(19)
(11) EP 2 448 105 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
26.08.2015 Bulletin 2015/35

(21) Application number: 10791809.6

(22) Date of filing: 16.06.2010
(51) International Patent Classification (IPC): 
H02P 6/18(2006.01)
H02P 25/02(2006.01)
(86) International application number:
PCT/JP2010/003982
(87) International publication number:
WO 2010/150485 (29.12.2010 Gazette 2010/52)

(54)

MOTOR CONTROL DEVICE

MOTORSTEUERVORRICHTUNG

DISPOSITIF DE COMMANDE DE MOTEUR


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

(30) Priority: 25.06.2009 JP 2009150933

(43) Date of publication of application:
02.05.2012 Bulletin 2012/18

(73) Proprietor: Sanden Corporation
Isesaki-shi, Gunma 372-8502 (JP)

(72) Inventor:
  • HIRONO, Daisuke
    Isesaki-shi Gunma 372-8502 (JP)

(74) Representative: Prüfer & Partner GbR European Patent Attorneys 
Sohnckestraße 12
81479 München
81479 München (DE)


(56) References cited: : 
JP-A- 8 308 286
JP-A- 2001 161 090
JP-A- 2004 187 407
JP-A- 2000 278 987
JP-A- 2001 352 800
US-A1- 2004 104 704
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    TECHNICAL FIELD



    [0001] The present invention relates to a motor control device having a function of detecting a rotor rotational position (hereinafter referred to as a rotor position) of a synchronous motor without a sensor.

    BACKGROUND ART



    [0002] In a sine-wave driving mode (180-degree conduction mode) known as a driving mode for a synchronous motor such as a three-phase DC brushless motor, a rotor position is detected without a sensor in order to appropriately carry out a conduction to a stator coil without a sensor.

    [0003] Patent Literature 1 discloses a rotor position detection method in which a first phase difference between a motor current and an actual rotational position is found and a second phase difference between a motor current and a virtual rotational position is found; and a phase error between the actual rotational position and the virtual rotational position is estimated on the basis of the difference between the first phase difference and the second phase difference; and a voltage frequency is corrected so that the phase error reaches zero.

    [0004] Patent Literature 2 discloses a rotor position detection method in which a rotational angular velocity, a d-axis current, and a γ-axis current of a synchronous motor are found; and an estimated rotation angle is fond on the assumption that an angular deviation between an actual rotation angle of a rotor and a rotation angle estimated based on a rotation model is proportional to a current deviation between the d-axis current and the γ-axis current.

    [0005] The rotor position detection methods disclosed in Patent Literatures 1 and 2 basically detect a desired rotor position by correcting a virtual rotor position under predetermined conditions. Therefore, the rotor position detection accuracy varies depending on the correction accuracy. Further, the rotor position detection methods require repeating a process of finding the virtual rotor position and then correcting the rotor position at high speeds. Therefore, a high performance data processing apparatus corresponding to a high processing load is needed.

    [0006] Patent literature 3 also discloses a motor control apparatus wherein the motor is operated by maintaining the voltage at constant and always monitoring the current/voltage phases so as to maintain a constant phase difference, without the motor axis position being predicted.

    PRIOR ART LITERATURE


    PATENT LITERATURE



    [0007] 

    Patent Literature 1: Japanese Patent Publication 2001-161090

    Patent Literature 2: Japanese Patent Publication H8-308286

    Patent Literature 3: US Patent Publication: 2004/0104704


    SUMMARY OF THE INVENTION


    PROBLEMS TO BE SOLVED BY THE INVENTION



    [0008] An object of the present invention is to provide a motor control device capable of detecting a rotor position of a synchronous motor under a certain accuracy and a low processing load.

    MEANS FOR SOLVING THE PROBLEMS



    [0009] In order to achieve the above object, a motor control device based on the present invention having a function of detecting a rotor position of a synchronous motor without a sensor, wherein the motor control device comprises: current detecting means for detecting a current flowing through a coil of the synchronous motor; applied voltage detecting means for detecting an applied voltage applied to the coil of the synchronous motor; current peak value and electrical angle detecting means for detecting a current peak value and a current electrical angle on the basis of the current detected in the current detecting means; induced voltage peak value and electrical angle detecting means for detecting an induced voltage peak value and an induced voltage electrical angle on the basis of the current detected in the current detecting means and the applied voltage detected in the applied voltage detecting means; and rotor position detecting means for detecting the rotor position by directly finding the rotor position from a rotor position expression containing, as a variable, the current electrical angle or the induced voltage electrical angle from among the current peak value and the current electrical angle detected in the current peak value and electrical angle detecting means and the induced voltage peak value and the induced voltage electrical angle detected in the induced voltage peak value and electrical angle detecting means, and containing, as a variable, a current phase or an induced voltage phase capable of being selected using at least two of the current peak value, the induced voltage peak value and the induced voltage electrical angle - the current electrical angle as parameters from a predefined data table.

