Field of the invention
[0001] The present invention relates to a process for the polymerization of an olefin monomer.
In particular, the present invention relates to a process for the polymerization of
an olefin monomer and one or more optional comonomers in presence of a polymerization
catalyst and hydrogen, said process being characterized by an improved control of
the hydrogen concentration in the polymerization reactor. In addition, the present
invention provides for an improved hydrogen feeding system to a polymerization reactor.
Furthermore, the present invention provides for a polymerization reactor comprising
such an improved hydrogen feeding system.
The technical problem and the prior art
[0002] Polyolefins.are typically produced by polymerization of an olefin monomer and one
or more optional comonomers in a polymerization reactor. The polymerization is conducted
in presence of a polymerization catalyst, and hydrogen, which is used as a chain terminating
agent.
[0003] The properties of the polyolefins are controlled by appropriate choice of the polymerization
conditions, such as temperature, pressure and concentrations of the components making
up the polymerization medium, including the reactants. One of the most important properties
is the melt flow rate, which gives an indication of the average length of the polymer
chains. Polymer chain length is essentially determined by the concentration of hydrogen
in the polymerization reactor. A higher hydrogen concentration in the reactor leads
to shorter polymer chains and by consequence to a polyolefin having a higher melt
flow rate. By contrast, a lower hydrogen concentration leads to longer polymer chains
and therefore to a polyolefin having a lower melt flow rate.
[0004] The hydrogen concentration that is required to produce a polyolefin of a targeted
melt flow rate depends upon the type of polymerization catalyst. Thus, when producing
a polyolefin of identical melt flow rate, polymerization catalysts with a low sensitivity
to hydrogen, such as a chromium-based catalyst, require a higher concentration of
hydrogen than polymerization catalysts with a higher sensitivity to hydrogen, such
as for example metallocene-based polymerization catalysts.
[0005] Controlling the hydrogen concentration in the polymerization reactor poses a particular
challenge because generally the hydrogen concentration is low in comparison to the
concentrations of other components of the polymerization medium, such as the olefin
monomer, and because changes in hydrogen concentration have a big effect on the melt
flow rate of the polyolefin. It is therefore very important to control the hydrogen
concentration as closely as possible to a pre-determined set-point, thereby allowing
the production of a polyolefin having uniform properties, not just within one single
production campaign but also from one production campaign to the next.
[0006] WO 2007/113308 by the same applicant discloses a polymerization process having improved control
of the hydrogen concentration in a polymerization reactor in that the hydrogen/monomer
ratio along the path of the reactor is controlled by multiple, spatially separated
feeding of hydrogen along the path of the reactor. While the disclosed polymerization
process has improved the uniformity and consistency of the polyolefins produced with
this process, control of the hydrogen concentration is still not sufficient for polymerization
catalysts that are very responsive to hydrogen, such as for example metallocene-based
catalysts.
[0007] In view of the above, there remains a need in the art to provide a process for improving
the polymerization of an olefin monomer in a polymerization reactor.
[0008] In particular there remains a need to provide a process for the polymerization of
an olefin monomer in a polymerization reactor, said process being characterized by
improved control of the hydrogen concentration in the polymerization reactor.
[0009] Thus, it is an object of the present invention to provide an improved process for
the polymerization of an olefin monomer.
[0010] More in particular, it is an object of the present invention to provide a polymerization
process, which is characterized by an improved control of the concentration of hydrogen
in a polymerization reactor during polymerization.
[0011] It is another object of the present invention to provide an improved hydrogen feeding
system for feeding hydrogen to a polymerization reactor.
[0012] The present invention further aims to provide a polyolefin having improved compositional
homogeneity and improved quality.
[0013] Furthermore, it is an object of the present invention to provide a polyolefin having
an improved melt flow rate consistency.
Brief description of the invention
[0014] We have now discovered that at least one of the above objectives can be met when
the hydrogen is fed to the polymerization reactor at a well-defined ratio of hydrogen
feed line volume to hydrogen mass flow.
[0015] Thus, the present invention provides a process for the polymerization of an olefin
monomer and one or more optional comonomers in a polymerization reactor, said process
comprising the steps of
- (a) feeding an olefin monomer, one or more optional comonomers, at least one polymerization
catalyst, and hydrogen to the polymerization reactor,
- (b) polymerizing said olefin monomer and the one or more optional comonomers to produce
an olefin polymer, and
- (c) discharging said olefin polymer from the polymerization reactor,
characterized in that the hydrogen in step (a) is fed to the polymerization reactor
at a ratio of hydrogen feed line volume to hydrogen mass flow of at most 5.0 l kg
-1 h.
[0016] Further, the present invention provides a hydrogen feeding system for feeding hydrogen
to a polymerization reactor for the polymerization of an olefin monomer and one or
more optional comonomers, said hydrogen feeding system comprising
- at least one hydrogen feeding points for feeding hydrogen to the polymerization reactor,
- at least one controlling means for controlling hydrogen mass flow, and
- at least one flow measuring means to determine the hydrogen mass flow to the polymerization
reactor,
wherein said hydrogen feeding system is configured to feed hydrogen to the polymerization
reactor at a ratio of hydrogen feed line volume to hydrogen mass flow of at most 5.0
l kg
-1 h,
further wherein said hydrogen feeding system comprises one or more mixing means for
mixing hydrogen with the olefin monomer and optionally with the one or more optional
co-monomer(s), prior to injection into the polymerization reactor.
[0017] Furthermore, the present invention provides a polymerization reactor comprising such
a hydrogen feeding system.
[0018] The polymerization processes that can be improved in accordance with the present
invention are intended to include all polymerizations of an olefin monomer and one
or more optional comonomers wherein hydrogen is used to control the length of the
polymer chains. The present invention will be further disclosed in detail hereunder.
The description is only given by way of example and does not limit the invention.
The reference numbers relate to the annexed figures.
Brief description of the drawings
[0019]
Figure 1 is a schematic representation of an embodiment of a hydrogen injection system according
to the invention.
Figure 2 is a graph comparing the melt flow stability of a production campaign in accordance
with the present invention with the melt flow stability of a production campaign that
was not conducted in accordance with the present invention. The dashed straight lines
parallel to the x-axis represent the allowed lower and higher limits for the MI2.
Detailed description of the invention
[0020] For the purposes of the present invention the term "polymerization" is meant to include
"copolymerization".
