst, das eine DNA umfasst, die ein Protein von Interesse und ein selektierbares Markergen und an beiden Endstellen des Genfragments ein Paar von Transposonsequenzen kodiert, die die Tol1-Nukleotidsequenzen gezeigt in SEQ ID NO:14 und SEQ ID NO:15 oder die Tol2-Nukleotidsequenzen gezeigt in SEQ ID NO:2 und SEQ ID NO:3 sind, in eine CHO-Suspensionszelle, die in der Lage ist, in einem serumfreien Medium zu überleben und sich zu vermehren; Einführen eines Expressionsvektors (b), umfassend eine DNA, die eine Transposase kodiert, die die Transposonsequenzen erkennt und Aktivität des Übertragens eines Genfragments hat, das zwischen den Transposonsequenzen in ein Chromosom in die CHO-Zelle eingesetzt ist; und Integrieren des Genfragments, das zwischen den Transposonsequenzen in ein Chromosom der CHO-Zelle eingesetzt ist.

45 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die CHO-Zelle mindestens eine ausgewählt aus CHO-K1, CHO-K1SV, DUKXB11, CHO/DG44, Pro-3 und CHO-S ist.

50 5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das selektierbare Markergen ein Cycloheximid-Re-sistenzgen ist.

6. Verfahren nach Anspruch 5, wobei das Cycloheximid-Resistenzgen ein Gen ist, das eine Mutante von humanem ribosomalem Protein L36a ist.

5 7. Verfahren nach Anspruch 6, wobei die Mutante eine Mutante ist, in der Prolin an Position 54 des humanen ribosomalen Proteins L36a mit einer anderen Aminosäure substituiert ist.

8. Verfahren nach Anspruch 7, wobei die andere Aminosäure Glutamin ist.

9. CHO-Suspensionszelle, die in der Lage ist, in einem serumfreien Medium zu überleben und sich zu vermehren, und ein Protein von Interesse herzustellen, wobei die Zelle einen Expressionsvektor (a) umfasst, der ein Genfragment umfasst, das eine DNA umfasst, die ein Protein von Interesse und ein selektierbares Markergen und an beiden Endstellen des Genfragments ein Paar von Transposonsequenzen kodiert, die die Tol1-Nukleotidsequenzen gezeigt in SEQ ID NO:14 und SEQ ID NO:15 oder die Tol2-Nukleotidsequenzen gezeigt in SEQ ID NO:2 und SEQ ID NO:3 sind, und einen Expressionsvektor (b), umfassend eine DNA, die eine Transposase (eine Transferase) kodiert, die die Transposonsequenzen erkennt und Aktivität des Übertragens des Genfragments hat, das zwischen den Transposonsequenzen in ein Chromosom eingesetzt ist, um das Genfragment, das zwischen den Transposonsequenzen in ein Chromosom der CHO-Zelle eingesetzt ist, zu integrieren.

10 15 10. Zelle nach Anspruch 9, wobei die CHO-Zelle mindestens eine ausgewählt aus CHO-K1, CHO-K1SV, DUKXB11, CHO/DG44, Pro-3 und CHO-S ist.

20 11. Zelle nach Anspruch 9 oder 10, wobei das selektierbare Markergen ein Cycloheximid-Resistenzgen ist.

25 12. Zelle nach Anspruch 11, wobei das Cycloheximid-Resistenzgen ein Gen ist, das eine Mutante von humanem ribosomalem Protein L36a ist.

13. Zelle nach Anspruch 12, wobei die Mutante eine Mutante ist, in der Prolin an Position 54 des humanen ribosomalen Proteins L36a mit einer anderen Aminosäure substituiert ist.

30 14. Zelle nach Anspruch 13, wobei die andere Aminosäure Glutamin ist.

15. Verwendung eines Proteinexpressionsvektors (a), der ein Genfragment umfasst, das eine DNA umfasst, die ein Protein von Interesse und ein selektierbares Markergen und an beiden Endstellen des Genfragments ein Paar von Transposonsequenzen kodiert, die die Tol1-Nukleotidsequenzen gezeigt in SEQ ID NO:14 und SEQ ID NO:15 oder die Tol2-Nukleotidsequenzen gezeigt in SEQ ID NO:2 und SEQ ID NO:3 sind, und eines Expressionsvektors (b), umfassend eine DNA, die eine Transposase kodiert, die die Transposonsequenzen erkennt und Aktivität des Übertragens eines Genfragments hat, das zwischen den Transposonsequenzen in ein Chromosom eingesetzt ist, um das Genfragment zu integrieren, das zwischen den Transposonsequenzen in ein Chromosom einer CHO-Suspensionszelle eingesetzt ist, die in der Lage ist, in einem serumfreien Medium zu überleben und sich zu vermehren.