    [0010] According to the motor control device can detect the rotor position by directly finding the rotor position from the rotor position expression containing, as the variable, the current electrical angle or the induced voltage electrical angle from among the current peak value and the current electrical angle detected in the current peak value and electrical angle detecting means and the induced voltage peak value and the induced voltage electrical angle detected in the induced voltage peak value and electrical angle detecting means, and containing, as the variable, the current phase or the induced voltage phase capable of being selected using at least two of the current peak value, the induced voltage peak value and the induced voltage electrical angle - the current electrical angle as parameters from the predefined data table.

    [0011] Briefly, the rotor position is directly found by the use of the predetermined rotor position expression. Thus, the rotor position can be reliably detected under a certain accuracy contrary to the conventional detection method involving variation in detection accuracy. In addition, the use of a system for selecting the current phase or the induced voltage phase which is one of the variables contained in the rotor expression from the predefined data table. Thus, the rotor position can be simply detected under a lower processing load than the system for finding the current phase or the induced voltage phase every time, there is no need to use a high performance data processing apparatus corresponding to a high processing load that used in the conventional detection method.

    ADVANTAGEOUS EFFECTS OF THE INVENTION



    [0012] The present invention can provide a motor control device capable of detecting a rotor position of a synchronous motor under a certain accuracy and a low processing load.

    [0013] The object and other objects, constitutional features, functions, and effects of the present invention will be clarified from the following description and the attached drawings.

    BRIEF DESCRIPTION OF THE DRAWINGS



    [0014] 

    Figure 1 is a block diagram of a motor control device to which the present invention is applied.

    Figure 2 is an explanatory drawing of a method of detecting a phase current peak value and a phase current electrical angle in a phase current peak value and electrical angle detection unit illustrated Figure 1.

    Figure 3 is an explanatory drawing of a method of detecting an induced voltage peak value and an induced voltage electrical angle in an induced voltage peak value and electrical angle detection unit illustrated Figure 1.

    Figure 4 is an explanatory drawing of a method of generating a data table used when detecting a rotor position in a rotor position detection unit illustrated Figure 1.

    Figure 5 is an explanatory drawing of a method of generating a data table used when detecting a rotor position in a rotor position detection unit illustrated Figure 1.


    EMBODIMENTS FOR CARRYING THE INVENTION



    [0015] Figure 1 illustrates a motor control device to which the present invention is applied. In the figure, reference numeral 11 denotes a synchronous motor, reference numeral 12 denotes an inverter, reference numeral 13 denotes a direct current power source, and reference numeral 14 denotes a controller having a microcomputer therein. The controller 14 includes a rotation control unit 15, an inverter drive unit 16, a phase current detection unit 17, an applied voltage detection unit 18, a phase current peak value and electrical angle detection unit 19, an induced voltage peak value and electrical angle detection unit 20, and a rotor position detection unit 21.

    [0016] The synchronous motor 11 is a three-phase DC brushless motor which includes a stator (unillustrated) having three-phase coils (a U-phase coil Uc, a V-phase coil Vc, and a W-phase coil Wc) and a rotor (unillustrated) having a permanent magnet. The U-phase coil Uc, the V-phase coil Vc, and the W-phase coil Wc are connected in a star connection around a neutral point N as illustrated in the figure or a delta connection.

    [0017] The inverter 12 is a three-phase bipolar drive inverter which includes three-phase switching devices corresponding to the three-phase coils of the synchronous motor 11, specifically, six switching devices (upper phase switching devices Us, Vs, and Ws, and lower phase switching devices Xs, Ys, and Zs) each made of an insulated gate bipolar transistor (IGBT) or the like, and shunt resistors R1, R2, and R3. Each of the shunt resistors R1, R2, and R3 serves as a sensor for detecting a current flowing through each phase of the synchronous motor 11.

    [0018] The upper phase switching device Us, the lower phase switching device Xs, and the shunt resistor R1 are connected in series, each end of which is connected to the direct current power source 13. The upper phase switching device Vs, and the lower phase switching device Ys, and the shunt resistor R2 are connected in series, each end of which is connected to the direct current power source 13. The upper phase switching device Ws, the lower phase switching device Zs, and the shunt resistor R3 are connected in series, each end of which is connected to the direct current power source 13.

    [0019] Further, the emitter side of the upper phase switching device Us is connected to the U-phase coil Uc of the synchronous motor 11. The emitter side of the upper phase switching device Vs is connected to the V-phase coil Vc of the synchronous motor 11. The emitter side of the upper phase switching device Ws is connected to the W-phase coil Wc of the synchronous motor 11. Branch lines from each of the connection lines are connected to the applied voltage detection unit 18.

    [0020] Further, gates of the upper phase switching devices Us, Vs, and Ws and gates of the lower phase switching devices Xs, Ys, and Zs are respectively connected to the inverter drive unit 16. Furthermore, the lower phase switching device Xs side of the shunt resistor R1, the lower phase switching device Ys side of the shunt resistor R2, and the lower phase switching device Zs side of the shunt resistor R3 are respectively connected to the phase current detection unit 17.

    [0021] The rotation control unit 15 sends a control signal for rotating the synchronous motor 11 at a predetermined rotational frequency or stopping the synchronous motor 11 to the inverter drive unit 16 on the basis of an operation command from an operation unit (unillustrated) and a rotor position θm detected in the rotor position detection unit 21,.