[0021] For the purposes of the present invention the term "bulk polymerization" refers to
a polymerization using liquid or supercritical olefin monomer as polymerization medium.
This does not exclude that other hydrocarbons originating from the olefin feed stream
or generated in the polymerization reactor itself are present. In the case of the
bulk polymerization of propylene it is not excluded that the polymerization medium
comprises up to 10 wt% of propane.
[0022] For the purposes of the present invention the term "slurry polymerization" refers
to a polymerization done in a liquid diluent that is inert under polymerization conditions,
i.e. the polymerization is done in a system essentially consisting of a liquid phase
and a solid phase, wherein the liquid phase comprises an inert diluent, the olefin
monomer, the one or more optional comonomers and hydrogen and the solid phase comprises
the at least one polymerization catalyst and the polyolefin.
[0023] For the purposes of the present invention the term "gas phase polymerization" refers
to a polymerization conducted in the gaseous phase.
[0024] The present invention provides a process for the polymerization of an olefin monomer
and one or more optional comonomers in a polymerization reactor, said process comprising
the step of feeding an olefin monomer, one or more optional comonomers, at least one
polymerization catalyst, and hydrogen to the polymerization reactor. Optionally, an
activating agent having an ionizing action is also fed to the polymerization reactor.
Optionally, a diluent that is inert under polymerization conditions may also be fed
to the polymerization reactor. Said olefin monomer and the one or more optional comonomers
are then polymerized to produce an olefin polymer (also called a "polyolefin").
[0025] The olefin monomer used in the present invention preferably is an α-olefin. More
preferably, the olefin monomer is selected from the group consisting of ethylene,
propylene, butene-1, iso-butene, pentene-1, hexene-1, 4-methylpentene-1, and octene-1.
Most preferably, the olefin monomer is either ethylene or propylene.
[0026] Optionally, the olefin monomer may be copolymerized with one or more comonomers,
said one or more comonomers being different from the olefin monomer. The type of comonomer
is not particularly limited as long as the one or more comonomers are capable of forming
a copolymer with the olefin monomer. However, it is preferred that the one or more
optional comonomers are α-olefins. More preferably, the one or more comonomers are
selected from the group consisting of ethylene, propylene, butene-1, pentene-1, hexene-1,
4-methyl-pentene-1, and octene-1. If the olefin monomer is ethylene, the most preferred
comonomers are selected from the group consisting of butene-1, hexene-1 and octene-1.
If the olefin monomer is propylene, the most preferred comonomer is ethylene.
[0027] The process of the present invention is not intended to be limited to a specific
type of polymerization technology nor to any specific type or shape of polymerization
reactor. It may be used for example in bulk polymerization, slurry polymerization,
or gas phase polymerization. Depending upon the olefin monomer, certain polymerization
technologies may be preferred over others. For example, when the olefin monomer is
ethylene, slurry polymerization or gas phase polymerization is preferred, and when
the olefin monomer is propylene, bulk polymerization or gas phase polymerization is
preferred.
[0028] Suitable polymerization reactors to which the process of the invention can be applied
include but are not limited to stirred tank reactors, loop reactors, gas phase reactors,
tubular reactors, autoclaves, and combinations thereof. It is, however, preferred
that the polymerization reactor used in the present invention is a loop reactor or
a gas phase reactor. It is most preferred that it is a loop reactor.
[0029] The polymerization process according to the present invention can also be applied
if at least two polymerization reactors are serially connected and the polyolefin
produced in one reactor is transferred to the following polymerization reactor, wherein
the polymerization reaction is continued, either under the same or different polymerization
conditions, thus producing polyolefin fractions having different properties, such
as for example a different molecular weight. The process of the present invention
may then be applied to any one of the polymerization reactors to which hydrogen is
fed. This can also be more than one or even all polymerization reactors.
[0030] The polymerization technologies and reactors used in the present invention are well
known to the person skilled in the art and need not be explained in more detail.
[0031] Slurry polymerization is performed in a diluent that is inert under polymerization
conditions. Suitable diluents include but are not limited to hydrocarbon diluents
such as aliphatic, cycloaliphatic and aromatic hydrocarbon solvents, or halogenated
versions of such solvents. The preferred solvents are C
12 or lower, straight chain or branched chain, saturated hydrocarbons, C
5 to C
9 saturated alicyclic or aromatic hydrocarbons or C
2 to C
6 halogenated hydrocarbons. Nonlimiting illustrative examples of suitable diluents
are propane, butane, isobutane, pentane, hexane, heptane, cyclopentane, cyclohexane,
cycloheptane, methyl cyclopentane, methyl cyclohexane, isooctane, benzene, toluene,
xylene, chloroform, chlorobenzenes, tetrachloroethylene, dichloroethane and trichloroethane.
Of these butane, isobutane, pentane, hexane, heptane, cyclopentane, cyclohexane, cycloheptane,
methyl cyclopentane, methyl cyclohexane, isooctane are preferred. If ethylene is the
olefin monomer the most preferred diluent is isobutane. However, it should be clear
from the present invention that other diluents may as well be applied according to
the present invention.
[0032] The polymerization of an olefin monomer and one or more optional comonomers is conducted
in presence of at least one polymerization catalyst. The polymerization catalyst may
be selected from the group consisting of chromium catalysts, Ziegler-Natta catalysts
and single-site catalysts. Preferably, the polymerization catalyst used in the present
invention is a Ziegler-Natta or a single-site catalyst. Most preferably, it is a single-site
catalyst.
[0033] The term "chromium catalysts" refers to catalysts obtained by deposition of chromium
oxide on a support, e.g. a silica or aluminum support. Illustrative examples of chromium
catalysts comprise but are not limited to CrSiO
2 or CrAl
2O
3.
[0034] The term "Ziegler-Natta catalyst" refers to a catalyst of the general formula MX
n, wherein M is a transition metal selected from group IV to VII, wherein X is a halogen,
and wherein n is the valence of the transition metal. Preferably, M is a group IV,
group V or group VI metal, more preferably titanium, zirconium or vanadium, and most
preferably titanium. Preferably X is chlorine or bromine, and most preferably chlorine.
Illustrative example of the transition metal compounds include TiCl
3 and TiCl
4. In a particularly preferred embodiment of the invention said catalyst is a titanium
tetrachloride (TiCl
4) catalyst. It is preferred that the transition metal compound MX
n is supported on a magnesium halide, e.g. magnesium chloride, in active form.