40

Revendications

1. Procédé pour produire une protéine d'intérêt, comprenant l'introduction d'un vecteur d'expression protéique (a) qui comprend un fragment de gène comprenant un ADN encodant une protéine d'intérêt et un gène marqueur sélectionnable et, aux deux extrémités du fragment de gène, une paire de séquences de transposons qui sont les séquences de nucléotides Tol1 représentées dans SEQ ID n° : 14 et SEQ ID n° : 15 ou les séquences de nucléotides Tol2 représentées dans SEQ ID n° : 2 et SEQ ID n° : 3, dans une cellule CHO en suspension capable de survivre et de se proliférer dans un milieu dépourvu de sérum ; l'introduction d'un vecteur d'expression (b) qui comprend un ADN encodant une transposase qui reconnaît les séquences de transposons et présente l'activité de transfert d'un fragment de gène inséré entre les séquences de transposons dans un chromosome dans la cellule CHO ; l'intégration du fragment de gène inséré entre les séquences de transposons dans un chromosome de la cellule CHO pour obtenir une dite cellule CHO capable d'exprimer la protéine d'intérêt ; et la culture en suspension de la cellule CHO.

45 50 55 2. Procédé selon la revendication 1, comprenant :

(A) l'introduction simultanée des vecteurs d'expression (a) et (b) dans la cellule CHO,
 (B) l'expression transitoire de la transposase à partir du vecteur d'expression introduit dans l'étape (A) pour

intégrer le fragment de gène inséré entre les séquences de transposons dans un chromosome de la cellule CHO pour obtenir une dite cellule CHO en suspension capable d'exprimer la protéine d'intérêt, et (C) la culture en suspension de la cellule CHO en suspension capable d'exprimer la protéine d'intérêt obtenue dans l'étape (B) pour produire la protéine d'intérêt.

5 3. Procédé pour obtenir une cellule CHO en suspension capable d'exprimer une protéine d'intérêt, comprenant l'introduction d'un vecteur d'expression protéique qui comprend un fragment de gène comprenant un ADN encodant une protéine d'intérêt et un gène marqueur sélectionnable et, aux deux extrémités du fragment de gène, une paire de séquences de transposons qui sont les séquences de nucléotides Tol1 représentées dans SEQ ID n° : 14 et SEQ ID n° : 15 ou les séquences de nucléotides Tol2 représentées dans SEQ ID n° : 2 et SEQ ID n° : 3, dans une cellule CHO en suspension capable de survivre et de se proliférer dans un milieu dépourvu de sérum ; l'introduction d'un vecteur d'expression (b) qui comprend un ADN encodant une transposase qui reconnaît les séquences de transposons et présente l'activité de transfert d'un fragment de gène inséré entre les séquences de transposons dans un chromosome dans la cellule CHO ; et l'intégration du fragment de gène inséré entre les séquences de transposons dans un chromosome de la cellule CHO.

10 4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel la cellule CHO est au moins l'une sélectionnée parmi CHO-K1, CHO-K1SV, DUKXB11, CHO/DG44, Pro-3 et CHO-S.

15 5. Procédé selon l'une quelconque des revendications précédentes, dans lequel le gène marqueur sélectionnable est un gène de résistance au cycloheximide.

20 6. Procédé selon la revendication 5, dans lequel le gène de résistance au cycloheximide est un gène encodant un mutant de protéine ribosomale humaine L36a.

25 7. Procédé selon la revendication 6, dans lequel le mutant est un mutant dans lequel la proline à la position 54 de la protéine ribosomale humaine L36a est remplacée avec un autre acide aminé.

30 8. Procédé selon la revendication 7, dans lequel l'autre acide aminé est la glutamine.

35 9. Cellule CHO en suspension capable de survivre et de se proliférer dans un milieu dépourvu de sérum et de produire une protéine d'intérêt, laquelle cellule comprend un vecteur d'expression (a) comprenant un fragment de gène comprenant un ADN encodant une protéine d'intérêt et un gène marqueur sélectionnable et, aux deux extrémités du fragment de gène, une paire de séquences de transposons qui sont les séquences de nucléotides Tol1 représentées dans SEQ ID n° : 14 et SEQ ID n° : 15 ou les séquences de nucléotides Tol2 représentées dans SEQ ID n° : 2 et SEQ ID n° : 3, et un vecteur d'expression (b) comprenant un ADN encodant une transposase (une transférase) qui reconnaît les séquences de transposons et présente une activité de transfert du fragment de gène inséré entre les séquences de transposons dans un chromosome pour intégrer le fragment de gène inséré entre les séquences de transposons dans un chromosome de la cellule CHO.

40 10. Cellule selon la revendication 9, dans laquelle la cellule CHO est au moins l'une sélectionnée parmi CHO-K1, CHO-K1SV, DUKXB11, CHO/DG44, Pro-3 et CHO-S.