    [0022] The inverter drive unit 16 sends a drive signal for turning on or off each of the switching devices to each gate of the upper phase switching devices Us, Vs, and Ws of the inverter 12 and each gate of the lower phase switching devices Xs, Ys, and Zs thereof on the basis of the control signal from the rotation control unit 15. The upper phase switching devices Us, Vs, and Ws and the lower phase switching devices Xs, Ys, and Zs of the inverter 12 are turned on or off in a predetermined pattern in accordance with the drive signal from the inverter drive unit 16, and carry out a sine-wave conduction (180-degree conduction) based on the on-off pattern to the U-phase coil Uc, the V-phase coil Vc, and the W-phase coil Wc of the synchronous motor 11.

    [0023] The phase current detection unit 17 detects currents (a U-phase current Iu, a V-phase current Iv, and a W-phase current Iw) flowing through the U-phase coil Uc, the V-phase coil Vc, and the W-phase coil Wc of the synchronous motor 11 by the use of each voltage detected in the shunt resistors R1, R2, and R3 of the inverter 12, and sends the detected currents to the phase current peak value and electrical angle detection unit 19 and the induced voltage peak value and electrical angle detection unit 20.

    [0024] The applied voltage detection unit 18 detects voltages (a U-phase applied voltage Vu, a V-phase applied voltage Vv, and a W-phase applied voltage Vw) applied to the U-phase coil Uc, the V-phase coil Vc, and the W-phase coil Wc of the synchronous motor 11, and sends the detected currents to the induced voltage peak value and electrical angle detection unit 20.

    [0025] The phase current peak value and electrical angle detection unit 19 detects a phase current peak value Ip and a phase current electrical angle θi by the use of the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw detected in the phase current detection unit 17, and sends the detected values to the rotor position detection unit 21. The method of detecting the phase current peak value Ip and the phase current electrical angle θi in the phase current peak value and electrical angle detection unit 19 will be described later in detail.

    [0026] The induced voltage peak value and electrical angle detection unit 20 detects an induced voltage peak value Ep and an induced voltage electrical angle θe by the use of the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw detected in the phase current detection unit 17 and the U-phase applied voltage Vu, the V-phase applied voltage Vv, and the W-phase applied voltage Vw detected in the applied voltage detection unit 18, and sends the detected values to the rotor position detection unit 21. The method of detecting the induced voltage peak value Ep and the induced voltage electrical angle θe in the induced voltage peak value and electrical angle detection unit 20 will be described later in detail.

    [0027] The rotor position detection unit 21 detects a rotor position θm of the synchronous motor 11 and sends the position to the rotation control unit 15 by the use of the phase current peak value Ip and the phase current electrical angle θi detected in the phase current peak value and electrical angle detection unit 19 and the induced voltage peak value Ep and the induced voltage electrical angle θe detected in the induced voltage peak value and electrical angle detection unit 20. The method of detecting the rotor position θm in the rotor position detection unit 21 will be described later in detail.

    [0028] Here, details about following methods are described in sequence: (1) the method of detecting the phase current peak value Ip and the phase current electrical angle θi in the phase current peak value and electrical angle detection unit 19; (2) the method of detecting the induced voltage peak value Ep and the induced voltage electrical angle θe in the induced voltage peak value and electrical angle detection unit 20; (3) the method of detecting the rotor position θm in the rotor position detection unit 21; and (4) the method of generating the data table used when detecting the rotor position θm in the rotor position detection unit 21.

    (1) The method of detecting the phase current peak value Ip and the phase current electrical angle θi in the phase current peak value and electrical angle detection unit 19



    [0029] Figure 2 is a diagram of phase current waveforms observed while a sine-wave conduction (180-degree conduction) is carried out to the U-phase coil Uc, the V-phase coil Vc, and the W-phase coil Wc of the synchronous motor 11. Each of the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw has a sine-wave form with a phase difference of 120°.

    [0030] In the phase current waveform diagram, the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw, the phase current peak value Ip, and the phase current electrical angle θi satisfy the following expressions.







    [0031] The phase current peak value and electrical angle detection unit 19 detects the phase current peak value Ip and the phase current electrical angle θi on the assumption that the above expressions are satisfied. The detections of the phase current peak value Ip and the phase current electrical angle θi are carried out by finding the phase current peak value Ip and the phase current electrical angle θi from the above expressions by the use of the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw detected in the phase current detection unit 17.

    (2) The method of detecting the induced voltage peak value Ep and the induced voltage electrical angle θe in the induced voltage peak value and electrical angle detection unit 20



    [0032] Figure 3 is a diagram of induced voltage waveforms observed while a sine-wave conduction (180-degree conduction) is carried out to the U-phase coil Uc, the V-phase coil Vc, and the W-phase coil Wc of the synchronous motor 11. Each of the U-phase induced voltage Eu, the V-phase induced voltage Ev, and the W-phase induced voltage Ew has a sine-wave form with a phase difference of 120°.

    [0033] In the induced voltage waveform diagram, the U-phase induced voltage Eu, the V-phase induced voltage Ev, and the W-phase induced voltage Ew, the induced voltage peak value Ep, and the induced voltage electrical angle θe satisfy the following expressions.