[0035] Single-site polymerization catalysts are characterized by the fact that they have
a single active polymerization site. The best known groups of single-site polymerization
catalysts are metallocene-based catalysts and the so-called constrained-geometry single-site
catalysts. Of these, metallocene-based catalysts are preferred.
[0036] The metallocene in a metallocene-based catalyst can be described by the following
chemical formulas
for a bridged metallocene
µ-R
1(η
5-C
5R
2R
3R
4R
5)( η
5-C
5R
6R
7R
8R
9)MX
1X
2 (I)
and for an unbridged metallocene
(η
5-C
5R
2R
3R
4R
5)( η
5-C
5R
6R
7R
8R
9)MX
1X
2 (II)
wherein
the bridge R1 is -(CR10R11)p- or -(SiR10R11)p- with p = 1 or 2, preferably it is - (SiR10R11)-;
M is a metal selected from Ti, Zr and Hf, preferably it is Zr;
X1 and X2 are independently selected from the group consisting of halogen, hydrogen, C1-C10 alkyl, C6-C15 aryl, alkylaryl with C1-C10 alkyl and C6-C15 aryl;
R2, R3, R4, R5, R6, R7, R8, R9, R10 and R11 are each independently selected from the group consisting of hydrogen, C1-C10 alkyl, C5-C7 cycloalkyl, C6-C15 aryl, alkylaryl with C1-C10 alkyl and C6-C15 aryl, or any two neighboring R may form a cyclic saturated or non-saturated C4-C10 ring; each R2, R3, R4, R5, R6, R7, R8, R9, R10 and R11 may in turn be substituted in the same way.
[0037] Examples of particularly suitable metallocenes are:
bis(cyclopentadientyl)zirconium dichloride
bis(tert-butyl-cyclopentadienyl)zirconium dichloride
dimethylsilanediyl-bis(cyclopentadienyl)zirconium dichloride,
dimethylsilanediyl-bis(2-methyl-cyclopentadienyl)zirconium dichloride,
dimethylsilanediyl-bis(3-methyl-cyclopentadienyl)zirconium dichloride,
dimethylsilanediyl-bis(3-tert-butyl-cyclopentadienyl)zirconium dichloride,
dimethylsilanediyl-bis(3-tert-butyl-5-methyl-cyclopentadienyl)zirconium dichloride,
dimethylsilanediyl-bis(2,4-dimethyl-cyclopentadienyl)zirconium dichloride,
dimethylsilanediyl-bis(indenyl)zirconium dichloride,
dimethylsilanediyl-bis(2-methyl-indenyl)zirconium dichloride,
dimethylsilanediyl-bis(3-methyl-indenyl)zirconium dichloride,
dimethylsilanediyl-bis(3-tert-butyl-indenyl)zirconium dichloride,
dimethylsilanediyl-bis(4,7-dimethyl-indenyl)zirconium dichloride,
dimethylsilanediyl-bis(tetrahydroindenyl)zirconium dichloride,
dimethylsilanediyl-bis(benzindenyl)zirconium dichloride,
dimethylsilanediyl-bis(3,3'-2-methyl-benzindenyl)zirconium dichloride,
dimethylsilanediyl-bis(4-phenyl-indenyl)zirconium dichloride,
ethylene-bis(indenyl)zirconium dichloride,
ethylene-bis(tetrahydroindenyl)zirconium dichloride,
isopropylidene-(3-tert-butyl-5-methyl-cyclopentadienyl)(fluorenyl) zirconium dichloride.
[0038] Constrained-geometry single-site catalysts comprise a half sandwich compound, which
can be described by the following chemical formula
µ-R
1(η
5-C
5R
2R
3R
4R
5)YMX
1X
2 (III)
wherein
the bridge R1 is -(CR10R11)p- or -(SiR10R11)p- with p = 1 or 2, preferably it is - (SiR10R11)-;
M is a metal selected from Ti, Zr and Hf, preferably it is Zr;
X1 and X2 are independently selected from the group consisting of halogen, hydrogen, C1-C10 alkyl, C6-C15 aryl, alkylaryl with C1-C10 alkyl and C6-C15 aryl;
R2, R3, R4 and R5 are each independently selected from the group consisting of hydrogen, C1-C10 alkyl, C5-C7 cycloalkyl, C6-C15 aryl, alkylaryl with C1-C10 alkyl and C6-C15 aryl, or any two neighboring R may form a cyclic saturated or non-saturated C4-C10 ring; each R2, R3, R4 and R5 may in turn be substituted in the same way, and
Y is a group that is capable of coordinating to the metal M, such as for example NR12R13, PR12R13, OR12 or SR12, with R12 and R13 each independently selected from the group consisting of hydrogen, C1-C10 alkyl, C5-C7 cycloalkyl, C6-C15 aryl, alkylaryl with C1-C10 alkyl and C6-C15 aryl, or any two neighboring R may form a cyclic saturated or non-saturated C4-C10 ring; each R12 and R13 may in turn be substituted in the same way.
[0040] Preferably, the metallocene-based polymerization catalysts and the constrained-geometry
single-site catalysts used in the present invention comprise a support.
[0041] Preferably, the catalysts used in conjunction with the present invention are activated
with an activating agent having an ionizing action.
[0042] Such catalysts and activating agents are commercially available and well known to
the person skilled in the art. Therefore they need not be described in more detail.
[0043] Hydrogen is used to control the molecular chain length of the polymers produced in
the polymerization process of the present invention. The higher the hydrogen concentration
in the reactor, the lower the melt flow rate of the polymer will be and vice versa.
As the melt flow rate has a direct influence on polymer processability in transformation
processes, i.e. film forming, and the product consistency, it is important to be able
to tightly control the hydrogen concentration and minimize variations in the reactor.
[0044] In the context of the present application the term "consistency" relates to the product
consistency within a given lot of polymer produced but also to the consistency from
one lot of polymer produced to the next.
[0045] To this end, it is an essential element of the present invention that hydrogen is
fed to the polymerization reactor at a ratio of hydrogen feed line volume to hydrogen
mass flow of at most 5.0 l kg
-1 h, preferably of at most 4.0 l kg
-1 h, more preferably of at most 3.0 l kg
-1 h, even more preferably of at most 2.0 l kg
-1 h, and most preferably of at most 1.0 l kg
-1 h. Preferably the ratio of hydrogen feed line volume to hydrogen mass flow is at
least 0.001 l kg
-1 h, and most preferably at least 0.01 l kg
-1 h. The hydrogen feed line volume is the volume of the hydrogen feed line between
the hydrogen flow controlling means and the entry into the polymerization reactor.