45 11. Cellule selon la revendication 9 ou 10, dans laquelle le gène marqueur sélectionnable est un gène de résistance au cycloheximide.

50 12. Cellule selon la revendication 11, dans laquelle le gène de résistance au cycloheximide est un gène encodant un mutant de protéine ribosomale humaine L36a.

55 13. Cellule selon la revendication 12, dans laquelle le mutant est un mutant dans lequel la proline à la position 54 de la protéine ribosomale humaine L36a est remplacée avec un autre acide aminé.

60 14. Cellule selon la revendication 13, dans laquelle l'autre acide aminé est la glutamine.

65 15. Utilisation d'un vecteur d'expression protéique (a) comprenant un fragment de gène comprenant un ADN encodant une protéine d'intérêt et un gène marqueur sélectionnable et, aux deux extrémités du fragment de gène, une paire de séquences de transposons qui sont les séquences de nucléotides Tol1 représentées dans SEQ ID n° : 14 et SEQ ID n° : 15 ou les séquences de nucléotides Tol2 représentées dans SEQ ID n° : 2 et SEQ ID n° : 3 et un vecteur

d'expression (b) comprenant un ADN encodant une transposase qui reconnaît les séquences de transposons et présente l'activité de transfert d'un fragment de gène inséré entre les séquences de transposons dans un chromosome, pour intégrer le fragment de gène inséré entre les séquences de transposons dans un chromosome d'une cellule CHO en suspension capable de survivre et de se proliférer dans un milieu dépourvu de sérum.