    [0034] Meanwhile, the U-phase applied voltage Vu, the V-phase applied voltage Vv, and the W-phase applied voltage Vw, the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw, the U-phase coil resistance Ru, the V-phase coil resistance Rv, and the W-phase coil resistance Rw, the U-phase induced voltage Eu, the V-phase induced voltage Ev, and the W-phase induced voltage Ew satisfy the following expressions.







    [0035] The induced voltage peak value and electrical angle detection unit 20 detects the induced voltage peak value Ep and the induced voltage electrical angle θe on the assumption that the above expressions are satisfied. The detections of the induced voltage peak value Ep and the induced voltage electrical angle θe are carried out by finding the U-phase induced voltage Eu, the V-phase induced voltage Ev, and the W-phase induced voltage Ew from the above expressions (latter expressions) by the use of the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw detected in the phase current detection unit 17 and the U-phase applied voltage Vu, the V-phase applied voltage Vv, and the W-phase applied voltage Vw detected in the applied voltage detection unit 18; and finding the induced voltage peak value Ep and the induced voltage electrical angle θe from the above expressions (former expressions) by the use of the U-phase induced voltage Eu, the V-phase induced voltage Ev, and the W-phase induced voltage Ew.

    (3) The method of detecting the rotor position θm in the rotor position detection unit 21



    [0036] The rotor position detection unit 21 detects the rotor position θm by finding the rotor position θm from the following expression by the use of the phase current electrical angle θi detected in the phase current peak value and electrical angle detection unit 19 and a current phase β selected from a predefined data table (see later described method in (4)).



    [0037] The data table used here specifies the current phase β by the phase current peak value Ip and the induced voltage electrical angle θe - the phase current electrical angle θi as parameters. The desired current phase β can be selected using the phase current peak value Ip and the induced voltage electrical angle θe - the phase current electrical angle θi as parameters.

    [0038] Needless to say, the phase current peak value Ip corresponds to the phase current peak value Ip detected in the phase current peak value and electrical angle detection unit 19. The induced voltage electrical angle θe - the phase current electrical angle θi corresponds to a value obtained by subtracting the phase current electrical angle θi detected in the phase current peak value and electrical angle detection unit 19 from the induced voltage electrical angle θe detected in the induced voltage peak value and electrical angle detection unit 20.

    (4) The method of generating the data table used when detecting the rotor position θm in the rotor position detection unit 21



    [0039] Figure 4 is a motor vector diagram when the rotor of the synchronous motor 11 is rotating. The relation among a voltage V, a current I, and an induced voltage E (=ωΨ) is expressed by vector in a d-q coordinate. In the figure, reference character Vd denotes a d-axis component of the voltage V, reference character Vq denotes a q-axis component of the voltage V, reference character Id denotes a d-axis component of the current I, reference character Iq denotes a q-axis component of the current I, Ed denotes a d-axis component of the induced voltage E, reference character Eq denotes a q-axis component of the induced voltage E, reference character α denotes a voltage phase on the basis of the q-axis, reference character β denotes a current phase on the basis of the q-axis, and reference character γ denotes an induced voltage phase on the basis of the q-axis. Further, in the figure, reference character Ψa denotes a permanent magnet flux of the rotor, reference character Ld denotes a d-axis inductance, reference character Lq denotes a q-axis inductance, reference character R denotes a resistance of a coil of the stator, and reference character Ψ denotes a total interlinkage magnetic flux of the rotor.

    [0040] In the motor vector diagram, if rotational frequency of the rotor is ω, the following expression is held.



    [0041] When ω-related values are moved from the right-hand side to the left-hand side in the above expression, the following expression is held.



    [0042] The data table used when detecting the rotor position θm in the rotor position detection unit 21 is generated on the assumption that the above expressions are satisfied under the motor vector diagram. The generation of the data table is carried out by storing the current phase β when the induced voltage phase γ - the current phase β reaches a predetermined value while the current phases β and the current I illustrated in the motor vector diagram are respectively increased in incremental steps in a predetermined range; and making up a data table of the current phases β that has the phase current peak value Ip corresponding to the current I and the induced voltage electrical angle θe - the phase current electrical angle θi corresponding to the induced voltage phase γ - the current phases β as parameters.

    [0043] More specifically, as illustrated in Figure 5, while the current phase β is increased by 0.001° from -180° to 180° and the current I is increased by 1A from 0A to 64A (see steps ST1, ST2, and ST5 to ST8), the voltage phase α, the current phase β, and the induced voltage phase γ from the motor vector diagram are found by the use of the d-axis inductance Ld and q-axis inductance Lq specific to the synchronous motor 11. Then, the current phase β when the induced voltage phase γ - the current phase β reaches 1°, 2°, 3°, ... is stored (see steps ST3 and ST4). Thus, the data table of the current phase β, that has the phase current peak value Ip corresponding to the current I as a parameter and the induced voltage electrical angle θe - the phase current electrical angle θi corresponding to the induced voltage phase γ -the current phase β as another parameter, is generated.