It is preferred that the hydrogen feed line volume be as small as possible.
[0046] Hydrogen is fed to the polymerization reactor through at least one hydrogen feeding
(or injection) point. Preferably, hydrogen is fed to the polymerization reactor through
at least two hydrogen feeding points, for example two, three, four, five, six, seven
or eight feeding points.
[0047] In accordance with the present invention, in a preferred embodiment, a process is
provided comprising mixing hydrogen with the olefin monomer and optionally with the
one or more optional comonomer(s), prior to injection into the polymerization reactor.
Thus, olefin monomer and hydrogen may be fed in conjunction with each other and at
suitable ratios, e.g. through at least one common feeding entry. Because the at least
one common feeding entry is used to feed hydrogen to the polymerization reactor, it
is for the purposes of the present application to be considered a hydrogen feeding
point though the skilled person will recognize that the at least common feeding entry
might require different flow controlling means etc. as compared to a pure hydrogen
feeding line. In the case of mixing hydrogen with the olefin monomer and optionally
with the one or more optional comonomer(s) prior to injection to the polymerization
reactor, the hydrogen feed line volume is the volume of the hydrogen feed line between
the hydrogen flow controlling means and the entry into the mixing means wherein hydrogen
and the olefin monomer and optionally the one or more optional comonomer(s) are mixed.
[0048] The present invention is particularly advantageous if the polymerization reactor
has an elongated shape. Preferably, the polymerization reactor has a ratio of length
to diameter of at least 2, preferably of at least 5, and most preferably of at least
10. In the case of such an elongated polymerization reactor it is preferred that there
are at least two hydrogen feeding points along the path of the reactor, for example
two, three, four, five, six, seven or eight feeding points. The terms "path" and "flow
path" of the reactor are used synonymously and are defined as the internal route followed
by the reactant stream and the polymer produced in the reactor.
[0049] Preferably, the at least two hydrogen feeding points are positioned spatially separated
from each other. In the case of an elongated polymerization reactor it is preferred
that the at least two hydrogen feeding points are positioned spatially separated from
each other along the path of the reactor, more preferably at equal distances from
one another along the path of the reactor. Such an arrangement of the hydrogen feeding
points helps in keeping the hydrogen concentration in the polymerization reactor as
uniform as possible. Alternatively, the at least two hydrogen feeding points may be
provided at non-equidistant positions on the reactor.
[0050] Particularly suitable locations for the hydrogen feeding points may be chosen in
function of reaction parameters, such as reaction temperature, ratio between the concentrations
of hydrogen and monomer, reactant flow etc.
[0051] In the case of a loop reactor the at least one hydrogen feeding point is preferably
positioned close to bottom or top elbows of the loop reactor. In a more preferred
embodiment, at least one of the hydrogen feeding points is located downstream of and
adjacent to a circulating means, such as for example a reactor pump, which directionally
circulates polymer slurry along the path of the reactor.
[0052] Provided that there are at least two hydrogen feeding points, it is preferred that
the hydrogen mass flow is separately controlled for each hydrogen feeding line leading
to the at least two hydrogen feeding points. In one embodiment, each hydrogen feeding
line is provided with or connected to a separate flow controlling means for controlling
the mass flow of hydrogen into the reactor. In another embodiment, the number of flow
controlling means is lower that the number of hydrogen feeding points. The multiple
flow controlling means can be spatially separated, or they can be centralized and
close to each other in space.
[0053] The produced olefin polymer may be discharged from the polymerization reactor. This
may be done either by continuous or discontinuous discharge means, such as for example
by settling legs.
[0054] The advantages of the present invention are most evident for polymerization reactors
having a high ratio of length to diameter. An example of a particularly suited polymerization
process is a polymerization in a loop reactor, in combination with polymerization
catalysts having high hydrogen response, in particularly metallocene-based catalysts.
[0055] The Applicant has shown that feeding hydrogen at the above ratio of hydrogen feed
line volume to mass flow enables to dampen fluctuations in hydrogen concentrations
in the reactor. By maintaining the ratio of hydrogen feed line volume to hydrogen
mass flow at a suitable level while feeding hydrogen to the reactor, the present process
advantageously provides improved control of the properties of prepared polymers, particularly
melt flow rate, molecular weight and molecular weight distribution. The present process
thus also allows obtaining polymers having improved compositional homogeneity, particularly
improved melt flow rate consistency.
[0056] Very surprisingly, it has been found that the improved control of the hydrogen concentration
in the polymerization reactor also leads to an improved reactor stability. In particular,
this improvement is evidenced by the improved stability of the reactor temperature.
Conducting the polymerization under more stable conditions allows the polymerization
reactor to be run closer to its physical design limits, thereby increasing polymer
output.
[0057] Thus, very surprisingly the Applicant has found that the polymerization process of
the present invention allows to improve polymer quality and at the same time to increase
the polymer production of a polymerization reactor.
[0058] The present invention may also be applied when two or more than two polymerization
reactors are serially connected. In this case the olefin polymer discharged from the
first polymerization reactor is transferred to a second polymerization reactor, in
which the polymerization reaction is continued either under the same or similar polymerization
conditions or under different polymerization conditions. If different polymerization
conditions are used, the olefin polymers produced in each polymerization reactor will
have different properties. For example if the olefin polymers produced in the reactors
have different molecular weights, the resulting olefin polymer composition will have
a bimodal (when two reactors are used) or even a multimodal (when more than two reactors
are used) molecular weight distribution.
[0059] If the polymerization is conducted in two or more than two serially connected polymerization
reactors, olefin monomer and the one or more optional comonomers are fed to each reactor.
However, depending upon the olefin polymer composition that is to be produced it may
not be necessary or it may even be undesired to feed the at least one polymerization
catalyst, and hydrogen to any one or even all of the subsequent polymerization reactors,
[0060] If the polymerization is conducted in two or more two serially connected polymerization
reactor, it is preferred that hydrogen, wherever required, is fed to any one or all
the respective polymerization reactors at the same ratio of volume to feed rate as
defined earlier in this application.