5

10

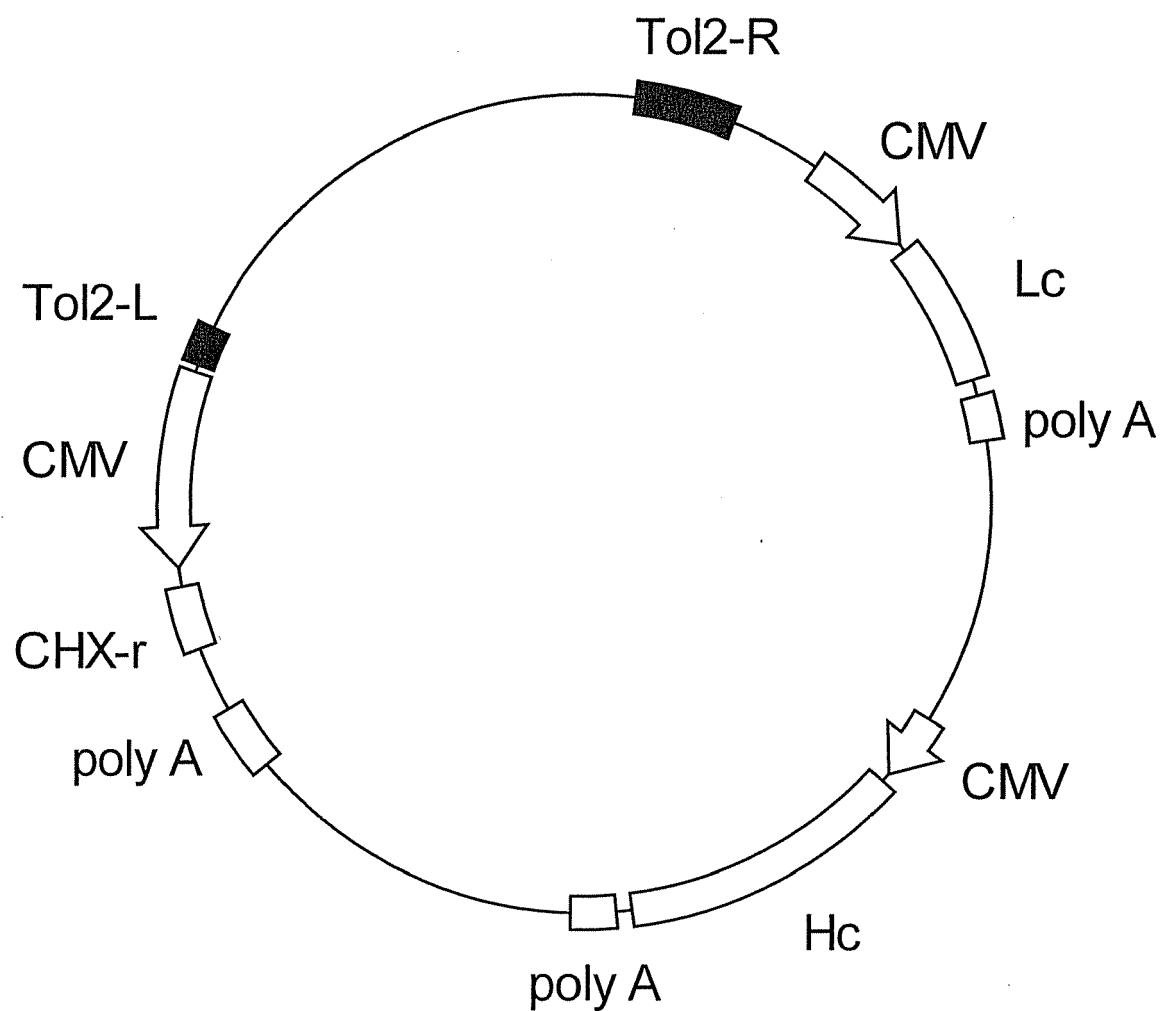
15

20

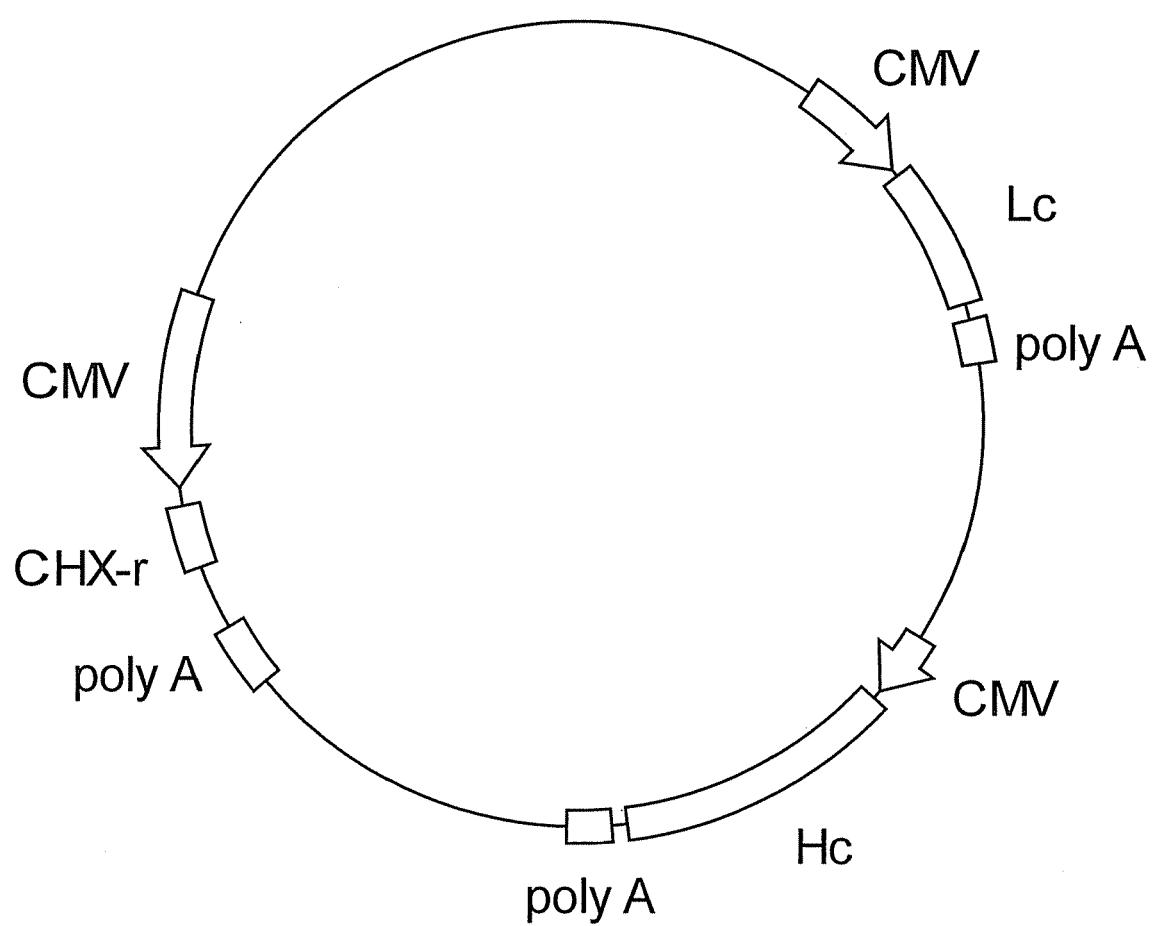
25

30

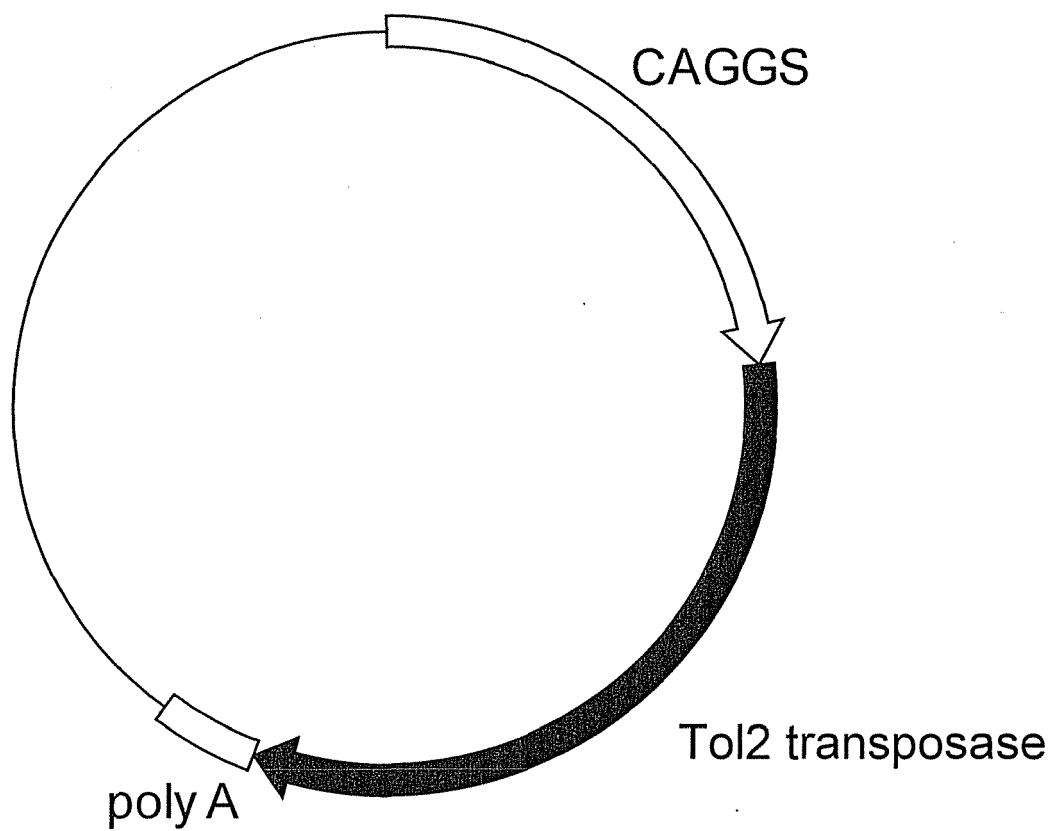
35

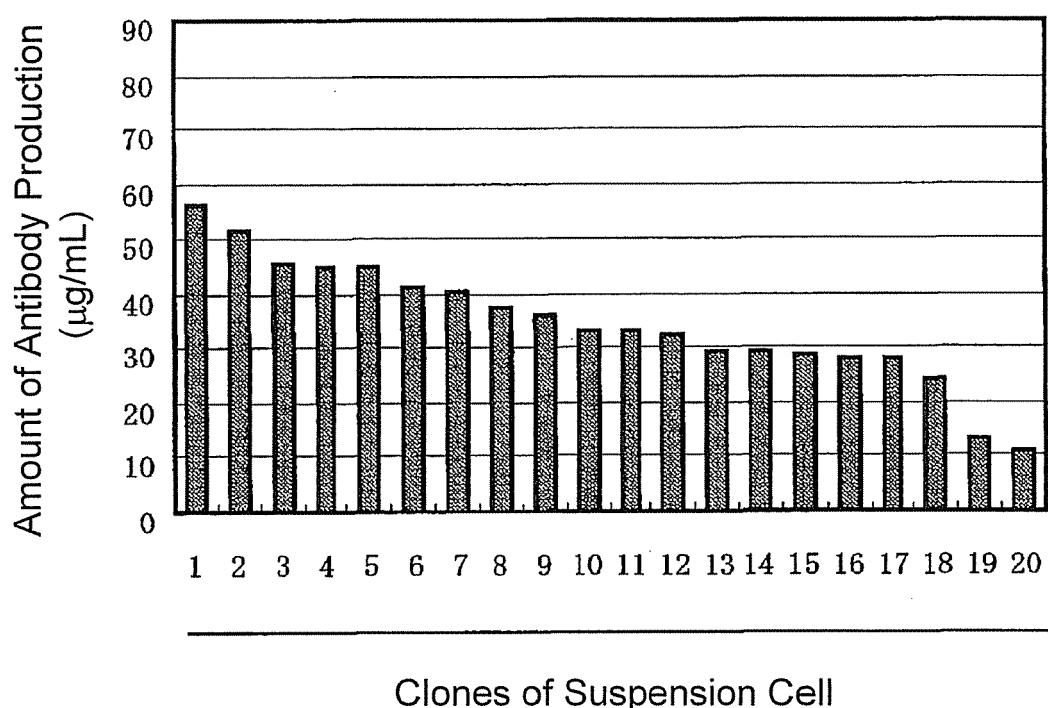

40

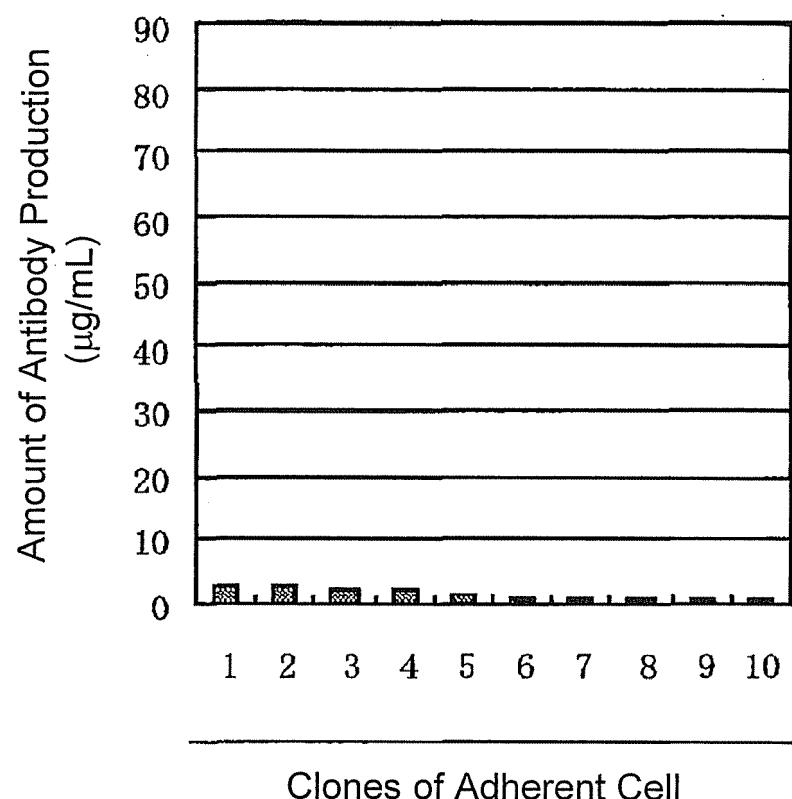
45

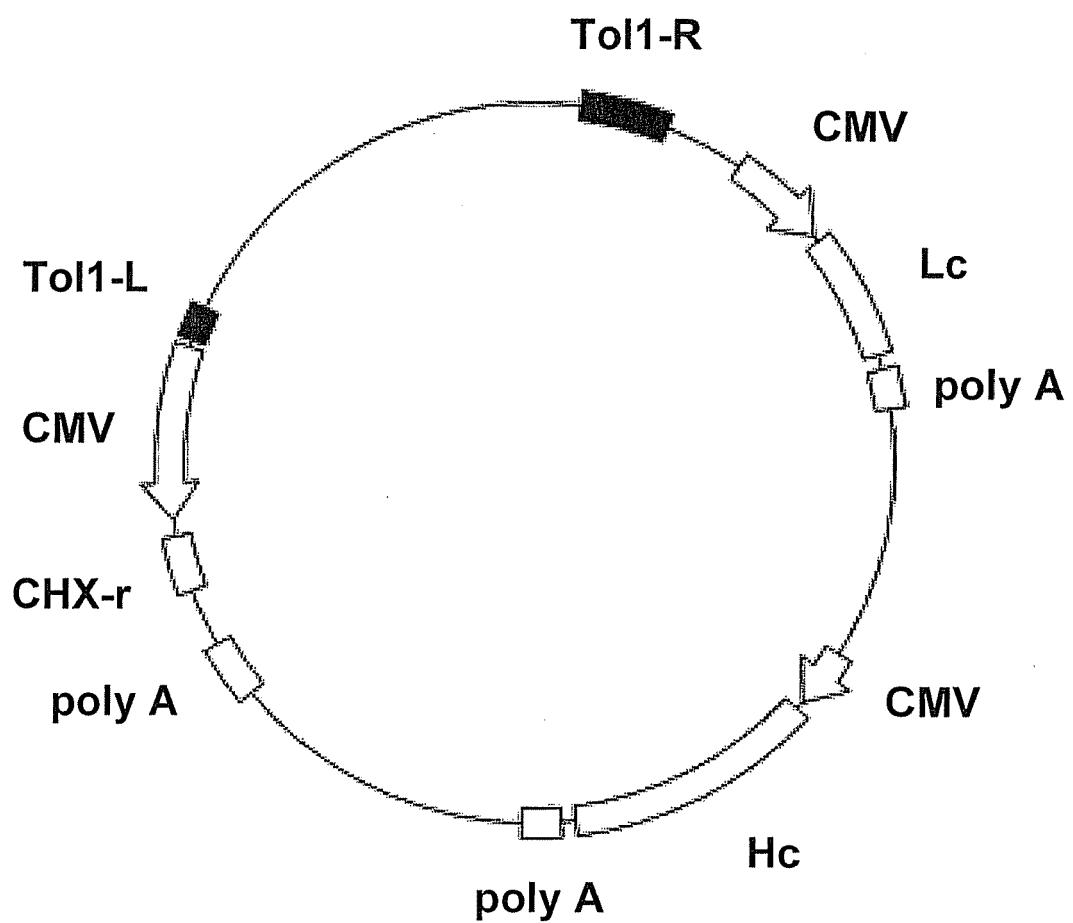

50

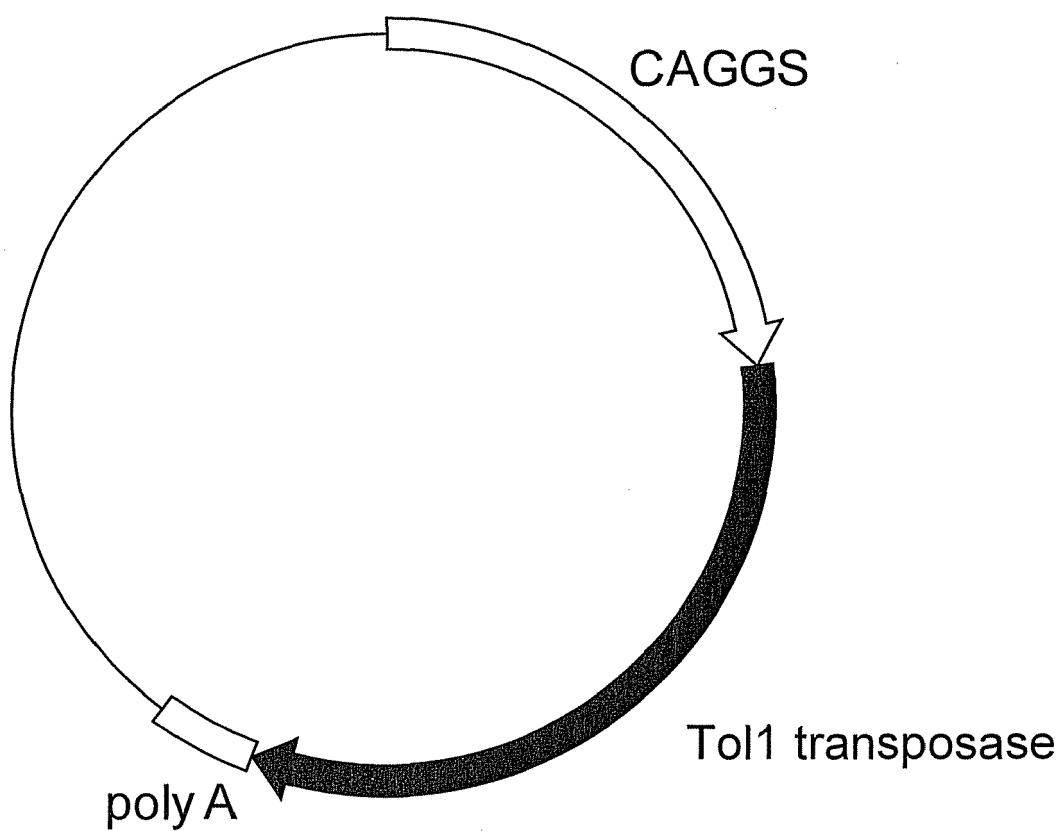
55


Fig. 1


Fig.2


Fig.3


Fig. 4A


Fig. 4B

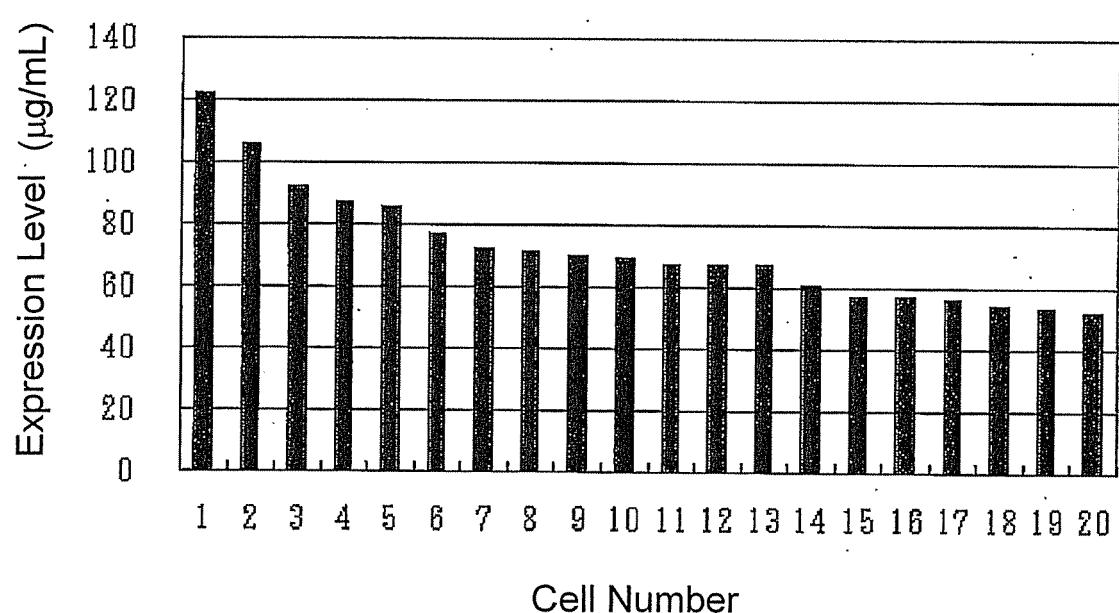

Fig.5

Fig.6

Fig. 7

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2008072540 A [0017] [0136]
- JP 2001532188 A [0017]
- JP 2002262879 A [0017] [0060] [0062]
- JP 2003235575 A [0046] [0102]