    [0044] Other methods can be used as aforementioned (3) the method of detecting the rotor position θm in the rotor position detection unit 21 and (4) the method of generating the data table used when detecting the rotor position θm in the rotor position detection unit 21. Thereinafter, details about the other methods are described in sequence.

    (3') Another method of detecting the rotor position θm in the rotor position detection unit 21



    [0045] The rotor position detection unit 21 detects the rotor position θm by finding the rotor position θm from the following expression by the use of the induced voltage electrical angle θe detected in the induced voltage peak value and electrical angle detection unit 20 and the induced voltage phase γ selected from a predefined data table (see the later described method in (4')) .



    [0046] The data table used here specifies the induced voltage phase γ by the phase current peak value Ip and the induced voltage electrical angle θe - the phase current electrical angle θi as parameters. The desired induced voltage phase γ can be selected using the phase current peak value Ip and the induced voltage electrical angle θe - the phase current electrical angle θi as the parameters.

    [0047] Needless to say, the phase current peak value Ip corresponds to the phase current peak value Ip detected in the phase current peak value and electrical angle detection unit 19. The induced voltage electrical angle θe - the phase current electrical angle θi corresponds to a value obtained by subtracting the phase current electrical angle θi detected in the phase current peak value and electrical angle detection unit 19 from the induced voltage electrical angle θe detected in the induced voltage peak value and electrical angle detection unit 20.

    (4') Another method of generating the data table used when detecting the rotor position θm in the rotor position detection unit 21



    [0048] The data table used when detecting the rotor position θm by the rotor position detection unit 21 is generated on the assumption that the above expressions are satisfied under the motor vector diagram as well as the method in (4). The generation of the data table is carried out by storing the induced voltage phase γ when the induced voltage phase γ - the current phase β reaches a predetermined value while the current phase β and the current I illustrated in the motor vector diagram are respectively increased in incremental steps in a predetermined range; and making up a data table of the induced voltage phase γ that has the phase current peak value Ip corresponding to the current I and the induced voltage electrical angle θe - the phase current electrical angle θi corresponding to the induced voltage phase γ - the current phases β as parameters.

    [0049] More specifically, in the same manner as illustrated in Figure 5, while the current phase P is increased by 0.001° from - 180° to 180° and the current I is increased by 1A from 0A to 64A (see steps ST1, ST2, and ST5 to ST8), the voltage phase α, the current phase β, and the induced voltage phase γ from the motor vector diagram are found by the use of the d-axis inductance Ld and the q-axis inductance Lq specific to the synchronous motor 11. Then, the induced voltage phase γ when the induced voltage phase γ - the current phase β reaches 1°, 2°, 3°... is stored (see steps ST3 and ST4). Thus, the data table of the induced voltage phase γ, that has the phase current peak value Ip corresponding to the current I as a parameter and the induced voltage electrical angle θe - the phase current electrical angle θi corresponding to the induced voltage phase γ -the current phase β as another parameter, is generated.

    [0050] According to the aforementioned motor control device can detect the rotor position θm by directly finding the rotor position θm from the rotor position expression (θm = θi - β - 90°) containing, as the variable, the current electrical angle θi from among the phase current peak value Ip and the phase current electrical angle θi detected in the phase current peak value and electrical angle detection unit 19 and the induced voltage peak value Ep and the induced voltage electrical angle θe detected in the induced voltage peak value and electrical angle detection unit 20, and containing, as the variable, the current phase β capable of being selected using the phase current peak value Ip and the induced voltage electrical angle θe - the phase current electrical angle θi as parameters from the predefined data table; or from the rotor position expression (θm = θe - γ - 90°) containing, as the variable, the induced voltage electrical angle θe, and containing, as the variable, the induced voltage phase γ capable of being selected using the phase current peak value Ip and the induced voltage electrical angle θe - the phase current electrical angle θi as parameters from the predefined data table.

    [0051] Briefly, the rotor position θm is directly found by the use of the predetermined rotor position expression. Thus, the rotor position θm can be reliably detected under a certain accuracy contrary to the conventional detection method involving variation in detection accuracy. In addition, the use of a system for selecting the current phase β or the induced voltage phase γ which is one of the variables contained in the rotor expression from the predefined data table. Thus, the rotor position θm can be simply detected under a lower processing load than the system for finding the current phase β or the induced voltage phase γ every time, there is no need to use a high performance data processing apparatus corresponding to a high processing load that used in the conventional detection method.

    [0052] By the way, in the aforementioned explanation, the data table which specifies the current phase β by the phase current peak value Ip and the induced voltage electrical angle θe - the phase current electrical angle θi as parameters as the data table used when detecting the rotor position θm in the rotor position detection unit 21. However, if a data table which specifies the current phase β or the induced voltage phase γ by the induced voltage peak value Ep and the induced voltage electrical angle θe - the phase current electrical angle θi as parameters, a data table which specifies the current phase β or the induced voltage phase γ by the phase current peak value Ip and the induced voltage peak value Ep as parameters, or a data table which specifies the current phase β or the induced voltage phase γ by the phase current peak value Ip, the induced voltage peak value Ep, and the induced voltage electrical angle θe - the phase current electrical angle θi as parameters is used in place of the above data table, functions and effects equivalent with the above functions and the above effects can exert.