[0061] To further improve the control of the hydrogen concentration in any one or all of
the polymerization reactors where hydrogen is to be fed, it is preferred that the
number and locations of the hydrogen feedings points on the respective reactor(s)
are as defined before for a single polymerization reactor.
HYDROGEN FEEDING SYSTEM
[0062] The present invention also provides a hydrogen feeding system for feeding hydrogen
to a polymerization reactor. The hydrogen feeding system of the present invention
is characterized in that hydrogen is fed to the polymerization reactor at a ratio
of hydrogen feed line volume to hydrogen mass flow of at most at most 5.0 l kg
-1 h, preferably of at most 4.0 l kg
-1 h, more preferably of at most 3.0 l kg
-1 h, even more preferably of at most 2.0 l kg
-1 h, and most preferably of at most 1.0 l kg
-1 h. Preferably the ratio of hydrogen feed line volume to hydrogen mass flow is at
least 0.001 l kg
-1 h, and most preferably at least 0.01 l kg
-1 h.
[0063] The hydrogen feeding system of the present invention comprises at least one hydrogen
feeding point for feeding hydrogen to the polymerization reactor, as disclosed earlier
in the present application.
[0064] Additionally, the hydrogen feeding system of the present invention comprises one
or more controlling means for controlling hydrogen mass flow to the polymerization
reactor.
[0065] Further, the hydrogen feeding system of the present invention comprises one or more
flow measuring means to determine the amount of hydrogen, i.e. the hydrogen mass flow,
that is fed to the polymerization reactor. Preferably, said flow measuring means is
a Coriolis type flow meter or a gravimetric type flow meter.
[0066] Provided that there are at least two hydrogen feeding points, it is preferred that
the hydrogen mass flow is separately controlled for each hydrogen feeding line leading
to the at least two hydrogen feeding points. In one embodiment, each hydrogen feeding
line is provided with or connected to a separate flow controlling means for controlling
the mass flow of hydrogen into the reactor. In another embodiment, the number of flow
controlling means is lower that the number of hydrogen feeding points. The multiple
flow controlling means can be spatially separated, or they can be centralized and
close to each other in space.
[0067] Preferably, the hydrogen injection system of the present invention may also comprise
one or more mixing means for mixing hydrogen with the olefin monomer and optionally
with the one or more optional comonomer(s) prior to injection into the polymerization
reactor.
[0068] Preferably, the hydrogen feeding system of the present invention is designed so as
to minimize leakages. This is desirable for reasons of plant security but also for
reasons of precision of flow. Leakages in the hydrogen feeding system have been found
to lead to variations in the amounts of hydrogen that are actually fed to the polymerization
reactor and in consequence, result in the production of a polyolefin with non-uniform
properties. It is therefore preferred that all connections between tubes, valves,
flow meters and any other elements present in the hydrogen feeding system of the present
invention be welded connections as opposed to screw-type connections.
[0069] The hydrogen feeding system of the present invention is also characterized in that
the volume of the hydrogen feed line between the flow controlling means and the polymerization
reactor is minimized as much as possible. Therefore, it is preferred that all by-passes
of valves and flow meters are eliminated. Instead the hydrogen feeding system of the
present invention relies on a system of at least two double block and bleed systems
in parallel.
[0070] Thus, the present invention also relates to a polymerization reactor comprising the
hydrogen feeding system of the present invention. Further, the hydrogen system may
be comprised on any one or all of the polymerization reactors if two or more polymerization
reactors are serially connected.
[0071] Referring now to Figure 1, an embodiment of a single hydrogen injection system 100
according to the present invention is illustrated in combination with a single polymerization
reactor 101, which is schematically represented by a loop reactor but can be any other
type of polymerization reactor. Hydrogen flow is regulated by flow controlling means
104, which may be for example a flow control valve. Hydrogen flow is metered by flow
meter 106. The function of check valve 108 is to avoid any backflow from the polymerization
reactor into the hydrogen feeding system. Valves 102, 105 and 110 can be used to shut
off parts of the hydrogen injection system in case of maintenance etc. Valves 103,
107 and 109 can be used for purging the hydrogen feeding system.
POLYMERIZATION REACTOR
[0072] The present invention also provides a polymerization reactor comprising the hydrogen
feeding system of the present invention.
[0073] The type of polymerization reactor to which the process of the present invention
can be applied include but are not limited to stirred tank reactors, loop reactors,
gas phase reactors, tubular reactors, autoclaves, and combinations thereof. It is,
however, preferred that the polymerization reactor used in the present invention is
a loop reactor or a gas phase reactor. It is, however, most preferred that it is a
loop reactor, which comprises
- a plurality of interconnected pipes defining a flow path for a polymer slurry, said
slurry consisting essentially of monomer, one or more optional co-monomer(s) such
as for instance 1-hexene, a polymerization catalyst, liquid diluent and solid ethylene
polymer particles,
- means for feeding monomer, one or more optional co-monomer(s), and diluent in the
reactor,
- means for feeding a polymerization catalyst in the reactor,
- at least one circulating means, such as a pump or a compressor, suitable for maintaining
the polymer slurry in circulation in said reactor, and
- means for discharging the polymer slurry from the polymerization reactor.
[0074] Said means for discharging polymer slurry may be
- one or more settling legs connected to the pipes of said reactor for settling of polymer
slurry, and
- one or more lines for discharging settled polymer slurry out of the reactor,
or alternatively a continuous polymer slurry withdrawal system.
[0075] In a preferred embodiment the present invention provides for two serially connected
polymerization reactors, wherein either one or both of the polymerization reactors
comprises the hydrogen feeding system of the present invention. The most preferred
polymerization reactor is a loop reactor.
Examples
[0076] The advantages of the present invention are demonstrated by the following examples.
[0077] Ethylene and 1-hexene were copolymerized in a slurry loop reactor with a reaction
volume of approximately 100 m
3 in presence of a supported metallocene-based polymerization catalyst under standard
polymerization conditions using isobutane as diluent. The resulting ethylene-hexene
copolymer had a target density of 0.934 cm
3 (measured according to ASTM-D 1505 at 23°C) and a target M12 (measured according
to ISO 1133, condition D, at a temperature of 190°C and a load of 2.16 kg). Hydrogen
was fed to the polymerization reactor at the ratios of hydrogen feed line volume to
hydrogen mass flow as indicated in table 1.