- WO 200535586 A [0068]
- WO 200231140 A [0068] [0071]
- WO 2005035586 A [0071]
- WO 0061739 A [0071]
- US 20070148165 A [0076]
- US 6737056 B [0077]
- US 7297775 B [0077]
- US 7317091 B [0077]
- WO 2006061723 A [0104] [0105]
- JP 2009140626 A [0153] [0156]
- US 61186138 A [0153]
- WO 69874 A [0156]
- US 61186138 B [0156]

Non-patent literature cited in the description

- *Nature*, 1996, vol. 383, 30 [0018]
- *Cell*, 1997, vol. 91, 501-510 [0018]
- *Nucleic Acids Res*, 2003, vol. 31, 6873-6881 [0018]
- *Insect Mol.Biol.*, 1996, vol. 5, 141-151 [0018]
- *Genetics*, 2004, vol. 166, 895-899 [0018]
- *PLoS Genet*, 2006, vol. 2, e169 [0018]
- *Proc. Natl. Acad. Sci. USA*, 1998, vol. 95, 10769-10773 [0018]
- *Proc. Natl. Acad. Sci. USA*, 2001, vol. 98, 6759-6764 [0018]
- *Nature*, 2005, vol. 436, 221-226 [0018]
- *Nucleic Acids Res.*, 2003, vol. 31, 6873-6881 [0018]
- *Nucleic Acids Res.*, 2007, vol. 35, e87 [0018]
- *Proc. Natl. Acad. Sci. USA*, 2006, vol. 103, 15008-15013 [0018]
- *Genome Biology*, 2007, vol. 8 (1), 7.1-7.10 [0018]
- *Genetics*, 2006, vol. 174, 639-649 [0018]
- **KOZAK M.** *Nucleic Acids Res.*, 1984, vol. 12, 857-872 [0049]
- **KONDO K.** *J. Bacteriol.*, 1995, vol. 177 (24), 7171-7177 [0062]