    [0053] Further, in the aforementioned explanation, the three-phase DC brushless motor as the synchronous motor 11 and the three-phase bipolar drive inverter as the inverter 12 are exemplified. However, if the motor control device has an inverter for a synchronous motor other than three-phase, functions and effects equivalent with the above functions and the above effects can exert by using the present invention.

    [0054] Further, in the aforementioned explanation, the motor control device having the shunt resistors R1, R2, and R3 serves as the sensor for detecting the current flowing through each phase of the synchronous motor 11 arranged in the inverter 12 is exemplified. However, if the shunt resistors R1, R2, and R3 are arranged outside the inverter 12, or sensors (for example, sensors or the like utilizing a current transformer or a hole element) playing the role of the shunt resistors R1, R2, and R3 are arranged in the same position or other positions, functions and effects equivalent with the above functions and the above effects can exert by using the present invention.

    [0055] Furthermore, in the aforementioned explanation, the motor control device connecting the branch lines from each of the connection lines between the synchronous motor 11 and the inverter 12 to the applied voltage detection unit 18 for detecting the voltages applied to each phase of the synchronous motor 11 is exemplified. However, if the voltages applied to each phase of the synchronous motor 11 are detected by finding from the voltage of the direct current power source 13 and the on-off amount of the switching devices of the inverter 12 and so on, functions and effects equivalent with the above functions and the above effects can exert by using the present invention.

    INDUSTRIAL APPLICABILITY



    [0056] The present invention is suitable for a motor control device having a function of detecting a rotor rotational position (hereinafter referred to as a rotor position) of a synchronous motor) of a synchronous motor without a sensor.

    EXPLANATION OF LETTERS OR NUMERALS



    [0057] 11... Synchronous motor, 12...Inverter, 13...Direct current power source, 14...Controller, 15...Rotation control unit, 16...Inverter drive unit, 17...Phase current detection unit, 18...Applied voltage detection unit, 19...Phase current peak value and electrical angle detection unit, 20...Induced voltage peak value and electrical angle detection unit, 21...Rotor position detection unit


    Claims

    1. A motor control device having a function of detecting a rotor position θm) of a synchronous motor (11) without a sensor, wherein the motor control device comprises:

    current detecting means (17) for detecting a current (Iu, Iv, Iw) flowing through a coil (Uc, Vc, Wc) of the synchronous motor (11);
    applied voltage detecting means (18) for detecting an applied voltage (Vu, Vv, Vw) applied to the coil (Uc, Vc, Wc) of the synchronous motor (11);
    current peak value and electrical angle detecting means (19) for detecting a current peak value (Ip) and a current electrical angle (θi) on the basis of the current (Iu, Iv, Iw) detected in the current detecting means (17);
    induced voltage peak value and electrical angle detecting means (20) for detecting an induced voltage peak value (Ep) and an induced voltage electrical angle (θe) on the basis of the current (Iu, Iv, Iw) detected in the current detecting (17) means and the applied voltage (Vu, Vv, Vw) detected in the applied voltage detecting means (18); and
    rotor position detecting means (21) for detecting the rotor position (θm) by directly finding the rotor position (θm) from a rotor position expression containing, as a variable, the current electrical angle (θi) or the induced voltage electrical angle (θe) from among the current peak value (Ip) and the current electrical angle (θi) detected in the current peak value and electrical angle detecting means (19) and the induced voltage peak value (Ep) and the induced voltage electrical angle (θe) detected in the induced voltage peak value and electrical angle detecting means (20), and containing, as a variable, a current phase (β) or an induced voltage phase (γ) capable of being selected using at least two of the current peak value (Ip), the induced voltage peak value (Ep) and the induced voltage electrical angle (θe) - the current electrical angle (θi) as parameters from a predefined data table.


     
    2. The motor control device according to claim 1, wherein
    the predefined data table used in the rotor position detecting means specifies the current phase or the induced voltage phase by the current peak value (Ip) and the induced voltage electrical angle (θe) - the current electrical angle (θi) as the parameters.
     
    3. The motor control device according to claim 2, wherein
    the rotor position expression in the rotor position detecting means (21) is the rotor position (θm) = the current electrical angle (θi) - the current phase (β) - 90°, and the current phase (β) in the rotor position expression is selected from the predefined data table using the current peak value (Ip) and the induced voltage electrical angle (θe)-the current electrical angle (θi) as parameters.
     
    4. The motor control device according to claim 2, wherein
    the rotor position expression in the rotor position detecting means (21) is the rotor position (θm) = the induced voltage electrical angle (θe) - the induced voltage phase (γ) - 90°, and the induced voltage phase (γ) in the rotor position expression is selected from the predefined data table using the current peak value (Ip) and the induced voltage electrical angle (θe) - the current electrical angle (θi) as parameters.
     