Table 1
| |
Example 1 |
Example 2 |
Comparative example 1 |
| Hydrogen feed line |
|
|
|
| Diameter (m) |
0.003125 |
0.0125 |
0.0375 |
| Length (m) |
20 |
10 |
70 |
| Volume (I) |
0.153 |
1.227 |
77.273 |
| Hydrogen |
|
|
|
| Mass flow (g h-1) |
195 |
526.5 |
1053 |
| Ratio (l kg-1 h) |
0.79 |
2.33 |
73 |
| Homogeneity of melt flow rate of the polyethylene |
Very good |
Good |
Bad |
[0078] The evolution of the melt index MI2 during the production campaigns of example 1
and comparative example 1 is graphically illustrated in
Figure 2. The data of example 1 clearly shows that the polymerization process in accordance
with the present invention allows for much improved control of the melt index, i.e.
the obtained melt flow index stays within the targeted melt index range. By comparison
the data of example 1 frequently veers outside of the targeted melt index range, which
in
Figure 2 is indicated by the dashed straight lines parallel to the x-axis.
[0079] By allowing to produce a polyethylene that is consistently within the targeted melt
index range the compositional homogeneity of the polyethylene is improved and less
material had to be off-graded for deviation on melt flow index.
1. Process for the polymerization of an olefin monomer and one or more optional comonomers
in a polymerization reactor, said process comprising the steps of
(a) feeding an olefin monomer, one or more optional comonomers, at least one polymerization
catalyst, and hydrogen to the polymerization reactor,
(b) polymerizing said olefin monomer and the one or more optional comonomers to produce
an olefin polymer, and
(c) discharging said olefin polymer from the polymerization reactor,
characterized in that the hydrogen in step (a) is fed to the polymerization reactor at a ratio of hydrogen
feed line volume to hydrogen mass flow of at most 5.0 l kg-1 h.
2. Process according to claim 1, wherein the hydrogen in step (a) is fed to the polymerization
reactor at a ratio of hydrogen feed line volume to hydrogen mass flow in the range
from 0.001 l kg-1 h to 5.0 l kg-1 h.
3. Process according to any of the preceding claims, further characterized in that step (a) includes the feeding of a diluent that is inert under polymerization conditions.
4. Process according to any of the preceding claims, further characterized in that step (a) includes the feeding of at least one activating agent having an ionizing
action.
5. Process according to any of the preceding claims, wherein hydrogen is fed to the polymerization
reactor through at least two hydrogen feeding points.
6. Process according to claim 5, wherein the at least two hydrogen feeding points are
positioned spatially separated from each other.
7. Process according to any of the preceding claims, wherein the polymerization reactor
has an elongated shape.
8. Process according to any of the preceding claims, wherein the polymerization reactor
is a loop reactor.
9. Process according to any of the preceding claims, wherein the at least one polymerization
catalyst is a Ziegler-Natta catalyst or a single-site polymerization catalyst or a
blend of these.
10. Process according to claim 1, wherein a hydrogen feeding system is used for feeding
hydrogen to a polymerization reactor for the polymerization of an olefin monomer and
one or more optional comonomers, said hydrogen feeding system comprising
- at least one hydrogen feeding points for feeding hydrogen to the polymerization
reactor,
- at least one controlling means for controlling hydrogen mass flow, and
- at least one flow measuring means to determine the hydrogen mass flow to the polymerization
reactor,
said hydrogen feeding system characterized in that hydrogen is fed to the polymerization reactor at a ratio of hydrogen feed line volume
to hydrogen mass flow of at most 5.0 l kg-1 h.
11. Process according to claim 10, wherein the hydrogen feeding system comprises one or
more mixing means for mixing hydrogen with the olefin monomer and optionally with
the one or more optional co-monomer(s), prior to feeding into the polymerization reactor.
12. Process according to claim 1, wherein the polymerization reactor is a polymerization
loop reactor suitable for the polymerization of monomer, preferably ethylene, with
one or more optional olefin co-monomer(s), comprising:
- a plurality of interconnected pipes defining a flow path for a polymer slurry, said
slurry consisting essentially of monomer, one or more optional comonomer(s) such as
for instance 1-hexene, a polymerization catalyst, liquid diluent and solid ethylene
polymer particles,
- means for feeding monomer, one or more optional co-monomer(s), and diluent in the
reactor,
- means for feeding a polymerization catalyst in the reactor,
- at least one circulating means suitable for maintaining the polymer slurry in circulation
in said reactor, and
- means for discharging the polymer slurry from the polymerization reactor.
13. A hydrogen feeding system for feeding hydrogen to a polymerization reactor for the
polymerization of an olefin monomer and one or more optional comonomers, said hydrogen
feeding system comprising
- at least one hydrogen feeding points for feeding hydrogen to the polymerization
reactor,
- at least one controlling means for controlling hydrogen mass flow, and
- at least one flow measuring means to determine the hydrogen mass flow to the polymerization
reactor,
wherein said hydrogen feeding system is configured to feed hydrogen to the polymerization
reactor at a ratio of hydrogen feed line volume to hydrogen mass flow of at most 5.0
l kg-1 h;
further wherein said hydrogen feeding system comprises one or more mixing means for
mixing hydrogen with the olefin monomer and optionally with the one or more optional
co-monomer(s), prior to injection into the polymerization reactor.
14. A hydrogen feeding system according to claim 13, wherein at least one of the following
is true:
- at least one flow measuring means is a Coriolis type flow meter or a gravimetric
type flow meter;
- the hydrogen feeding system comprises different elements including tubes, valves
and flow meters, and all connections between the different elements present in the
hydrogen feeding system are welded.
15. Polymerization reactor comprising the hydrogen feeding system of claim 13 or claim
14.
1. Verfahren zum Polymerisieren eines Olefinmonomers und eines oder mehrerer optionaler
Comonomere in einem Polymerisationsreaktor, wobei das Verfahren die Schritte umfasst:
(a) Zuführen eines Olefinmonomers, eines oder mehrerer optionaler Comonomere, zumindest
eines Polymerisationskatalysators und von Wasserstoff zum Polymerisationsreaktor;
(b) Polymerisieren des Olefinmonomers und des einen oder der mehreren optionalen Comonomere,
um ein Olefinpolymer herzustellen, und
(c) Ablassen des Olefinpolymers aus dem Polymerisationsreaktor,
dadurch gekennzeichnet, dass der Wasserstoff in Schritt (a) in einem Verhältnis von Wasserstoffzuführleitungsvolumen
zu Wasserstoffmassenfluss von höchstens 5,0 l kg-1 h zum Polymerisationsreaktor zugeführt wird.