- Shin Idenshi Kogaku Handbook (New Genetic Engineering Handbook). Yodo-sha [0065]
- *Journal of Experimental Medicine*, 1958, vol. 108, 945 [0066]
- *Proc. Natl. Acad. Sci. USA*, 1968, 601275 [0066]
- *Genetics*, 1968, vol. 55, 513 [0066]
- *Chromosoma*, 1973, vol. 41, 129 [0066]
- *Methods in Cell Science*, 1996, vol. 18, 115 [0066]
- *Radiation Research*, 1997, vol. 148, 260 [0066]
- *Proc. Natl. Acad. Sci. USA*, 1980, vol. 77, 4216 [0066]
- *Proc. Natl. Acad. Sci.*, 1968, vol. 60, 1275 [0066]
- *Cell*, 1975, vol. 6, 121 [0066]
- *Molecular Cell Genetics*, 883-900 [0066]
- Somatic Cell and Molecular Genetics. 1986, vol. 12, 55 [0068]
- *Mol. Biotechnol.*, 2000, vol. 15 (3), 249-57 [0084]
- *J. Biotechnol.*, 2007, vol. 130 (3), 282-90 [0084]
- *Cytotechnology*, 2006, vol. 52, 199-207 [0094]
- Protein Experimentation Note (the first volume) - Extraction, Separation and Expression of Recombinant Protein (translation of a textbook written in Japanese). Yodo-sha [0097]
- *Molecular Cloning* [0099]
- Current Protocols in Molecular Biology. Current Protocols [0099]
- *Gene*, 1991, vol. 108, 193-200 [0109]
- **KAWAKAMI K.** ; **NODA T.** *Genetics*, 2004, vol. 166, 895-899 [0112]
- *Yeast Res.*, 2007, vol. 7, 1307-1316 [0130] [0151]