    5. The motor control device according to any one of claims 1 to 4, wherein
    the synchronous motor (11) is a synchronous motor having a stator with a plurality of phase coils (Uc, Vc, Wc);
    the current detecting means (17) detects currents (Iu, Iv, Iw) flowing through each of the plurality of phase coils (Uc, Vc, Wc) of the synchronous motor (11), and
    the applied voltage detecting means (18) detects voltages (Vu, Vv, Vw) applied to each of the plurality of phase coils (Uc, Vc, Wc) of the synchronous motor (11).
     


    Ansprüche

    1. Motorsteuervorrichtung mit einer Funktion zum Erfassen einer Rotorposition (θm) eines Synchronmotors (11) ohne einen Sensor, wobei die Motorsteuervorrichtung Folgendes aufweist:

    eine Stromerfassungseinrichtung (17) zum Erfassen eines Stroms (Iu, Iv, Iw), der durch eine Spule (Uc, Vc, Wc) des Synchronmotors (11) strömt;

    eine Einrichtung (18) zum Erfassen einer aufgebrachten elektrischen Spannung, um eine aufgebrachte elektrische Spannung (Vu, Vv, Vw) zu erfassen, die auf die Spule (Uc, Vc, Wc) des Synchronmotors (11) aufgebracht wird;

    eine Einrichtung (19) zum Erfassen eines Stromspitzenwerts und eines elektrischen Stromwinkels, um einen Stromspitzenwert (Ip) und einen elektrischen Stromwinkel (θi) auf der Grundlage des Stroms (Iu, Iv, Iw) zu erfassen, der durch die Stromerfassungseinrichtung (17) erfasst wird;

    eine Einrichtung (20) zum Erfassen eines induzierten Spannungsspitzenwerts und eines induzierten elektrischen Spannungswinkels, um einen induzierten Spannungsspitzenwert (Ep) und einen induzierten elektrischen Spannungswinkel (θe) auf der Grundlage des Stroms (Iu, Iv, Iw), der durch die Stromerfassungseinrichtung (17) erfasst wird, und der aufgebrachten elektrischen Spannung (Vu, Vv, Vw) zu erfassen, der durch die Einrichtung (18) zum Erfassen der aufgebrachten elektrischen Spannung erfasst wird; und

    eine Rotorpositionserfassungseinrichtung (21) zum Erfassen der Rotorposition (θm) durch direktes Finden der Rotorposition (θm) aus einem Rotorpositionsausdruck, der als Variable den induzierten elektrischen Stromwinkel (θi) oder den induzierten elektrischen Spannungswinkel (θe) von dem Stromspitzenwert (Ip) und dem elektrischen Stromwinkel (θi) enthält, die durch die Einrichtung (19) zum Erfassen des Stromspitzenwerts und des elektrischen Stromwinkels erfasst werden, und den induzierten Spannungsspitzenwert (Ep) und den induzierten elektrischen Spannungswinkel (θe), die durch die Einrichtung (20) zum Erfassen des induzierten Spannungsspitzenwerts und des elektrischen Winkels erfasst werden, und der als Variable eine Stromphase (β) oder eine induzierte Spannungsphase (γ) enthält, die zumindest unter Verwendung von zweien des Stromspitzenwerts (Ip), des induzierten Spannungsspitzenwerts (Ep) und des induzierten elektrischen Spannungswinkels (θe) - der elektrische Stromwinkel (θi) als Parameter aus einer vordefinierten Datentabelle ausgewählt sein können.


     
    2. Motorsteuervorrichtung gemäß Anspruch 1, wobei
    die vordefinierte Datentabelle, die bei der Rotorpositionserfassungseinrichtung verwendet wird, die Stromphase oder die induzierte Spannungsphase durch den Stromspitzenwert (Ip) und den induzierten elektrischen Spannungswinkel (θe) - den elektrischen Stromwinkel (θi) als die Parameter spezifiziert.
     
    3. Motorsteuervorrichtung gemäß Anspruch 2, wobei
    der Rotorpositionsausdruck bei der Rotorpositionserfassungseinrichtung (21) die Rotorposition (θm) = der elektrische Stromwinkel (θi) - Stromphase (β) - 90° ist, und die Stromphase (β) in dem Rotorpositionsausdruck aus der vordefinierten Datentabelle unter Verwendung des Stromspitzenwerts (Ip) und des induzierten elektrischen Spannungswinkels (θe) - der elektrische Stromwinkel (θi) als Parameter ausgewählt wird.
     
    4. Motorsteuervorrichtung gemäß Anspruch 2, wobei
    der Rotorpositionsausdruck bei der Rotorpositionserfassungseinrichtung (21) die Rotorposition (θm) = der induzierte elektrische Spannungswinkel (θe) - die induzierte Spannungsphase (γ) - 90° ist, und die induzierte Spannungsphase (γ) bei dem Rotorpositionsausdruck aus der vordefinierten Datentabelle unter Verwendung des Stromspitzenwerts (Ip) und des induzierten elektrischen Spannungswinkels (θe) - der elektrischen Stromwinkel (θi) als Parameter ausgewählt wird.
     