2. Verfahren nach Anspruch 1, wobei der Wasserstoff in Schritt (a) in einem Verhältnis
von Wasserstoffzufuhrleitungsvolumen zu Wasserstoffmassenfluss im Bereich von 0,001
l kg-1 h bis 5,0 l kg-1 h zum Polymerisationsreaktor zugeführt wird.
3. Verfahren nach einem der vorstehenden Ansprüche, darüber hinaus dadurch gekennzeichnet, dass Schritt (a) das Zuführen eines Verdünnungsmittels beinhaltet, des unter Polymerisationsbedingungen
inert ist.
4. Verfahren nach einem der vorstehenden Ansprüche, darüber hinaus dadurch gekennzeichnet, dass Schritt (a) das Zuführen zumindest eines Aktivierungsmittels mit ionisierender Wirkung
beinhaltet.
5. Verfahren nach einem der vorstehenden Ansprüche, wobei Wasserstoff durch zumindest
zwei Wasserstoffzufuhrpunkte zum Polymerisationsreaktor zugeführt wird.
6. Verfahren nach Anspruch 5, wobei die zumindest zwei Wasserstoffzuführpunkte räumlich
voneinander getrennt angeordnet sind.
7. Verfahren nach einem der vorstehenden Ansprüche, wobei der Polymerisationsreaktor
eine längliche Form hat.
8. Verfahren nach einem der vorstehenden Ansprüche, wobei der Polymerisationsreaktor
ein Schleifenreaktor ist.
9. Verfahren nach einem der vorstehenden Ansprüche, wobei der zumindest eine Polymerisationskatalysator
ein Ziegler-Natta-Katalysator oder ein Single-Site-Polymerisationskatalysator oder
eine Mischung dieser ist.
10. Verfahren nach Anspruch 1, wobei ein Wasserstoffzufuhrsystem zum Zuführen von Wasserstoff
zu einem Polymerisationsreaktor zum Polymerisieren eines Olefinmonomers und eines
oder mehrerer optionaler Comonomere verwendet wird, wobei das Wasserstoffzufuhrsystem
umfasst:
- zumindest einen Wasserstoffzufuhrpunkt zum Zuführen von Wasserstoff zum Polymerisationsreaktor,
- zumindest ein Steuermittel zum Steuern eines Wasserstoffmassenflusses, und
- zumindest ein Durchflussmessmittel zum Bestimmen des Wasserstoffmassenflusses zum
Polymerisationsreaktor,
wobei das Wasserstoffzufuhrsystem dadurch gekennzeichnet ist, dass Wasserstoff in einem Verhältnis von Wasserstoffzufuhrleitungsvolumen zu Wasserstoffmassenfluss
von höchstens 5,0 l kg-1 h zum Polymerisationsreaktor zugeführt wird.
11. Verfahren nach Anspruch 10, wobei das Wasserstoffzufuhrsystem ein oder mehrere Mischmittel
zum Mischen von Wasserstoff mit dem Olefinmonomer und optional mit dem einen oder
den mehreren optionalen Comonomeren vor Zufuhr in den Polymerisationsreaktor beinhaltet.
12. Verfahren nach Anspruch 1, wobei der Polymerisationsreaktor ein Polymerisationschleifenreaktor
ist, der sich für das Polymerisieren von Monomer, vorzugsweise Ethylen, mit einem
oder mehreren optionalen Olefincomonomeren eignet, das umfasst:
- eine Mehrzahl von miteinander verbundenen Leitungen, die einen Durchflussweg für
eine Polymeraufschlämmung definieren, wobei die Aufschlämmung im Wesentlichen aus
Monomer, einem oder mehreren optionalen Comonomeren, z. B. 1-Hexen, einem Polymerisationskatalysator,
einem flüssigen Verdünnungsmittel und festen Ethylenpolymerpartikeln besteht,
- ein Mittel zum Zuführen von Monomer, eines oder mehrerer optionaler Comonomere und
von Verdünnungsmittel im Reaktor,
- ein Mittel zum Zuführen eines Polymerisationskatalysators im Reaktor,
- zumindest ein Zirkulierungsmittel, das sich dafür eignet, die Polymeraufschlämmung
im Reaktor in Zirkulation zu halten, und
- ein Mittel zum Ablassen der Polymeraufschlämmung aus dem Polymerisationsreaktor.
13. Wasserstoffzufuhrsystem zum Zuführen von Wasserstoff zu einem Polymerisationsreaktor
zum Polymerisieren eines Olefinmonomers und eines oder mehrerer optionaler Comonomere,
wobei das Wasserstoffzufuhrsystem umfasst:
- zumindest einen Wasserstoffzufuhrpunkt zum Zuführen von Wasserstoff zum Polymerisationsreaktor,
- zumindest ein Steuermittel zum Steuern eines Wasserstoffmassenflusses, und
- zumindest ein Durchflussmessmittel zum Bestimmen des Wasserstoffmassenflusses zum
Polymerisationsreaktor,
wobei das Wasserstoffzufuhrsystem so konfiguriert ist, dass es Wasserstoff in einem
Verhältnis von Wasserstoffzufuhrleitungsvolumen zu Wasserstoffinassenfluss von höchstens
5,0 l kg-1 h zum Polymerisationsreaktor zuführt;
wobei das Wasserstoffzufuhrsystem darüber hinaus ein oder mehrere Mischmittel zum
Mischen von Wasserstoff mit dem Olefinmonomer und optional mit dem einen oder den
mehreren optionalen Comonomeren vor Einspritzen in den Polymerisationsreaktor umfasst.
14. Wasserstoffzufuhrsystem nach Anspruch 13, wobei zumindest eines des Folgenden zutreffend
ist:
- zumindest ein Durchflussmessmittel ist ein Durchflussmesser vom Coriolis-Typ oder
ein Durchflussmesser vom gravimetrischen Typ;
- das Wasserstoffzufuhrsystem umfasst unterschiedliche Elemente, darunter Rohre, Ventile
und Durchflussmesser, und alle Verbindungen zwischen den unterschiedlichen Elementen,
die im Wasserstoffzufuhrsystem vorhanden sind, sind verschweißt.
15. Polymerisationsreaktor, der das Wasserstoffzufuhrsystem nach Anspruch 13 oder 14 umfasst.
1. Procédé de polymérisation d'un monomère d'oléfine et d'un ou plusieurs comonomères
optionnels dans un réacteur de polymérisation, ledit procédé comprenant les étapes
consistant à
(a) apporter un monomère d'oléfine, un ou plusieurs comonomères optionnels, au moins
un catalyseur de polymérisation et de l'hydrogène au réacteur de polymérisation,
(b) polymériser ledit monomère d'oléfine et le ou les comonomères optionnels pour
produire un polymère d'oléfine, et
(c) évacuer ledit polymère d'oléfine du réacteur de polymérisation,
caractérisé en ce que l'hydrogène de l'étape (a) est introduit dans le réacteur de polymérisation à un
rapport du volume de la conduite d'alimentation en hydrogène au débit massique de
l'hydrogène d'au plus 5,0 l kg-1 h.
2. Procédé selon la revendication 1, dans lequel l'hydrogène de l'étape (a) est introduit
dans le réacteur de polymérisation à un rapport du volume de la conduite d'alimentation
en hydrogène au débit massique de l'hydrogène dans la plage de 0,001 l kg-1 h à 5,0 l kg-1 h.
3. Procédé selon l'une quelconque des revendications précédentes, en outre caractérisé en ce que l'étape (a) comprend l'apport d'un diluant qui est inerte dans les conditions de
polymérisation.
4. Procédé selon l'une quelconque des revendications précédentes, en outre caractérisé en ce que l'étape (a) comprend l'apport d'au moins un agent d'activation ayant une action ionisante.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'hydrogène
est introduit dans le réacteur de polymérisation par au moins deux points d'alimentation
en hydrogène.
6. Procédé selon la revendication 5, dans lequel les au moins deux points d'alimentation
en hydrogène sont positionnés de manière à être séparés les uns des autres dans l'espace.
7. Procédé selon l'une quelconque des revendications précédentes, dans lequel le réacteur
de polymérisation a une forme allongée.
8. Procédé selon l'une quelconque des revendications précédentes, dans lequel le réacteur
de polymérisation est un réacteur en boucle.
9. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'au moins
un catalyseur de polymérisation est un catalyseur de type Ziegler-Natta ou un catalyseur
de polymérisation à site unique ou un mélange de ceux-ci.
10. Procédé selon la revendication 1, dans lequel un système d'alimentation en hydrogène
est utilisé pour introduire de l'hydrogène dans un réacteur de polymérisation en vue
de la polymérisation d'un monomère d'oléfine et d'un ou plusieurs comonomères optionnels,
ledit système d'alimentation en hydrogène comprenant
- au moins un point d'alimentation en hydrogène permettant d'introduire l'hydrogène
dans le réacteur de polymérisation,
- au moins un moyen de régulation permettant de réguler le débit massique de l'hydrogène,
et
- au moins un moyen de mesure du débit permettant de déterminer le débit massique
de l'hydrogène vers le réacteur de polymérisation,
ledit système d'alimentation en hydrogène caractérisé en ce que l'hydrogène est introduit dans le réacteur de polymérisation à un rapport du volume
de la conduite d'alimentation en hydrogène au débit massique de l'hydrogène d'au plus
5,0 l kg-1 h.
11. Procédé selon la revendication 10, dans lequel le système d'alimentation en hydrogène
comprend un ou plusieurs moyens de mélange permettant de mélanger l'hydrogène avec
le monomère d'oléfine et optionnellement avec le ou les co-monomère(s) optionnel(s),
avant l'introduction dans le réacteur de polymérisation.
12. Procédé selon la revendication 1, dans lequel le réacteur de polymérisation est un
réacteur de polymérisation en boucle adapté à la polymérisation d'un monomère, de
préférence de l'éthylène, avec un ou plusieurs co-monomère(s) d'oléfine optionnel(s),
comprenant :
- une pluralité de tuyaux interconnectés définissant une voie de passage pour une
suspension épaisse de polymère, ladite suspension épaisse étant essentiellement constituée
d'un monomère, d'un ou plusieurs comonomère(s) optionnel(s) tels que par exemple du
1-hexène, d'un catalyseur de polymérisation, d'un diluant liquide et de particules
solides de polymère d'éthylène,
- des moyens d'introduction du monomère, d'un ou plusieurs co-monomère(s) optionnel(s),
et du diluant dans le réacteur,
- des moyens d'introduction d'un catalyseur de polymérisation dans le réacteur, au
moins un moyen de circulation adapté au maintien de la suspension épaisse de polymère
en circulation dans ledit réacteur, et
- des moyens d'évacuation de la suspension épaisse de polymère du réacteur de polymérisation.
13. Système d'alimentation en hydrogène permettant d'apporter de l'hydrogène dans un réacteur
de polymérisation en vue de la polymérisation d'un monomère d'oléfine et d'un ou plusieurs
comonomères optionnels, ledit système d'alimentation en hydrogène comprenant
- au moins un point d'alimentation en hydrogène permettant d'introduire l'hydrogène
dans le réacteur de polymérisation,
- au moins un moyen de régulation permettant de réguler le débit massique de l'hydrogène,
et
- au moins un moyen de mesure du débit permettant de déterminer le débit massique
de l'hydrogène vers le réacteur de polymérisation,
dans lequel ledit système d'alimentation en hydrogène est configuré de manière à introduire
l'hydrogène dans le réacteur de polymérisation à un rapport du volume de la conduite
d'alimentation en hydrogène au débit massique de l'hydrogène d'au plus 5,0 l kg-1 h;
en outre dans lequel ledit système d'alimentation en hydrogène comprend un ou plusieurs
moyens de mélange permettant de mélanger l'hydrogène avec le monomère d'oléfine et
optionnellement avec le ou les co-monomère(s) optionnel(s), avant l'injection dans
le réacteur de polymérisation.
14. Système d'alimentation en hydrogène selon la revendication 13, dans lequel au moins
l'un des éléments suivants est vrai :
- au moins un moyen de mesure du débit est un débitmètre de type Coriolis ou un débitmètre
de type gravimétrique ;
- le système d'alimentation en hydrogène comprend différents éléments comprenant des
tubes, des valves et des débitmètres, et tous les raccords entre les différents éléments
présents dans le système d'alimentation en hydrogène sont soudés.
15. Réacteur de polymérisation comprenant le système d'alimentation en hydrogène selon
la revendication 13 ou la revendication 14.