    5. Motorsteuervorrichtung gemäß einem der Ansprüche 1 bis 4, wobei
    der Synchronmotor (11) ein Synchronmotor ist, der einen Stator mit vielen Phasenspulen (Uc, Vc, Wc) hat;
    die Stromerfassungseinrichtung (17) Ströme (Iu, Iv, Iw) erfasst, die durch die jeweiligen vielen Phasenspulen (Uc, Vc, Wc) des Synchronmotors (11) strömen, und
    die Einrichtung (18) zum Erfassen der aufgebrachten elektrischen Spannung elektrische Spannungen (Vu, Vv, Vw) erfasst, die auf den jeweiligen vielen Phasenspulen (Uc, Vc, Wc) des Synchronmotors (11) aufgebracht werden.
     


    Revendications

    1. Dispositif de commande d'un moteur ayant une fonction de détection de la position (θm) du rotor d'un moteur synchrone (11) sans capteur, ce dispositif de commande d'un moteur comprenant :

    des moyens de détection de courant (17) destinés à détecter l'intensité du courant (Iu, Iv, Iw) passant dans une bobine (Uc, Vc, Wc) du moteur synchrone (11),

    des moyens de détection (18) de la tension appliquée destinés à détecter la tension (Vu, Vv, Vw) appliquée à la bobine (Uc, Vc, Wc) du moteur synchrone (11),

    des moyens de détection (19) de la valeur d'un pic de courant et de l'angle électrique du courant destinés à détecter la valeur d'un pic de courant (Ip) et l'angle électrique du courant (θi) à partir de l'intensité du courant (Iu, Iv, Iw) détectée par les moyens de détection de courant (17),

    des moyens de détection (20) de la valeur d'un pic de la tension induite et de l'angle électrique de la tension induite destinés à détecter la valeur d'un pic de la tension induite (Ep) et de l'angle électrique de la tension induite (θe) à partir de l'intensité de courant (Iu, Iv, Iw) détectée par les moyens de détection de courant (17), et de la tension appliquée (Vu, Vv, Vw) détectée par les moyens de détection (18) de la tension appliquée,

    des moyens de détection (21) de la position du rotor destinés à détecter la position (θm) du rotor en déduisant directement la position du rotor (θm) d'une expression de la position du rotor renfermant en tant que variable l'angle électrique du courant (θi) ou l'angle électrique de la tension induite (θe) parmi la valeur d'un pic de courant (Ip) et de l'angle électrique du courant (θi) détectés par les moyens de détection (19) de la valeur d'un pic de courant et de l'angle électrique du courant de l'angle électrique et la valeur d'un pic de la tension induite (Ep), et de l'angle électrique de la tension induite (θe) détectés par les moyens de détection (20) de la valeur d'un pic de la tension induite et de l'angle électrique de la tension induite et renfermant en tant que valable la phase (β) du courant ou la phase (γ) de la tension induite susceptibles d'être choisies en utilisant au moins deux valeurs parmi la valeur d'un pic de courant (Ip), la valeur d'un pic de la tension induite (Ep) et l'angle électrique de la tension induite (θe) - l'angle électrique du courant (θi) en tant que paramètres à partir d'une table de données prédéfinie.


     
    2. Dispositif de commande d'un moteur conforme à la revendication 1, dans lequel la table de données prédéfinie utilisée dans les moyens de détection de la position du rotor détermine la phase du courant ou la phase de la tension induite par l'intermédiaire de la valeur d'un pic de courant (Ip) et de l'angle électrique de la tension induite (θe)- l'angle électrique du courant (θi) en tant que paramètres.
     
    3. Dispositif de commande d'un moteur conforme à la revendication 2, dans lequel l'expression de la position du rotor dans les moyens de détection de la position du rotor (21) est la position du rotor (θm) = l'angle électrique du courant (θi)- la phase (β) du courant - 90° et la phase du courant β) dans l'expression de la position du rotor est choisie dans la table de données prédéfinie en utilisant la valeur d'un pic de courant (Ip) et l'angle électrique de la tension induite (θe)- l'angle électrique du courant (θi) en tant que paramètres.
     
    4. Dispositif de commande d'un moteur conforme à la revendication 2, dans lequel l'expression de la position du rotor dans les moyens de détection de la position du rotor (21) est la position du rotor (θm) = l'angle électrique de la tension induite (θe)- la phase de la tension induite (γ) - 90°, et la phase de la tension induite (γ) dans l'expression de la position du rotor est choisie à partir de la table de données prédéfinie en utilisant la valeur d'un pic de courant (Ip) et l'angle électrique de la tension induite (θe)- l'angle électrique du courant (θi)- en tant que paramètres.
     
    5. Dispositif de commande d'un moteur conforme à l'une quelconque des revendications 1 à 4, dans lequel :

    Le moteur synchrone (11) est un moteur synchrone comprenant un stator muni de plusieurs bobines de phase (Uc, Vc, Wc),

    les moyens de détection de courant (17) détectent l'intensité du courant (Iu, Iv, Iw) passant dans chacune des bobines de phase (Uc, Vc, Wc) du moteur synchrone (11), et

    les moyens de détection de la tension appliquée (18) détectent la tension (Vu, Vv, Vw) appliquée à chacune des bobines de phase (Uc, Vc, Wc) du moteur synchrone (11).


     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description